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PROJECTIVE FRAÏSSÉ LIMITS AND THE PSEUDO-ARC

TREVOR IRWIN AND S�LAWOMIR SOLECKI

Abstract. The aim of the present work is to develop a dualization of the
Fräıssé limit construction from model theory and to indicate its surprising
connections with the pseudo-arc. As corollaries of general results on the dual
Fräıssé limits, we obtain Mioduszewski’s theorem on surjective universality
of the pseudo-arc among chainable continua and a theorem on projective ho-
mogeneity of the pseudo-arc (which generalizes a result of Lewis and Smith
on density of homeomorphisms of the pseudo-arc among surjective continuous
maps from the pseudo-arc to itself). We also get a new characterization of the
pseudo-arc via the projective homogeneity property.

1. Introduction

In the first part of the paper we dualize the classical (injective) Fräıssé limit
found in model theory [5]. The appropriate setting for it will be provided by
topological L-structures, where L is a language of relational and functional symbols
and where by a topological L-structure D we mean a compact, second countable,
zero-dimensional space equipped with interpretations of relation symbols of L as
closed subsets of Dk and of function symbols of L as continuous functions from Dk

to D for various k ∈ N. Morphisms between such structures, which will be defined
in the next section, are always continuous.

We consider countable families of finite topological L-structures equipped with
the discrete topology which satisfy certain “refinement” properties. These refine-
ment properties will be stated precisely later. Whereas in the classical theory of
Fräıssé limits one considers injective homomorphisms, here we take projective ho-
momorphisms. We will make this concept precise with the definition of what we
will call an epimorphism. In Theorem 2.4 we show that if ∆ is a class satisfy-
ing these refinement properties, then there exists a topological L-structure D, the
projective Fräıssé limit of ∆, which is both projectively universal and projectively
ultrahomogeneous with respect to ∆. This means that every member of ∆ is an
epimorphic image of D, and given any epimorphisms φ1, φ2 from D to some D ∈ ∆
there is an isomorphism ψ of D such that φ2 = φ1 ◦ψ. The topological L-structure
D may be represented as an inverse limit of elements from ∆. We show that D is
unique up to isomorphism. If ∆ is infinite, then D is a non-discrete compact space.
Contrast this with the classical Fräıssé construction where one obtains countable
Fräıssé limits with no topology on them.
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In the second part, with an eye towards the application that follows in the final
section of the paper, we introduce the family ∆0 of finite linear (reflexive) graphs.
We show in Theorem 3.1 that this class satisfies the refinement properties, and thus
has a projective Fräıssé limit P.

Finally in part three, we establish a connection between projective Fräıssé limits
and the pseudo-arc. (For definitions related to continua and the pseudo-arc see
the last paragraph of this section.) In Theorem 4.2 we show that by appropriately
moding out the model theoretic content of P, we obtain as a quotient space a
hereditarily indecomposable chainable continuum, i.e., the pseudo-arc. By using the
fact that the pseudo-arc is a quotient space of P, we are able to transfer properties of
P to the pseudo-arc. Thus with Theorem 4.4(i) we give a proof of Mioduszewski’s
universality theorem [9] that each chainable continuum is the continuous image
of the pseudo-arc. In Theorem 4.4(ii) we establish a homogeneity result stating
that for any two continuous surjections f1, f2 from the pseudo-arc onto the same
chainable continuum there exists a homeomorphism h of the pseudo-arc with f2 ◦h
as close to f1 in the uniform topology as required. This extends a result of Lewis [7]
and Smith [13]. Both these results are obtained as direct consequences of general
properties of arbitrary projective Fräıssé limits. This indicates that the theorem
of Lewis and Smith can be viewed as a homogeneity result for the pseudo-arc, and
that the generalization of this result proved here and Mioduszewski’s theorem can
be seen as two phenomena (homogeneity and universality) linked at a deeper level.
Informed by the analogy with projective Fräıssé limits, we show in Theorem 4.9
that the pseudo-arc is the unique chainable continuum fulfilling the conclusion of
the homogeneity theorem. This gives a new characterization of the pseudo-arc.

Recall that a continuum is a compact connected metric space. For a compact
metric space X, we say that an open cover U of X refines an open cover V if each
element of U is contained in an element of V . We call a continuum X chainable if
each open cover of X is refined by an open cover U1, . . . , Un such that for i, j ≤ n,
Ui∩Uj �= ∅ if and only if |i−j| ≤ 1. Such a cover of X is called a chain. A continuum
is indecomposable if it is not the union of two proper subcontinua. A continuum
is hereditarily indecomposable if each of its subcontinua is indecomposable. The
pseudo-arc is the unique hereditarily indecomposable chainable continuum. It is
also the generic continuum: in the (compact) space of all subcontinua of [0, 1]N

equipped with the Hausdorff metric, homeomorphic copies of the pseudo-arc form
a dense Gδ set. Readers interested in learning more about the pseudo-arc should
see [8].

2. The projective Fräıssé limit

2.1. Definition and elementary lemmas. Let L be a language consisting of
relation symbols Ri, i ∈ I, with arity mi ∈ N, and function symbols fj , j ∈ J , with
arity nj ∈ N. By a topological L-structure we mean a zero-dimensional, compact,
second countable space A together with closed sets RA

i ⊆ Ami and continuous
functions fA

j : Anj → A for all i ∈ I and j ∈ J . Let A and B be two topological
L-structures. By an epimorphism from A to B we mean a surjective continuous
function φ : A → B such that for any j ∈ J and x1, . . . , xnj

∈ A we have

(2.1) fB
j (φ(x1), . . . , φ(xnj

)) = φ(fA
j (x1, . . . , xnj

))
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and for any i ∈ I and any y1, . . . , ymi
∈ B we have

(y1, . . . , ymi
) ∈ RB

i

⇔ ∃x1, . . . , xmi
∈ A (φ(xp) = yp for all p ≤ mi and (x1, . . . , xmi

) ∈ RA
i ).

(2.2)

By an isomorphism we mean a bijective epimorphism. Since the topology on a
topological L-structure is compact, each isomorphism is a homeomorphism. Note
also that if φ : A → B is an isomorphism, (2.2) is equivalent to

(φ(x1), . . . , φ(xmi
)) ∈ RB

i ⇔ (x1, . . . , xmi
) ∈ RA

i .

We say that an epimorphism φ : A → B between two topological L-structures A
and B refines an open covering U of A if for each y ∈ B there is a U ∈ U with
φ−1(y) ⊆ U .

The following lemma encodes a crucial property of epimorphisms. Since its proof
is simple diagram chasing, we leave it to the reader.

Lemma 2.1. Let A, B, C be topological L-structures. Let f : B → A, g : C → A,
φ : C → B be functions such that g = f ◦ φ. Assume that φ is an epimorphism.
Then f is an epimorphism iff g is an epimorphism.

Let ∆ be a family of topological L-structures. We say that ∆ is a projective
Fräıssé family if the following two conditions hold:

(F1) for any D, E ∈ ∆ there is an F ∈ ∆ and epimorphisms from F onto D and
onto E;

(F2) for any C, D, E ∈ ∆ and any epimorphisms φ1 : D → C, φ2 : E → C, there
exists an F ∈ ∆ with epimorphisms ψ1 : F → D and ψ2 : F → E such that
φ1 ◦ ψ1 = φ2 ◦ ψ2.

Let ∆ be a family of topological L-structures. We say that a topological L-
structure D is a projective Fräıssé limit of ∆ if the following three conditions hold:

(L1) (projective universality) for any D ∈ ∆ there is an epimorphism from D to
D;

(L2) for any finite discrete topological space A and any continuous function
f : D → A there is a D ∈ ∆, an epimorphism φ : D → D, and a function
f ′ : D → A such that f = f ′ ◦ φ;

(L3) (projective ultrahomogeneity) for any D ∈ ∆ and any epimorphisms φ1 :
D → D and φ2 : D → D there exists an isomorphism ψ : D → D such that
φ2 = φ1 ◦ ψ.

The conclusion of the following lemma gives a convenient restatement of (L2).

Lemma 2.2. Let ∆ be a family of topological L-structures. Let D be a topological L-
structure fulfilling (L2). Then for each open covering of D there is an epimorphism
from D to a structure in ∆ refining the covering.

