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Abstract. Using projective metric geometry we develop a technique to de-
scribe homogeneous 3-dimensional metrics on cone-manifolds generated by
two rotations. In particular, for some cone-manifolds with singularities along
2-bridge knots and links we give explicit descriptions of all possible geometries

(S3, ŜL2(R), and Nil).
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1. Introduction

In the present paper we develop a projective metric approach from [12] to realize
homogeneous 3-geometries, which are also referred as Thurston geometries:

E3, S3, H3, S2 × R, H2 × R, S̃L2(R), Nil, Sol. (1.1)

The projective models of Thurston geometries suggested in [12] are summarized
in Table 1 below. Here we demonstrate existence of geometric structures on cone-
manifolds generated by two rotations. In particular, for some cone-manifolds with
singularities along 2-bridge knots and links we give explicit descriptions of all
possible geometries (S3, S̃L2(R), and Nil).

We recall that 2-bridge knots and links K(p, q) are parameterized by coprime inte-
gers p and q, 0 < q < p (here we don’t take care about orientations of components
and non-equivalence to a mirror image). We only indicate those discussions would
make our paper too long. For basic properties of 2-bridge knots and links we refer
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to [2]. By Cp/q we denote the cone-manifolds whose underlying space is the topo-
logical 3-sphere S3 and whose singular set is K(p, q) (see [1, 6]) for definition of
a cone-manifold). If the singular set is a knot (for p odd) we have one cone angle
(say, α, and we write Cp/q(α)), and if the singular set is a 2-component link (for p
even) we have two (different in a general case) cone angles (say, α and β, and we
write Cp/q(α, β)). Remark that we don’t need to think about ordering of compo-
nents, because they are equivalent under a symmetry of S3. We assume that the
cone angles belong to the open interval (0; 2π).

Since 2-bridge links (in particular, knots) K(p, q) are most studied links in knot
theory, cone-manifolds Cp/q have already been intensively investigated by many
authors. In particular, spherical geometry structures on cone-manifolds Cp/1 were
described in [17] and [7]: Cp/1(α) and Cp/1(α, α) are spherical if α ∈ (π− 2π

p , π+ 2π
p ).

The explicit description of spherical geometry on C3/1(α) was done in [3]. Here we
demonstrate our unified method for complete description of some cone-manifolds
from the family Cp/1, especially with S3, S̃L2(R), and Nil metric structures, since
cone-manifolds Cp/q can be obtained from fundamental polyhedra by two identi-
fying rotations.

Indeed, the combinatorial construction of fundamental polyhedra, which will be
referred as Pp/q, for orbifolds Cp/q was suggested by Minkus [10]. For various
applications of Minkus construction see [15] and [16]. Later it was discovered by
Mednykh and Rasskazov [8, 9] that this topological construction can be successfully
realized in hyperbolic, spherical and Euclidean spaces. Further development of this
fruitful idea in the spaces of constant curvature was done in [3, 7, 19, 21]. From
[5] the construction of polyhedra Pp/q became known as butterfly polyhedra.

General schemata for Pp/q and polyhedra P2/1, P3/1, P4/1 are presented in Fig-
ures 1, 4, 6, 10. The polyhedron Pp/q has four (non-planar) faces. For a given
geometric realization of Pp/q, the cone-manifold Cp/q will be obtained by pairwise
identifications of its faces by two rotational isometries (denoted by φ and ψ) with
one axis passing through points A0, A1, and another axis passing through points
A2, A3, as indicated in all above mentioned figures.

Starting with the combinatorial description of Pp/q, we will realize the polyhe-
dron metrically in the real projective-spherical space PS3(R) with the coordinate
simplex A0, A1, A2, A3 (in the case p/q = p/1 vertices A1 and A3 are adjacent in
Pp/1). Then, using projective models of Thurston geometries, we will provide the
metric descriptions of geometric structures on some of Cp/q(α, β) depending on p,
q, and cone angles α and β.

According to Minkus construction, for the metrical realization, the dihedral angles
at edges (A0A1) and (A2A3) (“essential angles” at axes) must be the same as cone
angles of the cone-manifold, i.e. α for one axis and β for another axis (with β = α
in the case of a knot). In further considerations we will use notation Pp/q(α, β) for
Minkus polyhedron with essential angles equal to α and β.
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Figure 1. The polyhedron Pp/q

The paper is organized as follows. In Section 2 we will recall some basic facts on the
projective spherical space PS3(R) in which we are going to realize P = Pp/q(α, β).
In Section 3 we will discuss the invariant polarity, in general. All possible geometric
structures (S3, S̃L2(R), and Nil), arising on cone-manifolds C2/1(α, β), C3/1(α),
and C4/1(α, β) will be proceeded by a unified strategy in Sections 4, 5, and 6,
respectively, and summarized in Theorems 4.1, 5.9, 6.5.

The authors thank the Referee for the valuable suggestions.

2. Projective models of 3-geometries

2.1. Projective-spherical space

The real projective-spherical space PS3(R) is represented by the “half subspace”
incidence structure of the real vector 4-space V4 = V4(R) and its dual space
V 4 = V 4(R) [12].

Each vector x ∈ V4 \0, where 0 = (0, 0, 0, 0) is the null-vector, determines the ray
(x) consisting of vectors c · x, c ∈ R+. We suppose that two rays are equivalent,
(x) ∼ (y) if the defining vectors are positively proportional, i.e. y = c · x for some
c ∈ R+. Each vector x ∈ V4 \ 0 defines a point X(x) ∈ PS3 (presented by the
ray (x)). Obviously, if vectors x,y ∈ V4 \ 0 are positively proportional then they
define the same point X(x) = Y (y) ∈ PS3.
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Analogously, if linear forms u, v ∈ V 4 \ 0 are positively proportional, v = u · 1
c ,

c ∈ R+, then corresponding “form rays” are equivalent, (u) ∼ (v), and they define
the same (oriented) plane u(u) = v(v) ∈ PS3.

For x ∈ V4 and u ∈ V 4 we denote by (xu) ∈ R the result of substituting
coordinates of x into the form u. Obviously, if y = c · x and v = u · 1

c then
(xu) = (yv). Cases (xu) > 0, = 0, or < 0 correspond to situations when a point
X(x) lies in the half space, on the plane, or in the opposite half space of u(u),
respectively.

Let A0(a0), A1(a1), A2(a2), A3(a3), where ai ∈ V4 \ 0, be four points PS3 in
a general position, forming a projective coordinate simplex A0A1A2A3, and A(a),
with a = a0 + a1 + a2 + a3 ∈ V4 \ 0, be the (normalizing) unit point. Since
coordinates of rays are determined up to positive proportionality, we have some
freedom in choosing of a (and so, ai), that will be utilized in further computations.

Analogously, the “plane simplex” b0b1b2b3, such that

b0(b0) = A1A2A3, b1(b1) = A2A3A0,

b2(b2) = A3A0A1, b3(b3) = A0A1A2,

with the (normalizing) unit form b(b = b0 + b1 + b2 + b3), is fitted to the simplex
vertices A0, A1, A2, A3 by choosing bj ∈ V 4 \ 0 such that (aib

j) = δj
i is the

Kronecker symbol.

A projective collineation λ of the projective spherical space PS3 is described by a
pair of regular linear transformations V4 → V4 (point 7→ point) and V 4 → V 4

(plane 7→ plane) that preserves point-plane incidence. This will be assured if the
value (xu) is preserved, where x ∈ V4 and u ∈ V 4. It is known (e.g. by [12])
that a projective collineation λ can be given by λ = λ(Λ, Λ−1), an inverse matrix
pair Λ and Λ−1 for points and planes, respectively, preserving their incidences
by (xu) = (xΛ, Λ−1u). Obviously, for c ∈ R+ pairs (Λ, Λ−1) and (Λ · c, 1

c · Λ−1)
describe the same collineation λ. So, we have a freedom in choosing Λ up to positive
proportionality.

Remark 2.1. Thus, we have two kinds of “projective freedom” up to positive real
numbers: changing the basis vectors and the corresponding basis forms (so unit
point and unit form) c · ai → ai and bi · 1

c → bi, i = 0, 1, 2, 3; and changing
matrices, representing the collineation (Λ,Λ−1) 7→ (Λ · c, 1

c · Λ−1).

