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ABSTRACT

This paper presents a method of image restoration for projec-

tive ground images which lie on a projection orthogonal to

the camera axis. The ground images are initially transformed

using homography, and then the proposed image restoration

is applied. The process is performed in the dual-tree complex

wavelet transform domain in conjunction with L0 reweight-

ing and L2 minimisation (L0RL2) employed to solve this ill-

posed problem. We also propose instant estimation of a blur

kernel arising from the projective transform and the subse-

quent interpolation of sparse data. Subjective results show

significant improvement of image quality. Furthermore, clas-

sification of surface type at various distances (evaluated using

a support vector machine classifier) is also improved for the

images restored using our proposed algorithm.

Index Terms— image restoration, projective transform,

DT-CWT

1. INTRODUCTION

Numerous scenarios exist where it is necessary or advanta-

geous to classify surface material at a distance from a moving

forward-facing camera. Examples include the use of image

based sensors for assessing and predicting terrain type in as-

sociation with the control or navigation of autonomous vehi-

cles. In such cases, the ground ahead of the camera appears as

a projective plane on the image - an ordinary plane with ad-

ditional ‘points at infinity’ where parallel lines intersect. The

ground plane in the three-dimensional world coordinate sys-

tem is projected onto the image plane by means of straight

visual rays from the point in space to the optical centre. This

process can be described mathematically by a plane-to-plane

homography H (Projective Transformation) satisfying the re-

lationship x = HX, where x and X are points on the image

plane and the world plane, respectively.

The homography of such a plane can be computed sim-

ply by knowing the relative position of four points on the

scene plane and their corresponding positions in the image.

An example showing a ground image and its reconstruction

is shown in Fig. 1. The rectification of the surface reveals

instances and extensions of the pattern which are very diffi-

cult to discern by eye in the original image. Homography is

an irreversible transformation as transforming the projective

image back to the rectified view using tranditional bilinear or

bicubic interpolation produces noticeable aretifacts, particu-

larly at far distances. This ill-posed problem can be expressed

with a matrix-vector multiplication as Iobv = DIidl + ε,

where Iobv and Iidl are vectors containing the observed and

ideal images, respectively. Matrix D represents projective

transformation, anti-aliasing and blur, while ε represents

noise. Various approaches have attempted to solve this prob-

lem, generally by modelling it as a point spread function

(PSF), where D is considered as a convolution matrix, and

then employing deconvolution with an iterative process to

estimate Iidl [1, 2].

The ground image obtained from the camera can be con-

sidered as an under-sampled observation of its rectified view

in Fig. 1. As we move further away from the camera, the ef-

fective sampling rate decreases, causing increasing difficulty

in approximating or assessing the surface texture. In this

paper, we restore the projective image using a model-based

recovery method which comprises convolution and subsam-

pling. This problem is solved using L0 reweighted-L2 min-

imisation (L0RL2) in the wavelet domain [3]. The wavelet

transform is employed because its decompositions provide

image information about structure, strong persistence across

scales and compressible properties. These properties are very

important for establishing sparsity regularization [4].

The main challenge associated with this restoration is the

estimation of the PSF which is generally unknown. In this

paper, we address PSF estimation by exploiting information

already present in the image. For example, in the rectified

ground image, the area close to the camera is invariably

sharper than other image regions further away (assuming of

course that an appropriate aperture is used when acquiring

the image). We compare this near area with the current region

under analysis at a particular distance, in order to estimate the

current blur kernel. The size of the kernel is equal to the area

on the rectified image corresponding to the projection of the

one step pixel distance in the observed image.

The remaining part of this paper is organised as follows.

The proposed scheme for projective image restoration is de-

scribed in detail in Section 2. The performance of the method

is evaluated on a set of images in Section 3, both in terms of

subjective performance and also in terms of classifier results

enhanced using the restored data. Finally, Section 4 presents

the conclusions of the study.



2. PROPOSED SCHEME

The proposed algorithm is performed in the wavelet domain

which employs subband-dependent minimization and the

dual-tree complex wavelt transform (DT-CWT) in an iterative

Bayesian framework. The observation model for projective

image restoration can be written as Eq. 1.

y = AHBx+ ε (1)

where y and x are the observed ground image and the origi-

nal projective (recitified) image, respectively. B is a blur ma-

trix, while H and A are a projective transform (homography)

and an anti-aliasing matrix, respectively. We assume that ε
is independent white noise so that we can get a maximum a

posteriori probability (MAP) estimate of x by minimising a

cost function C(x) as Eq. 2, where log(p(x)) describes prior

information of image structure and λr is the regularization

parameter.