Proof. Given an open cover of D find a finite cover A consisting of clopen sets and
refining it. Then define f : D → A by letting f(x) be the element of A containing
x. Now apply (L2). �

Lemma 2.3. Let ∆ be a projective Fräıssé family of finite topological L-structures
and let D be a projective Fräıssé limit of ∆. Let D, E ∈ ∆ and let φ : E → D and
ψ : D → D be epimorphisms. Then there exists an epimorphism χ : D → E such
that φ ◦ χ = ψ.
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Proof. By (L1) there is an epimorphism α : D → E. We now have two epimorphisms
ψ and φ ◦ α from D to D. Thus, by (L3) there is an isomorphism β : D → D such
that (φ ◦ α) ◦ β = ψ. Take χ to be α ◦ β. �

2.2. Existence and uniqueness. In the following theorem we show that each
countable projective Fräıssé family of finite topological L-structures has a projective
Fräıssé limit which is unique.

Theorem 2.4. Let ∆ be a countable projective Fräıssé family of finite topological
L-structures.

(i) There exists a topological L-structure which is a projective Fräıssé limit of
∆.

(ii) Any two topological L-structures which are projective Fräıssé limits of ∆
are isomorphic.

Proof. We prove (i) first. Inductively construct a sequence (Dn)n∈N of structures in
∆ and epimorphisms πn : Dn+1 → Dn so that the following conditions are satisfied
where πm

n , for m > n, stands for πn ◦ · · · ◦ πm−1 : Dm → Dn:
(a) for any D ∈ ∆ there is an n and an epimorphism from Dn to D;
(b) for any n, any pair E, F ∈ ∆, and any epimorphisms φ1 : F → E and

φ2 : Dn → E there exists m > n and an epimorphism ψ : Dm → F such
that

φ1 ◦ ψ = φ2 ◦ πm
n .

This construction is easy to carry out by recursion. We use the countability of ∆
and achieve point (a) by applying (F1) and point (b) by applying (F2).

Let D = lim←−(Dn, πn). Let π∞
m be the natural projection from D to Dm. If R

is a relation symbol in L of arity k and x1, . . . , xk ∈ D, we let (x1, . . . , xk) ∈ RD

precisely when for all n ∈ N, (π∞
n (x1), . . . , π∞

n (xk)) ∈ RDn . Similarly, if f is a
function symbol of arity k and x1, . . . , xk ∈ D, we let fD(x1, . . . , xk) = y for the
unique y ∈ D with fDn(π∞

n (x1), . . . , π∞
n (xk)) = π∞

n (y) for all n. Clearly RD is
closed and fD is continuous.

We now check that D is a projective Fräıssé limit of ∆.

Claim 1. π∞
m is an epimorphism.

Proof of Claim 1. Let R be a k-ary relation symbol. If x1, . . . , xk ∈ D and we have
(x1, . . . , xk) ∈ RD, then by the definition of RD, (π∞

m (x1), . . . , π∞
m (xk)) ∈ RDm . Now

let d1, . . . , dk ∈ Dm be such that (d1, . . . , dk) ∈ RDm . We need to find x1, . . . , xk ∈
D such that (x1, . . . , xk) ∈ RD and di = π∞

m (xi) for i ≤ k. Since each πn is an
epimorphism, by recursion we choose dn

1 , . . . dn
k ∈ Dn for n ≥ m so that for i ≤ k

dm
i = di, πn(dn+1

i ) = dn
i , and (dn

1 , . . . dn
k ) ∈ RDn .

It follows now from the definition of D that there are x1, . . . , xk ∈ D with π∞
n (xi) =

dn
i for n ≥ m and i ≤ k. In particular, we get π∞

m (xi) = di for i ≤ k and
(π∞

n (x1), . . . , π∞
n (xk)) ∈ RDn for all n ≥ m, and therefore for all n. The last

formula implies that (x1, . . . , xk) ∈ RD.
Similarly we check the condition concerning function symbols and the claim is

proved. �claim

Since π∞
m maps D onto Dm, we get (L1) by Claim 1 and by point (a) from the

construction. To see (L2), note that if A is a finite space, then any continuous
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function from D to A factors through π∞
n : D → Dn for some n; thus, (L2) follows

from Claim 1 as well.
It remains to prove (L3). First we show the following claim.

Claim 2. Let χ : Dn → Dk, n > k, be an epimorphism. There exists an isomor-
phism ψ of D such that χ ◦ π∞

n = π∞
k ◦ ψ.

Proof of Claim 2. We construct sequences (ki) and (ni) of natural numbers so that
k0 = k, n0 = n, and ki < ni ≤ ki+1, for all i. We also construct epimorphisms
χi : Dni

→ Dki
and αi : Dki+1 → Dni

so that χ0 = χ and

(2.3) χi ◦ αi = π
ki+1
ki

and αi ◦ χi+1 = πni+1
ni

.

This is accomplished by induction. Set χ0 = χ. Assume we have ki, ni, and χi.
We will show how to get ki+1 and αi. (One similarly produces ni+1 and χi+1.)
We apply point (b) to the pair Dki

, Dni
, and the epimorphisms χi : Dni

→ Dki

and id : Dki
→ Dki

to get an m > ki and an epimorphism ψ : Dm → Dni
such

that χi ◦ ψ = πm
ki

. Note that m ≥ ni. Let ki+1 = m and αi = ψ. Now, it follows
immediately from (2.3) and the fact that χ0 = χ that the sequence (χi) induces an
isomorphism ψ on D as required by the claim. Indeed, equations (2.3) show that
the sequence (αi) induces a function from D to itself which is both the left and
right inverse of ψ. Thus, ψ is a bijection. It is an epimorphism since each χi is an
epimorphism. �claim

To get (L3), let φ1 and φ2 be epimorphisms from D to some D ∈ ∆. There are
n1, n2 ∈ N and functions φ′

1 : Dn1 → D and φ′
2 : Dn2 → D such that

(2.4) φ1 = φ′
1 ◦ π∞

n1
and φ2 = φ′

2 ◦ π∞
n2

.

By Claim 1 and Lemma 2.1, φ′
1 and φ′

2 are epimorphisms. Now apply point (b) to
the pair D, Dn1 , and the epimorphisms φ′

1 : Dn1 → D and φ′
2 : Dn2 → D to get

m > n2 (we can assume m > n1) and an epimorphism χ : Dm → Dn1 such that

(2.5) φ′
1 ◦ χ = φ′

2 ◦ πm
n2

.

Applying Claim 2 we obtain an isomorphism ψ of D with

(2.6) χ ◦ π∞
m = π∞

n1
◦ ψ.

Now we have φ′
1 ◦χ ◦ π∞

m = φ′
2 ◦ π∞

n2
from (2.5) which yields φ′

1 ◦ π∞
n1

◦ψ = φ′
2 ◦ π∞

n2

by (2.6). From this it follows by (2.4) that ψ is as required by (L3).
Now we prove (ii). Let D0 and D1 be two projective Fräıssé limits of ∆. For i =

0, 1, fix a sequence of clopen sets (U i
n)n∈N which separates points in Di with U0

0 =
U1

0 = ∅. We construct a sequence (Dn)n∈N of elements of ∆ and epimorphisms
φi

n : Di → Dn and ψn : Dn+1 → Dn such that
(c) φi

n = ψn ◦ φi
n+1, for i = 0, 1 and n ∈ N;

(d) φ0
2n refines the cover {U0

n, D0 \ U0
n} for n ∈ N;

(e) φ1
2n+1 refines the cover {U1

n, D1 \ U1
n} for n ∈ N.

Pick D0 to be any element of ∆ and, by (L1) for D0, let φ0
0 be an epimorphism from

D0 to D0. Note that (d) holds since U0
0 = ∅. We will now show how to proceed

from 2n to 2n + 1. (The step from 2n + 1 to 2n + 2 is identical.) Assume we have
Dj and φ0

j for j ≤ 2n and ψj and φ1
j for j < 2n. By Lemma 2.3 for D1 there is an

epimorphism φ1
2n : D1 → D2n such that

ψ2n−1 ◦ φ1
2n = φ1

2n−1.
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By Lemma 2.2, there is a D2n+1 ∈ ∆ and an epimorphism φ1
2n+1 : D1 → D2n+1

refining the open cover

{(φ1
2n)−1(d) ∩ U1

n, (φ1
2n)−1(d) ∩ (D1 \ U1

n) : d ∈ D2n}.
The definition of the covering implies that there is a function ψ2n : D2n+1 → D2n

such that ψ2n ◦ φ1
2n+1 = φ1

2n. By Lemma 2.1 ψ2n is an epimorphism. Thus, (c)
holds for 2n and (e) for n. This finishes the inductive step.

