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Abstract. The author studies the deformation of a flag variety and investigates the
structure of a smooth closed subvariety in a projective space which is swept out by large
dimensional linear spaces. Then a sufficient condition is given for the subvariety to be
isomorphic to one of a projective bundle, a hyperquadric and a Grassman variety.

In this paper we investigate some deformations of P(Q2,m(2)) and determine varie-
ties swept out by large dimensional linear spaces.
We get the following:

MAIN THEOREM. Let X be an n(=2)-dimensional smooth projective variety in a
projective space PN. Assume that for each point x in X, there exists an m-dimensional
linear subspace P, in X containing the point x with 2m > n. (From now on an m-dimensional
linear subspace is abbreviated as an m-plane.) Moreover, suppose that the characteristic
of the base field is zero. Then for a general point x the normal bundle Np_ix of P, in X
is isomorphic to one of the following:

(1) O82® O0pm(1)®® (a and b are non-negative integers)

2 Qpm(2) (m=2),

(3) Tpm(—1) (m=2).

Moreover, corresponding to the above cases, X is respectively as follows:

(1) a P" “-bundle over an a-dimensional smooth projective variety S where a
general m-plane P, is in the fiber of the canonical projection (n>a>n/2).

(2) An even-dimensional smooth hyperquadric.

(3) The Grassmann variety Gr(m+ 1, 1) parametrized by lines in P™** with n=
2m, if m is even.

The main theorem is shown in §6. Combined with Theorem 3.1, it yields:

COROLLARY. Let X be an n(=>2)-dimensional smooth projective variety in a projec-
tive space PN. Assume that there exists an m-dimensional linear space P in X such that
the normal bundle Npx of P in X is isomorphic to one of the following:

() 022® Op.(1)®® (a and b are non-negative integers)
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(2) Q2pm(2) (m=2),

(3) Tpm(—1)(m=2).
Moreover assume n<2m. Then in characteristic zero, X in the above cases corresponds,
respectively, to the one in the latter conclusion of the main theorem, where in the case
(3) the assumption that m is even is added.

What is most important and difficult in treating the main theorem is to determine
the structure of the normal bundle Np_x and to show that in one case X in question
is a Grassmann variety. For the former we have to classify a vector bundle on P* which
is ‘uniform at a point’ in §1. For the latter, which is most central in this paper we have
to show in §4 and §5 that the structure of P(Qp.) is deformation-invariant under
suitable conditions as follows:

THEOREM 1. Let E be a vector bundle of rank m on P* with n>2. Assume that
there is a point A on P" so that for all the lines | through the point A, E;; is 0®°* @ 0(1)®"
(a+b=m). Moreover assume that when m=n, the n-th Chern class ¢, (E)=0 or 1 modulo
rational equivalence.

Then E is 02 @® 0p.(1)®® (a+b=m) if m>n, while if m=n, then E is isomorphic
to one of OB ® Opn(1)®® (a+b=m), Tpa(—1), and Qpn(2).

This theorem is used not only to classify the normal bundle in the main theorem
but also to show that some deformation of P(£2p.) has the structure of P(Qp) as
follows:

THEOREM 4.2. Let V be a vector bundle of rank m+1 on a scheme T and f:
P(V)— T a P"-bundle on T. Set W :=P(V). Let & be a vector bundle of rank m on W
and g : P(8) > W a P™-bundle on W. Set Q :=P(&) and E, :=&\;-1y. Assume that E,
is generated by global sections for each point t in T and E,~ Qp.(2) for a generic point t
in T. If m is even, then E,~ Qpn(2) for each point t in T.

Thus Theorem 4.2 enables us to prove in §6 that if an 2m-dimensional smooth
projective variety X in PV contains an m-plane P with Npy=Tpm(—1), then X is
isomorphic to Gr(m+1, 1).

Thanks to the developement of the contraction theory and the adjunction map-
ping theory, the structures of large dimensional Fano varieties continue to be studied
actively under some conditions described in terms of coindex, length and so on. There
seem to exist few results about large dimensional Fano manifolds with the Picard group
Z, even about Grassmann varieties, except projective spaces, hyperquadrics, Del Pezzo
manifolds and Mukai manifolds, whose coindex are very small (cf. [CS], [Mo], [Mul).
Moreover the condition like the semi-ampleness of the tangent bundle does not give
enough imformation to determine the structure so far (though understood well in
dimensions 3 and 4. cf. [CP1], [CP2]). This is the reason why the author treats the
varieties as in the main theorem. More precisely, we consider an n-dimensional projec-
tive variety X in P satisfying the following condition:
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(#) X is swept out by m-planes P with 2m>n.
As for such a variety Ein [E, Theorem 1.7] and Wisniewski [W, Theorem 1.4] already
showed that an n-dimensional smooth projective variety X containing an m-plane with
a trivial normal bundle has a projective bundle structure. (See also Remark 3.4.) We
remark that the condition “Npjx is a trivial vector bundle” is a sufficient condition
for (#).

This paper is organized as follows:

§1. Uniform vector bundles on P" at a point.

§2. The normal bundle Np .

§3. Smooth projective varieties with Npjx =022 @ Opm(1)®?, Qpm(2).

§84 and 5. The deformation of P(Q2p~(2)) under some conditions, (I) (II).

§6. Smooth projective varieties with Npy =~ Tpm(—1).

CoONVENTIONS AND NOTATION. We work over an algebraically closed field £ of
any characteristic in general. In §§4, 5 and 6 it is supposed that the characteristic of
the base field is zero. We freely use the customary terminology in algebraic geometry.
For simplicity ¢(a) means the line bundle @p:(1)®% on P'. For a vector bundle E on
a scheme S, £ denotes the vector bundle dual to E. In the N-dimensional projective
space PY an m-plane means an m-dimensional linear subspace in P¥. Gr(N, m) denotes
the Grassmann variety parameterizing m-planes in PN, E(N,m) or U(N, m) are the
rank (m+ 1) universal subbundle of 0", or the rank (N—m) universal quotient
bundle on Gr(N, m), respectively. F(N,m, 0) means the incidence subvariety {(x, y)e
P x Gr(N, m)|xe L,}, where L, is an m-plane corresponding to the point y.

The author would like to express his gratitude to the referee for valuable comments
and advice.

. 1. Uniform vector bundles on P" at a point. In this section we work over an
algebraically closed field & of any characteristic. Let E be a rank m vector bundle on
P" with m<n. We consider a vector bundle satisfying the following conditions:

(1.0) There is a point 4 on P" so that for all the lines / on P” through the point A4,
E is 0%°@® 0(1)®® (a+ b=m). Moreover when m=n, the n-th Chern class ¢,(E)=0 or
1 modulo rational equivalence.

Then our aim in this section is to study the structure of such a vector bundle. As
a consequence we have the following:

THEOREM 1. Let a vector bundle E be as in 1.0. Assume n>2. Then E is isomorphic
to O D Op.(1)®® (a+b=m) if m<n. If m=n, then E is isomorphic to one of 05 ®
Opn()®? (a+b=m), Tp(— 1) and Qp.(2).

The following result is already known:

THEOREM 1.1 (cf. Main Theorem, Remark 1.1 and Remark 2.1 in {Sa]). Let E
be a rank r vector bundle on P". Assume that there is a point A on P" so that for all
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the lines | through the point A, E|; is independent of the choice of the lines | and is
isomorphic to (—B:= L Ma)®" withn>2,r>2 and a, >a, > >a, Then E is isomorphic
to (—B:z . Op{a)®" if either of the following two conditions is satisfied:

(1) n>r.

