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Abstract. The object of the present paper is to study a Kenmotsu manifold
admitting a semi-symmetric metric connection whose projective curvature ten-
sor satisfies certain curvature conditions.

1. Introduction

The product of an almost contact manifold M and the real line R carries a nat-
ural almost complex structure. However if one takes M to be an almost contact
metric manifold and suppose that the product metric G on M × R is Kaehlerian,
then the structure on M is cosymplectic [12] and not Sasakian. On the other hand
Oubina [15] pointed out that if the conformally related metric e2tG, t being the
coordinate on R, is Kaehlerian, then M is Sasakian and conversely.

In [19], S. Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups possess the maximum dimension. For such a manifold M , the
sectional curvature of plane sections containing ξ is a constant, say c. If c > 0, M
is a homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is
the product of a line or a circle with a Kaehler manifold of constant holomorphic
sectional curvature. If c < 0, M is a warped product space R ×f Cn. In 1971,
Kenmotsu studied a class of contact Riemannian manifolds satisfying some special
conditions [14]. We call it Kenmotsu manifold. Kenmotsu manifolds have been
studied by J.B. Jun , U.C. De and G. Pathak [13], C. Özgür and U.C. De [16], U.C.
De and G. Pathak [9], A. Yıldiz, U.C. De and B.E. Acet [22] and others.

H.A. Hayden [11] introduced semi-symmetric linear connections on a Riemann-
ian manifold and this was further developed by K. Yano [20], K. Amur and S.S.
Pujar [1], M. Prvanović [17], U.C. De and S.C. Biswas [8], A. Sharfuddin and S.I.
Hussain [18], T.Q. Binh [3], F.Ö. Zengin and S.A. Uysal and S.A. Demirbag [26],
S.K. Chaubey and R.H. Ojha ([6], [7]), H.B. Yılmaz [23] and others.
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Let M be an n-dimensional Riemannian manifold of class C∞ endowed with the
Riemannian metric g and D be the Levi-Civita connection on (Mn, g).

A linear connection ∇ defined on (Mn, g) is said to be semi-symmetric [10] if its
torsion tensor T is of the form

(1.1) T (X, Y ) = η(Y )X − η(X)Y,

where η is a 1-form and ξ is a vector field given by

(1.2) η(X) = g(X, ξ),

for all vector fields X ∈ χ(Mn), χ(Mn) is the set of all differentiable vector fields
on Mn.

A semi-symmetric connection ∇ is called a semi-symmetric metric connection [11]
if it further satisfies

(1.3) ∇g = 0.

A relation between the semi-symmetric metric connection ∇ and the Levi-Civita
connection D on (Mn, g) has been obtained by K. Yano [20] which is given by

(1.4) ∇XY = DXY + η(Y )X − g(X, Y )ξ.

We also have

(1.5) (∇Xη)(Y ) = (DXη)Y − η(X)η(Y ) + η(ξ)g(X, Y ).

Further, a relation between the curvature tensor R of the semi-symmetric met-
ric connection ∇ and the curvature tensor K of the Levi-Civita connection D is
given by

R(X, Y )Z = K(X, Y )Z + α(X, Z)Y − α(Y, Z)X +
g(X,Z)QY − g(Y,Z)QX,(1.6)

where α is a tensor field of type (0,2) and Q is a tensor field of type (1,1) which
is given by

(1.7) α(Y,Z) = g(QY,Z) = (DY η)(Z)− η(Y )η(Z) +
1
2
η(ξ)g(Y, Z).