C(x) = ‖y −AHBx‖2 + λrlog(p(x)) (2)

The regularization process is performed in the dual-tree

complex wavelet transform (DT-CWT) domain as it pro-

vides near shift-invariance and increased directional selec-

tivity compared to conventional wavelet transforms [5]. The

wavelet transform of an image tends to be sparse which eases

the formulation of expectations. We denote (Wj)j∈S and

(Mj)j∈S as the decomposition and reconstruction wavelet

subbands, respectively, where S = 0, 1, . . . St and St is the

total number of wavelet subbands for all decomposition lev-

els. We also assume that the real and imaginary parts of the

transform’s outputs are treated as separate coefficients so that

Wj and Mj are real matrices thereby producing real valued

wj = Wjx and Mjwj for a real image x.

For the prior knowledge log(p(x)), the magnitudes of

highpass coefficients of wavelets can be employed, since they

reflect image features, such as lines, corners and textures.

Fig. 1. Top: Original ground plane. Bottom: Rectified ground

plane.

Here, log(p(x)) is thus set to be wTΓw, where Γ is a weight

matrix. This can be seen as the weighted L2-norm which

can be utilised to approximate the L0 sparseness measure by

defining γj = 1/(|wj |
2 + ǫ), γj ∈ Γ, where ǫ is a small num-

ber for preventing zero denominator. Employing the subband

pre-emphasis process from [3], the cost function is finally

obtained as shown in Eq. 3.

C(w) = ‖y −AHBx‖2 + λrw
TΓw

+Σj∈Sαj‖Wjx−wj‖
2 − ‖AHBx−AHBMw‖2 (3)

2.1. Restoration Process

We divide the observed image y vertically into K overlapped

regions according to their distance from the camera, which is

taken as from the bottom part of the observed image. Then,

each region yk, k = 0, 1, . . .K − 1 is processed individually.

The estimated projective region xk is achieved by minimising

Eq. 3. That is ∂C(wk,∀j∈S)/∂wk,j = 0. Then, the iterative

process is operated as Eq. 4 and 5.

zj = Wj

(

αjx
(n)
k +BT (AH)T (yk −AHBx

(n)
k )

)

(4)

We generate the initial reprojective image x
(0)
k = (AH)Tyk

using a known H with bicubic interpolation. Following the

method in [3], a weight ωj is created using structure ob-

tained from wavelet coefficients and estimated noise vari-

ance σ2. The weight for each subband is defined as ωj =
1/

(

αj + λrσ
2γj

)

.

x
(n+1)
k = Σj∈SMj(ωjzj) (5)

where x
(n+1)
k and x

(n)
k are the estimated projective regions at

the (n+ 1)th and nth iterations. αj is a relaxation parameter

controlling rate of convergence (Here αj = 1).

The final estimated projective region xk is achieved when

the difference between x
(n+1)
k and x

(n)
k is less than a thresh-

old. Finally the estimated projective image x is constructed

by combining all regions as shown in Eq. 6, where J is a ma-

trix of ones with the same size as x and ak is a weight mask

of the region k.

x = ΣK−1
k=0 akxk (6a)

J = ΣK−1
k=0 ak (6b)

2.2. Blur Kernel Estimation

We assume that the blur kernel corresponding to each area

k is space-invariant so that the deconvolution process can be

performed using a single point-spread function (PSF). This

means, Bkxk is a discrete convolution of xk with the PSF and



Fig. 2. Restored images with different sizes of blur kernels.

Left to Right: sk/2, sk and 2sk, respectively

can be computed by multiplying together the discrete Fourier

transform (DFT) coefficients of xk and the DFT coefficients

of the PSF, then taking the inverse DFT of the product.

We also assume that the closest area to the camera, is as

sharp as the original projective image; therefore, it is repre-

sentative of the sharpness required. To estimate Bk, we gen-

erate the estimated observed area ỹk using information from

area 0. That is, ỹk = AHkx̃0. Subsequently, the blur kernel

can be estimated using Eq. 7.

x̃0 ≈ (AH0)
Ty0 (7a)

bk = Θ

(

DFT((AHk)
TAHkx̃0)

DFT(x̃0)
, sk

)

(7b)

b̃k = bk/max(bk) (7c)

where Θ(O, s) converts the optical transfer function array O,
to a point-spread function array of specified size s using the

inverse DFT, centred at the origin. Finally the blur matrix for

each region Bk is obtained from ΘT (b̃k,M ×N), where ΘT

computes the DFT of b̃k with the same size as xk, which is

M ×N .

The kernal size is computed by transforming four posi-

tions in current area, namely the centre position of ỹk, (pi, pj)
and its three neighbours, (pi + 1, pj), (pi, pj + 1) and (pi +
1, pj + 1), to the corresponding positions on projective area,

namely (qi1, qj1), (qi2, qj2), (qi3, qj3) and (qi4, qj4), respec-

tively. Then, sk = (si, sj) is obtained from Eq. 8 and 9.

si = ⌈(|qi2 − qi1|+ |qi4 − qi3|)/2⌉ · 2 + 1 (8)

sj = ⌈(|qj3 − qj1|+ |qj4 − qj2|)/2⌉ · 2 + 1 (9)

Fig. 2 shows the effect of the size of bk. If the kernel

size is too small, the restored result will still be blurred. In

contrast, if the kernel size is too large, kernel-related aretifacts

become visible.