2.2. The case of skew axes.

Let us assume that Minkus polyhedron P = Pp/1(α, β) is realized in projective-
spherical space PS3. Here and below we will refer to notations in Figures 1, 4, 6,
10. Let φ and ψ be rotational transformations about essential edges on positive
angles α and β, respectively, identifying the faces of P . Suppose that axes of φ
(passing through A0(a0) and A1(a1)) and ψ (passing through A2(a2) and A3(a3))
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are skew. Thus, simplex A0A1A2A3 is a projective coordinate simplex. and vectors
{a0,a1,a2,a3} can be taken as a basis in V4.

Let us (first formally) correspond to transformations φ and ψ the matrices Φ =
(f i

j)j,i=0,1,2,3 and Ψ = (gi
j)j,i=0,1,2,3 as follows:

φ ∼ Φ =




1 0 0 0
0 1 0 0
f0
2 f1

2 cos α sin α
f0
3 f1

3 − sin α cosα


 =

(
12 02

F Mα

)
(2.1)

and

ψ ∼ Ψ =




cos β sin β g2
0 g3

0

− sin β cosβ g2
1 g3

1

0 0 1 0
0 0 0 1


 =

(
Mβ G
02 12

)
. (2.2)

where 12, 02, Mα, Mβ , F , and G are 2× 2 blocks. In the forthcoming calculations
the given 2× 2 block presentations of matrices Φ and Ψ will be useful.

Thinking of φ as a projective collineation φ = (Φ, Φ−1), we see from (2.1) that the
φ-images of the basis vectors are




a0

a1

a2

a3


 φ =




1 0 0 0
0 1 0 0
f0
2 f1

2 cosα sinα
f0
3 f1

3 − sinα cos α







a0

a1

a2

a3


 =

(
12 02

F Mα

)



a0

a1

a2

a3


 (2.3)

(by row-column multiplication), and with the inverse in 2× 2 block matrix form

φ−1(b0, b1, b2, b3) = (b0, b1, b2, b3)
(

12 02

−MT
α F MT

α

)
(2.4)

holds, where MT
α = M−α is the transpose that is also the inverse of Mα.

By (2.3) all points of axis A0A1 are fixed under the projective collineation φ.
Furthermore, planes of the pencil (b2, b3), incident to A0A1, will be “rotated
through angle α”, while the planes incident to points (f0

2 , f1
2 , cos α− 1, sin α) and

(f0
3 , f1

3 ,− sinα, cosα− 1) will be invariant. This is because collineation φ has the
doubled eigenvalue 1 and of conjugate complex eigenvalues (cos α + i sin α) and
(cos α− i sin α), as it follows from the theory of real collineations through complex
extension.

Note that α is not a metric angle yet, but later on it will be realized as an angle in
a suitable projective-spherical metric space. E.g. if α = 2π

n then the order of the
rotational transformation φ will be the integer n > 2, as usual for orbifolds with
singular set of angular neighbourhood to 2π

n .
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It is known that the fundamental group of S3 \K(p, 1) is generated by elements
φ, ψ with one relation:

φψφ . . .︸ ︷︷ ︸
p

= ψφψ . . .︸ ︷︷ ︸
p

. (2.5)

To obtain from P a cone-manifold C(p/1) with singularity along K(p, 1) we will
require that rotational transformations φ and ψ satisfy this relation. This will
admit to determine certain parameters for Φ and Ψ in (2.1) and (2.2).

2.3. The case of intersecting axes

As we shall see later, forthcoming Nil-realizations (and possible affine, so Eu-
clidean realizations) correspond to intersecting rotational axes for φ and ψ. This
also includes the situation when axes are parallel (and so, are intersecting in an
infinite point). In this case the above suggested simplex A0A1A2A3, with A0, A1

on the axis of φ and A2, A3 on the axis of ψ, can not be a projective coordinate
simplex, since these points are not linearly independent.

It is adequate now to consider a projective coordinate simplex A0A1A2A3, where
A0(a0) and A1(a1) be still points on the axis of φ, but A2(a2) and A3(a3) no more
points on the axis of ψ. More exactly, transformations φ and ψ are presented by
matrices Φ = (f i

j)j,i=0,1,2,3 and Ψ = (gi
j)j,i=0,1,2,3 as follows:

φ ∼ Φ =




1 0 0 0
0 1 0 0
f0
2 f1

2 cos α sin α
f0
3 f1

3 − sin α cos α


 =

(
12 02

F Mα

)
, (2.6)

ψ ∼ Ψ =




1 0 sin β 1− cosβ
0 1 0 0
0 0 cos β sinβ
0 0 − sin β cos β


 =

(
12 G
02 Mβ

)
. (2.7)

The submatrix F in (2.6) is taken the same as in (2.1) for shortening discussions,
and the submatrix G in (2.7) is different from that in (2.2).

Thus A0A1 is the axis for rotation φ, where the plane pencil (b2(b2), b3(b3)) will
be rotated by α (see Fig. 2).

Collineation ψ will be a rotation through angle β (one can see that now e.g. by
eigenvalues). It is clear from (2.7) that the rotation axis A03A1 with A03(a0 + a3)
will be point-wise fixed by ψ since (c, d, 0, c), (c, d) 6= (0, 0), is fixed by choosing
submatrix G of Ψ. A1 is a common point of the above axes. The plane b0(b0)
will be chosen in Sections 5 and 6, as a consequence there, the common invariant
(ideal) plane, i. e. f0

2 = 0 = f0
3 . Now b1(b1) = A0A2A3 is an invariant plane for ψ.



Projective realizations of cone-manifolds 7

A
03

A

2

A
0

1

y

f

A

A
3

Figure 2

2.4. Models for Nil-geometry

It is well known that for π1(S3 \ K(p, 1)), given by the presentation (2.5), the
element

(φψ)p = (ψφ)p, if p is odd (here K(p, 1) is a knot),

(φψ)p/2 = (ψφ)p/2, if p is even (here K(p, 1) is a link),

is central in the group generated by φ and ψ. If the metric realizations of rota-
tional transformations φ and ψ are such that the center is not trivial, then the
construction leads to a compact space. But trivial center may also occur in S3

realization.

Polyhedron P may have bent faces at the end of the construction. We preview in
advance a sketch in Fig. 3 on Nil–realization of C3/1(π

3 ). This is fibred over the Eu-
clidean plane E2, with plane triangle group T (2, 3, 6), see Section 5. The edge frame
refers to Fig. 3. The edges 1, 2, . . . , 6 provide the relation φ ψ φ ψ−1 φ−1 ψ−1 = 1
by the Poincaré cycle of edges equivalent under transformations. Obviously, this
relation is a particular case of (2.5) for p = 3. This relation implies now f0

2 = 0 = f0
3

as we shall see in Sections 5 and 6. The faces for identifications φ : 163 7→ 254 to
A0A

φψ
03 and ψ : 125 7→ 634 to axis A03A

ψφ
0 have to be formed carefully for a solid.

E.g. by choosing a point U on the “screw axis” of φψ (see Fig. 3 for imagination)
the star-shape triangles UA0A

φψ
03 , U1, U6, U3 and their φ-images UφA0A

φψ
03 , Uφ2,

Uφ5, Uφ4 can be formed. Here e.g. U1 = UA0A03 denotes also a triangle with the
endpoints of segment 1. Then we choose another point V “a bit under” Uφ on the
screw axis of ψφ and take the star-shape triangles V A03A

ψφ
0 , V 1, V 2, V 5 and their

ψ-images V ψA03A
ψφ
0 , V ψ6, V ψ3, V ψ4. We can achieve that V ψ will be “over” U

on the screw axis of ψφ if UφV smaller than the screw component of ψφ that will
be computed later from the center translation φψφψφψ. Such a construction of
fundamental polyhedron P will be similar also to other cases after having fixed
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the generating rotations in a corresponding projective-spherical model of Thurston
geometries.

2.5. Projective models for Thurston geometries

We shall look for a plane 7→ point polarity

( )∗ : V 4 → V4, bi 7→ bi
∗ = bijaj

with symmetric matrix of coefficients B = (bij), or scalar product of forms defined
linearly by

〈 , 〉 : V 4 × V 4 → R, 〈bi, bj〉 = (bi
∗ bj) = (birakbj) = bikδj

k = bij (2.8)

(with Einstein’s sum convention), so that Φ and Ψ from (2.1), (2.2) and (2.6),
(2.7), respectively, shall preserve the polarity and the scalar product (up to some
projective freedom, see details in Section 3).
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The recognition of geometries will be based on the following result of Molnár: the
signature of the scalar product and some other information (see [12] and Table 1
from therein) uniquely determine the realizing geometry.

Table 1.