Q) n=r,r,>2fori=1,sandnis 2 or odd.

Remark 1.1.1. If s=1, the above conclusion holds without the restriction on #
and r as stated in the first part of the main theorem in [Sa].

Now let us consider the condition (1.0).

Let ¢ : P— P" be the blow-up of P" at the point A. Then P is isomorphic to
Proj(@pn-1 @ Opn-1(1)) where n: P—> P"~! is a P'-bundle. Let D be the exceptional
locus of ¢ which is isomorphic to P*~*. Then D is a section of =.

By virtue of the base change theorem the condition 1.0 yields a canonical homo-
morphism n*n*(p*E — @*F which is injective as vector bundles where n*(o*E is a rank
a vector bundle on P"~ 1. Let F; be the vector bundle dual to n,¢*E. Taking the same
procedure for the quotient vector bundle, we get the following exact sequence on P:

(1.2) 00— 7*F, ® 0*Opn(1) — @*E—> 1*F;, — 0 .

Here F, is a rank b vector bundle on P"~!. Moreover restricting the above sequence
to the exceptional locus D, we have an exact sequence on D:

(1.3) 0—s F,—> 08", —> F, — 0.

This yields a morphism f: P"~' > Gr(m—1,a—1) so that f*E(m—1,a—1)~F,
and f*U(m—1,a—1)~F,; where E(m—1,a—1) is the rank b universal subbundle of
o0&r, 1.1 on the Grassmann variety Gr(m—1,a—1), and U(m—1,a—1) is the
universal quotient vector bundle of rank a.

Now we investigate the Chern class of the vector bundle E. First let 4 be the class
of hyperplane of P"~! in the first Chow group of P"~!. Then the i-th Chow group
CHi(P"" 1) of P"~! is equal to ZA' where i""'=1 and #*=0 for p>n—1. Thus the
Chern polynomial ¢, (F,) of F, is equal to cq+c¢,ht+ - - - ¢ h%t* and c(F,)=do+d ht+ - - -
dyh*t® where c,=d,=1. Since F, and F, are generated by global sections from 1.3 we
have:

(1.4) each Chern class of F, and F, is numerically positive, namely, ¢;>0 and
(—1Yd;20. Moreover f*Ogm-1.qa-1(1)=c¢,(F})=c,(F,). (See, for example, Proposi-
tion 2.1 in [Ta].)

Let us begin the proof of Theorem 1. When n>m, there is nothing to show by
Theorem 1.1.

Next we consider the case n=m. We may assume ab3#0 by Remark 1.1.1. Let &
be the tautological line bundle of the vector bundle Opn-1 @ Opn-1(1) (=G). Letting
h=mn*h, we have the equality {2=¢k and therefore the equality &7~ =¢R~! with
1<i<b. Thus remarking that p*@p.(1)=¢, we see that
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b b
y(n*F, ® 0*Opa(1)) = Z db—iﬁb_ifi=dbh_b+< Y db-i)fh_b_l .
i=o i=1

Therefore since 4" '=1 and A"=0, we have

C,,(E)=Ca( i db—i>=ca (bil dl) .
i=1 i=0

Hence the latter condition of (1.0) and (1.4) provide us with two cases:

(1.5) (D) =0 or ¥ d=0.
i=0

)  c,=Y di=1.

Since (O™ )=c(F)c(F,) from 1.3, we get the followings:
1=(14c ht+ - -ch)1 +dht + - - -d bt .

Thus to evaluate integers c;, d;, we can consider the following equality of polynomials
of one variable x:

(1.6) T+ox"=(1+c;x+ - xW1+d;x+ - - -dpx?)
with a+b=n and
(1.6.1) a=c,d, .

First we treat the case (I).

Assume ¢,=0. Since a=0, we have ¢, =d; =0 from 1.6. Therefore we see that the
morphism f: P"~! - Gr(n—1,a—1) in 1.3 is constant by 1.4 and therefore that F, and
F, are trivial vector bundles. Hence E is isomorphic to 0% @ 0p.(1)®°.

Next we treat the case Y., d;=0.

We substitute 1 for x of 1.6 to obtain

(1.7) l+a=(l+ci+ - +c)1+di+ - +dy) .

Thus by 1.6.1 and our assumption we have 1 +c¢d,=(1+¢,+ - - - +¢,)d,, which yields
two equalities1 +¢, + -+ - +¢,_;=1andd,=1by1.4.Ifa>2,wehavec,=--- =c,_; =0
by 1.4 and therefore the morphism f'is constant. Thus F, is a trivial vector bundle and
therefore dy, =0, which yields a contradiction to d,=1. Hence a=1. Moreover from 1.4,
(—1)’d,=(—1)® is non-negative. Thus we get
(1.8) 1If Z:’;; d;=0, then F, is a line bundle. Moreover n is odd and b=n—1.

Again from 1.6, 1.6.1 and d, ., =1 we have

1.9 T+c "= +c )1 +dyt+ -+ 1)
Thus substituting —1 for ¢ and noting from 1.4 that 1+d,(—1)+ - - - +1>2, we easily
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get ¢, =1 for odd n, which implies that Op.- (1) =c{(F{)= f*Opn-1(1) by 1.3 and there-
fore the morphism f: P*~' - P""! is an isomorphism. Hence we see that F; ~Opn.- (1)
and F, ~Qp.-:(1). Moreover from 1.2 we obtain the following exact sequence on P:

(1.10) 0— 7*Qpn- (1) ® 0*Opn(1) —> 9*E —> 1*Upn_+(1) — 0 .

It is easy to see that the vector bundle ¢*E corresponds to a non-zero element
in HY(P, Hom(n*Opn-1(1), 7*Q2pn-1(1) ® 0*Opx(1)) which is isomorphic to H(P"~!,
Qpn-1 @ T, 0*Upn-1(1)). Hence it is isomorphic to k by Leray’s spectral sequence and
by the fact that m,@*Opa(1)=~Opn- (1) D Opn-1. On the other hand for E=Q,.(2), the
exact sequence (1.10) holds good. Thus we infer that E with Z:’;OI d;=0 18 Qpn(2) (n
is odd).

Thus we finish the case 1.5.1.

Secondly let us consider the case 1.5.I1. First since ¢,= 1, the morphism f: P"~! —
Gr(n—1, a—1) of (1.3) is not constant. From (1.7) and a=d, we have 1 +d,=(1+¢; +
- )(1+d,). By ¢;>0, we have d,=—1 and a= —1. Thus b is odd. Now noting that
Gr(n—1,a—1)~Gr(n—1, b—1) with a+b=n, we can apply the following:

THEOREM 1.11 (Tango [Ta2]). There exists no non-constant morphism from P" to
Gr(n, d) (n=3) if one of the following conditions holds:
(D nisevenandn—1>d>0. (2)diseven and n—1>d>0 and (n,d)+#(5, 2).

The morphism f is not constant by ¢,=1. Hence recalling that b is odd, we have
the following possibilities for n and b:
M b=1orn—1(niseven). (II)n=2. (1) (n, b)=(6, 3).

As for the case (I) let us consider the morphism f: P*~! - P"~!, When b=1, we
have d, = — 1. Thus f'is an isomorphism by (1.4). Thus we infer that

(Fy, F2) is (Tpn-1(— 1), Opn-1(—1)) .