From (1.6) and (1.7), we obtain

R̃(X, Y, Z, W ) = K̃(X,Y, Z, W )− α(Y, Z)g(X, W ) +
α(X, Z)g(Y, W )− g(Y, Z)α(X, W ) +

g(X, Z)α(Y, W ),(1.8)

where

(1.9) R̃(X, Y, Z, W ) = g(R(X, Y )Z, W ), K̃(X, Y, Z,W ) = g(K(X, Y )Z,W ).
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The Projective curvature tensor is an important tensor from the differential geo-
metric point of view. Let M be a (2n + 1)-dimensional Riemannian manifold. If
there exists a one-to-one correspondence between each coordinate neighbourhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n ≥ 1, M is locally projectively flat if and only if
the projective curvature tensor P vanishes. Here the projective curvature tensor P
with respect to the semi-symmetric metric connection is defined by

(1.10) P (X,Y )Z = R(X,Y )Z − 1
2n

[S(Y, Z)X − S(X, Z)Y ],

From (1.10), it follows that

P̃ (X,Y, Z, W ) = R̃(X, Y, Z, W )− 1
2n

[S(Y, Z)g(X, W )−
S(X, Z)g(Y, W )],(1.11)

and

(1.12) P̃ (X,Y, Z, W ) = g(P (X, Y )Z, W ),

for X, Y , Z , W ∈ χ(M), where S is the Ricci tensor with respect to the semi-
symmetric metric connection. In fact M is projectively flat if and only if it is of
constant curvature [21]. Thus the projective curvature tensor is the measure of the
failure of a Riemannian manifold to be of constant curvature.

In this paper we study the projective curvature tensor on Kenmotsu manifold
with respect to the semi-symmetric metric connection. The paper is organized as
follows : After introduction in section 2, we give a brief account of the Kenmotsu
manifolds. In section 3, we investigate the quasi-projectively flat Kenmotsu mani-
folds with respect to the semi-symmetric metric connection and we prove that the
manifold is an η-Einstein manifold. Section 4 is devoted to study ξ-projectively
flat Kenmotsu manifolds with respect to the semi-symmetric metric connection.
Section 5 deals with φ-projectively flat Kenmotsu manifolds with respect to the
semi-symmetric metric connection. Finally, we study P.S = 0 in a Kenmotsu man-
ifold with respect to the semi-symmetric metric connection.

2. Kenmotsu Manifolds

Let M be an (2n+1)-dimensional almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field
ξ, a 1-form η and a Riemannian metric g on M satisfying [4]

(2.1) φ2(X) = −X + η(X)ξ, g(X, ξ) = η(X),

(2.2) η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0,
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(2.3) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X ,Y on M . If an almost contact metric manifold satisfies

(2.4) (DXφ)(Y ) = g(φX, Y )ξ − η(Y )φX,

then M is called a Kenmotsu manifold [14]. From the above relations, it follows that

(2.5) DXξ = X − η(X)ξ,

(2.6) (DXη)(Y ) = g(X, Y )− η(X)η(Y ).

Moreover the curvature tensor K and the Ricci tensor S̃ of the Kenmotsu manifold
with respect to the Levi-Civita connection satisfies

(2.7) K(X,Y )ξ = η(X)Y − η(Y )X,

(2.8) K(ξ,X)Y = η(Y )X − g(X, Y )ξ,

(2.9) K(X, ξ)Y = g(X, Y )ξ − η(Y )X,

(2.10) S̃(φX, φY ) = S̃(X,Y ) + 2nη(X)η(Y ),

(2.11) S̃(X, ξ) = −2nη(X).

We state the following lemma which will be used in the next section:

Lemma 2.1. [14] Let M be an η-Einstein Kenmotsu manifold of the form S(X, Y ) =
ag(X,Y ) + bη(X)η(Y ). If b = constant(or, a = constant), then M is an Einstein
one.
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3. Quasi-Projectively flat Kenmotsu manifolds with respect to the
semi-symmetric metric connection

Definition 3.1. A Kenmotsu manifold is said to be quasi-projectively flat with
respect to the semi-symmetric metric connection if

(3.1) g(P (X, Y )Z, φW ) = 0.

Definition 3.2. A Kenmotsu manifold is said to be an η-Einstein manifold if its
Ricci tensor S̃ of the Levi-Civita connection is of the form

(3.2) S̃(X,Y ) = ag(X, Y ) + bη(X)η(Y ),

where a and b are smooth functions on the manifold.