Space Signature of Domain of proper The group G = IsomX as
X polarity ()∗ or points of X in PS3 a special transformation

scalar product group of PS3

S3 (+ + ++) PS3 Coll. PS3 preserving ()∗
H3 (−+ ++) {(x) ∈ P3 : (x, x) < 0} Coll. P3 preserving ()∗

(−−++) Universal covering of H = Coll. PS3 preserving ()∗
S̃L2(R) with skew line {[x] ∈ PS3 : (x, x) < 0} and fibers

fibering by fibering transformations

(0 + ++) A3 = P3 \ {ω∞}, where Coll. PS3 preserving ()∗
E3 ω∞ = (b0), b0∗ = 0 generated by plane

reflections

(0 + ++) A3 \ {0}, where G is generated by plane
S2 × R with 0-line 0 is fixed origin reflections and sphere

bundle fibering inversions, leaving
invariant the 0-concentric

2-spheres of ()∗
(0−++) C+ = {X ∈ A3 : G is generated by plane

H2 × R with 0-line 〈−→0X,
−→
0X〉 < 0, half cone} reflections and hyper-

bundle fibering by fibering boloid inversions, leaving
invariant the 0-concentric
half-hyperboloids in the

half-cone C+ by ()∗
(0−++) A3 with parallel plane Coll. P3 preserving ()∗

Sol with parallel fibering and the parallel plane
plane fibering fibering

(000+) A3 with a distinguished Quadr. maps of P3

Nil with parallel line parallel plane pencil conjugate to coll. preserv.
bundle fibering along each line ()∗ and the fibering

3. The invariant polarity

In this section we consider the generators φ(Φ, Φ−1) and ψ(Ψ, Ψ−1) defined by
pairs of formulae (2.1), (2.2) (if axes of φ and ψ are skew) and (2.6), (2.7) (if axes
of φ and ψ are intersecting), respectively, and look for a (non-trivial) plane 7→
point polarity or a scalar product (2.8), invariant under φ and ψ. This step is a
crucial technical point of our approach (see also [13] and [14] for similar technique).

Suppose that a scalar product is determined by a non-zero symmetric matrix
B = (bij) with the following block form:

B =
(

B00 B02

B20 B22

)
. (3.1)

Hence B00T = B00, B02T = B20, B22T = B22.

The invariance condition for generator φ will be considered as

ΦT BΦ = (±)B, (3.2)
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because Φ−1T
BΦ−1 = (±)B leads to equivalent condition. The similar condition

will be applied for ψ as well.

For the invariant quadratic form ξib
ijξj we denote ζT

0 = (ξ0, ξ1), ζT
2 = (ξ2, ξ3) and

consider the block form

(ζT
0 , ζT

2 )
(

B00 B02

B20 B22

)(
ζ0

ζ2

)

that will be treated in concrete cases later on.

3.1. The case of skew axes

Let us consider transformations φ(Φ) and ψ(Ψ) given by (2.1) and (2.2). For φ(Φ)
given by (2.1) using (3.1) and (3.2) we get:




B00 + FT B20+
+B02F + FT B22F

B02Mα + FT B22Mα

MT
α B20 + MT

α B22F MT
α B22Mα


 = ±

(
B00 B02

B20 B22

)
. (3.3)

Analogously, for ψ(Ψ) given by (2.2) we get:



MT
β B00Mβ MT

β B00G + MT
β B02

GT B00Mβ + B20Mβ
GT B00G + B20G+

+GT B02 + B22


 = ±

(
B00 B02

B20 B22

)
. (3.4)

Obviously, formulae (3.3) and (3.4) give equations for their 2×2 blocks. In further
computations the equations for blocks of (3.3) will be indexed as (3.3[00]), (3.3[02]),
(3.3[20]), and (3.3[22]) (and analogously for the equation (3.4)).

In general, the signs (+) or (−) in (3.3) and (3.4) can be chosen independently.
But as we shall see below, only choosing (+) in both formulae will lead to adequate
solution for B = (bij).

Let us start with formula (3.3) and consider all possible cases.

Case 1: The sign (+) in formula (3.3).

Subcase 1.1: α = π (mod 2π). In this subcase (3.3[22]) allows arbitrary matrix B22 =�
b22 b23

b32 b33

�
. Then (3.3[02]), as well as (3.3[20]), implies B02 = 1

2
F T B22

�−1 0
0 −1

�
. Hence

(3.3[00]) automatically holds for arbitrary B00. Therefore

B =

�
B00 − 1

2
F T B22

(− 1
2
F T B22)T B22

�
.

Subcase 1.2: α 6= π (mod 2π). By (3.3[22]), B22 can be chosen in the form B22 =�
b 0
0 b

�
= b12, for some b > 0 (we may assume). From (3.3[02]), as well as from (3.3[20]),

we get

B02 = F T B22Mα(12 −Mα)−1 =
b

2 sin α
2

F T M( π
2 + α

2 ).
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Indeed, since det(12 −Mα) = det

�
1− cos α − sin α

sin α 1− cos α

�
= 2(1 − cos α) = 4 sin2 α

2
we

have

(12 −Mα)−1 =
1

2 sin α
2

�
sin α

2
cos α

2

− cos α
2

sin α
2

�
=

=
1

2 sin α
2

�
cos(π

2
− α

2
) sin(π

2
− α

2
)

− sin(π
2
− α

2
) cos(π

2
− α

2
)

�
=

1

2 sin α
2

M( π
2−α

2 ).

Obviously, with B02 as above, (3.3[00]) holds for arbitrary B00. Hence

B =

 
B00 b

2 sin α
2

F T M( π
2 + α

2 )

( b
2 sin α

2
F T M( π

2 + α
2 ))

T b12

!
. (3.5)

Case 2: The sign (−) in (3.3).

Subcase 2.1: α = ±π
2

(mod 2π). In this subcase (3.3[22]) serves B22 =

�
b22 b23

b23 −b22

�
,

and b33 = −b22 implies an isotropic plane u(u), with 〈u,u〉 = 0, through the axis A0A1,
non adequate for models of 3-geometries (1.1) by [12].

Subcase 2.2: α 6= ±π
2

(mod 2π). By (3.3[22]) we get B22 = 0. Since b22 = b33 = 0
means incident polar-pole pair, i.e. isotropic planes through A0A1 again, this case is not
adequate for compact realizations of 3-geometries (1.1).

Summarizing discussions of subcases 2.1 and 2.2 we get

Lemma 3.1. The sign (-) in (3.3) doesn’t lead to adequate collineation φ and to compact
realization of polyhedron P in Thurston geometries.

We analogously discuss (3.4) for angle β.

Case 3: The sign (+) in formula (3.4).

Subcase 3.1: β = π (mod 2π). Then B00 is arbitrary, and

B02 =
1

2

�−1 0
0 −1

�
B00G = −1

2
B00G.

Then (3.4[22]) holds, B22 is arbitrary. Therefore

B =

�
B00 − 1

2
B00G

(− 1
2
B00G)T B22

�
.

Subcase 3.2: β 6= π (mod 2π). By (3.4[00]), B00 can be chosen in the form B00 =�
b 0

0 b

�
= b12 for some b > 0 (we may assume, again; different signs of b and b would

lead to non-adequate incident polar-pole pair in ŜL2(R) (Table 1), as discussed later on,
negative signs for both are equivalent to positive ones). From (3.4[02]), as well as from
(3.4[20]), we get

B02 = −(12 −Mβ)−1B00G =
b

2 sin β
2

M
(−π

2−
β
2 )

G,
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similarly as in Subcase 1.2. Now with arbitrary B22 we get

B =

0B@ b12
b

2 sin β
2

M
(−π

2−
β
2 )

G�
b

2 sin β
2

M
(−π

2−
β
2 )

G

�T

B22

1CA . (3.6)

Case 4: The sign (−) in formula (3.4).

Subcase 4.1: β = (±)π
2

(mod 2π). By (3.5[00]) we get B00 =

�
b00 b01

b01 −b00

�
. Since b11 =

−b00 implies an isotropic plane through the axis A2A3, this case is non adequate for
realizations of 3-geometries (1.1).

Subcase 4.2: β 6= ±π
2

(mod 2π). From (3.4[00]) we get B00 = 0. Again, b00 = b11 = 0
means incident polar-pole pair, we do not obtain compact realization of 3-geometries
(1.1).

Summarizing discussions of subcases 4.1 and 4.2 we get

Lemma 3.2. The sign (-) in (3.4) doesn’t lead to adequate collineation ψ and to compact
realization of polyhedron P in Thurston geometries.

3.2. The case of intersecting axes

Let us consider transformations φ(Φ) and ψ(Ψ) given by (2.6) and (2.7), and find the
invariant polarity (bij) in the block form, as in (3.1) and (3.2).