We define a function φ : D0 → D1 as follows. Take an x ∈ D0. By (c) and the
surjectivity of each φ1

n, there is a y ∈ D1 such that for all n, φ0
n(x) = φ1

n(y). By (e)
this y is unique. Let φ(x) = y. By (c) and the surjectivity of each φ0

n, φ is onto.
By (d), φ is an injection. The very definition of φ makes it continuous.

Now we need to check that for x1, . . . , xk, y from D0

if (x1, . . . , xk) ∈ RD0 , then (φ(x1), . . . , φ(xk)) ∈ RD1

and
if fD0(x1, . . . , xk) = y, then fD1(φ(x1), . . . , φ(xk)) = φ(y)

for any k-ary relation symbol R and any k-ary function symbol f . This suffices to
see that φ is an isomorphism since, by symmetry, these same two conditions are
then fulfilled by φ−1. Let us prove only the first condition for φ. Assume towards
contradiction that for some x1, . . . , xk ∈ D0

(x1, . . . , xk) ∈ RD0 and (φ(x1), . . . , φ(xk)) �∈ RD1 .

Since RD1 is closed, by conditions (c) and (e) we can find n and d1, . . . , dk ∈ Dn

such that

(2.7) (φ(x1), . . . , φ(xk)) ∈ (φ1
n)−1(d1) × · · · × (φ1

n)−1(dk) ⊆ (D1)k \ RD1 .

Then by the definition of epimorphism,
(
φ1

n(φ(x1)), . . . , φ1
n(φ(xk))

)
�∈ RDn . On the

other hand, from (2.7) and the definition of epimorphism,
(
φ0

n(x1), . . . , φ0
n(xk)

)
∈

RDn which immediately leads to a contradiction since φ1
n(φ(xj)) = φ0

n(xj) for all
j ≤ k. �
2.3. Additional properties. The content of the following lemma is that if D is
a topological L-structure each of whose open covers is refined by an epimorphism
onto a structure from a family of finite topological L-structures ∆, then D can be
regarded as an inverse limit of structures from ∆.

Lemma 2.5. Let ∆ be a family of finite topological L-structures. Let D be a topo-
logical L-structure such that each open cover of D is refined by an epimorphism from
D onto a structure in ∆. Then there is a sequence (Dn) ⊆ ∆ and epimorphisms
ψn : Dn+1 → Dn and φn : D → Dn such that

(i) ψn ◦ φn+1 = φn;
(ii) each open cover of D is refined by φn for some n ∈ N.

Proof. Let Un, n ∈ N, enumerate all clopen covers of D. Let D0 ∈ ∆ and let
φ0 : D → D0 be an epimorphism refining U0. If Dn ∈ ∆ and φn : D → Dn has
been defined, consider the cover

{U ∩ φ−1
n (d) : d ∈ Dn and U ∈ Un}.

Let Dn+1 ∈ ∆ and let φn+1 : D → Dn+1 be an epimorphism refining the above
cover. By the definition of the cover, there exists a function ψn : Dn+1 → Dn such
that ψn ◦ φn+1 = φn. By Lemma 2.1, ψn is an epimorphism. �
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Proposition 2.6. Let ∆ be a projective Fräıssé family of finite topological L-
structures and let D be the projective Fräıssé limit of ∆. Let D be a topological
L-structure such that any open covering of D is refined by an epimorphism onto a
structure in ∆. Then there is an epimorphism from D onto D.

Proof. For D fix Dn, φn, and ψn as in Lemma 2.5. By (L1) we can find an epimor-
phism φ′

0 : D → D0, and using Lemma 2.3 we can inductively find φ′
n+1 : D → Dn+1

such that

(2.8) ψn ◦ φ′
n+1 = φ′

n.

We define a function φ : D → D as follows. Take an x ∈ D. By (2.8) and since
each φ′

n is onto, there is a y ∈ D such that for all n, φ′
n(x) = φn(y). By condition

(ii) of Lemma 2.5 for the sequence (φn), this y is unique. Let φ(x) = y. By (2.8)
and since each φ′

n is onto, φ is onto. The definition of φ makes it continuous.
An argument as in the proof of Theorem 2.4(ii) justifies that for x1, . . . , xk, y ∈ D

if (x1, . . . , xk) ∈ RD, then (φ(x1), . . . , φ(xk)) ∈ RD

and
if fD(x1, . . . , xk) = y, then fD(φ(x1), . . . , φ(xk)) = φ(y)

for any k-ary relation symbol R and any k-ary function symbol f . We only need to
verify that if (y1, . . . , yk) ∈ RD, then for some x1, . . . , xk ∈ D with φ(xi) = yi, for
i ≤ k, we have (x1, . . . , xk) ∈ RD. Note that for each n there are xn

1 , . . . , xn
k ∈ D

such that φ′
n(xn

i ) = φn(yi), for i ≤ k, and (xn
1 , . . . , xn

k ) ∈ RD. This is because φn

and φ′
n are epimorphisms. By compactness of D, we can assume that the sequence

(xn
1 , . . . , xn

k )n converges to some (x1, . . . , xk) ∈ Dk. By definition of φ, we have
φ(xi) = yi, for i ≤ k. Since RD is closed, we get (x1, . . . , xk) ∈ RD, as well. �

2.4. Remarks. The classical Fräıssé construction is a method of taking a direct
limit of a family of finite models of a language, provided the family fulfills certain
conditions. The limit is a (countable) model of the same language which can be
characterized by its (injective) homogeneity and universality with respect to the
initial family of models. The standard example here is the family of finite linear
orders. In this case the Fräıssé limit is the set of all rational numbers with the
usual ordering. See [5] for a treatment.

The results in this section can be viewed as dual to this classical theory. Two
points about the dualization need to be emphasized. First, our use of topology
in the projective Fräıssé limit has no parallel in the traditional injective Fräıssé
theory. Of course, the structures in the injective Fräıssé theory could just as well
be equipped with the discrete topology, however, the topology would play no ev-
ident role. The situation is different when considering projective limits. If the
projective limit is infinite, then it is non-discrete compact, and the topology plays
an important role in the uniqueness of the projective Fräıssé limit and is crucial
in applications. Second, readers familiar with the classical Fräıssé limit will no-
tice a marked similarity between two of the conditions from that theory and the
conditions in our definition of projective Fräıssé family. There is, however, in the
classical theory a third condition which is absent from our definition, namely the
Hereditary Property. In our case it is essential that we omit (the projective version
of) this property since the families in the applications we have in mind do not fulfill
it.
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3. The family of finite linear graphs

Let L0 be the language consisting of one binary relation R. Given a topological
L0-structure A, we will henceforth write RA(a, b) to mean (a, b) ∈ RA. Let ∆0 be
the class of all finite (reflexive) linear graphs, i.e., the class of all finite sets A with
at least two elements so that RA has the following properties:

(1) RA is reflexive;
(2) RA is symmetric;
(3) every element of A has at most three (including itself) RA-neighbors;
(4) there are exactly two elements of A with less than three RA-neighbors;
(5) RA is connected, i.e., for every a, b ∈ A there exists a0, . . . , an ∈ A such

that a = a0, b = an, and RA(ai, ai+1) for 0 ≤ i < n.
Given A ∈ ∆0, a labeling of A is a one-to-one function l : A → N such that for

each a, b ∈ A with a �= b we have RA(a, b) ⇔ |l(a) − l(b)| = 1 and one endpoint,
i.e., an element satisfying (4), of A gets mapped by l to 0. Note that there are
precisely two labelings on A. Once a labeling of A has been given, for convenience
we will regularly identify the points of A with their labels. If I ⊆ A, then max(I)
and min(I) will respectively mean the element of I (or its label) with the maximum
and minimum label. Note that labelings are for convenience only; in particular, a
labeling of A is not a part of the structure.

If RA(a, b) we will say that a and b are R-neighbors. We call I ⊆ A an interval if
for any a, b ∈ I, there are a0, . . . , an ∈ I such that a0 = a, an = b, and RA(ai, ai+1)
for all i < n. An element a of I is called an endpoint of I if there are at most two
elements b ∈ I with RA(a, b) (one of which is, of course, a itself). We say that two
intervals I and J are adjacent if they are disjoint, and there is an endpoint a of I
and an endpoint b of J such that RA(a, b).

Theorem 3.1. ∆0 is a projective Fräıssé class.

Proof. We need to show that ∆0 satisfies (F1) and (F2). Property (F1) is quite
simple, and we leave it to the reader to check. We will prove (F2).

