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1. INTRODUCTION. There is no field with only one element, yet there is a well- 

defined notion of what projective geometry over such a field means. This notion is 

familiar to experts and plays an interesting role behind the scenes in combinatorics 

and algebra, but it is rarely discussed as such. The purpose of this article is to bring 
it to the attention of a broader audience, as the solution to a puzzle about Gaussian 

binomial coefficients. 

2. GAUSSIAN BINOMIAL COEFFICIENTS. What form does the binomial the- 

orem take in a noncommutative ring? In general one can say nothing interesting, but 

certain special cases work out elegantly. One of the nicest, due to Schiitzenberger [18], 
deals with variables x, y, and q such that q commutes with x and y, and yx = qxy. 
Then there are polynomials [n]q 

in q with integer coefficients such that 

k=0 
Xk (1) 

These polynomials are called Gaussian' binomial coefficients or q-binomial coeffi- 
cients. They can be calculated recursively using 

E n- I- l k n- 1 

k 
q[ 

k _ q?-k - 
1 J (2) 

together with the boundary conditions [n]q 
= 

[]q 
= 1. To see why, note that writing 

(x + y)n = (x + y)"-lx + (x + y)n-ly 

and keeping careful track of how many times y moves past x shows that the coefficients 

of (1) satisfy the recurrence (the boundary conditions are obvious). 

Setting q = 1 yields the ordinary binomial coefficients and recurrence (i.e., Pascal's 

triangle). The analogy between Gaussian and ordinary binomial coefficients can be 

strengthened as follows. Define the q-analogue of the natural number n by 

[n],q = 1 + q 
+.--- 

+ qn-I 

(note that setting q = 1 yields n) and the q-factorial by [0]q! 
= 1 and 

[n]q! = [1]q[2]q ... [n], 

'Needless to say, Gauss discovered them in a slightly different context. See [7, pp. 16-17] for how they 
arose in his astonishing evaluation of the quadratic Gauss sum, and [8, p. 462] for another version of the 

q-binomial theorem (this time commutative), but keep in mind that here the dot for multiplication has lower 

precedence than addition! 
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for n > 1. Then it is not hard to prove by induction using (2) that 

in 
= [n],! [n],[n - 1],...[n - k + 1]q (3) 

k q [k]q! [n - k]q! [k],! 

in perfect parallel with the case q = 1. Note that it is not at all obvious that the right- 
hand side of (3) is a polynomial in q, although that follows from the recurrence rela- 
tion. 

Gaussian binomial coefficients are far more than just a construction from algebra. 
Indeed, they arise in a startling number of combinatorial problems. For a taste (due 
in this form to P61ya [16], although it is equivalent to a much earlier theorem on 

partitions-see section 4 in [19]), imagine an m x n box with opposite corners at 

(0, 0) and (m, n), where m and n are positive integers. It is a standard fact of combi- 
natorics that there are ("m+n) paths from (0, 0) to (m, n) made up of steps of one unit 

up or right (each path consists of m + n steps, among which one can freely choose 
which m go right). Let f(m, n, a) be the number of such paths that enclose area a 
with the bottom and right walls of the box. Then the Gaussian binomial coefficients 
are generating functions for this quantity: 

mn 

m 

+n 

1 
_ 

f (m , n , a )q 
a 

-- 
a=0 m 

There is a straightforward proof using (2), but one can also see directly how this cor- 

responds to the q-binomial theorem (a good exercise for the reader). More details on 
this interpretation and other related ones can be found in the excellent expository ar- 

ticle [17]. 
For our purposes, the crucial interpretation of Gaussian binomial coefficients is 

given by the following theorem about linear algebra over the finite field Fq with q 
elements (this theorem's early history is not fully known-see [12, p. 278] and [1, 
p. 227]): 

Theorem 1. If q is a prime power then [ ] is the number of k-dimensional subspaces 

of F n 

Proof If we substitute [n]q = (qn - 1)/(q - 1) into (3), we find that 

[E] (ql- 1)(q-' 
- 1)... 

(qn-k+l 
- 1) 

kjq 
(qkl-_1)(qk-l __1)... 