The block equation for φ(Φ) will take a form as in (3.3). Thus, arguments from sub-
cases 1.1, 1.2, 2.1, and 2.2 of the preceding subsection can be applied.

The block equation for Ψ(ψ) will take a form0@ B00 B00G + B02Mβ

GT B00MT
β B20 GT B00G + MT

β B20G+

+GT B02Mβ + MT
β B22Mβ

1A =

�±B00 ±B02

±B20 ±B22

�
(3.7)

with G as in (2.7).

Let us discuss cases of the sign (+) and (−) in the right side of (3.7).

Case 5: Sign (+) in formula (3.7). Then B00 is arbitrary from (3.7[00]), and we go to the
following subcases.

Subcase 5.1: β 6= π (mod 2π). Firstly we observe that

B02 = B00G(12 −Mβ)−1

= B00G
1

2 sin β
2

�
cos(π

2
− β

2
) sin(π

2
− β

2
)

− sin(π
2
− β

2
) cos(π

2
− β

2
)

�
=

1

2 sin β
2

B00GM
( π
2−

β
2 )

follows from (3.7[02]), as well as from (3.7[20]). The equation (3.7[22]) gives

GT B00G + GT B00G
1

2 sin β
2

M
( π
2 + β

2 )
+

1

2 sin β
2

M
(−π

2−
β
2 )

GT B00G = B22 −MT
β B22Mβ .
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Since G =

�
sin β 1− cos β

0 0

�
= 2 sin β

2

�
cos β

2
sin β

2

0 0

�
we get B02 = B00

�
0 1
0 0

�
=�

0 b00

0 b10

�
and b33 = b00 + b22, b23 = b32 = 0. Therefore

B =

0BB@b00 b01 0 b00

b10 b11 0 b10

0 0 b22 0
b00 b10 0 b00 + b22

1CCA . (3.8)

Subcase 5.2: β = π (mod 2π). From (3.7) we get B02 = 1
2
B00

�
0 2
0 0

�
=

�
0 b00

0 b10

�
,

B20 =

�
0 0

b00 b10

�
, b00 = 0, and B22 = B22T

=

�
b22 b23

b32 b33

�
. Hence

B =

0BB@ 0 b01 0 0
b10 b11 0 b10

0 0 b22 b23

0 b10 b32 b33

1CCA . (3.9)

Case 6: Sign (−) in formula (3.7). Then we get B00 = 0. The equality b11 = 0 means
incident polar-pole pair non-adequate for compact realization (Fig. 2).

Thus we have got

Lemma 3.3. The sign (-) in (3.7) doesn’t lead to adequate collineation ψ and to compact
realization of polyhedron P in Thurston geometries.

4. The Hopf link K(2, 1)

To investigate geometric structures on C2/1(α, β) with singularities along the Hopf link
K(2, 1), we recall, that according to Minkus construction, the polyhedron P2/1(α, β) looks
as in Fig. 4, and transformations ψ and ψ satisfies the relation φψ = ψφ.

Theorem 4.1. For any α, β ∈ (0, 2π) the polyhedron P2/1(α, β) with essential angles α

and β can be realized as a compact polyhedron in spherical space S3 with φ and ψ acting
by isometries.

Proof. In the case of skew axes transformations φ(Φ) and ψ(Ψ) are given by (2.1) and
(2.2). Then the relation φψ = ψφ has the following matrix form:�

Mβ G
FMβ FG + Mα

�
=

�
Mβ + GF GMα

F Mα

�
.

Equations F (12 −Mβ) = 0 and G(12 −Mα) = 0 imply F = 0 and G = 0, since α 6= 0
and β 6= 0 (mod 2π) by the assumption.
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A
3

A
2

A

0

1

y

f

A

b

a

4

3 2

1

Figure 4. The polyhedron P2/1

If α = π and β = π (mod 2π) then from subcases 1.1 and 3.1 we conclude that the polarity
invariant under Φ and Ψ is given by

B =

�
B00 02

02 B22

�
=

0BB@b00 b01 0 0
b10 b11 0 0
0 0 b22 b23

0 0 b32 b33

1CCA . (4.1)

The signature (+ + ++) will lead to the spherical geometry. As one can see, other
signatures in B00 or in B22 yield incident polar-pole pair, i. e. an isotropic plane through
the rotation axis A2A3 or A0A1, respectively, and so, geometrization is not possible

for these signatures. Namely, signature (− − ++) would lead to ŜL2(R) geometry in
Table 1 with its hyperboloid model (see Fig. 8). One of two our axes would be inside
of the hyperboloid (proper axis), and the other – outside (improper axis), that gives a
contradiction.

If α 6= π and β 6= π (mod 2π), then from subcases 1.2 and 3.2 we conclude that the
polarity invariant under Φ and Ψ is given by

B =

�
b12 02

02 b12

�
=

0BB@b00 0 0 0
0 b00 0 0
0 0 b22 0
0 0 0 b22

1CCA (4.2)

for some b = b00 > 0 and b = b22 > 0 again.

E.g. α 6= π, β = π would lead to

B =

0BB@b00 b01 0 0
b10 b11 0 0
0 0 b 0
0 0 0 b

1CCA
as a combination of (4.1) and (4.2). Again, by Table 1, signature (+ + ++) is suitable
only.
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In each (++++) case we can change basis by linear combinations so that we get B = 14.

In the case of intersecting axes transformations φ(Φ) and ψ(Ψ) are given by (2.6) and
(2.7). Then the relation φψ = ψφ has the following matrix form:�

12 G
F FG + MαMβ

�
=

�
12 + GF GMα

MβF MβMα

�
.

Hence G = 0 or α = 0 (mod2π), and by (2.7) we get β = 0 or α = 0. This gives the
contradiction with non-triviality of α and β. �

By (2.1) and (2.2) one can find coordinates of vertices of the polyhedron.

Corollary 4.2. Four vertices of P2/1(α, β) are the following:

A1(0, 1, 0, 0, ), A3(0, 0, 0, 1), Aφ−1

3 (0, 0, sin α, cos α), Aψ−1

1 (sin β, cos β, 0, 0).

The angles at edges A1A3, A3A
ψ−1

1 , Aψ−1

1 Aφ−1

3 , Aφ−1

3 A1 are right angles. The essential

lengths are A1A
ψ−1

1 = β, A3A
φ−1

3 = α, A1A3 = π
2

so as the other three edges.

This prescribes the positions of A0 and A2 as well. We can calculate any metrical data of
Pα,β(2/1) by standard formulae of the spherical geometry. E.g. the length of the singular

line A1A
ψ−1

1 with cone angle α will be β by

cos A1A
ψ−1

1 =
〈a1,a1Ψ

−1〉
|a1||a1Ψ−1| = cos β

by some additional arguments.

5. The trefoil knot K(3, 1)

5.1. Geometries in the case of skew axes

It is known that the trefoil knot K(3, 1) and its mirror image are not equivalent up
to orientation preserving homeomorphisms of S3. Thus, we distinguish the right-hand
trefoil knot and the left-hand trefoil knot. The right-hand trefoil knot is presented in
Fig. 5. According to Minkus construction, polyhedron P3/1(α) looks as in Fig. 6 and
transformations φ and ψ, defined by (2.1) and (2.2) satisfy the relation φψφ = ψφψ.
This relation has the following matrix form:�

Mβ + GF GMα

FMβ + FGF + MαF FGMα + MαMα

�
=

�
MβMβ + GFMβ MβG + GFG + GMα

FMα FG + Mα

�
, (5.1)

i.e. GF = −Mβ and FG = −Mα lead to MαF = FMβ and MβG = GMα. Thus, either

1: β = α (mod 2π), µ + ν = α + π (mod 2π), F = f ·
�

cos µ sin µ
− sin µ cos µ

�
= f · Mµ,

G = g ·
�

cos ν sin ν
− sin ν cos ν

�
= g ·Mν , f · g = 1 (f, g > 0) in the case of right-hand trefoil

knot, or
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a

Figure 5. The right-hand trefoil knot
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-1

-1

-1 -1

f

Figure 6. The polyhedron P3/1

2: β = −α (mod 2π), ν−µ = α+π (mod 2π), F = f ·
�

cos µ sin µ
sin µ − cos µ

�
= f ·

�
1 0
0 −1

�
·

Mµ, G = g ·
�

cos ν sin ν
sin ν − cos ν

�
= g ·

�
1 0
0 −1

�
· Mν , f · g = 1 (f, g > 0) in the case of

left-hand trefoil knot occur.