We start with describing the construction of an unfolding. Let A be in ∆0 and
let I be a proper subinterval of A. The pair (Ã, fA), where Ã ∈ ∆0 and fA : Ã → A

is an epimorphism, will be called the unfolding of A by I if |Ã| = |A| + 2(|I| − 1),
and for some labelings on A and Ã we have

(3.1) fA(i) =

⎧⎪⎨
⎪⎩

i, i ≤ max(I),
2 max(I) − i, max(I) < i < 2 max(I) − min(I),
i − (2|I| − 2), 2 max(I) − min(I) ≤ i.

Note that given a labeling of A if (Ã, fA) is an unfolding of A, then there is
a labeling on Ã such that (3.1) holds. Note also that if J ⊆ A is an interval
disjoint from I, then f−1

A (J) is an interval. If I1, . . . , In are pairwise disjoint proper
subintervals of A, then (Ã, fA) is the unfolding of A by I1, . . . , In if there is a
sequence Ai, 0 ≤ i ≤ n, of structures from ∆0 and epimorphisms fi : Ai → Ai−1

such that for each i ∈ {1, . . . , n}, (Ai, fi) is an unfolding of Ai−1 by the interval
f−1

i−1 ◦ · · ·◦f−1
1 (Ii), A0 = A, An = Ã, and fA = f1 ◦ · · ·◦fn. Note that the unfolding

(Ã, fA) does not depend on the order of the intervals I1, . . . , In. Also note that if a
labeling is given on A, then there is a labeling on Ã such that fA(0) = 0. We will
call such labelings compatible.
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Claim 1. Let A and B be in ∆0. Let φ : B → A be an epimorphism. Let J ⊆ A be
a proper subinterval and let (Ã, fA) be the unfolding of A by J . Then there exists
a B̃ ∈ ∆0 with epimorphisms π : B̃ → B and φ̃ : B̃ → Ã such that

(3.2) fA ◦ φ̃ = φ ◦ π.

Proof of Claim 1. If |J | = 1, note that fA : Ã → A is an isomorphism, so identify
Ã with A and let B̃ = B, let π be the identity on B, and let φ̃ = φ.

Now suppose |J | ≥ 2. Let I1, . . . , In be the maximal subintervals of φ−1(J), so
they are pairwise disjoint, not adjacent, and their union is φ−1(J). Let (B̃, fB) be
the unfolding of B by I1, . . . , In. Let π = fB .

Label A and Ã, and B and B̃ with compatible labelings. There are three maximal
subintervals of Ã contained in f−1

A (J) on which fA is one-to-one. Let J̃bot be the
one that contains min(f−1

A (J)), let J̃top be the one that contains max(f−1
A (J)),

and let J̃mid be the one that contains neither min(f−1
A (J)) nor max(f−1

A (J)). For
each Ii with |Ii| ≥ 2, let Ĩibot, Ĩimid, and Ĩitop be subintervals of B̃ defined in an
analogous fashion using fB.

We now define φ̃. If b ∈ B̃ \ f−1
B (φ−1(J)), then let φ̃(b) = a, where a ∈ Ã is

unique such that φ ◦ fB(b) = fA(a). That is, on the non-folded parts of B, φ̃ and
φ agree. For the folded parts there are three cases.

Case 1. No endpoint of Ii is mapped by φ to max(J). If b ∈ f−1
B (Ii), then let

φ̃(b) = (fA � J̃bot)−1 ◦ φ ◦ fB(b).

Case 2. No endpoint of Ii is mapped by φ to min(J). If b ∈ f−1
B (Ii), then let

φ̃(b) = (fA � J̃top)−1 ◦ φ ◦ fB(b).

Case 3. The endpoints of Ii are mapped by φ onto the endpoints of J . Note
that in this case |Ii| ≥ 2. If φ(min(Ii)) = min(J), then let

φ̃(b) =

⎧⎪⎨
⎪⎩

(fA � J̃bot)−1 ◦ φ ◦ fB(b), b ∈ Ĩibot,

(fA � J̃mid)−1 ◦ φ ◦ fB(b), b ∈ Ĩimid,

(fA � J̃top)−1 ◦ φ ◦ fB(b), b ∈ Ĩitop.

If φ(min(Ii)) = max(J), then let

φ̃(b) =

⎧⎪⎨
⎪⎩

(fA � J̃bot)−1 ◦ φ ◦ fB(b), b ∈ Ĩitop,

(fA � J̃mid)−1 ◦ φ ◦ fB(b), b ∈ Ĩimid,

(fA � J̃top)−1 ◦ φ ◦ fB(b), b ∈ Ĩibot.

We leave it to the reader to check that φ̃ : B̃ → Ã is an epimorphism. Formula
(3.2) is then obvious from the definition of φ̃. �claim

We will now prove (F2). We proceed by induction on the size of D. If |D| = |C|,
then φ1 is an isomorphism: let F = E, let ψ2 be the identity, and let ψ1 = φ−1

1 ◦φ2.
Assume now that |D| > |C|. It will suffice to show the following claim.

Claim 2. Let D, C ∈ ∆0 be such that |D| > |C|. Let an epimorphism φ : D → C
be given. There exists a D′ ∈ ∆0 with |D′| < |D| and an epimorphism π′ : D → D′

such that
(a) φ′ ◦ π′ = φ for some epimorphism φ′ : D′ → C;
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(b) for any F ′ ∈ ∆0 and any epimorphism ψ′ : F ′ → D′ there is an F ∈ ∆0

with epimorphisms ψ : F → D and π : F → F ′ such that

ψ′ ◦ π = π′ ◦ ψ.

To see that this is enough, let φ1 : D → C and φ2 : E → C be epimorphisms.
Applying Claim 2 to φ1, we obtain D′, π′ and also an epimorphism φ′

1 : D′ → C
as in (a), that is, we have φ′

1 ◦ π′ = φ1. Then by our inductive assumption, there is
an F ′ ∈ ∆0 with epimorphisms ψ′

1 : F ′ → D′ and ψ′
2 : F ′ → E so that

(3.3) φ′
1 ◦ ψ′

1 = φ2 ◦ ψ′
2.

Now, condition (b) allows us to find F ∈ ∆0, and epimorphisms ψ1 : F → D and
π : F → F ′ such that

(3.4) ψ′
1 ◦ π = π′ ◦ ψ1.

Now from (a), (3.4), and (3.3) we get

φ1 ◦ ψ1 = φ′
1 ◦ π′ ◦ ψ1 = φ′

1 ◦ ψ′
1 ◦ π = φ2 ◦ (ψ′

2 ◦ π).

If we let ψ2 = ψ′
2 ◦ π, then φ1 ◦ ψ1 = φ2 ◦ ψ2 as required.

Proof of Claim 2. For A, B ∈ ∆0, let us call an epimorphism α : B → A simple if
for each x, y ∈ B we have that if RB(x, y) and α(x) = α(y), then x = y.

We first consider the case where φ is simple.
We claim that there is a D′ ∈ ∆0 and a proper subinterval J ⊆ D′ such that

|D′| < |D|,
and if (D̃′, fD′) is the unfolding of D′ by J , then there are epimorphisms α1 : D̃′ →
D and α2 : D → D′ such that

(3.5) fD′ = α2 ◦ α1,

and there is a φ′ : D′ → C with

(3.6) φ′ ◦ α2 = φ.

This will suffice to prove the claim for when φ is simple. To see it, let π′ = α2.
Given F ′ ∈ ∆0 and an epimorphism ψ′ : F ′ → D′, by Claim 1, there is an F ∈ ∆0

with epimorphisms π : F → F ′ and ψ̃ : F → D̃′ such that ψ′ ◦ π = fD′ ◦ ψ̃, that is,
by (3.5), ψ′ ◦ π = α2 ◦ (α1 ◦ ψ̃). Thus, we can let ψ = α1 ◦ ψ̃.

Therefore, it remains to prove the existence of D′ and J as above. For the
remainder of the proof fix some labelings on D and C. Consider all maximal
subintervals J ⊆ D such that φ � J is one-to-one. Note that, since φ is simple,
each such subinterval has at least two elements. Let J1 be (one of) the shortest
among such subintervals. Since |D| > |C|, J1 �= D, and therefore we have one of
the following cases.