3. RESULTS AND DISCUSSION

Four example ground surface images of bricks, grass, sand

and tacmac are shown in Fig. 3. These images have a res-

Fig. 3. Top-left: bricks. Top-right: grass. Bottom-left: sand.

Bottom-right: tarmac.

olution of 1920×1080 pixels with a 24-bit RGB colour for-

mat. Four base points on the ground, marked as a 2m×2m

square were used for computing the homography H. Based

on the anti-aliasing matrix A, the interpolation kernel size is

extended according to the down-sampling scale, resulting in

increased smoothness in the shrinking area. Also, in the work

reported here, we set parameters as follows: σ2 = 10−5 (ap-

proximately 40 dB noise) and the regularization parameter,

λr = 1. For the iterative process, the convergence threshold

was set to 10−5 which resulted in fewer than 15 iterations to

achieve satisfactory results.

Subjective results for our new approach are illustrated in

Fig. 4. These compare the projective images obtained from

traditional homography (using bicubic interpolation) with

those obtained from our proposed projective image restora-

tion method. The figure shows the sand and bricks images

cropped at 4m, the grass image at 6m and the tarmac image

at 7.5m. The enhanced sharpness resulting from the proposed

method is clearly visible in these subjective comparisons.

Finally, we investigate the performance of a surface-type

classifier based on our restored images compared to that us-

ing images constructed by bicubic interpolation. We employ

the 4 ground types discussed above: bricks, sand, tarmac and

grass, for classification and we divide each image into 6 dis-

tant ranges: <2m, 2.5m, 5m, 7.5m, 10m and >10m. At each

range, texture features are employed as training data in the

classification process (a list of texture features can be found

in [6]). Texture features at other distances are used for evalu-

ating system performance. The aim of this study is to inves-

tigate whether our proposed restoration achieves an improve-

ment in surface-type recognition at long range.

LIBSVM for MATLAB [7] was employed for multiclass

classification (4 classes were used in this study). The clas-

sification accuracy using the conventional projective images

together with those obtained with our proposed restoration

method are shown in Tables 1 and 2, respectively. These ta-

bles show the training data range across each row with the

classification results for different distances in each column.



Fig. 4. Projective images. Left: Traditional homography.

Right: Proposed restoration

Table 1. Classification accuracy using projective images by bicubic

interpolation

Range
Accuracy %

Avg
<2m 2.5m 5m 7.5m 10m >10m

<2m 100.0 95.5 78.6 69.8 52.9 35.0 72.0

2.5m 100.0 100.0 94.8 73.5 44.8 25.0 73.0

5m 79.6 93.3 100.00 94.1 69.1 38.0 79.0

7.5m 68.7 77.9 95.5 100.0 100.0 87.0 88.2

10m 34.3 60.2 98.5 100.0 100.0 100.0 82.2

>10m 40.6 64.7 75.0 90.4 100.0 100.0 78.4

Avg 70.5 81.9 90.4 87.9 77.8 64.1 78.8

The results clearly show improved performance for the pro-

jective images generated by the proposed method, with an im-

provement in overall classification accuracy by approximately

5.5%. The best performance (with an average accuracy of

89.2%) is achieved when using data at a range of 2.5m for

training.

Table 2. Classification accuracy using projective images by pro-

posed image restoration

Range
Accuracy %

Avg
<2m 2.5m 5m 7.5m 10m >10m

<2m 100.0 100.0 85.3 72.1 56.3 58.8 78.8

2.5m 100.0 100.0 94.12 88.2 77.21 75.6 89.2

5m 81.9 96.9 100.0 97.1 80.0 70.6 87.7

7.5m 64.7 78.4 96.0 100.0 100.0 88.2 87.9

10m 50.0 61.5 89.1 100.0 100.0 100.0 83.4

>10m 50.0 60.0 71.0 91.3 100.00 100.0 78.7

Avg 74.4 82.8 89.3 89.6 85.3 84.3 84.3

4. CONCLUSIONS

This paper presents a new method for restoring projective

(rectified) surface images in order to reveal increased detail at

points far from the camera plane. Such detail is not apparent

in the orignal image obtained through conventional acqui-

sition. The proposed restoration process employs wavelet-

based deconvolution with L0 reweighted-L2 minimisation.

As projective transform and interpolation introduce range-

dependent blurring, we propose a means of blur kernel es-

timation based on characteristics contained in the original

image, biased according to the relative position of the target

region in the projective image. Subjective comparisons show

a clear improvement associated with the proposed scheme

over the convensional projective transform and bicubic inter-

polation. Furthermore surface-type classification (using an

SVM classifier) is improved by approximately 5% compared

to the case when conventional homography is employed.
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