By changing some of basis vectors as a0′ := f · a0, b0
′

:= b0 · 1
f
; and a1′ := f · a1,

b1
′

:= b1 · 1
f
, we achieve f = g = 1 in both cases. After that, to simplify notations we

change indices back: 0′ 7→ 0 and 1′ 7→ 1.

Remark 5.1. We will not discuss the case 2 of the left-hand trefoil knot since it can be
done completely analogously to the case 1.

Lemma 5.2. Projective collineations φ = φ(Φ, Φ−1) and ψ = ψ(Ψ, Ψ−1), presented by
(2.1) and (2.2), with β = α ∈ (0, 2π), that identify faces of P3/1, preserve scalar products
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with following signatures:

(+ + ++) iff
π

3
< α <

5π

3
;

(−−++) iff 0 < α <
π

3
,

5π

3
< α < 2π;

(0 0 + +) iff α =
π

3
or α =

5π

3
.

Proof. By Lemma 3.1 and Lemma 3.2 we consider only sign (+) in (3.2). By Remark 5.1
we consider only case β = α in Minkus construction.

(i). Assume that α = π. Then transformations φ and ψ are involutive halfturns. Moreover,
µ + ν = 0 (mod 2π) implies that for

Φ =

�
12 02

Mµ Mα

�
and Ψ =

�
Mα Mν

02 12

�
the following relations hold:

F T = F−1 = MT
µ = M(2π−µ) = Mν = G.

It is easy to see that

ΦΨΦ = ΨΦΨ =

�
02 M(π−µ)

M(π+µ) 02

�
;

and (ΦΨ)3 = (ΨΦ)3 =

�
12 02

02 12

�
is trivial. We see that φψφ = ψφψ is an involutive

halfturn with axis pair

(x0, x1, x2, x3), where x2 = −x0 · cos µ− x1 · sin µ, x3 = x0 · sin µ− x1 · cos µ,

(y0, y1, y2, y3), where y2 = − cos µ · y0 − sin µ · y1, y3 = sin µ · y0 − cos µ · y1

for points and for planes, respectively. Then

ΦΨ =

0BB@ −1 0 cos µ − sin µ
0 −1 sin µ cos µ

− cos µ − sin µ 0 0
sin µ − cos µ 0 0

1CCA ;

and (ψφ) = (φψ)−1 = (φψ)2 are “31 screw motions” (that is a translation along a line
with a rotation on 2π/3 about it) permuting the previous halfturns in a cyclic way. E.g.
(φψ)−1φ(φψ) = ψφψ = φψφ and (φψ)−1(φψφ)(φψ) = ψ, (φψ)−1ψ(φψ) = ψφψφψ = φ.

The realization with compact fundamental domain is possible in the spherical space S3

not in the usual sense, e.g. a lens realization comes (see Fig. 7.a) with lens angle π
3
, just

as a special case of the next subcase for extension to α = β = π.

Now let us look for the invariant polarity B. By subcases 1.1 and 3.1 in Section 3 sub-
matrices of B are related by

1

2
F T B22

�−1 0
0 −1

�
= B02 =

1

2

�−1 0
0 −1

�
B00G, B20T

= B02,

we get
1

2
M(π−µ)B

22 = B02 =
1

2
B00M(π−µ), B20T

= B02,
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with M(π−µ) =

�
cos(π − µ) sin(π − µ)
− sin(π − µ) cos(π − µ)

�
. These yield the invariant quadratic form

ξib
ijξj for linear forms biξ of the dual space V4(R), i.e. for planes of PS3(R) in block

matrices, where ηT
0 = (ξ0, ξ1) and ηT

2 = (ξ2, ξ3):

(ηT
0 , ηT

2 )

�
B00 B02

B20 B22

��
η0

η2

�
= ηT

0 B00η0 + ηT
2 B20η0 + ηT

0 B02η2 + ηT
2 B22η2 =

=

�
ηT
0 +

1

2
ηT
2 M(π+µ)

�
B00

�
η0 +

1

2
M(π−µ)η2

�
+

3

4
ηT
2 M(π+µ)B

00M(π−µ)η2.

Thus, if B00 has signature (σ1, σ2), then B has signature (σ1, σ1, σ2, σ2). Since possi-
ble signatures for B00 are (++), (0 +) and (−+), possible signatures for B are (+ +
++), (0 0 + +) and (−−++). As well as in Section 4, to exclude isotropic plane, only
signature (+ + ++) is possible.

Remark that α = π implies that C3/1(π) is an orbifold, and its orbifold group 〈φ, ψ | φ2 =

ψ2 = 1, φψφ = ψφψ〉 is dihedral group of order 6. Hence, only signature (+ + ++) leads
to compact fundamental domain as desired.

(ii). Assume that α 6= π. Then µ+ν = α+π (mod 2π). By subcases 1.2 and 3.2 in Section 3,
i.e. by formulas (3.5) and (3.6), submatrices of B satisfy the following relations:

b

2 sin α
2

F T M( π
2 + α

2 ) = B02 =
b

2 sin α
2

M(−π
2−α

2 )G,

B20T
= B02, B00 = b · 12, B22 = b · 12.

Since F = Mµ (so F T = M(−µ)) and G = Mν we get

b

2 sin α
2

M( α
2 + π

2−µ) =
b

2 sin α
2

M(−α
2 −π

2 +ν).

Using µ + ν = α + π (mod 2π), from this relation we get b = b. Recalling that B02 =

b
2 sin α

2
M( α

2 + π
2−µ) = b

2 sin α
2

�− sin(α
2
− µ) cos(α

2
− µ)

− cos(α
2
− µ) − sin(α

2
− µ)

�
, we obtain

B =

0BBBBB@
b 0

−b sin( α
2 −µ)

2 sin α
2

b cos( α
2 −µ)

2 sin α
2

0 b
−b cos( α

2 −µ)

2 sin α
2

−b sin( α
2 −µ)

2 sin α
2−b sin( α

2 −µ)

2 sin α
2

−b cos( α
2 −µ)

2 sin α
2

b 0
b cos( α

2 −µ)

2 sin α
2

−b sin( α
2 −µ)

2 sin α
2

0 b

1CCCCCA (5.2)

with some projective freedom, of course. Namely, b = 1 can be chosen. The polyhedron
P and so the coordinate simplex are flexible by the angle µ (and ν). E.g. µ = ν =
α
2
− π

2
(mod 2π) leads to the usual angle metric convention for simplex planes in formula

(5.6) and Figures 7 and 8 below. Then we have

B = (bij) =

0BBB@
1 0 −1

2 sin α
2

0

0 1 0 −1
2 sin α

2−1
2 sin α

2
0 1 0

0 −1
2 sin α

2
0 1

1CCCA (5.3)
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with det(bij) =
h
1 −

�
1

2 sin α
2

�2i2
=
� 1

2−cos α

1−cos α

�2

and the quadratic form for a variable

plane defined by form biξi

ξib
ijξj =

�
ξ0 − 1

2 sin α
2

ξ2

�2

+

�
ξ1 − 1

2 sin α
2

ξ3

�2

+
1
2
− cos α

1− cos α
(ξ2ξ2 + ξ3ξ3)

with signature

ii1 : (+ + ++) iff − 1 < cos α <
1

2
,

π

3
< α < π, π < α <

5π

3
,

ii2 : (−−++) iff cos α >
1

2
, 0 < α <

π

3
,

5π

3
< α < 2π;

ii3 : (0 0 + +) iff α =
π

3
or α =

5π

3
.

�

5.2. Computations for skew axes

Remark 5.3. Using the agreement µ = ν = α
2
− π

2
(mod 2π), we get the following matrices

for transformations:

Φ =

�
12 02

M( α
2 −π

2 ) Mα

�
=

0BB@ 1 0 0 0
0 1 0 0

sin α
2

− cos α
2

cos α sin α
cos α

2
sin α

2
− sin α cos α

1CCA ,

Ψ =

�
Mα M( α

2 −π
2 )

02 12

�
=

0BB@ cos α sin α sin α
2

− cos α
2

− sin α cos α sin α
2

cos α
2

0 0 1 0
0 0 0 1

1CCA ,

Φ−1 =

�
12 02

MT
( π
2−α

2 ) MT
α

�
, Ψ−1 =

�
MT

α MT
( π
2−α

2 )

02 12

�
(5.4)

ΦΨ =

 
Mα M( α

2 −π
2 )

M( 3α
2 −π

2 ) 02

!
, ΨΦ =

 
02 M( 3α

2 −π
2 )

M( α
2 −π

2 ) Mα

!
,

Φ−1Ψ−1 =

 
M(−α) M( π

2−α
2 )

M( π
2− 3α

2 ) 02

!
, Ψ−1Φ−1 =

 
02 M( π

2− 3α
2 )

M( π
2−α

2 ) M(−α)

!
,

ΦΨΦ = ΨΦΨ =

 
02 M( 3α

2 −π
2 )

M( 3α
2 −π

2 ) 02

!
,

and

(ΦΨ)3 =

�
M(3α−π) 02

02 M(3α−π)

�
.