Next when b is n—1, we have a=1. By ¢; =1 and (1.4), we get, in the same way
as in the case of b=1,

(Fi, Fy) is (Opn-1(1), 2pn-1(1)) (nis even).
Moreover, in the same way as in the latter part of 1.5 (I), we immediately see that
E is isomorphic to Tpn(—1) (1 is arbitrary) or Qp.(2) (nis even).

As for (II) what we have to study is the case a=b=1 by Theorem 1.1. Then by
the assumption ¢, =1, d; = — 1 we have the exact sequence

00— 1*0p(— D) ® @*Opsi(1) — ¢*E —> 1*0p:(1)— 0.

Thus in the same manner as in 1.5.1T we have Ex~ Tp.(—1).
Finally we show that the case (n, b)=(6, 3) does not occur. In view of o= —1 it is
shown in [Tal, Lemma 3.1] that when f is a non-constant morphism, both c¢; and
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(—1)’d; are positive. Thus by the equality
1-5=(1=00+0)1 —t+)(1+t+1?)
we infer that
=2, ¢;=2, ¢3=1 and di=-2, d,=2, dy=-1.

Thus since the vector bundle F; is generated by global sections and ¢;=1, the zero
locus of a general section s of F; is isomorphic to a 2-plane P,. Taking the dual of
the homomorphism @ — F, induced by the sections s, we get a surjective homomor-
phism F, » I -0 where I is the ideal sheaf of the 2-plane, which induces a surjective
homomorphism F, — I/I?> - 0. Thus since I/I? is isomorphic to @p(—1)®3, it follows
that F, >~ 0p.(—1)®3. Comparing the Chern classes of two vector bundles, we get a
contradiction.
Thus we complete the proof of Theorem 1.

2. The normal bundle Np . Our aim in this section is to show the following
which is proved in (2.10):

THEOREM 2.0. Let X be an n-dimensional smooth projective variety defined over
an algebraically closed field of characteristic zero. Assume that for a general point x
in X (cP%) there exists an m-plane P in the variety X containing x. Then there is an
irreducible component Y of the Hilbert scheme of m-planes in X so that the normal
bundle Np x of an m-plane P, in X is generically generated by global sections for a
general point y in Y where P, is an m-plane corresponding to the point y. Moreover
assume 2m>n and n>2. Then for a sufficiently general point y in Y, the normal bundle
Ny, x is isomorphic to one of the following:

025 @ Opn(1)®, Tpu(—1) and Qpu(2).

For this purpose let us consider an n-dimensional smooth projective variety X in
an N-dimensional projective space PV with the following condition:

2.1 X contains an m-plane P.
Then we have an exact sequence
(22) O_’NP/X&’NP/PN—’NX/PN“:_’O.

Here we note that Nppv =~ Opn(1)® ™,
Moreover taking the dual of (2.2) and tensoring Op~(1), we have

(2.3) 0—’NX/PNlp(l)_"NP/PN(I)“*NP/X(I)—’O .

Since Npjpn(1) is 0N ™™, Npx(1) is generated by global sections. Here for a vector
bundle E on P™, we denote E(a)=E ® Opm(a) from now on.
Now we study the following easy lemma:
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LEMMA 2.4. Let E be a vector bundle on P". Assume that E is generically generated
by global sections. Then there is an open set U in P" such that E,, is generated by global
sections for each line | with In U # .

PrOOF. When n=1, the lemma is trivial since E is @0(a;). Assume n>1. The
assumption yields a canonical homomorphism ¢ : 0®" — E on P" with r =dim H(P", E).
Let U be the set {xeP" | © ® k(x) is surjective}, which is a non-empty open set in P".
Taking a line / with /n U# (¥, we have a generically surjective homomorphism ¢; :
0®" — E|; induced by ¢. In view of the result for n=1, we are done. q.ed.

PROPOSITION 2.5. Let P be the m-plane in (2.1). Assume that N := Npy is generi-
cally generated by global sections. Then there exists an open set U in P" so that N, is of
type 0®° @ 0(1)®® on any line | intersecting U. Moreover the pair (a, b) is independent of
the choice of an .

ProOF. Take a line / intersecting the open set U in Lemma 2.4. Then we get a;>0
where N, is isomorphic to @ O(a;) by Lemma 2.4. On the other hand since N(1) is
generated by global sections by (2.3), we get 1 —a;>0, as desired. Finally let ¢;(N)=cH
in the Chow ring where H is the class of hyperplanes. Then b=c. q.ed.

The following is an immediate consequence of the above and Theorem 1.1.

COROLLARY 2.6. Let the condition and assumption be as in (2.5). Moreover assume
that n>2, 2m>n and that the (n—m)-th Chern class of N := Npx is zero or H"™™ in the
(n—m)-th Chow group of P™ where H is the class of hyperplanes of P™ in the Chow group.
Then N is isomorphic to one of 032 @® Opm(1)®°, Tpm(—1) and Qpm(2) where the last two
cases occur only when n=2m.

From now on we study the condition for the normal bundle Npy to satisfy the
assumptions of Proposition 2.5 and Corollary 2.6.

We impose the following condition which will be assumed till the end of this section.
(2.7) For a general point x in X (< P") there exists an m-plane P in the variety X
containing x.

Then we consider the Hilbert scheme Y of m-planes in X. Let Z be the universal
scheme of Y and p: Z— X, q: Z— Y the canonical projections. Moreover in view of
the projectivity of Y it follows from the condition (2.7) that
(2.7.1) there is an irreducible component Y, of Y so that the canonical projection
P q~Y(Y,)— X is surjective.

Now we take the reduced part (Y),.q of Y, if Y, is non-reduced and use Z and
Y in place of ¢7*(Y,) and Y, respectively. Thus we have the following diagram:
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F(N,m, 0)
U
2.8) z

G(N,m)> Y Xc PV,

Note that pq~1(y) is an m-plane for each point y in Y. From now on set P,=pq~'(y).
Moreover when ¥ is the smooth part of ¥, we set Z:=¢~*(¥). The morphism 5 :=p,,
induces a homomorphism on Z:

(2.9) p*¥: Tz—p*Ty.

On the other hand when Ty denotes the relative tangent bundle of the P™-bundle
g, there is a canonical homomorphism on Z:

(29.1) 0—Tz7y—Tz—§*Ty—0.
Hence we have a canonical homomorphism
PiTgyy—p*Ty

on Z, which is injective as a homomorphism of vector bundles.

We remark the following:
(2.9.2) The cokernel A" of p is a rank n—m vector bundle on Z and A la= 1oy Np x
for each yin Y.

For each point y in Y taking the restriction of the exact sequence (2.9.1) to ¢~ !(y),
we get

0— Tp,—> Tz;p,—> O®" —>0.

Then we infer that Tz p, is isomorphic to Tp @ 0®™, which is generated by global
sections. Thus if the characteristic of the base field is zero, for a general point y in ¥
the restriction of the homomorphism p* to ¢ !(y) is generically surjective by the
surjectivity of p and Sard’s Theorem.

Hence we have:

ProPOSITION 2.9.3. Let X be a smooth projective variety satisfying the condition
(2.7) and let the notation be as in (2.8). Assume that the characteristic of the base field
is zero. Then for a general point y in Y, the normal bundle Np x is generically generated
by global sections.