(q 
--1) 

(qfn - 1)(qn - q) . . .(qn _ qk-l) 

(qk - 1)(qk - q) . . . (qk - qk-l) 

Now consider the number of ways to choose a k-tuple (v1, ..., vk) of linearly indepen- 
dent vectors in 

Fq. 
If we choose the vectors consecutively, then vl can be any nonzero 

vector, and the only restriction on vi is that it must not be one of the qi-' linear com- 
binations of v1, ..., vi_1. Thus, there are qn _- qi-1 choices for vi, and 

(qqn 

- 1)(q _q)... (qn 
_ 

qk-l) 

k-tuples total. Each k-tuple spans a k-dimensional subspace of F', and each subspace 
is spanned by 

(qk 
_ 

1)(qk q)... (qk _ qk-1) 
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k-tuples (a second application of the same argument, with n = k). Therefore there are 

(q'n - 1)(qn _ q)... (qn - qk-1) 

(qk _ 1)(qk- q) .. (qk _ qk-1) 

k-dimensional subspaces, as desired. N 

One can also prove Theorem 1 using the recurrence (2), but this proof is pretty. In 
this form it goes back at least to [9], and a similar proof occurs in Burnside's 1897 

group theory book [6] (see pages 58-60, or pages 109-111 in the second edition from 

1911). 
Theorem 1 suggests a strong analogy between subsets of a set (the q = 1 case) 

and subspaces of a vector space (the prime power case). This analogy extends much 

further, and has been developed by numerous authors. See, for example, the seminal 

paper [9] by Goldman and Rota. At the end of [9], the authors ask for an explanation 
of why this analogy holds. It's one thing to observe it in the formulas, but quite another 
to describe a consistent combinatorial picture in which subsets appear naturally as a 

degenerate case of subspaces. 

Puzzle 1. In what way is an n-element set like Fn (and subsets like subspaces)? 

Of course, there is no field lF with only one element, but there is a trivial ring, 
and it is merely a convention that we do not call it a field. However, it is an excellent 

convention, because the trivial ring has no nontrivial modules (if x is an element of 
a module, then x = ix = Ox = 0). Calling it a field would not help solve Puzzle 1, 
since Fn does not depend on n. 

I know of no direct solution to this puzzle, nor of any way to make sense of vector 

spaces over F1. Nevertheless, the puzzle can be solved by an indirect route: it becomes 
much easier to understand when it is reformulated in terms of projective geometry. 
That may not be surprising, if one keeps in mind that many topics, such as intersection 

theory, become simpler when one moves to projective geometry. (The papers [11] 
and [22] also shed light on this puzzle by indirect routes, but not by using projective 
geometry.) 

3. PROJECTIVE GEOMETRY. Recall that projective geometry is a beautiful and 

symmetric completion of affine geometry. Given any field F,2 one can construct the 
n-dimensional projective space Pn (F) as the space of lines through the origin in 
Fn+l. Equivalently, points in I" (F) are equivalence classes of nonzero points in Fn+1 

modulo multiplication by nonzero scalars. We write [xo,..., xn] for the equivalence 
class of (xo,..., x,n) (these coordinates are called homogeneous coordinates). Affine 

n-space Fn is embedded into IP"(F) via (xl, ... , xn) F [1, x1, ... , xn] (these are 
known as inhomogeneous coordinates), and the points with homogeneous coordinates 

[0, xl,..., xn] form a copy of In-1(F) called the set of points at infinity. Continuing 
this process on the points at infinity recursively partitions IP(F) into affine pieces of 
each dimension up to n. This point of view makes projective space look asymmetric, 
but of course we can see from the definition that IP (F) is completely symmetric. 

Just as points in n"(F) correspond to lines through the origin in F"n+, lines in 
"n (F) correspond to planes through the origin in Fn+l, and in general k-dimensional 

subspaces of Pn (F) correspond to (k + 1)-dimensional vector subspaces of Fn+l. One 

2In fact, any division algebra will do, but we are interested in finite projective geometries and all finite 

division algebras are fields. This theorem was first stated by Wedderburn in [14], but the first of his three 

proofs has a gap, and Dickson gave a complete proof before Wedderbum did. See [15] for details. 
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subspace of Pn (F) is contained in another if that containment holds for the correspond- 
ing vector subspaces of Fn+1. We identify subspaces of PI (F) with the sets of points 
of IP"(F) they contain (it is easy to check that if they contain exactly the same points, 
then they are equal). It is convenient to consider the empty set as a (- 1)-dimensional 
subspace of P~ (F), which is consistent with the foregoing definition. 