While B = (bij) is “responsible” for the metric of planes (angles and distances), its
inverse (if exists) aij = 〈ai,aj〉 = (bij)−1 determines the distances of points ([12], [11]).
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Of course, we can compute these data from (5.2), in more general, as well. We have
obtained

(aij) = (bij)−1 =
1− cos α
1
2
− cos α

0BBB@
1 0 1

2 sin α
2

0

0 1 0 1
2 sin α

2
1

2 sin α
2

0 1 0

0 1
2 sin α

2
0 1

1CCCA (5.5)

if 1
2
− cos α 6= 0.

Lemma 5.4. If axes of φ and ψ are skew, then generalized dihedral angles of coordinate
simplex A0A1A2A3 for P3/1(α) are given by

β01 = β03 = β12 = β23 =
π

2
, cos β02 = cos β13 =

1

2 sin α
2

,

where βij is angle between faces bi and bj, that is dihedral angle at edge (Ak, A`), where
{k, `} = {0, 1, 2, 3} \ {i, j}. At signature (−−++) the angle measure can be extended by
complex cos function (see Subsection 5.3 and [11], e.g.).

Proof. The angle β02 between planes b0 and b2 at simplex edge A1A3 (see Fig. 6) can be
obtained by (the complementary angle of their poles (normals) b0∗ = b00a0 + b02a2 and
b2∗ = b20a0 + b22a2:

cos β02 =
−b02

√
b00b22

=
1

2 sin α
2

, (5.6)

that is less than 1 if π
3

< α < 5π
3

as in case of signature (+ + ++).

Computations for other angles are completely analogous. �
Lemma 5.5. If axes of φ and ψ are skew, then vertices of polyhedron P3/1(α) are the
following:

A1(0, 1, 0, 0), A3(0, 0, 0, 1),

Aφ−1

3

�
− cos

α

2
, sin

α

2
, sin α, cos α

�
, Aψ−1

1

�
sin α, cos α,− cos

α

2
, sin

α

2

�
,

Aφ−1ψ−1

3

�
− cos

3α

2
, sin

3α

2
, 0, 0

�
, Aψ−1φ−1

1

�
0, 0,− cos

3α

2
, sin

3α

2

�
.

(5.7)

Proof. By direct calculations using formulas according to Remark 5.3. �
Lemma 5.6. Lengths of the six equal edges A1A3 = A3A

ψ−1

1 = · · · = Aφ−1

3 A1 of P3/1(α),

in the spherical case, equals to ρ, with cos ρ = 1
2 sin α

2
. The length measure is also extended

(formally) by complex cos function [11] to signature (−−++).

Proof. Positive distances can be computed by using (5.5):

cos A0A2 =
a02√
a00a22

=
1

2 sin α
2

, cos A1A3 =
a13√
a11a33

=
1

2 sin α
2

,

that is less than 1 in the case of signature (++++). As one can see from Fig. 6, by (5.7),

cos A1A
φ−1ψ−1

3 = sin 3α
2

= cos( 3α
2
− π

2
), hence

A1A
φ−1ψ−1

3 =
3α

2
− π

2
.
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The length of the whole singular set is

` := A1A
φ−1ψ−1

3 + A3A
ψ−1φ−1

1 = 3α− π.

Since ` = 3α−π holds for any α ∈ �π
3
, 5π

3

�
, pairs (α, `) = ( 4π

3
, 3π); (α, `) = ( 6π

4
, 4π− π

2
);

and (α, `) = ( 8π
5

, 4π− π
5
) are also realizable by polyhedron P with vertices in (5.7). Let us

imagine S3 as E3∪{∞} in conformal (circle geometric) interpretation in a symbolic picture
Fig. 7. Then the edges 1, 2, . . . , 6 represent a segment class of angular neighbourhood 2π,
indeed.

To see this, we consider the case α = π, first symbolically in Fig. 7.a. The lens here is of
angle π

3
by (5.6). Thus the six equivalent segments yield angle 6· π

3
= 2π. Then, as we have

seen, the angular distances are Aφ−1ψ−1

3 A1 = Aψ−1φ−1

1 A3 = π. E.g. Aφ−1ψ−1

3 (cos(π −
3α
2

), sin(π − 3α
2

), 0, 0), A0(cos(0), sin(0), 0, 0), A1(cos(π
2
), sin(π

2
), 0, 0) show in (5.7), how

to introduce the “angle coordinate” (fibre coordinate [12]) π− 3α
2

for Aφ−1ψ−1

3 , increasing

from −π
2

to π
2

if α decreases from π to π
3
, and decreasing −π

2
to − 3π

2
≡ π

2
(mod 2π) if

α varies from π to 5π
3

(see Fig. 7.c). �

Let us introduce the midpoint N of arc A1A
φ−1ψ−1

3 (as north pole, see Fig. 7.b), and

similarly the midpoint S of arc A3A
ψ−1φ−1

1 (south pole). Then the star shape trian-
gles, with plane coordinates (forms expressed by bi-s), bound a nice symmetric solid as
fundamental domain P in the following:

Lemma 5.7. If axes of φ and ψ are skew, then north pole, south pole, and triangular faces
of polyhedron P3/1(α) are given by the following formulas:

N
�

cos
3(π − α)

4
, sin

3(π − α)

4
, 0, 0

�
; S

�
0, 0, cos

3(π − α)

4
, sin

3(π − α)

4

�
;

SA3A1(1, 0, 0, 0)T ∼ b0, NA1A3(0, 0, 1, 0)T ∼ b2;
SAψ−1φ−1

1 Aφ−1ψ−1

3

�
sin

3α

2
sin

3(π + α)

4
, cos

3α

2
sin

3(π + α)

4
, 0, 0

�T

;

NAφ−1ψ−1

3 Aψ−1φ−1

1

�
0, 0, sin

3α

2
sin

3(π + α)

4
, cos

3α

2
sin

3(π + α)

4

�T

;

SA1A
φ−1

3

�
cos

π − α

4
, 0, cos

α

2
sin

3(π − α)

4
,− cos

α

2
cos

3(π − α)

4

�T

;

NAφ−1

3 A1

�
0, 0,− cos α cos

3(π − α)

4
, sin α cos

3(π − α)

4

�T

;

SAφ−1

3 Aψ−1φ−1

1

�
− sin

α

2
sin

3(π + α)

4
,− cos

α

2
sin

3(π + α)

4
, 0, 0

�T

;

NAψ−1φ−1

1 Aφ−1

3

�
− cos

α

2
sin

3(π − α)

4
, cos α cos

3(π − α)

4
,

− sin
3α

2
sin

π + α

4
,− cos

3α

2
sin

π + α

4

�T

;

SAφ−1ψ−1

3 Aψ−1

1

�
− sin

3α

2
sin

π + α

4
,− cos(3α) sin

π + α

4
,

− cos
α

2
sin

3(π − α)

4
, cos

α

2
cos

3(π − α)

4

�T

;

NAψ−1

1 Aφ−1ψ−1

3

�
0, 0,− sin

α

2
sin

3(π + α)

4
,− cos

α

2
sin

3(π + α)

4

�T

;



22 Emil Molnár, Jenő Szirmai and Andrei Vesnin

1

-1

AA

1

Y
-1-1

AA

Y

A
1

3

f

3

Y
-1-1

AA
f

3

-1

AA
f

A

N

S

1

Y
-1-1

AA
f

3

Y
-1-1

AA
f

1

-1

AA
Y

3

-1

AA
f
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Figure 7. a, b, c

SAψ−1

1 A3

�
− cos α cos

3(π − α)

4
,− sin α cos

3(π − α)

4
, 0, 0

�T

;

NA3A
ψ−1

1

�
cos

α

2
sin

3(π − α)

4
,− cos

α

2
cos

3(π − α)

4
, cos

(π − α)

4
, 0
�T

.
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Now we are able to compute dihedral angles of P3/1 by the scalar product matrix (bij)
in (5.3).