We begin the proof of Theorem 2.0.
(2.10) Let us assume that n<2m and that Np x is generically generated by global
sections. Then we have:

Claim: c,(Np,x)=cH™ " in the sense of (2.6) where c is 0 or 1.
Indeed, consider the intersection of P, and P, for two points y, " in Y. If dim Y=d,



308 E. SATO

then dim Z=m+d. Thus for a general point y in ¥ we have dimp~'(P,)=2m+d—n.
In particular if n=2m, then there is a point y in Y’ such that either P, n P, is empty
or P, properly intersects P,.. Consequently since ¢,(Np x)=P, P, it is 0 or 1. The
case n<2m—1 is reduced to the one n=2m by successive general hyperplane sections
of X in PN, Thus we get the claim.

Therefore we get Theorem 2.0 from Corollary 2.6.

REMARK 2.11. Let us consider the following condition: there exists an m-plane
Pin X (= P") so that the normal bundle Ny is generically generated by global sections
and H'(P, Np/x)=0. Then in any characteristic, Y in (2.7) is smooth at the point [P]
by virtue of the deformation theory of Grothendieck. Thus there exists a unique
component Y, containing the point [P] and so let us put Y=7Y,. Moreover since the
morphism p is surjective and separable by assumption, the condition (2.7) holds.

Therefore we get:

PrROPOSITION 2.12. Let P be an m-plane in an n-dimensional smooth projective
variety X contained in PN. Assume that 2m>n and n>2 and that the normal bundle Npx
is isomorphic to one of ORE® Opm(1)®®, Tem(—1) and Qpm(2). Then X has the diagram
as in 2.8 and for a general point y in Y the normal bundle Np x is isomorphic to Npy.

Proor. Each vector bundle as above is generated by global sections and the first
cohomology group vanishes. Hence by Remark 2.11 the normal bundle Np x is
generically generated by global sections for a general y in Y. Thus Np x is one of the
vector bundles stated above. Moreover in view of the Chern polynomial, we get the
desired result. q.ed.

3. Smooth projective variety with Np x>~ 022 @ Opm(1)®°, Qpm(2). In this section
we state the following:

THEOREM 3.1. Let X be an n-dimensional smooth projective variety in PN and P
an m-plane in X. Assume that 2m>n and n>3 and that the characteristic of the base
field is zero. Then we have:

(1) if the normal bundle Npy is isomorphic 10 OR2@ Opm(1)®®, then X is a
P"“-bundle over an a-dimensional smooth projective variety where the m-plane P is
contained in some fiber of the projection.

(2) If Npjx is isomorphic to Qpn(2), then X is a hyperquadric and n=2m.

First we treat the case (1) where Npy~ 024 @® Op(1)®°. Let us recall the following
fact.

ReMark 3.2 ([E, Theorem 1.7] and [W2, Theorem 2.4]). Let the condition be
as in Theorem 3.1. Assume that the normal bundle Ny is a trivial vector bundle (b =0).
Ein showed (1) in the case 2m>n (in ‘any’ characteristic) and Wisniewski showed it in
the case 2m>n when the characteristic of the base field is zero.
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Moreover the argument in [E, §4] shows:

ReEMARk 3.3. Let the condition be as in Theorem 3.1. Assume that the normal
bundle Npy is O @D Opn(1)®® with b>0. Moreover assume that 2m>n and m>3.
Then in any characteristic there exists an (m+ b)-plane P in X containing P such that
the normal bundle Np/y is Ofs+».

Now we consider the proof of Theorem 3.1, (1). By Remarks 3.2 and 3.3 we have
only to treat the cases (m, n)=(2, 4), (2, 3), (1, 2). First consider the case (m, n)=(2, 4)
such that Np,y~0%"@ 0(1)®® with (a, b)=(1, 1), (0, 2). For a line / in a 2-plane P, we
have —Ky /=4 or 5. Thus X is a smooth hyperquadric 4-fold Q, a P3-bundle over a
curve or P* by virtue of the adjunction mapping theory. (See, for example, [Fu].) The
other cases are easy to check.

Finally consider the case (2) with Npy~Qp.(2). Taking a line / in P, we see that
Nyx>~0@ O0(1)®"~2 and therefore Ky;~0(—n). Thus X is a smooth hyperquadric or
a scroll over a smooth projective curve. In the latter case the m-plane is contained in
a fiber, which implies that the normal bundle Npy is Opm @ Opnm(1)®™ 2. Thus the latter
case is ruled out.

Thus we get Theorem 3.1.

In the remainder of this section, we give a proposition which holds in any
characteristic.
(3.4) Using the fact that for a line / on p(P,) and a point 4 on the line /, the normal
bundle Ny x(—A) is O(—1)®*@® 0®"~“~!, Ein [E] showed in the proof of Theorem 1.7
that the union of lines through the point 4 coincides with the plane p(P,) together with
the following:

Fact 3.5. In the diagram (2.8) assume that Np y is trivial for each point y in Y.
Then for any pair y, y of points in Y we have dim(p(P,) n p(P,))<0 in any character-
istic.

Consequently we have:

PROPOSITION 3.6. Let the condition be as in Theorem 3.1. Assume that n>3,2m>n
and that the normal bundle Npx is O @® Opm(1)®® with b>0. Moreover if n=2m and
b=0, assume in addition that in the diagram (2.8) Np ;x is trivial for each point y in Y.
Then, in any characteristic, X is a P"~ “-bundle over an a-dimensional smooth projective
variety and P is contained in a fiber.

ProoF. We have only to show the case n=2m and b=0 by [E, Theorem 1.7] and
Proposition 3.4, In view of Fac 3.5 suppose that there are two points y, y' in Y satisfying
dim(p(P,) n p(P,))=0. This implies that the intersection number of p(P,) and p(P,) is
equal to one, which means ¢, (Np x)=1. On the other hand by assumption c,(N) is 0,
a contradiction. Thus we infer that for any pair y, y of points in Y the intersection
p(P,) n p(P,) is empty. The rest of the proof is found in [E, Theorem 1.7]. q.e.d.
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4. The deformation of P(Qp.(2)) under some conditions, (I). We prove Theorem
4.2 in this section and Section 5.

We consider the following condition:
(4.1) Let V be a vector bundle of rank m+1 on a scheme T and f: P(V)—~T
a P™-bundle on 7. Set W:=P(V). Let & be a vector bundle of rank m on W and
g: P(€)—> W a P" '-bundle on W. Set Q :=P(8) and E,: =& ;-1

Then the main result in this section is the following:

THEOREM 4.2. Let us maintain the notation (4.1). Assume that E, is generated by
global sections for each point t in T and E,~ Qpm(2) for a general point t in T. If m is
even, then E,~Qp.(2) for each point t in T.

The above theorem immediately yields the following:

COROLLARY 4.3. Let A be as in (2.9.2). Assume that m is even. If N\, is
isomorphic to Tpm(— 1) for a general point y in Y, then so is N1, for every point y in Y.

Theorem 4.2 and Corollary 4.3 are discussed in Section 5. We start with the
following condition.
(44) Tis a smooth curve and o is a closed point in 7. Moreover for every point ¢ in
T—{o}, E, is isomorphic to Qp~(2) and E, is generated by global sections.
(4.4.1) Letting Q,:=(fg) }(t) we see that Q is a family {Q,},.; where g,: Q,—
S7(®) is a P~ -bundle on P™. Let Oy(1) be the tautological line bundle of & Then
Og(1),0,= Op, (1) :=0p(1). Oy (1) is base point free.

PROPOSITION 4.5. Let & be the dual line bundle Ky} of the relative canonical
line bundle of the morphism fy. Then the line bundle ¥ on Q is fg-ample. Moreover
h%(Q,, 0,,(1)) is independent of the choice of t.