The points of a k-dimensional subspace of P"(F) are determined by n - k in- 

dependent linear constraints in homogeneous coordinates (the defining equations of 
the corresponding vector subspace). In terms of inhomogeneous coordinates for the 
affine subspace F", these constraints amount to n - k inhomogeneous linear equa- 
tions. Every k-dimensional affine subspace of Fn is the solution set of some equations 
of this sort, but not all such collections of equations have k-dimensional affine solution 
sets: because they are inhomogeneous equations, their solution sets in F" may have di- 
mension less than k, or may even be empty. In that case most points of the projective 
subspace are at infinity, and its intersection with affine space is small. 

Given two subspaces S and T of projective space, let S A T ("S meet T") and S v T 

("S join T") denote their intersection and span, respectively (i.e., take the intersection 
and span of the corresponding vector subspaces of Fn+1). The meet is their greatest 
lower bound under containment, and the join is their least upper bound. Among the 
most important properties of meets and joins in projective space is the following fact 
of linear algebra, called the modular law: 

dim(S) + dim(T) = dim(S A T) + dim(S v T). 

The modular law implies many of the familiar properties of projective geometry. 
For example, let S and T be two distinct lines in P2(F). Then S v T = 1P2(F), and 
it follows from the modular law that dim(S A T) = 0, (i.e., S and T intersect in a 

point). Similarly, let S and T be distinct points in Ip2(F). Then dim(S A T) = -1, and 
it follows that S v T is a line and thus there is a unique line through S and T (unique 
because every subspace containing S and T contains S v T). 

Theorem 1 can be trivially reformulated in terms of projective geometry: 

Theorem 2. If q is a prime power, then Li+lq is the number of k-dimensional sub- 

spaces of IPn(Fq). 

Puzzle 1 has a projective analogue as well: 

Puzzle 2. In what way is an (n + 1)-element set like IPn (F1) (and subsets like sub- 

spaces)? 

This reformulation of the puzzle is the one we will explain. Our goal is to make 
sense of projective geometry over Fl. However, it does not fit into the linear-algebraic 
framework in which we have been working. Instead, we must give a more combinato- 
rial definition of projective geometry, which will include not only the case q = 1, but 
also some additional projective geometries we have not yet seen. 

Definition 1. A projective geometry of order q is a finite set P (whose elements are 

called points), a set L of subsets of P (whose elements are called subspaces), and a 

function dim : L - {-1, 0, 1, ... } satisfying the following axioms: 

1. L forms a lattice when partially ordered by containment. In other words, each 

pair of elements S and T has a greatest lower bound S A T and a least upper 
bound S v T in L under c. 
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2. The function dim is strictly increasing: if S and T belong to L and S C T, then 

dim(S) < dim(T). 

3. For all x in P, {x } is a member of L, as is 0. 

4. For S in L, dim(S) = -1 if and only if S = 0, and dim(S) = 0 if and only if 

S = {x} for some x in P. 

5. For S and T in L, 

dim(S) + dim(T) = dim(S A T) + dim(S v T). 

6. If S is a member of L with dim(S) = 1, then ISI = q + 1. 

The terminology "of order q" is unfortunate but standard. It does not mean that 
there are q points; instead, think of it as meaning that we are working over a field 
with q elements, as in the case of IPn (Fq), although that may not be true. We have 
made no attempt to specify a minimal set of axioms. For example, Axiom 2 follows 
from the other axioms. It is essentially a theorem of Birkhoff [4] that these axioms 
are equivalent to other standard definitions ("essentially" because our axioms differ 

slightly from Birkhoff's, but the equivalence is not hard to prove), with the exception 
that most people require q > 1 before they use the term "projective geometry." 

Note that it follows from Axioms 1 and 3 that P belongs to L, since the join of all 
the zero-dimensional subspaces must be P. We define the dimension of the geometry 
to be dim(P). 

The complete list of finite projective geometries of order greater than one is still 
unknown. Veblen and Bussey [20] used an approach due to Hilbert [10] to classify 
those that satisfy the Desargues theorem (if two triangles in a plane are in perspective 
from a point, then they are in perspective from a line). They attempted to coordinatize 
the geometry, and the Desargues theorem was needed to obtain associativity; when it 

holds, the geometry must be a projective geometry over a finite field. The usual proof 
of the Desargues theorem involves lifting to three-dimensional space, and in fact the 
theorem holds in every projective geometry of dimension greater than two. Thus, the 

only finite projective geometries remaining to be classified are the projective planes, 
and in particular those that cannot be embedded into higher-dimensional spaces. Veb- 
len and Wedderburn [21] constructed examples of finite projective planes that do not 

satisfy the Desargues theorem and are therefore not defined over finite fields, but a 

complete list is not known. All known examples have prime power order, and only 
two limitations on the order have been established: Bruck and Ryser [5] proved if the 

order is 1 or 2 modulo 4 then it must be a sum of two squares, and Lam, Swiercz, 
and Thiel [13] checked by a massive computer search that the order cannot be 10. In 

particular, it is not known whether there is a projective plane of order 12. It is worth 

pointing out that a projective plane of order q can be defined far less verbosely than in 