Lemma 5.8. The essential dihedral angles of P3/1(α) are (also in complex extended form)
as follows:

cos(\A3A1) = cos(\Aψ−1φ−1

1 Aφ−1ψ−1

3 ) =
1

2 sin α
2

;

the other four dihedral angles are equal, e.g.

cos(\A1A
φ−1

3 ) =
cos 3(π−α)

4p
(1 + sin α

2
)2 sin α

2
(2 sin α

2
− 1)

.

Proof. The calculations of dihedral angles of polyhedron P3/1(α) can be done as follows.

First of all, just to illustrate our technique, we will check the known result that dihedral
angle of P3/1 at the axis of φ, passing through A0A1, is α. Indeed, we observe that the

simplex plane b2 = A0A1A3 intersects with A0A1A
φ−1

3 , that is the image of b2 under
φ−1 (given by Remark 5.3). Since Φb2 = b2 cos α − b3 sin α, in the sense of (2.4) for
φ−1(Φ−1, Φ), we get

cos (b2, Φb2) =
〈b2, Φb2〉p

〈b2, b2〉〈Φb2, Φb2〉
= 〈b2, Φb2〉 = (b2∗Φb

2)

= (b2iai, Φb2) =
� 1

2 sin α
2

a0 + 1 · a2, b2 cos α− b3 sin α
�

= cos α,

as expected. Of course, dihedral angle of P3/1(α) at the axis of ψ, passing through A2A3,
is α too.

As we already demonstrated in Lemma 5.4, cos\A3A1 = 1
2 sin α

2
.

Other dihedral angles can be found from scalar products (defined by matrix B in (2.2))

of forms of incident faces given in Lemma 5.7. Since \Aψ−1φ−1

1 Aφ−1ψ−1

3 is the angle

between planes NAφ−1ψ−1

3 Aψ−1φ−1

1 and SAψ−1φ−1

1 Aφ−1ψ−1

3 , we get

cos\Aψ−1φ−1

1 Aφ−1ψ−1

3 =
1

2 sin α
2

sin2 3(π+α)
4

· �sin2 3α
2

+ cos2 3α
2

�
sin2 3(π+α)

4

=
1

2 sin α
2

.

The other four angles are equal, as e.g. the computations by Lemma 5.7 show. Since

\A1A
φ−1

3 is the angle between planes NAφ−1

3 A1 and SA1A
φ−1

3 , we get

cos\A1A
φ−1

3 = cos
α

2

��
sin

3(π − α)

4
cos α + cos

3(π − α)

4
sin α

�
−

− 1

2 sin α
2

cos α cos
π − α

4

�
·

·
�

cos2
α

2
+ cos2

π − α

4
− 2

2 sin α
2

cos
π − α

4
sin

3(π − α)

4
cos

α

2

�−1/2

=
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=
sin α sin π−α

4
− cos α cos π−α

4q
4 sin2 α

2
cos2 α

2
+ 4 sin2 α

2
cos2 π−α

4
− sin α

�
sin(π − α) + sin π−α

2

�
=

cos 3(π−α)
4q

(1− cos α)
�
1 + sin α

2

�− sin α cos α
2

,

and so on, as in Lemma 5.6. Obviously, if π
3

< α < 5π
3

then −π
2

< 3(π−α)
4

< π
2
.

Direct computations give

cos\A3A
ψ−1

1 = cos\Aψ−1

1 Aφ−1ψ−1

3 = cos\Aφ−1

3 Aψ−1φ−1

1 = cos\A1A
φ−1

3

and 2\A1A
φ−1

3 = π − \A3A1. Thus, the sum of the six mentioned dihedral angles is
equal to 2π.

Remark, as particular cases, that α = π
2

leads to \A3A1 = π
4

and \A1A
φ−1

3 = 3π
8

, as

well as α = 3π
2

leads to these angles too. �

The center of π1(S
3 \K(3, 1)) is generated by τ := (φψ)3 = (ψφ)3. By Remark 5.3 this

τ has the following matrix presentation depending on α:

Tα := (ΦΨ)3 = (ΨΦ)3 =

�
M3α−π 02

02 M3α−π

�
.

This is trivial if α = π
3

or α = 5π
3

. By Lemma 5.2 for these angles the signature is (0 0 ++).

By (5.7) we get that for these angles A1 = Aφ−1ψ−1

3 , A3 = Aψ−1φ−1

1 , Aφ−1

3 = −Aψ−1

1 ,
hence polyhedron P3/1 degenerates.

Note that for spherical orbifolds we get the following cases: Tπ is trivial;

T 2π
3

=

�
Mπ 02

02 Mπ

�
= −14; Tπ

2
=

�
M π

2
02

02 M π
2

�
; T 2π

5
=

�
M π

5
02

02 M π
5

�
.

5.3. Computations for ŜL2(R)

By Lemma 5.2 the case 0 < α < π
3

gives signature (− − ++). According to Table 1 it

leads to ŜL2(R) geometry by its one-sheet hyperboloid solid model in projective-spheri-
cally extended E3 [12] (see also Section 6), roughly sketched in Fig. 8. Unfortunately, the

case of ŜL2(R) geometry is more difficult to imagine, since analogies with the spherical
case are not always valid.

At each inner point (e.g. at A0 in Fig. 8.a) we can form the asymptotic cone. Lines
pointing into interior of this cone coincide with planes of positive form squares and their
angle can usually be measured. E.g. for the angle between coordinate planes b2 and b3,
incident with A0A1, we get β23 = π

2
as in the spherical cases. But b02 = −1

2 sin α
2

< −1, if

0 < α < π
3
, and so

cos β02 =
−b02

√
b00b22

=
1

2 sin α
2

> 1,



Projective realizations of cone-manifolds 25

provide complex angle β02 = x and distance xi of poles by cos x = cosh(xi) (see e.g. [11]
for more details). Here we only remark, that the cross ratio (p, q, u, v) of a plane pencil in
the complex extension defines the projective measure of (p, q) by 1

2i
log (p, q, u, v), where

u, v are the isotropic elements (e.g. 〈u,u〉 = 0 ) in the pencil of (p, q), of course, with
some discussions.

The distance metric is defined analogously to (5.5), but now

cosh A0A2 =
−a02√
a00a22

=
1

2 sin α
2

> 1

is taken, again through complex extension. Formula (5.4), Lemma 5.4, and Lemma 5.7
hold as well. The length of the singular set is given by

` := A1A
φ−1ψ−1

3 + A3A
ψ−1φ−1

1 = |3α− π|
also with orbifold cases realized for α = 2π

7
, 2π

8
, . . . . The equal distances of A1A3 =

A0A2 = Aφ−1ψ−1

3 Aψ−1

1 , etc. can be obtained by

cosh A1A3 =
−a13√
a11a33

=
1

2 sin α
2

=
−a02√
a00a22

= cosh A0A2 > 1.

Comparing with Fig. 7, we see that the angular (fibre) coordinate π − 3
2
α of Aφ−1ψ−1

3

in Fig. 7.c is just π
2

of A1 if α = π
3
, i.e. we get degenerate case, But, for π

3
> α >

0, Aφ−1ψ−1

3 (cos(π− 3
2
α), sin(π− 3

2
α), 0, 0) moves on line A0A1 over A1 up to (−1, 0, 0, 0)

in the projective sphere, i.e. up to the opposite point of A0 (see Fig. 8 for imagination

in the sense of universal cover). The same holds for Aψ−1φ−1

1 on the line A2A3 over A3

up to the opposite of A2. Thus the coordinates of P in (5.7) remain valid together with
coordinates of “poles” N and S in Lemma 5.7, moreover with the plane coordinates there.
The hyperboloid has the equation by (5.5) as follows for points (ηiai)

0 = ηiaijη
j =

1− cos α
1
2
− cos α

"�
η0 +

1

2 sin α
2

η2

�2

+

+

�
η1 +

1

2 sin α
2

η3

�2

+
1
2
− cos α

1− cos α

�
η2η2 + η3η3�# .

(5.8)

E.g. we get negative values for all 〈ai,ai〉 (i = 0, 1, 2, 3) and for all vertices and poles N
and S of P .