Proor. Since Kg'! is isomorphic to (OQt(l)g’"‘@ g¢0p(2) and since Oy (1) is
generated by global sections, we see that Katl is ample and therefore % is fg-ample.
As for the latter part, by virtue of the Kodaira vanishing theorem we infer that
HY(Q,, 0 (1)=H>""'"YQ,, 05(1)"* ® Kp)=0 for 1<i<2m—1 because 0y (1)"'®
K,, is a negative line bundle. Thus we get an equality x(Q,, 0 (1)=h%(Q,, Og(1)).
Moreover since x(Q,, O (1)) is independent of the choice of ¢, we get the desired
result. g.e.d.

Since 0y (1) is base point free, Proposition 4.5 yields a surjective homomorphism
(/9)*(f9),0o(1) = Oy(1) - 0, which induces a T-morphism h: Q- P((f9),00(1)). Let
R=h0Q) and R > R the normalization of R. Moreover we take the Stein factorization
0 . R R of the induced morphism 4: Q — R where every fiber of 4 is connected
and j is a finite morphism.

(4.6) Leta: F(@m,1,0)—»P™ and b: F(m, 1, 0) > Gr(m, 1) be the canonical projections
as in the introduction.
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ReMARK 4.7. (1) Leth,: Q,— P"¥~! be a morphism induced by the line bundle
0o (1) with N=h%Q,, 0,(1)). Then h,, is equal to A, for each ¢+0 and it coincides
with the morphism b in (4.6). Thus since j is a birational morphism, j is an isomorphism
and in particular the identity map.

(2) Foreach point 1 (#0) in T, every fiber G, of h, is P'. Moreover the intersection
number (G, * g*Opm(1))=1 in Q,.

From now on we fix the notation h: Q—R and Q,:=(fg)” (o). Let Ak, be the

restriction of h: Q —» R to Q,. We would like to study the property of h,: Q,— 4,(Q,),
in particular, the behavior of the fiber of 4,, to show that Q, is canonically isomorphic
to Q, (t#0) and A, to h,. For the purpose we need the following tool:
(4.8) Let M be a vector bundle of rank r+1 which is generated by global sections
on P™ Let L=(9,,(M)(l)°3’2 ® e*Opm(1) where e : P(M)— P™ is the canonical projection.
Then L is an ample line bundle on P(M). Moreover let H =Hi1b£(&) with respect to L
where p(f) = x(0p:(7)) and S the universal space of H. Leta: # > P(M)and f: # - H
be the canonical projections.

LeMMA 4.9. Assume that H is not empty. Then we have:

() B:3—HisaP'-bundle.

(2) For a closed point y in H, af~(y) :=L, is a smooth curve in P(M) so that
e: L,—e(L,) is an isomorphism and e(L,) is a line I, in P™.

(3) L, is a section corresponding to the trivial quotient line bundle of M where
M ~D0a;) witha,=0<a,<" " <a,,,.
Consequently there is a one-to-one correspondence between the set H(k) of k-rational points
and the set of trivial quotient line bundles of M, where [ is a line on P™.

PROOF. By assumption we get an equality 1=(L, * L)=(L, * Zppg(1)®* @ €*Opn (1)).
Since Upgyy(1) is base point free, (L, Oppyy(1))=0 and (L, e*Opm(1))=1. From the

latter we get deg e(L,)=1 and deg ¢, =1. Hence /, is a line and therefore L, is
smooth. The reminder is easily checked. q.e.d.

The above lemma immediately yields the following:
COROLLARY 4.9.1. The normal bundle Ny puy, appears in the exact sequence:
0— Npye-ap = Nrypon — Ne-sagyponi, — 0,
where Ny jo-10)~ @, O(—a) and No-1qypon1, > o(1)em=b,

We apply Lemma 4.9 and Corollary 4.9.1 to the T-morphism #: @ — R.
(4.10) Let Z=042) ® g*Opy(1) in (4.1). Note that Z is fg-ample. We consider the
relative Hilbert T-scheme H§? of Q over T with respect to Z where P(f) is the Hilbert
polynomial (P!, Op:(£)) of the fiber G, in (2) of Remark 4.7. H5? is abbreviated as H.
Let H=|J;_, H' be the decomposition of H into the irreducible components.
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ReMARK 4.10.1. (1) We have a canonical isomorphism by virtue of the univer-
sality of the Hilbert scheme:

H x pSpeck(t)~ H® , speckin (= Hy) -
(2) For ts#0, H, is equal to Gr(m, t) by Remark 4.7.1.

To investigate the deformation of G,=:/ of a fiber of A, (¢#0) in Q in detail, we
use the exact sequence

(4.10.2) 0—> Nyg,— Nyo— N on— 0.

Noting that Ny, ~0®?"~2 by Remark 4.7.1, we see that N,,~0%>""'. Since
H'(l, N,) vanishes, H is smooth at the point / and dim, H=2m— 1.
Summing up the above, we get:

PROPOSITION 4.11. Let H be as in (4.10) and let us denotes T° :=T—{o}. Then
we have:

(1) There is a unique irreducible component H' of H containing H, for all te T°.

(2) HxpT°isequal to H' x 1 T® which is isomorphic to a Gr(m, 1)-bundle over T°.

(3) For each i(=2) (if it exists), H' n H, is empty for each t in T°.

(4.11.1) Let ## be the universal scheme of H, and n: # —>Q and p: # — H the
canonical projections. Let #* :=p~'(H') and n' : =7, .. Then 7 and p are T-morphisms.
Thus for ¢ in T let us set H,=: Hx ;Speck(t), H!=: H' x ; Speck(t), #,=p~ *(H,),
H'=p }(H) and 7} =7 1.

Then we have the following diagram:

#—ao—2 . pw

"191/

H—T

PROPOSITION 4.12. (1) =': ' — Q is surjective. Moreover for each t in T, n} :
H#! - Q, is birational. In particular for t#o0 n} is an isomorphism. Moreover dim H' =
2m—1.

(2) Every fiber of p is a P*-bundle. For every u in H, np~*(u) is P, g: np~*(u) -
g(mp~Y(w)) is an isomorphism with a line as its image in P™.

(3) dimH}=2m—2 for each tin T.

(4) For t+#o, H, is equal to H! and is isomorphic to Gr(m, 1), and #,~F(m, 1, 0).
Moreover p, is a P'-bundle and is equal to b.

PROOF. Since Ny, is generated by global sections, we infer that n;(#)=Q, for
t#0 and dim H=dim H°(, N,;5)=2m— 1. Next we show nJ(#})=Q,. For a point z in
0, take a local section C (in Q) of fg: Q — T passing through the point z. Then for
each point ¢ in C—{z}, there exists a line /, in Q,, where /, corresponds to an element
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¢in H,, and where n(p~'(¢))=1I,. Then we have only to take the limit of {/}. Thus
from Remark 4.7 (1) we get (1) except the assertion that =, is birational. Hence we
have only to show:

SuBLEMMA 4.13. Let h,, Q, and G, (Remark 4.7 (2)) be as above. Then there is an
open set U in h,(Q,) so that for each point u in U a fiber G, of the morphism h, is P*
and g(G,) is a line in P™.