Case 1. Neither endpoint of J1 is an endpoint of D.
By the assumptions on J1 and φ, there are two disjoint subintervals J0 and J2

which are adjacent to J1 and such that |J0| = |J2| = |J1|− 1, and φ � J0 and φ � J2

are one-to-one. Let D′ ∈ ∆0 be such that |D′| = |D| − 2(|J1| − 1) and, for some
labeling on D′, let fD′ : D → D′ be given by

fD′(i) =

⎧⎪⎨
⎪⎩

i, 0 ≤ i ≤ min(J1),
2 min(J1) − i, min(J1) < i < max(J1),
i − 2(|J1| − 1), max(J1) < i ≤ max(D).
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PROJECTIVE FRAÏSSÉ LIMITS AND THE PSEUDO-ARC 3087

Put J = fD′(J1). Thus, we specified D′ and J . Since |J1| ≥ 2, |D′| < |D|. Note
also that J is a proper subinterval of D′ and that (D, fD′) is the unfolding of D′

by J . Therefore, we can let α1 be the identity. It is easy to see that φ′ : D′ → C
given by the formula

φ′(x) = φ(y) for any y ∈ D with x = fD′(y)

is well defined and is an epimorphism. Once this is established, it is clear that
φ = φ′ ◦ fD′ . Thus, by letting α2 = fD′ , we get (3.5) and (3.6).

Case 2. Precisely one endpoint of J1 is an endpoint of D.
Suppose without loss of generality that min(J1) is an endpoint of D. By the

case assumption there exists a subinterval J2 of D which is adjacent to J1 such
that |J2| = |J1| − 1 and φ � J2 is one-to-one.

Let D′ ∈ ∆0 be such that |D′| = |D| − |J1| + 1. Note that since |J1| ≥ 2,
|D′| < |D|. Define an epimorphism α2 : D → D′ so that for some fixed labeling on
D′

α2(i) =

{
max(J1) − i, 0 ≤ i ≤ max(J1),
i − max(J1), max(J1) < i ≤ max(D),

Put J = α2(J1). Note that J is a proper subinterval of D. Now let D̃′ ∈ ∆0 be
such that |D̃′| = |D| + |J1| − 1. Define an epimorphism α1 : D̃′ → D so that for
some fixed labeling on D̃′

α1(i) =

{
max(J1) − i, 0 ≤ i ≤ max(J1),
i − max(J1), max(J1) < i ≤ max(D̃′).

Let fD′ = α2 ◦ α1. Note that with this definition (D̃′, fD′) is the unfolding of D′

by J . Thus, (3.5) holds. Now define φ′ : D′ → C via

φ′(x) = φ(y) for any y ∈ D with x = α2(y).

We leave it to the reader to check the simple fact that φ′ is a well-defined epimor-
phism. Clearly (3.6) is fulfilled.

We proved the claim for simple φ : D → C. Assume now that φ is not simple and
fix d1, d2 ∈ D such that RD(d1, d2), d1 �= d2 and φ(d1) = φ(d2). Let D′ ∈ ∆0 be
such that |D′| = |D|−1 and let π : D → D′ be an epimorphism with π(d1) = π(d2).
So π � (D \ {di}), i = 1, 2, is injective. Define φ′(x) = φ(y) for any y ∈ D with
x = π(y). Then φ′ : D′ → C is a well-defined epimorphism. Clearly (a) holds.
Checking (b) is straightforward, and we leave it to the reader.

This proves the claim and, therefore, also the theorem. �

4. The pseudo-arc

4.1. The projective Fräıssé limit of ∆0 and the pseudo-arc. Let L0 be the
language consisting of one binary relation R. Let ∆0 be the class of finite L0-
structures which are linear graphs as defined in the previous section.

Lemma 4.1. Let P be the projective Fräıssé limit of ∆0. Then RP is an equivalence
relation each of whose equivalence classes has at most two elements.

Proof. It suffices to show that RP is reflexive, symmetric, and that for any x ∈ P

there is at most one y ∈ P distinct from x such that RP(x, y).
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Let x ∈ P. Since RP is closed, to show that RP(x, x), it will suffice to find in any
clopen neighborhood U of x points y1 and y2 with RP(y1, y2). Fix a clopen set U
containing x. Use Lemma 2.2 to get D ∈ ∆0 and an epimorphism φ : P → D refining
{U, P \ U}. Since RD(φ(x), φ(x)), there are y1, y2 such that φ(y1) = φ(x) = φ(y2)
and RP(y1, y2). Clearly y1, y2 ∈ U .

Let x, y ∈ P be such that RP(x, y). Again to see that RP(y, x), it suffices to prove
the following. For any clopen sets V, U containing y and x, respectively, there is a
y1 ∈ V and an x1 ∈ U so that RP(y1, x1). Given such V and U , let D ∈ ∆0 and
φ : P → D be such that φ is an epimorphism refining {U, V, P \ (U ∪ V )}. Then
RD(φ(x), φ(y)), hence RD(φ(y), φ(x)). It follows that there is a y1 and an x1 such
that RP(y1, x1), φ(y1) = φ(y), and φ(x1) = φ(x). These x1 and y1 are as required.

Assume now towards contradiction that there are distinct x, y, z ∈ P such that
RP(x, y) and RP(y, z). Let U, V, W be clopen disjoint sets containing x, y, z, re-
spectively. Let D ∈ ∆0 and φ : P → D be such that φ is an epimorphism refin-
ing {U, V, W, P \ (U ∪ V ∪ W )}. Let a, b, c ∈ D be the images via φ of x, y, z,
respectively. Let D′ ∈ ∆0 and ψ : D′ → D be an epimorphism such that
ψ−1({a, b, c}) = {a′, b′, b′′, c′} with a′, b′, b′′, c′ distinct and such that ψ(a′) = a,
ψ(b′) = ψ(b′′) = b, and ψ(c′) = c and RD′

(a′, b′), RD′
(b′, b′′), and RD′

(b′′, c′). Note
that then ¬RD′

(b′, c′) and ¬RD′
(a′, b′′). Now, by Lemma 2.3, there exists an epi-

morphism χ : P → D′ such that ψ ◦χ = φ. Note that we have χ(x) = a′, χ(z) = c′,
and χ(y) is equal either to b′ or to b′′. But in the first case ¬RD′

(χ(y), χ(z)) and
in the second case ¬RD′

(χ(x), χ(y)), leading to a contradiction. �
The above lemma allows us to consider P/RP as a topological space with the

quotient topology.

Theorem 4.2. Let P be the projective Fräıssé limit of ∆0. Then P/RP is a chain-
able hereditarily indecomposable continuum.

Thus by Bing’s characterization of the pseudo-arc [2], P/RP is the pseudo-arc.
We start with a lemma.

Lemma 4.3. Let D be a topological L0-structure such that RD is an equivalence
relation. Assume that each open cover of D is refined by an epimorphism from D
to an element of ∆0. Then D/RD is a chainable continuum.

Proof. Let ρ : D → D/RD denote the quotient map. We first show that D/RD

is compact, second countable, and connected, that is, that D/RD is a continuum.
Compactness of RD easily implies that D/RD is Hausdorff. Then, continuity of ρ
gives that D/RD is compact with a countable basis since D is such; see [4, Corollary
3.3.7]. That D/RD is connected will follow if we only show that given a non-empty
clopen set U � D there is an x ∈ U and a y ∈ D \ U such that RD(x, y). There
is a D0 ∈ ∆0 and an epimorphism φ : D → D0 refining the cover {U, D \ U}.
Since φ(U) ∪ φ(D \ U) = D0, there is a d1 ∈ φ(U) and a d2 ∈ φ(D \ U) such that
RD0(d1, d2). This last condition ensures that there are x, y ∈ D with φ(x) = d1,
φ(y) = d2 and RD(x, y) since φ is an epimorphism. Since φ refines {U, D \ U}, we
also have x ∈ U and y ∈ D \ U .

Now we check chainability of D/RD. Let d be a compatible metric on D/RD.
Fix ε > 0 and cover D/RD with a finite number of ε-balls {B0, . . . , Bn}. Now{
ρ−1(B0), . . . , ρ−1(Bn)

}
is an open cover of D. Let φ : D → D0, for some D0 ∈ ∆0,

be an epimorphism refining this cover. Let Ud = φ−1(d) for d ∈ D0. Note that
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each Ud is clopen and that ρ(Ud1) ∩ ρ(Ud2) �= ∅ if and only if RD0(d1, d2). Thus,
by slightly enlarging each element of {ρ(Ud) : d ∈ D0}, we get a chain on D/RD

refining {B0, . . . , Bn}, so the d-diameter of each of its elements is less than ε. Hence
D/RD is chainable. �

Proof of Theorem 4.2. The following notions will turn out to be useful in the proof.
Let D be a topological L0-structure. A set A ⊆ D is called R-invariant if for any
x ∈ A and y ∈ D, if RD(x, y) or RD(y, x), then y ∈ A. It is called R-connected if
it is not a disjoint union of two non-empty, relatively closed sets A1 and A2 such
that for all x ∈ A1 and y ∈ A2 neither RD(x, y) nor RD(y, x).