Using (1.7), (2.2) and (2.6) in (1.6), we obtain

R(X, Y )Z = K(X, Y )Z − 3g(Y, Z)X + 3g(X, Z)Y +
2η(Y )η(Z)X − 2η(X)η(Z)Y +

2g(Y,Z)η(X)ξ − 2g(X, Z)η(Y )ξ.(3.3)

Using (1.9) in (3.3), we get

R̃(X, Y, Z,W ) = K̃(X, Y, Z,W )− 3g(Y,Z)g(X,W ) + 3g(X, Z)g(Y, W ) +
2η(Y )η(Z)g(X,W )− 2η(X)η(Z)g(Y, W ) +

2g(Y, Z)η(X)η(W )− 2g(X, Z)η(Y )η(W ).(3.4)

Contracting X in (3.3), we have

(3.5) S(Y,Z) = S̃(Y, Z)− 2(3n− 1)g(Y,Z) + 2(2n− 1)η(Y )η(Z).

Putting Z = ξ in (3.5) and using (2.11), (2.1) and (2.2), we obtain

(3.6) S(Y, ξ) = −4nη(Y ).

Again contracting Y and Z in (3.5), it follows that

(3.7) r = r̃ − 2n(6n− 1).

where r and r̃ are the scalar curvature with respect to the semi-symmetric metric
connection and the Levi-Civita connection respectively.
Putting X = φX and Y = φY in (1.11) and using (1.12), we get

g(P (φX, Y )Z, φW ) = R̃(φX, Y, Z, φW )−
1
2n

[S(Y, Z)g(φX, φW )− S(φX, Z)g(Y, φW )].(3.8)

We begin with the following:
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Lemma 3.1. Let M be a (2n + 1)-dimensional Kenmotsu manifold. If M satisfies

(3.9) g(P (φX, Y )Z, φW ) = 0, X, Y, Z, W ∈ χ(M),

then M is an η-Einstein manifold.

Proof: Using (3.9) in (3.8), we have

(3.10) R̃(φX, Y, Z, φW ) =
1
2n

[S(Y, Z)g(φX, φW )− S(φX,Z)g(Y, φW )].

Again using (3.4) and (3.5) in (3.10), it follows that

K̃(φX, Y, Z, φW ) =
1
n

g(Y, Z)g(φX, φW )− 1
n

g(φX, Z)g(Y, φW )−
1
n

η(Y )η(Z)g(φX, φW ) +

1
2n

[S̃(Y,Z)g(φX, φW )− S̃(φX, Z)g(Y, φW )].(3.11)

Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then {φe1, ..., φe2n, ξ}
is also a local orthonormal basis. Putting X = W = ei in (3.11) and summing over
i = 1 to 2n, we get

2n∑

i=1

K̃(φei, Y, Z, φei) =
1
n

2n∑

i=1

g(Y,Z)g(φei, φei)− 1
n

2n∑

i=1

g(φei, Z)g(Y, φei)−

1
n

2n∑

i=1

η(Y )η(Z)g(φei, φei) +

1
2n

2n∑

i=1

[S̃(Y,Z)g(φei, φei)− S̃(φei, Z)g(Y, φei)].(3.12)

From (3.12), we obtain

(3.13) S̃(Y, Z) = (4n− 2)g(Y, Z)− 4nη(Y )η(Z).

Therefore, S̃(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = 4n− 2 and b = −4n.

This result shows that the manifold is an η-Einstein manifold. This proves the
Lemma .

In view of Lemma (3.1), we can state the following theorem :

Theorem 3.1. If a Kenmotsu manifold is quasi-projectively flat with respect to the
semi-symmetric metric connection, then the manifold is an η-Einstein manifold.