Definition 1: it is a finite set of points with certain subsets called "lines" such that not 
all the points lie on one line, each line has q + 1 points, each pair of distinct points is 

on a unique line, and each pair of distinct lines intersects in a unique point. (In fact, 

simply requiring that each line must have at least three points implies that they all 
have the same number of points.) Classifying these objects is a natural and important 
combinatorial problem. 

We can now solve Puzzle 2 by identifying the projective geometries of order 1. 

They are Boolean algebras: let L consist of all subsets of P and set dim(S) = ISI - 1. 
It is clear that this defines a projective geometry of order 1, and it is not difficult to 
check using Lemmas 3 and 4 that these are the only projective geometries of order 1. 
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As desired, their subspaces of a given dimension are counted by ordinary binomial 
coefficients. 

Thus, we have solved the puzzle, and seen how the Boolean algebra of subsets of a 
set fits naturally as the q = 1 case of projective geometry. However, to make the solu- 
tion convincing, we must give a unified proof of the analogue of Theorem 2 for every 
projective geometry of order q. (If the proof required case analysis, then the apparent 
unification of the definition might be illusory.) Theorem 5 is such a unification. Before 

proving it, we deduce some lemmas from the axioms of Definition 1. 

Lemma 3. Every projective geometry (P, L, dim) of order q and dimension n has the 

following properties: 

1. Each element S of L is itself naturally a projective geometry (S, L', dimlL') of 
order q, where L' = {T E L I T C S}. 

2. For S and T in L, SAT = S nT. 

3. Every two distinct points in P lie on a unique line, and every two distinct lines 

intersect in at most one point. 

4. For S in L and x in P but not in S, dim(S v {x}) = dim(S) + 1. 

5. For S and T in L with dim(S) = n - 1, either T is contained in S or dim(T A 

S) = dim(T) - 1. 

Proof We deal with the assertions one by one: 

1. All of the axioms for a projective geometry hold trivially. Only Axiom 1 requires 
the slightest argument: if members T1 and T2 of L are subsets of S, then T, v T2 
is contained in S by the definition of a least upper bound, so T, v T2 belongs to 
L' as desired. 

2. By definition, SAT CS and SAT T, so S AT C S T. On the other 

hand, for every x in S A T, {x} is an element of L that is contained in both S 
and T, so {x)} S A T by the definition of the greatest lower bound. Hence, 
SAT =Sn T. 

3. This assertion follows from the modular law and Axiom 4, as in the analysis of 

1P2(F) from earlier in the paper (except that in more than two dimensions there 
can be disjoint lines). 

4. We have 

dim(0) + dim(S v {x}) = dim(S A {x}) + dim(S v {x}) 

= dim(S) + dim({x}) 

= dim(S), 

from which it follows that dim(S v {x}) 
= dim(S) + 1. 

5. Because dim(S) = n - 1, either T is a subset of S or T v S = P. In the latter 

case, 

n + dim(T A S) = dim(T v S) + dim(T A S) 

= dim(T) + dim(S) 

= dim(T) + n - 1, 

so dim(T A S) = dim(T) - 1. 
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Lemma 4. Every projective geometry of order q and dimension n contains [n + 1]q 
points. 

Proof We prove this by induction on n. The base case n = 0 follows from Axiom 4. 
Now suppose that the lemma holds for all dimensions less than n. 

By repeatedly applying assertion 4 in Lemma 3, one can construct a subspace S 
of dimension n - 1. There must also be a point x that does not lie in S. Every line 

through x intersects S in a unique point by assertions 2 and 5. By assertion 3, every 
point other than x lies on a unique line with x, and these lines are all disjoint except 
for x. Each line contains q points besides x by Axiom 6. Therefore, the total number 
of points in the geometry is 1 + qSI = 1 + q [n]q = [n + 1]q, as desired (ISI = [n]q 
by assertion 1 and the inductive hypothesis). I 

Theorem 5. Every projective geometry of order q and dimension n contains 

[+l]q_ subspaces of dimension k. 

(While Theorem 5 can be proved analogously to Theorem 1, for variety we will instead 
use the recurrence (2).) 