Note that by Lemma 2.2 each open covering of P is refined by an epimorphism
onto an element of ∆0. Thus, by Lemma 4.3, P/RP is a chainable continuum. It
remains to check that it is hereditarily indecomposable.

Let ρ : P → P/RP denote the quotient map. Let X ⊆ P/RP be a subcontinuum
and suppose X = X1∪X2 is the union of two proper subcontinua. Let F = ρ−1(X),
F1 = ρ−1(X1), and F2 = ρ−1(X2). Note that F1 and F2 are R-connected and R-
invariant. Furthermore, since X1 ∩ X2 �= ∅, F1 and F2 are not disjoint. It will
suffice to show that either F1 ⊆ F2 or F2 ⊆ F1, since this will imply that either
X1 ⊆ X2 or X2 ⊆ X1. Since X, X1, X2 are arbitrary, it will follow that P/RP is
hereditarily indecomposable.

Suppose that F1 �⊆ F2 and F2 �⊆ F1; then there is an x1 ∈ F1 \ F2 and an
x2 ∈ F2 \ F1. Since F1 and F2 are R-invariant, ¬RP(x1, y2) for any y2 ∈ F2 and
¬RP(x2, y1) for any y1 ∈ F1. Since RP is closed and F2 is compact, we can find
clopen sets U1 and U2 such that x1 ∈ U1, F2 ⊆ U2 and ¬RP(y1, y2) for any y1 ∈ U1

and y2 ∈ U2. Similarly we can find clopen sets V1 and V2 such that F1 ⊆ V1,
x2 ∈ V2 and ¬RP(y1, y2) for any y1 ∈ V1 and y2 ∈ V2. Let χ : P → D, for some
D ∈ ∆0, be an epimorphism refining the partition by the atoms of the algebra of
sets generated by U1, U2, V1, V2.

Note now that since F is R-connected, its image χ(F ) is R-connected in D
and similarly for F1 and F2. Also note that since F1 and F2 are not disjoint, we
have χ(F1) ∩ χ(F2) �= ∅. Obviously, we also have χ(F ) = χ(F1) ∪ χ(F2). Since
χ−1(χ(x1)) ⊆ U1 and χ−1(χ(F2)) ⊆ U2 and since χ is an epimorphism, we see that
χ(x1) �∈ χ(F2). (In fact, χ(x1) is not even a neighbor of an element of χ(F2).) Thus,
χ(F1)\χ(F2) �= ∅. Similarly we obtain χ(F2)\χ(F1) �= ∅. By composing χ with an
epimorphism from D to an element of ∆0, we can assume that χ(F ) = {a0, a1, a2},
where RD(ai, aj) ⇔ |i − j| ≤ 1, and that χ(F1) = {a0, a1} and χ(F2) = {a1, a2}.

Let B ∈ ∆0 and φ : B → D be chosen so that φ is an epimorphism, φ−1(χ(F )) =
{b0, b1, b2, b3, b4, b5, b6}, where RB(bi, bj) ⇔ |i − j| ≤ 1, and

φ(b0) = φ(b4) = a0,

φ(b1) = φ(b3) = φ(b5) = a1,

φ(b2) = φ(b6) = a2.

By Lemma 2.3, there is an epimorphism ψ : P → B such that φ ◦ ψ = χ. We now
have that ψ(F1) ⊇ {b0, b4}, but this contradicts the fact that ψ(F1) is R-connected
and that a2 �∈ χ(F1). �

4.2. Applications. In this subsection P denotes the pseudo-arc and P denotes the
projective Fräıssé limit of the family ∆0.
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This subsection contains applications of our results to the theory of the pseudo-
arc. First, in Theorem 4.4(i), we obtain from Theorem 4.2 and Proposition 2.6 a
result of Mioduszewski [9] that each chainable continuum is a continuous image of
the pseudo-arc. (Mioduszewski notes in [9] that his result seems to be derivable from
an earlier theorem of Bing [1].) We then, in Theorem 4.4(ii), give a generalization
of a result of Lewis [7] and Smith [13] who proved that homeomorphisms of the
pseudo-arc are dense in the space of all continuous surjections from the pseudo-
arc to itself with the uniform convergence topology. (To see that this is a special
case of (ii), note that given a continuous surjection f : P → P , we can apply
Theorem 4.4(ii) to X = P , f1 = f , f2 = identity to get a homeomorphism ε close
to f .) These results are obtained as direct consequences of the general properties of
projective Fräıssé limits. Moreover, following this line of thought it becomes clear
that Theorems 4.2 and 2.4 suggest a new characterization of the pseudo-arc. We
indeed establish such a characterization in Theorem 4.9.

Theorem 4.4. (i) (Mioduszewski) Each chainable continuum is a continuous
image of the pseudo-arc.

(ii) Let X be a chainable continuum with a metric d on it. If f1, f2 are continu-
ous surjections from the pseudo-arc onto X, then for any ε > 0 there exists
a homeomorphism h of the pseudo-arc such that d(f1(x), f2 ◦ h(x)) < ε for
all x.

Note that (L1) corresponds to (i) in the theorem above, (L2) corresponds to
chainability of the pseudo-arc (see Lemma 4.3), and (L3) corresponds to (ii).

Lemma 4.3 suggests the following definition. A topological L0-structure D is
called special if it fulfills the following conditions:

(α) each open cover of D is refined by an epimorphism onto an element of ∆0;
(β) RD is an equivalence relation with each equivalence class having not more

than two elements.

The following definition and lemma will allow us to transfer results about P

to results about P . Let D1 and D2 be special topological L0-structures. Let
ρi : Di → Di/RDi , i = 1, 2, denote the quotient functions. An epimorphism
φ : D1 → D2 induces a function φ∗ : D1/RD1 → D2/RD2 by φ∗(ρ1(x)) = ρ2(φ(x)).
The fact that φ is an epimorphism implies that φ∗ is well defined. We now have a
lemma whose proof requires only checking definitions, so we leave the proof to the
reader.

Lemma 4.5. Let D1 and D2 be special. Let φ : D1 → D2 be an epimorphism. Let
ρi : Di → Di/RDi , i = 1, 2, denote the quotient functions. Then the following hold:

(i) φ∗ is a continuous surjection from D1/RD1 to D2/RD2 and ρ2◦φ = φ∗◦ρ1;
(ii) if φ is an isomorphism, then φ∗ is a homeomorphism.

We will now review some elementary facts about chainable compact metric
spaces. For a metric space (X, d) and non-empty sets A, B ⊆ X we write

dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}

and

diam(A) = sup{d(a1, a2) : a1, a2 ∈ A}.
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Let (X, d) be a chainable compact metric space. Let δ > 0. A chain U1, . . . , UN on
X is called a δ-fine chain if

(C1) dist(Ui, Uj) > δ if |i − j| > 1;
(C2) dist({x},

⋃
j �=i Uj) > δ for some x ∈ Ui;

(C3) for each A ⊆ X with diam(A) < δ there exists i ≤ N with A ⊆ Ui.

A chain is fine if it is δ-fine for some δ > 0. A chain U1, . . . , UN closure refines a
covering V if the closure of each Ui is included in some element of V . The following
fact is easy to check.

Lemma 4.6. If (X, d) is a chainable continuum, then each open cover of X is
closure refined by a fine chain.

The following lemma gives a converse to Lemma 4.3.

Lemma 4.7. If X is a chainable continuum, then there is a special topological
L0-structure C such that X is homeomorphic to C/RC .

Proof. If C is a chain on X, we will denote the k-th element of C, which we call its
k-th link, by C(k). In particular, C(i) ∩ C(j) �= ∅ holds if and only if |i − j| ≤ 1.
Whenever we write C(k) we assume that C has at least k links. If C is a chain, then
the mesh of C is mesh(C) = max {diam(C(i)) : 1 ≤ i ≤ N}, where N is the number
of links in C.

We will construct a sequence of chains (Cn)∞n=0 on X such that for each n ∈ N

(1) Cn+1 closure refines Cn;
(2) mesh(Cn) < 1

n ;
(3) Cn is fine;
(4) if Cn+1(i) ⊆ Cn(k), Cn+1(j) ⊆ Cn(l), and |k − l| > 1, then |i − j| > 2;
(5) for each k there exists an i such that Cn+1(i) ⊆ Cn(k) \

⋃
l �=k Cn(l).