Since a and b are both constant, by Lemma (2.1), we get the following:



PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC ... 165

Corollary 3.1. If a Kenmotsu manifold is quasi-projectively flat with respect to
the semi-symmetric metric connection, then the manifold is an Einstein manifold.

4. ξ -Projectively flat and φ-Projectively flat Kenmotsu manifolds
with respect to the semi-symmetric metric connection

Let C be the Weyl conformal curvature tensor of a (2n + 1)-dimensional mani-
fold M . Since at each point p ∈ M the tangent space χp(M) can be decomposed
into the direct sum χp(M) = φ(χp(M)) ⊕ L(ξp), where L(ξp) is an 1-dimensional
linear subspace of χp(M) generated by ξp. Then we have a map:

C : χp(M)× χp(M)× χp(M) −→ φ(χp(M))⊕ L(ξp).

It may be natural to consider the following particular cases:

(1)C : χp(M)×χp(M)×χp(M) −→ L(ξp), i.e, the projection of the image of C
in φ(χp(M)) is zero.

(2)C : χp(M)× χp(M)× χp(M) −→ φ(χp(M)), i.e, the projection of the image
of C in L(ξp) is zero.

(4.1) C(X, Y )ξ = 0.

(3)C : φ(χp(M))×φ(χp(M))×φ(χp(M)) −→ L(ξp), i.e, when C is restricted to
φ(χp(M))× φ(χp(M))× φ(χp(M)), the projection of the image of C in φ(χp(M))
is zero. This condition is equivalent to

(4.2) φ2C(φX, φY )φZ = 0.

Here the cases 1, 2 and 3 are conformally symmetric, ξ-conformally flat and φ-
conformally flat respectively. The cases (1) and (2) were considered in [5] and [24]
respectively. The case (3) was considered in [25] for the case M is a K-contact man-
ifold. Furthermore in [2], the authors studied contact metric manifolds satisfying
(3). Analogous to the definition of ξ-conformally flat and φ-conformally flat, we
give the folowing definitions :

Definition 4.1. A Kenmotsu manifold with respect to the semi-symmetric metric
connection is said to be ξ-projectively flat if

(4.3) P (X,Y )ξ = 0.

Definition 4.2. A Kenmotsu manifold is said to be φ-projectively flat with respect
to the semi-symmetric metric connection if

(4.4) g(P (φX, φY )φZ, φW ) = 0,

where X, Y, Z, W ∈ χ(M).

Putting Z = ξ in (3.3) and using (2.1) and (2.2), it follows that

(4.5) R(X, Y )ξ = K(X, Y )ξ + η(X)Y − η(Y )X.
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Using (2.7) in (4.5), we obtain

(4.6) R(X, Y )ξ = 2K(X, Y )ξ.

Putting Z = ξ in (1.10), we have

(4.7) P (X,Y )ξ = R(X, Y )ξ − 1
2n

[S(Y, ξ)X − S(X, ξ)Y ].

Using (3.6) and (4.6) in (4.7), we get

(4.8) P (X,Y )ξ = 0.

Hence we can state the following theorem:

Theorem 4.1. If a Kenmotsu manifold admits a semi-symmetric metric connec-
tion, then the Kenmotsu manifold is ξ -Projectively flat with respect to the semi-
symmetric metric connection.

Putting Y = φY and Z = φZ in (3.8), we get

g(P (φX, φY )φZ, φW ) = g(R(φX, φY )φZ, φW )− 1
2n

[S(φY, φZ)g(φX, φW )−
S(φX, φZ)g(φY, φW )].(4.9)

Using (2.1), (2.2), (3.3) and (3.5) in (4.9), we have

g(P (φX, φY )φZ, φW ) = g(K(φX, φY )φZ, φW )− 1
2n

[S̃(φY, φZ)g(φX, φW )−

S̃(φX, φZ)g(φY, φW )]− 1
n

[g(φY, φZ)g(φX, φW )−
g(φX, φZ)g(φY, φW )].(4.10)