Proof As in the preceding proof, we prove this by induction on n. The base case n = 0 
is again trivial. Thus, we suppose that the result holds for all dimensions less than n. 

Let S be a subspace of dimension n - 1. By the inductive hypothesis, there are 

[kn+l1 subspaces of dimension k in S. By assertion 5 of Lemma 3, every other 
k-dimensional subspace intersects S in a (k - 1)-dimensional subspace, so there are 

[n]q possible intersections. To complete the proof, we will show that every (k - 1)- 

dimensional subspace of S extends in qn-k ways to a k-dimensional subspace not 
contained in S. 

Let T be a (k - 1)-dimensional subspace of S. Each extension is of the form T v {x } 
for some x not belonging to S (it contains a subspace of this form and must coincide 
with it because they have the same dimension), and that partitions the complement of 
S in P into disjoint subsets, according to whether they lie in the same extension. It 
follows from Lemma 4 that there are qn choices of x outside S, and that each of the 
extensions contains qk of them, so there are qn-k extensions. Thus, there are 

nk+l q 
-knq 

+ 

-k+ 1_ ~ k +1 

k-dimensional subspaces in total, as desired. 0 

4. FURTHER DIRECTIONS. Viewing Boolean algebra as a special case of projec- 
tive geometry can illuminate more than just the puzzle with which we started. One in- 

teresting example, suggested by Robert Kleinberg, is the classification of finite simple 
groups. Recall that these groups fall into four classes (see [3, sec. 47]). Aside from 

cyclic groups of prime order and finitely many sporadic groups, the only finite simple 
groups are the simple groups of Lie type and the alternating groups. The simple groups 
of Lie type are finite-field analogues of simple Lie groups, and it is very reasonable to 

expect to construct finite simple groups in this way. What may be surprising is that the 

alternating groups, which to a naive observer feel very different from the groups of Lie 

type, can be brought at least partially into the same framework. In particular, An can 
be thought of as PSLn (F1), as follows. 

June-July 2004] PROJECTIVE GEOMETRY OVER F1 493 



The most basic example of a finite group of Lie type is 
PSLn~(Fq), 

which is 

simple unless n = 2 and q is 2 or 3 (assume from now on that we are not in these 

cases). It arises geometrically as a normal subgroup of the group Aut(Pn-' (F,)) of 
collineations of P n-1 (F,) (i.e., permutations of the points that furthermore map sub- 

spaces to subspaces). When n > 3, the collineation group is a semidirect product 

Gal(Fq/Fp) x PGLn(IFq) if q is a power of the prime p (see Theorem 2.26 and the 
discussion that follows it in [2, pp. 88-91]). The subgroup PSLn (Fq) can be derived 
from Aut(IP"-' (F•q)) by repeatedly taking the commutator subgroup: the commutator 

subgroup of Aut(IPn-'(Fq)) is contained in 
PGLn(qF,), 

the commutator subgroup of 
that is equal to PSLn (IF), and PSLn (F,) is its own commutator subgroup because it 
is a non-Abelian simple group. (If q is prime, then one needs to take the commutator 

subgroup only once to reach 
PSLn((Fq).) 

What should the q = 1 analogue be? The automorphism group of "-'1 (IF1) is the 

symmetric group Sn, whose commutator subgroup is An, and An is simple if n > 5. 
This suggests that PSLn (IF1) should be interpreted as An. However, it is not clear how 
far the analogy goes. For example, what happens if one sets q = 1 in the equation 

q(G)(q - 1)n-'[n]q! I PSLn 
(F,)l 

= 

gcd(n, q - 1) 

(see Table 16.1 in [3, p. 252], but note that 7r is a typo for n)? The power of q simply 
becomes 1, and [n]q! becomes n!, but the remaining factors amount to 0/n rather 
than 1/2. Is there any way to make sense of this? Can the analogy between PSLn (F1) 
and An be extended or refined? 
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Untitled poem from the collection Crossing the Equal Sign 

Given any theorem, we've proved it, we know it, and that should be that. 
But I keep thinking of things. 
Keep testing them, waiting 
for something to go boo. 
When your ankle is broken you're tempted to contract it 
as though it had a muscle 
as though it were a muscle. 

"Tap me," says the bone. 
"Test me. Hurt me." 
A theorem is muscles. 

A proof is muscles. 
Math is full of muscles which 

despite the pain 
I'm tempted to tap or flex. 

-_ Submitted by Marion D. Cohen 
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