Let C0 be a fine chain on X. Now suppose we have Cn for n ≥ 0; we will construct
Cn+1. Let δ > 0 be such that Cn is δ-fine. Cover X by balls of radius less than
min(1/2(n + 1), δ/6). Let Cn+1 be a fine chain closure refining this cover. Observe
that for each link Cn+1(i) of Cn+1

(4.1) diam(Cn+1(i)) < δ/3

so, by (C3), Cn+1 closure refines Cn. Condition (2) is clear. We also observe that
by (4.1) and (C1) we have (4). Condition (5) follows from (C2) and (4.1).

For each n ∈ N let Cn = {1, . . . , N}, where Cn consists of N links, and we take
RCn(i, j) precisely when |i− j| ≤ 1, so in particular RCn(i, j) iff Cn(i)∩Cn(j) �= ∅.
For each n ∈ N define φn : Cn+1 → Cn via

φn(i) = min
{

k : Cn+1(i) ⊆ Cn(k)
}

.

The function φn is well defined by (1). By (5), φn is onto, and it is an epimorphism
by (4).

Let C = lim←−(Cn, φn). We take each Cn with the discrete topology and C with
the inverse limit topology. If x ∈ C, we will denote the natural projection of x onto
Cn by x(n), so in particular one can write x = (x(0), x(1), x(2), . . . ). Define RC by
letting RC(x, y) if and only if RCn(x(n), y(n)) for all n.
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Claim 1. C is a special topological L0-structure.

Proof of Claim 1. Clearly C is a topological L0-structure. We check that RC is an
equivalence relation with each equivalence class having not more than two elements.
It is clear that RC is reflexive and symmetric. Suppose x, y, z ∈ C are such that
RC(x, y) and RC(y, z) with x �= z. First note that by (4), for every n ∈ N, φ−1

n (y(n))
contains y(n + 1) along with an R-neighbor of this element distinct from it. Since
RCn+1(x(n+1), y(n+1)) and RCn+1(y(n+1), z(n+1)), unless x(n+1) = z(n+1) we
have z(n+1) ∈ φ−1

n (y(n)) or x(n+1) ∈ φ−1
n (y(n)). Therefore, we have x(n) = y(n)

or z(n) = y(n) or x(n) = z(n) for each n.
Now since x �= z, for all but finitely many n, x(n) �= z(n). It must then be

that for all but finitely many n x(n) = y(n) or z(n) = y(n). Thus, one of these
possibilities is realized for all n, whence either x = y or z = y. This proves the
claim. �claim

Claim 2. X is homeomorphic to C/RC .

Proof of Claim 2. Define f : C → X by letting f(x) be the unique, by (1) and (2),
element in

⋂
n Cn(x(n)). It is a routine check that f is continuous. To see that it is

surjective fix y ∈ X. Consider the set Ty of all sequences (m0, . . . , mn) ∈
∏

j≤n Cj

such that y ∈ Cn(mn) and φj(mj+1) = mj for j < n, where n ranges over N.
Equip Ty with the partial order of extension. Then Ty is a tree. It is obviously
finitely branching. As is easily seen, for each n there exists an element of Ty of
length n; thus, Ty is infinite. It follows now from König’s lemma that there exists
x = (m0, m1, . . . ) such that for each n we have (m0, . . . , mn) ∈ Ty. Clearly then
x ∈ C and f(x) = y. Thus, f is surjective.

We now check that

(4.2) f(x1) = f(x2) ⇔ RC(x1, x2).

The implication ⇐ follows immediately from (2). To see ⇒, note that f(x1) = f(x2)
is in

⋂
n Cn(xi(n)) =

⋂
n Cn(xi(n)) for i = 1, 2. Thus, for each n, Cn(x1(n)) and

Cn(x2(n)) have a point in common. It follows that for each n, RCn(x1(n), x2(n)),
and we are done.

Now (4.2) allows us to define f : C/RC → X by letting f(ρ(x)) = f(x) for
x ∈ C. By [4, Proposition 2.4.2], f is a homeomorphism.

This completes the proof of the claim and hence the lemma. �

Lemma 4.8. Identify P with P/RP. Let X be a chainable continuum with a metric
d on it. Let f1 and f2 be continuous surjections from P to X. Then, for any ε > 0,
there is an isomorphism φ : P → P such that d(f1(x), f2(φ∗(x))) < ε for any x ∈ P .

Proof. Let ρ : P → P be the quotient map.
By Lemma 4.6, we can find a δ-fine chain U1, . . . , UN for some δ > 0 which

refines the covering of X by balls of radius less than ε/2. Thus, we have

(4.3) diam(Ui) < ε for i ≤ N.

By Lemma 2.2 and the fact that f1 ◦ ρ and f2 ◦ ρ are uniformly continuous on P,
there are Ei ∈ ∆0, i = 1, 2, and epimorphisms φi : P → Ei such that

(4.4) diam(fi ◦ ρ(φ−1
i (e))) < δ for e ∈ Ei.
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Let D = {1, . . . , N} with RD(i, j) precisely when |i − j| ≤ 1. Then D with RD is
an element of ∆0. Now define ψi : Ei → D, i = 1, 2, by letting

ψi(e) = min{k ∈ {1, . . . , N} : fi ◦ ρ(φ−1
i (e)) ⊆ Uk}.

By (4.4) and (C3), ψi is well-defined. By (4.4), the fact that fi is a surjection, and
(C2), ψi is a surjection. To see that ψi is an epimorphism, it suffices to show that if
e1, e2 ∈ Ei and REi(e1, e2), then RD(ψi(e1), ψi(e2)), that is, |ψi(e1)−ψi(e2)| ≤ 1. If
REi(e1, e2), then, since φi is an epimorphism, there are x1, x2 ∈ P with φi(x1) = e1,
φi(x2) = e2, and RP(x1, x2). This last condition gives ρ(x1) = ρ(x2) from which it
follows that

fi ◦ ρ(φ−1
i (e1)) ∩ fi ◦ ρ(φ−1

i (e2)) �= ∅.

Thus, by (4.4) and (C1), |ψi(e1) − ψi(e2)| ≤ 1.
Now by (L3), there exists an isomorphism φ : P → P such that for all x ∈ P we

have
ψ1 ◦ φ1(x) = ψ2 ◦ φ2 ◦ φ(x).

This means that for each x ∈ P there exists i ≤ N such that f1 ◦ρ(x), f2 ◦ρ(φ(x)) ∈
Ui which combined with (4.3) and Lemma 4.5(i) gives the conclusion of the lemma.

�

Proof of Theorem 4.4. (i) Let X be a chainable continuum and, by Lemma 4.7, let
C be a special topological L0-structure such that C/RC is homeomorphic to X.
Then by Proposition 2.6 there is an epimorphism φ : P → C. Now, by Theorem 4.2
and Lemma 4.5(i), φ∗ is a continuous surjection from the pseudo-arc onto X.

(ii) is an immediate consequence of Lemma 4.8 and Lemma 4.5(ii). �

As an analogue of Theorem 2.4 we have the following result. It gives an appar-
ently new characterization of the pseudo-arc.

Theorem 4.9. The pseudo-arc is the unique non-degenerate chainable continuum
X such that for any chainable continuum Y with a metric d, any continuous sur-
jections f1, f2 from X onto Y , and any ε > 0 there exists a homeomorphism
h : X → X such that d(f1(x), f2 ◦ h(x)) < ε for all x ∈ X.

If X and Y are compact metric spaces with metrics dX and dY respectively, then
a continuous map f : X → Y is called a δ-map if diam(f−1(f(x))) < δ for each
x ∈ X. A basic fact about δ-maps is the following: if f : X → Y is a δ-map, then
there is a ζ > 0 such that diam(f−1(A)) < δ whenever diam(A) < ζ for any A ⊆ Y ,
so in particular if dX(x0, x1) ≥ δ, then dY (f(x0), f(x1)) ≥ ζ. It is well known that
a non-degenerate continuum (X, dX) is chainable if and only if for every δ > 0 there
is a δ-map from X onto the closed unit interval; see [11, Theorem 12.11].

Below | · | stands for the absolute value on the reals.

Lemma 4.10 ([11, Lemma 12.17]). If X is a compact metric space, f : X → [0, 1]
is a continuous surjection, and ε > 0, then there exists a δ = δ(f, ε) so that if
g : X → [0, 1] is any onto δ-map, then there is a continuous surjection1 φ : [0, 1] →
[0, 1] so that |φ ◦ g(x) − f(x)| < ε for every x ∈ X.