ProoF. Indeed, since fyg: Q— T is a smooth morphism, the (2m—1)-ple self-
intersection number (0, (1)>"~") of Oy (1) is equal to 0 and similarly (O (1)*™~2)0
for each point ¢ in T modulo rational equivalence. Thus the morphism A4, : Q,— k,(Q,)
has a general fiber which is of dimension one. As was shown, the deformation #' =
{C}sem: Oof 1:=G, spans the total space Q with the parameter space H'. Let A=
{se H*|C,<= Q,}. Since fg(C,) is a point for a general point s in H', 4 is equal to
H' x ;Speck(o) and Q, is covered by the family of closed subschemes parameterized
by 4. Noting that for any s, C; is a smooth rational curve and that (0y(1),!)=0, we
see that (Oy(1), C))=0 in Q,. Recalling that A,(C,) is a point and that every fiber of #,
is connected by the observation after Proposition 4.5, we get the desired result by
Lemma 4.9 (2).

Moreover (2) follows from Lemma 4.9, while (4) follows from Proposition 4.11.
The rest is trivial. q.ed.

REMARK 4.12.1. From Proposition 4.12 (2) there is a morphism o : H, —» Gr(m, 1)
by virtue of the universality of deformation theory.

The sublemma 4.13 yields:

COROLLARY 4.13.1. Let pl: #! — H} be the canonical morphism induced by p :
H — H. Then there exist two open sets U in h(Q,) and U in H! and two isomorphisms
i:U>U,j:hi (Uy-p~ '(O) such that hypz yi=jpdios- )
Now let us recall the notation:
a: Fm 1,0)— P™ and b: Fim,1,0)— Gr(m,1) in (4.6).

The following is well-known:

Fact 4.13.2. For each point x in P™, we have:
(1) ba~'(x)is P™"" in Gr(m, 1).
(2) b~ 'ba”(x) (=P) is isomorphic to P(Opm-1 @® Opm-1(1)) which is a P*-bundle
on P™~!. Moreover P contains a~ (x).
(3) P - P™is the blow-up of P™ at the point x.
@) @2) (B*Ocm (1) * 5* Oy (1) - P)=0 (m-times).
@) (a*0p(1) - - a*Op(1)+ P)=1 (m-times).

Now for a point x in P™, P, denotes the closed subscheme n!(p') ™ !(p*)(=') " 'g~ (%)
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in @, where p' =ppi: #' > H" and n' =741 : #' > Q. When x runs through P(V),
we get an algebraic family Z={P,}, py, (cP(V)x 1 Q).

PROPOSITION 4.14. (1) For x in P(V|r_,), P, is canonically isomorphic to P in
(2) of Fact 4.13.2.

(2) There is an open set S in P such that for each point x in P, we have the
following:

() dimP,=m.

B) (Py-g30p(1) - -~ g¥0p(1))=1 (m-times), namely, g, p. : P, — Py is surjective.

(y) P, contains g~ '(x).

(3) The restricted map o\y3 : H: — Gr(m, 1) (¢f. Remark 4.12.1) is surjective.

ProoF. (1) is trivial. As for (2), dim H,=2m—2 and £, — Q, is surjective and
generically finite, as required. (3) is obvious by (2). q.ed.

REMARK 4.14.1. If H} is irreducible, so is P, for a general point x in P™.

Further detailed observation continues in the next section.

5. The deformation of P(£2,.(2)) under some conditions, (II). This section is a
continuation of the previous section. The main aim is to show (I), (II), (III) stated
below, which yields Theorem 4.2 and Corollary 4.3. The condition (4.4) is maintained.

We would like to prove:

(I) Leti: U— U beanisomorphism as in Corollary 4.13.1 and ¢ : H! — Gr(m, 1)
a surjective morphism as in Proposition 4.14.3. Then 4(i(U)) is a dense open set in
Gr(m, 1) or r=1. (It is treated in (5.1) and (5.2).)

(II) 1If the conclusion of (I) holds, then for a general line / passing through each
point x in the open set S in P (~P™) (see Proposition 4.14 (2)), E,, is isomorphic to
0@ 0(1)®™~ 1, (It is treated in (5.3).)

(III) If the conclusion of (II) holds and m is even, then E,~ Qp..(2). (It is treated
in (5.4) and (5.5).)

Among the three assersions above, (I) is the central part for the proof of Theorem
4.2. We now make preparation for the argument of (I). We keep the notation
a: F(m,1,0)»P™ and b: F(m, 1,0)— Gr(m, 1). Moreover [, denotes the line in P™
corresponding to the point y in Gr(m, 1).

(5.1) From now on until the end of this section we denote E:=E,. Recalling that
E is generated by global sectios, we see that for a line / on P™ E; is @ O(a;) with a;>0.
Set r(]) :=#{i|ai=0}. Let r :=r(E)=min{r(})|] is a line in P™}. Moreover set D:={ye
Gr(m, 1)|r(ly)=r}. Then D is an open set in Gr(m, 1). Since det E= @pn(m—1),

(5.1.1) r=r(E,) is a positive integer.

In the notation (4.6), we have a canonical homomorphism ¢ : b*b,a*E — a*E.
Thus we see by virtue of the base change theorem that b,a*E is a torsion-free sheaf of
rank r and ¢ is an injection on b~ (D) as a subbundle. Let E be the dual vector bundle
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of b*(a*El,,) and let ¢ : P(b*E)— P(E) be the composite morphism of the canonical
immersion: P(b*E)— P(a*E) and the canonical projection P(a*E)— P(E). Letting b :
P(b*E)— P(E) to be the canonical projection. We infer that for a point e in P(E), we
get (Z - ¢b ~Y(e))=1 with 2 in (4.10), which implies that P(E) is the parameter space
of lines on Q, : = P(E) with respect to Z. Now recall that H is the Hilbert scheme H5¥
and H, = H x ; Spec k(o). Thus by virtue of the universality of the Hilbert scheme H,
we have:
(5.1.2) a morphism 0: P(E)— H, which is injective by construction. Moreover
dim P(E)=dim O(P(E))=2m—3+r.

Now we study the behavior of the above line on P(E) in terms of the normal
bundle.

For a point y in D, P(E,, ) contains P(O®") which is [, x P"~". Let L=1I,x {4} in
I,x P! (c P(E)) where A is a point in P!, Then the normal bundle N, appears
in the exact sequence

0— Nyn— Nyg,— Ny, —0

where IT=g; '(g,L). Then Nyp>~@,,,0(—a;) and Ny |, ~0(1)®" "1 which yields
that h°%(Nz)=r—1and (N mig.L) =2m—2. Hence h%(N ) <2m—3+r, which implies
that the dimension (=dim, H,) of H, at a point ¢ in 6(P(E)) is not greater than 2m—3 +r.
On the other hand by (5.1.2) we get:

PROPOSITION 5.1.3. (1) The Hilbert scheme H, of lines in Q, is smooth at each
point ¢ of 0(P(E)) and therefore 0 : P(E)— H, is an open immersion.
(2) o(O(PE))=D.

Let J be the closure of P(E) in H,. Then J is an irreducible component of H, which
contains P(E) as an open set and dimJ=2m—3 +r.

REMARK 5.1.4. Ifr>2,thendim J=dim P(E)>2m— 1. On the other hand dim H} =
2m—2. Hence by the construction of P(E) there exist an irrducible component H? (j>2)
of H so that supp H =suppJ (Remark 4.10.1, (2)).

(5.2) Proof of (I).
(5.2.1) Assume that H! is irreducible.

In our notation, ! is a variety and =, : #,' — Q, is birational by (4.12.1). Thus
we get the desired result by the commutativity stated in Corollary 4.13.1 and by the
surjectivity o(H!)=Gr(m, 1) in Proposition 4.14.3.