Again using (4.4) in (4.10), we obtain

g(K(φX, φY )φZ, φW ) =
1
2n

[S̃(φY, φZ)g(φX, φW )− S̃(φX, φZ)g(φY, φW )] +

1
n

[g(φY, φZ)g(φX, φW )− g(φX, φZ)g(φY, φW )].(4.11)

Let {e1, ..., e2n, ξ} be a local orthonormal basis of vector fields in M , then {φe1, ..., φe2n, ξ}
is also a local orthonormal basis. Putting X = W = ei in (4.11) and summing over
i = 1 to 2n, we get

2n∑

i=1

g(K(φei, φY )φZ, φei) =
1
2n

2n∑

i=1

[S̃(φY, φZ)g(φei, φei)− S̃(φei, φZ)g(φY, φei)] +

1
n

2n∑

i=1

[g(φY, φZ)g(φei, φei)− g(φei, φZ)g(φY, φei)].(4.12)
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From (4.12), it follows that

(4.13) S̃(φY, φZ) = 2(2n− 1)g(φY, φZ).

Using (2.3) and (2.10) in (4.13), we obtain

(4.14) S̃(Y,Z) = 2(2n− 1)g(Y, Z)− 2(3n− 1)η(Y )η(Z).

Therefore, S̃(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = 2(2n− 1) and b = −2(3n− 1).
We can state the following theorem :

Theorem 4.2. If a Kenmotsu manifold is φ-projectively flat with respect to the
semi-symmetric metric connection, then the manifold is an η-Einstein manifold.

Since a and b are both constant, by Lemma (2.1), we get the following:

Corollary 4.1. If a Kenmotsu manifold is φ-projectively flat with respect to the
semi-symmetric metric connection, then the manifold is an Einstein manifold.

5. Kenmotsu manifolds with respect to the semi-symmetric metric
connection satisfying P.S = 0

In this section we consider Kenmotsu manifold with respect to the semi-symmetric
metric connection M2n+1 satisfying condition

(P (U, Y ).S)(Z, X) = 0

Then we have

(5.1) S(P (U, Y )Z, X) + S(Z,P (U, Y )X) = 0.

Putting U = ξ in (5.1), it follows that

(5.2) S(P (ξ, Y )Z, X) + S(Z,P (ξ, Y )X) = 0.

Putting X = ξ and using (3.5) and (3.6) in (1.10), we get

P (ξ, Y )Z = R(ξ, Y )Z − 1
2n

[S̃(Y,Z)ξ − 2(3n− 1)g(Y, Z)ξ +

2(2n− 1)η(Y )η(Z)ξ + 4nη(Z)Y ].(5.3)

Again putting X = ξ in (3.3) and using (2.8), we obtain

(5.4) R(ξ, Y )Z = 2[η(Z)Y − g(Y, Z)ξ].



168 AJIT BARMAN AND U. C. DE

Using (3.5), (3.6), (5.3) and (5.4) in (5.2), it follows that

(5.5) S̃(Y,Z) = 2(n− 1)g(Y, Z) + 2(1− 2n)η(Y )η(Z).

Therefore, S̃(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = 2(n− 1) and b = 2(1− 2n).
We can state the following theorem :

Theorem 5.1. If a Kenmotsu manifold with respect to the semi-symmetric metric
connection satisfying P.S = 0 , then the manifold is an η-Einstein manifold.

Since a and b are both constant, by Lemma (2.1), we get the following:

Corollary 5.1. If a Kenmotsu manifold with respect to the semi-symmetric metric
connection satisfying P.S = 0, then the manifold is an Einstein manifold.

References

[1] Amur, K. and Pujar, S.S., On submanifolds of a Riemannian manifold admitting a metric
semi-symmetric connection, Tensor, N.S., 32(1978), 35-38.
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[16] Özgür, C. and De, U.C., On the quasi-conformal curvature tensor of a Kenmotsu manifold,
Mathematica Pannonica, 17/2, (2006), 221-228.
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