1This lemma in [11] explicitly states that φ need not be onto, but an analysis of the proof
shows that if f is onto, then φ is onto.
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Proof of Theorem 4.9. The pseudo-arc fulfills the conclusion of the theorem by The-
orem 4.4(ii).

Let (X, dX) and (Y, dY ) be chainable continua satisfying the condition from the
statement of Theorem 4.9. For two functions f and g defined on the same set Z
with values in [0, 1], we write

‖f − g‖ = sup
z∈Z

|f(z) − g(z)|.

Below In is the unit interval for n ∈ N. We will construct continuous surjections
φn : In+1 → In, continuous surjections fn : X → In and gn : Y → In, and εn > 0
such that for n ≥ 0

(a)n εn < 1
n+1 ;

(b)n ‖φk,n−1 ◦ fn − φk,m−1 ◦ fm‖ < εm for all k ≤ m ≤ n;
(c)n ‖φk,n−1 ◦ gn − φk,m−1 ◦ gm‖ < εm for all k ≤ m ≤ n;
(d)n if n is even and if dX(x, y) ≥ 1

n+1 , then |fn(x)− fn(y)| > 2εn, for x, y ∈ X;
(e)n if n is odd and if dY (x, y) ≥ 1

n+1 , then |gn(x) − gn(y)| > 2εn, for x, y ∈ Y ,
where we adopt the following notation: φi,j = φi ◦ · · · ◦ φj : Ij+1 → Ii, for i ≤ j,
with the convention that φi,i−1 is the identity map on Ii.

Let f0 : X → I0 be a continuous surjection and let ε0 be any positive real less
than 1 such that for any x, y ∈ X with dX(x, y) ≥ 1, |f0(x)− f0(y)| > 2ε0. Clearly
such an ε0 can be found and, obviously, (a)0–(e)0 hold ((c)0 and (e)0 hold vacuously
no matter how g0 is chosen).

Assume now that we have chosen εi and fi for i ≤ 2n and φi and gi for i < 2n so
that they fulfill (a)i, (b)i and (d)i for i ≤ 2n and (c)i and (e)i for i < 2n. We show
now how to find g2n, φ2n, g2n+1, and ε2n+1. (This is a half of the inductive step. The
other half producing f2n+1, φ2n+1, f2n+2 and ε2n+2 is essentially identical.) Since
Y satisfies the condition from the statement of Theorem 4.9, we have the following
claim which is seen to hold by considering the surjections f1 = g : Y → [0, 1] and
f2 = φ ◦ g : Y → [0, 1].

Claim. For any ε > 0, given any continuous surjections φ : [0, 1] → [0, 1] and g :
Y → [0, 1], there is a continuous surjection g′ : Y → [0, 1] such that ‖φ◦g′−g‖ < ε.

Now note that by our inductive assumption (c)2n−1, we can find ε > 0 such that
for all k ≤ m ≤ 2n − 1 we have

(4.5) ‖φk,2n−2 ◦ g2n−1 − φk,m−1 ◦ gm‖ + ε < εm.

By the claim, we can choose g2n : Y → I2n so that ‖φ2n−1 ◦g2n −g2n−1‖ is as small
as we wish, and we wish it to be small enough to fulfill

‖φk,2n−1 ◦ g2n − φk,2n−2 ◦ g2n−1‖
= ‖φk,2n−2 ◦ (φ2n−1 ◦ g2n) − φk,2n−2 ◦ g2n−1‖ < ε

(4.6)

for all k ≤ 2n − 1. This is possible by uniform continuity of φk,2n−2. But then
(4.5), (4.6), and the triangle inequality give

‖φk,2n−1 ◦ g2n − φk,m−1 ◦ gm‖ < εm

for all k ≤ m ≤ 2n−1. Since this inequality obviously also holds for m = 2n, we see
that g2n fulfills (c)2n. We now define g2n+1, φ2n, and ε2n+1. Using the inductive
assumption (c)2n, we can find ε > 0 such that for all k ≤ m ≤ 2n,

(4.7) ‖φk,2n−1 ◦ g2n − φk,m−1 ◦ gm‖ + ε < εm.
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We will find g2n+1 and φ2n so that for all k ≤ 2n

‖φk,2n ◦ g2n+1 − φk,2n−1 ◦ g2n‖
= ‖φk,2n−1 ◦ (φ2n ◦ g2n+1) − φk,2n−1 ◦ g2n‖ < ε.

(4.8)

Since Y is chainable, we can pick g2n+1 : Y → I2n+1 to be a δ-map with δ <
1/(2n + 2) and small enough so that, by Lemma 4.10, we can choose a continuous
surjection φ2n : I2n+1 → I2n making the quantity ‖φ2n ◦g2n+1−g2n‖ as small as we
wish; in particular, small enough for (4.8) to hold. Now by the triangle inequality,
using (4.7) and (4.8), we get that for all k ≤ m ≤ 2n,

‖φk,2n ◦ g2n+1 − φk,m−1 ◦ gm‖ < εm.

Since as long as we choose ε2n+1 positive this inequality also holds for m = 2n+1, we
see that g2n+1 and φ2n fulfill (c)2n+1. Since g2n+1 is a δ-map for some δ < 1/(2n+2),
there exists ε2n+1 > 0 for which (e)2n+1 and (a)2n+1 hold. Thus, the construction
is completed.

We will now show that X and Y are homeomorphic by showing that they are
both homeomorphic to Z = lim←−(In, φn). We prove this for X. Note that by (a)n and
(b)n the sequence of functions (φk,n−1 ◦fn)n≥k converges uniformly to a continuous
function f̄k : X → Ik. Moreover, by (b)n, for all k and all m ≥ k,

(4.9) ‖f̄k − φk,m−1 ◦ fm‖ ≤ εm.

From the identity φk ◦ φk+1,n−1 = φk,n−1 for n ≥ k + 1 and from continuity of
the functions φk, we get that the image of the function F : X →

∏
n In given

by F (x) = (f̄0(x), f̄1(x), . . . ) is included in Z. Since each f̄k is continuous, F is
continuous as well. To check that F is onto it suffices to see that the range of F
is dense in Z, which will follow if we show that for each k the range of f̄k is dense
in Ik. But this is immediate from surjectivity of φk,m−1fm, (4.9), and (a)m. Thus,
since X is compact, it remains to show that F is injective. Fix x, y ∈ X. Find k0

with dX(x, y) ≥ 1/(2k0 + 1). From (d)2k0 we have that |f2k0(x)− f2k0(y)| > 2ε2k0 .
It follows now from (4.9) for k = m = 2k0 that f̄2k0(x) �= f̄2k0(y), whence F (x) �=
F (y). �

4.3. Remarks. 1. We would like to point out certain similarities between the
theorems proved in this section and the theory developed by Bing and Moise. One
can view this latter theory as follows. A chainable, hereditarily indecomposable
continuum P1 is constructed. Two results are proved about it: it is homogeneous
[1], [10], i.e., for any two points x, y ∈ P1 there is a homeomorphism of P1 mapping x
to y (and even more homogeneous by [6]), and it is approximately universal among
chainable continua [2], i.e., each chainable continuum can be approximated by P1

in the Hausdorff metric (which, when combined with the obvious observation that
any continuum can be approximated by a chainable one, gives that each continuum
can be approximated by P1). Furthermore, the homogeneity property characterizes
P1 among chainable continua [3].

The results in this section can be seen as dual to the above theory, much as the
projective Fräıssé limit is dual to the Fräıssé limit. A chainable, hereditarily inde-
composable continuum P2 is constructed (Theorem 4.2). Two results are proved.
First, P2 is approximately projectively homogeneous (Theorem 4.4(ii)) and, second,
it is projectively universal among chainable continua (Theorem 4.4(i)). Moreover,
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the approximate projective homogeneity of P2 characterizes it among chainable
continua (Theorem 4.9).

The link between the Bing–Moise theory and its dual is provided by the old the-
orem of Bing [2] saying that up to a homeomorphism there is at most one chainable,
hereditarily indecomposable continuum. Thus, P1 and P2 are homeomorphic.

2. It seems very likely that, using methods similar to the ones developed in the
present paper, one will be able to prove existence, surjective universality, surjective
homogeneity, and uniqueness of a universal pseudo-solenoid. This would extend
the work of Rogers [12]. In this context, it will be important to modify the notion
of epimorphism and appropriately change the definitions of surjective universality
and surjective homogeneity.
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