Next we assume:

(5.2.2) H! is not irreducible.

Let 7 be the closure of U (of Corollary 4.13.1) in H.. Since dim H! =dim U=2m—2,
I is an irreducible component of H). Let Hy=1u (|J,1;) be the decomposition of H,
into irreducible components. Since the morphism ¢ : H,— Gr(m, 1) is surjective, we
have two cases.
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(2) o(I)=Gr(m, 1).

Then we get the assertion 7 in the same way as in the case of (5.2.1). (However,
this situation turns out not to occur.)

(B) o(I) is a proper closed set in Gr(m, 1). (We will deduce a contradiction.)

Hence as for the component 7, of H! we have:

Claim 5.2.3. 6(P(E)) n I, is not empty.

Indeed, take a point ¢ in (Gr(m, 1)—a(I)) n D (see (5.1) for D). By the property of D,
E, is @9’@i2r+1(9(a§) with a!>0. (r:=r(E) as in (5.1)). On the other hand from
a(HY)=Gr(m, 1) and the characterization of I; there exist a point ¢ in /; and a point ¢
in Gr(m, 1) so that g(x,(p~1(¢))) is a line /, on P™ and that the line n,(p~}(¢)) on Q,
corresponds to a trivial quotient line bundle ¢, of E|;, by Lemma 4.9 (3). Moreover a
section P(¢,) corresponds to an element in P(E;,-1,). Thus we get the claim.

We have come to the final stage of the proof of (I). Assume r>2. Then we see by
virtue of the universality of the Hilbert scheme (Remark 4.10.1, (1)) and by (5.1.4) that
H, has, as a component, the closure J of (P(E)) with the embedded closed subscheme
H,n H! n J(# ) scheme-theoretically. Thus we infer from (5.2.3) that H, is not smooth
at each point ¢ in (P(E)) n I,, a contradiction to (5.1.3).

Thus we complete the proof of (I).
(5.3) Proof of (II). If r=1 in (5.1.1), there is nothing to show. Thus assuming
r>2, we get a contradiction. We maintain the notation (5.1).

The assumption of (II) yields:
(5.3.1) the morphism ¢ : P(b*E)— P(E) is dominant.

We study the property of a general fiber of ¢.

In the notation (5.1.2) we fix a general point y in D and choose a curve L as in
(5.1.2). Since dim P(b*E)=2m+r—2 and dim P(E)=2m— 1, we see that:

(5.3.2) for each point ¢ in L, we have dim ¢ ~*(c)>r—1. Namely, for such a general
curve L as above, there exists a closed subscheme Z in J and a family of smooth rational
curves {L.},., in P(E), where for a general point z in Z we denote L, :=1; x {A'} with
yeD, A e P'1. Moreover dim Z=r—1 and each curve L, passes through the point c.
Therefore dim | J,_, L, >r. Recalling that L and each L, go to a point via the morphism
h, we get:

(5.3.3) The subscheme |J,_, L, in P(E) collapses to a point via 4,. On the other hand
since dim P(E)=dim h (P(E))+ 1, we get r=1.

Hence we have shown (II).

(5.4) Proof of (III). We first show:

zeZ

PROPOSITION 5.4.1. Let F be a rank m vector bundle on P™ satisfying the following:
(1) c(F(—1)#0.
(2) F(1) is generated by global sections.
(3) Fy=0®""Y®0Q) for a general line | in P™.
Then dim HO(P™, F)<m+1. Moreover if dim H'(P™, F)=m+1, then F is generically
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generated by global sections.

ProoF. If h°(F)=0, there is nothing to prove. Next let s be a non-zero section of
F, §: F— (0 the homomorphism induced by the non-zero section s of F and I the ideal
sheaf defining of (s),. Then the homomorphism § induces a surjective homomorphism
F—1-0, and therefore F— I/I> - 0. By (2), we see that I ® ¢(1) is generated by global
sections and there exists an injective homomorphism 0 - I® @(1) —» 0p(1) induced by
the canonical injective homomorphism: 0 — / — @,. Hence the following is shown easily:

Fact 5.4.1.1. Assume that the zero locus (s), of a non-zero section s is of dimension
t>1. Then (s), is a linear space in P™ and I/I?> ~@O(—1)®™~9,

Now assume that dim H°(P™, F)>m+ 2. Then letting J to be the ideal sheaf of /
in (3), we have an exact sequence:

(54.1.1) 0—J—0Opn— 0,—0.
Tensoring F, we get
0—JQF—F— F;—0.

Then since dim HO(P!, 0®™~ Y @ 0(1))=m+ 1, there exists a non-zero section s in F so
that s5,,=0. Moreover (s), is a ¢-dimensional linear subspace in P™ containing / by the
above fact. If codim(s),=m—t > 2, then by Fact 5.4.1.1 F] ; has a quotient vector bundle
O(—1)®™~1 3 contradiction to (3). Thus we infer that (s), is a hyperplane in P™. Hence
we get a nowhere-vanishing section § in F(—1), which implies that ¢, (F(—1))=0, a
contradiction. Hence we have shown the former part. Next we consider the latter part.
When F is not generically generated by global sections, neither is F, for each line /.
Since A°(/, 0®™ V@ O(1)) =m+1, by the exact sequence (5.4.1.2) we have a non-zero
section s in F such that s;;=0 for a generic line on P™. In the same way as in the former
part, we get a contradiction. g.e.d.

We note that

0 if m is odd
—1 if m iseven.

CnlTpm(—2)) = {

Thus the above proposition immediately yields:

COROLLARY 5.4.2. Let F be a rank m vector bundle on P™ satisfying the following:
(1Y The Chern polynomial of F is equal to that of Tpm(—1).
(2) F(1) is generated by global sections.
(3) Fy~0®""Y®0(1) for a general line | in P™.
4) dimH(P™ F)>m+1.
If m is even, then F~ Tpn(—1).

Proor. (1’) and the above remark yield (1) in Proposition 4.13. At the same time
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by (4') we see that F is generically generated by global sections. Moreover (1) yields
¢(F)=1. Therefore combining (3), Lemma 2.4 (1.0) and Theorem 1, we infer that Fis
isomorphic to either Tpm(— 1) or 02™~ V@ ¢(1). Moreover in view of the assumption
(1)) we get the desired result. g.ed.

Thus we have proved (III).

As a consequence we can prove Theorem 4.2.
(5.5) Finally we show Corollary 4.3. In 4.1, take T:=Y, W:=Z and V:=A# ®
P*(Zpn(1)x) on Z. Then for each point y in Y, Y, :=V|,-, is generated by global
sections by (2.3). Moreover by assumption, ¥V, for a general point y in Y is isomorphic
to Qpm(2). Thus Theorem 4.2 immediately yields Corollary 4.3. q.e.d.

6. Smooth variety with Ny~ Tpn(—1). In this section we work over the field
of characteristic zero.
(6.0) Let X be a 2m-dimensional smooth projective variety containing an m-plane
P with the normal bundle Npy =~ Tpm(—1).

Then we have the diagram (2.8) from Remark 2.11. Moreover by Proposition 2.12
and Coroliary 4.3 if m is even, then we have Np jy= Tp.(—1) for each point y in Y.
Thus our aim in this section is to show the following:

THEOREM 6. Let X be as in (6.0). If m is odd, we suppose that Np jx~Tpm(—1)
for each point y in Y. Then in characteristic zero X is isomorphic to Gr(m+1, 1).

We begin with the following:

PROPOSITION 6.1. Let the notation be as in (2.8). Then Y (resp. Z) is a smooth
projective variety of dimension m+1 (resp. 2m+1). Moreover p: Z— X is a smooth
morphism with one-dimensional fiber.

Proor. Recall the observation in (2.9.1) and (2.9.2). Then since H(P™, Tpm(— 1)) =
0 and dim H(P™, Tpm(—1))=m+1, Y is an (m+ 1)-dimensional smooth projective
variety. Moreover since Tpm(—1) is generated by global sections, the homomorphism
Py ' Tz — p*Tyx induced by p is surjective. Thus we get the latter part. q.ed.

For a point y in Y, P, denotes the m-plane pq~ Y(y) in X.

REMARK 6.2. Since Npy= Tpn(—1), we have ¢, (N)=1. Thus for any y, y'in ¥
the intersection number of P, and P, is 1 and P, n P, is not empty.

PROPOSITION 6.3. p: Z— X is a P!-bundle.

ProoF. Assuming that the fiber of p is of genus >1, we get a contradiction as
we now show.

First the following facts are well-known (see [BPV, §§3 and 5]):

(I) Let S be a compact complex surface, B a projective curve and f/: S—»>B a
surjective holomorphic map without singular fibers. Assume that B is rational or elliptic.
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Then f'is locally trivial.

(I1) Any elliptic fiber bundle over P! is a product or a Hopf surface.

Let us take a line / on X and study the smooth morphism p,: p~!(I) - l. Letting C
to be a fiber of p,, we have:

Claim 1. p~Y(!)is a product of / and C and p, is the first projection.

Indeed, the above (I) implies that p, is locally trivial. First assume that C is an elliptic
curve. Since Z is projective, so is p~(l). Noting that a Hopf surface is not Kihler, we
see that p~}(I)~Ix C by (II). Next assume that C is of genus >2. Then the period map
f: - D to the classifying space D is constant, hence by Torelli’s Theorem f is a fiber
bundle. Moreover since the automorphism of C is a finite group, p~ !(I) is isomorphic
to IxC.

On the other hand Claim 1 yields:

Claim 2. qp~Y(!)=qp (A) for each point 4 in / and it is a point or a curve.
Indeed, let y be a point in Y, / a line in an m-plane P, and C;=p~'(I) n g~ '(y). Then
since p~1(/)~C x [ by Claim 1, C, is a fiber of p~*(I)— or an ample divisor in p~!(I).

Now take another line 7in P, such that /nTis a point 4. Then Claim 2 implies
that gp~'(7)=gp~*(A) and therefore is equal to gp~!(P,). On the other hand for any
two points y, )’ in Y, P, intersects P, by Remark 6.2. Consequently, we infer that g(Z)
is a point or a curve, a contradiction. Thus we get C=P*. q.ed.

Next we show:
6.4) Y~pmtl,

Since p is a smooth morphism with the fiber P, p~'(P)) is of dimension m+1.
For a general point y in Y let P=P, and let us consider the morphism g: p~(P)—> Y
induced by the morphism g. Then we see that g is surjective. Indeed, if the image of
p~ !(P) via the morphism ¢ is a proper set in ¥, P does not intersect P, for a general
point ¥ in Y. This contradicts Remark 6.2. At the same time g is birational by (6.2).
Since p~!(P) is a P'-bundle over P containing a section g~ }(y), it can be written as
P(E) where E is a rank 2 bundle on P. Then by m>2, we infer that E~ 0, ® 0p(a) and
that a #0 by the surjectivity of the morphism g. Moreover by taking P(¢'p) as the section
of P(E) which collapses to the point y via q, we get a>0. Letting ¥ to be the normal
cone obtained by the blowing-down of p~1(P) along the section P(¢). Then Pic p~ }(P)~
Z® Z and therefore Pic ¥~ Z. Thus we get a canonical morphism h: ¥ — Y which is
finite and birational. By Zariski’s main theorem 4 is an isomorphism. Let v be the vertex
of the cone Y. Then we get

(6.4.1) a=1.

Indeed, let (R, ) be the local ring of Y at the point v with R= 0y , and m the maximal
ideal of R. Then the Zariski tangent space of Y at v is isomorphic to m/m?. On the
other hand we infer that dimw/m2>h%P, Op(a)) and therefore a=1. Hence Y=~
Pm +1 .
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Summarizing the above argument, we get:

PROPOSITION 6.5. We have Y=P™"'. For a general point y in Y, we have p~ (P )~
P(Opn® Opm(1)), and §: p~'(P,) > Y(=P™*1) is the blowing-up of Y at the point y.
Hence for each point x in X, we have qp~*(x)=P*, hence in particular, a line in Y.

We come to the final stage of the proof of Theorem 6.0.
(6.6) Recalling that Z is a closed variety of X x P™*1 by the construction (6.5) we see
that X is the parameter space of lines in P™*! and Z is the universal space of X. By
the universality of Hilbert scheme we have a morphismj : X — Gr(m+ 1, 1) which induces
an X-morphism j*: Z— Fm+1, 1, 0).
(6.7) Claim. PicZ~Z® Z and Pic X~ Z0(1) where 04(1) is the ample generator.
Indeed, Z= P(U(N, m);pm+:) where U(N, m) is the rank m+ 1 universal quotient bundle
on G(N, m), which yields the former. On the other hand p : Z— X is a P1-bundle, which
yields the latter part.

Thus j is finite surjective.

We have the following diagram:

(6.8) P(Um+1, 1))

ANESN

pr+it X Grim+1,1).

Let M :=j*k*Opm+1(1). Then we note that

) M is not ample but spanned.

(6.9) Claim. M,,-,,, is trivial for each point y in P"*1 Thus M =g*Opm+:(1). Con-
sequently the morphism jk induced by M collapses each fiber of q.

Indeed, we see that the restriction of k*@pp+1(1) to the fiber of k is ¢(1) and therefore
M, 1y~ Op:(1). Moreover g*Opm+i(1)),- 15y~ Op:(1) by Proposition 6.5. Thus we have
an equality:

(#)) M :=g*Opm+ (1)@ p*Ux(b)

with an integer b by virtue of the base change theorem. Restricting (##) to the fiber
g~ 1(y), we infer that b>0 since M, la- ¢ 18 generated by global sections. Assume that b
is positive. Since Z is a subvariety of P"*!x X, M is an ample line bundle, a con-
tradiction to (#). Therefore we get Claim 6.9.

By Claim 6.9 the morphism jinduces a morphism j': P"*! - P2*1 with q;' =Jjk.
Thus we have j"*@pm+1(1) 2 Opr+1(1), which means that ;' is an isomorphism and jis a
P™-bundle map with respect to the two projections ¢ and k. On the other hand noting
that there exist canonical isomorphism: F(m+1, 1, 0)~ P(U{(m + 1, 1)) ~ P(Qpn+ (2)), we
infer that Z~ P(j"™*Qpnm+1(2)). Moreover since 2pm+:(2) is @ homogeneous vector bundle
on P™*! we infer that j*Qpm.1(2) ~Qpm-+1(2) and therefore j is an isomorphism. On
the other hand since jh=pj, j is an isomorphism and X is Gr(m+ 1, 1) as desired.
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Thus we complete the proof of Theorem 6.

Combining Theorem 2.10, Theorem 3.1 and Theorem 6.0, we get the main theorem.
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