To visualize our model P in projective-spherically extended Euclidean space E3 (in the
sense of Fig. 8, but imagine it also in the “back side” Fig. 8.b), we can introduce new
coordinate simplex by (5.8) as follows:

(b0
′
, b1

′
, b2

′
, b3

′
) = (b0, b1, b2, b3)

0BBBBBB@
sin α

2√
1
4−sin2 α

2

0 0 0

0
sin α

2√
1
4−sin2 α

2

0 0

1

2
√

1
4−sin2 α

2

0 1 0

0 1

2
√

1
4−sin2 α

2

0 1

1CCCCCCA
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A
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0
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Figure 8. Hyperboloid model for S̃L2(R) for 0 < α < π
3

for new basis forms and, by the inverse, we get the new simplex vertices:

0BB@a0′

a1′

a2′

a3′

1CCA =

0BBBBB@
√

1
4−sin2 α

2
sin α

2
0 0 0

0

√
1
4−sin2 α

2
sin α

2
0 0

− 1
2 sin α

2
0 1 0

0 − 1
2 sin α

2
0 1

1CCCCCA
0BB@a0

a1

a2

a3

1CCA .

By conjugacy we could translate the formulas in (5.4) and (5.7) to get pictures by Fig. 8.
However, our original coordinate simplex is more informative in the sense of projective-

spherical geometry [12] for ŜL2(R) with transformation matrices given in Remark 5.3
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Thus, we have a similar picture as in Fig. 3, now with 2 regular triangles of angle α, a
21-screw axis between the triangles and 31-screw axes in the middle of 2 regular trian-

gles, however, these are in the hyperbolic base plane H2 of the fibre space ŜL2(R). The
construction of P is also possible by this analogy, but the screw axes cause difficulties.

We have extreme problem in visualizing the cases 5π
3

< α < 2π. Our formulas by angu-

lar (fibre) coordinates (Fig. 8) may help us. For α = 5π
3

we would have Aφ−1ψ−1

3 (π −
5π
2

) ∼ A1(− 3π
2
≡ π

2
) as a limit from the S3–cases. After this degenerate case α = 5π

3
,

Aφ−1ψ−1

3 (π − 3π
2

) moves further up to A0(π − 3π ≡ 0). Thus an extrapolation in the

universal cover ŜL2(R), just by formulas (5.7) and Lemma 5.7 [12] is possible. Then the
length of the complete singular line is l = 3α − π, i.e. it varies in the open interval

(4π, 5π). The fundamental polyhedron P will vary also by α in ŜL2(R).

The topic is related to the tetrahedron tilings (e.g. in [14], Section 4) initiated by I.K.
Zhuk [22] from other aspect. Namely, a Zhuk’s tetrahedron fibre orbifold is two-fold
covered by C3/1(α), where α = 2π

k
, 3 ≤ k ∈ N.

5.4. Nil structure and other discussions

For the case of signature (0 0 + +) from Lemma 5.2, arising for α = π
3

and α = 5π
3

,
we change our model. As mentioned at formulas (2.6) and (2.7), in Figures 2, 3 and

at Subsection 2.2, we combine subcases 1.1 for F =

�
f0
2 f1

2

f1
3 f1

3

�
in (2.6) and 5.1 for

G =

�
sin β 1− cos β

0 0

�
= 2 sin β

2

�
cos β

2
sin β

2

0 0

�
in (2.7). The equation φψφ = ψφψ

means, first in general form�
12 + GF GMα

(12 + FG + MαMβ)F (FG + MαMβ)Mα

�
=

=

�
12 + GF G(12 + FG + MαMβ)

MβF Mβ(FG + MαMβ)

�
;

(5.9)

i. e. FG + MαMβ = e

�
cos ε sin ε
∓ sin ε ± cos ε

�
follows first, then FG = 0 and f0

2 = 0 = f0
3 .

Furthermore, β = α (mod 2π) holds from the equation (5.9[22]). Moreover, we get
02 = G(12 −Mα + MαMα) and 02 = (12 −Mα + MαMα)F from equations (5.9[02])and
(5.9[20]), respectively. From (5.9[02]) follows α = π

3
(mod 2π), then (5.9[20]) also holds.

The matrix presentation T of τ = (φψφ)2 = (ψφψ)2 = (φψ)3 = (ψφ)3 can be computed
step by step:

Φ =

0BB@1 0 0 0
0 1 0 0

0 f1
2

1
2

√
3

2

0 f1
3 −

√
3

2
1
2

1CCA , Ψ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 0 1
2

√
3

2

0 f1
3 −

√
3

2
1
2

1CCCA ,

ΦΨ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 f1
2 − 1

2

√
3

2

0 f1
3 −

√
3

2
− 1

2

1CCCA , ΨΦ =

0BBB@
1

√
3

2
f1
2 + 1

2
f1
3 0 0

0 1 0 0

0 1
2
f1
2 +

√
3

2
f1
3 − 1

2

√
3

2

0 −
√

3
2

f1
2 + 1

2
f1
3 −

√
3

2
− 1

2

1CCCA ,
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i.e. (see Fig. 3) A0(1, 0, 0, 0), A03(1, 0, 0, 1), Aφ
03(1, f1

3 ,−
√

3
2

, 1
2
), Aψ

0 (1, 0,
√

3
2

, 1
2
),

Aφψ
03 (1, f1

3 , 0, 0), Aψφ
0 (1,

√
3

2
f1
2 + 1

2
f1
3 , 0, 1),

ΦΨΦ = ΨΦΨ =

0BBB@
1

√
3

2
f1
2 + 1

2
f1
3 0 1

0 1 0 0

0 1
2
f1
2 +

√
3

2
f1
3 −1 0

0 −
√

3
2

f1
2 + 1

2
f1
3 0 −1

1CCCA , (5.10)

T =

0BB@1
√

3
2

f1
2 + 3

2
f1
3 0 0

0 1 0 0
0 0 1 0
0 0 0 1

1CCA . (5.11)

5.4.1. Discussion on the center. This center generator, the translation τ above, is trivial
if and only if f1

2 = −√3f1
3 .

Then we have Euclidean plane triangle group T (2, 3, 6) acting in plane A0A2A3 by pro-
jecting the action of φ and ψ onto this plane.

If (f1
2 , f1

3 ) 6= (0, 0) then f1
3 = 1

2
can be chosen by our projective freedom. Then we get

Φ =

0BB@1 0 0 0
0 1 0 0

0 −
√

3
2

1
2

√
3

2

0 1
2

−
√

3
2

1
2

1CCA , Ψ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2

1CCCA , (5.12)

ΦΨ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 −
√

3
2

− 1
2

√
3

2

0 1
2

−
√

3
2

− 1
2

1CCCA , ΨΦ =

0BB@1 − 1
2

0 1
0 1 0 0

0 0 − 1
2

√
3

2

0 1 −
√

3
2

− 1
2

1CCA ,

ΦΨΦ = ΨΦΨ =

0BB@1 − 1
2

0 1
0 1 0 0
0 0 −1 0
0 1 0 −1

1CCA .

Thus, by modification of Fig. 3 we can compute the possible vertices of polyhedron P .

A0(1, 0, 0, 0), A03(1, 0, 0, 1), Aφ
03

�
1,

1

2
,−
√

3

2
,
1

2

�
,

Aψ
0

�
1, 0,

√
3

2
,
1

2

�
, Aφψ

03

�
1,

1

2
, 0, 0

�
, Aψφ

0

�
1,−1

2
, 0, 1

�
.

Namely, we see that Aψφ
0 is “under” A03, Aφψ

03 lies “over” A0, by the second (A1)
coordinate. We can check that φψφ = ψφψ is an additional halfturn with axis pair
(x0, x1, 0, x3 = 1

2
x0) and (0, y1, y2, y3 = −2y1). An extra 3-rotation φψ occurs with

point axis (x0 = 2
√

3x2, x1, x2, x3 =
√

3x2), ψφ is also a 3-rotation with point axis



Projective realizations of cone-manifolds 29

(y0 = −2
√

3y2, y1, y2, y3 = −√3y2). Now the horospheres of center A1(0, 1, 0, 0) will be
invariant, and the invariant polarity by (3.8) will be hyperbolic, as follows:

(bij) =

0BB@ 0 −b 0 0
−b b11 0 −b
0 0 b 0
0 −b 0 b

1CCA , i.e. (bij) =

0BB@ 0 −1 0 0

−1 b
11

0 −1
0 0 1 0
0 −1 0 1

1CCA (5.13)

in case b > 0 by projective freedom. Introducing b11/b = b
11

, the invariant quadratic
form for planes biξi will be

ξib
ijξj = (ξ3 − ξ1)

2 + ξ2ξ2 + (b
11 − 1)

�
ξ1 − 1

b
11 − 1

ξ0

�2

− 1

b
11 − 1

ξ0ξ0

if b
11 − 1 6= 0, or else if b

11
= 1 then

ξib
ijξj = (ξ3 − ξ1)

2 + ξ2ξ2 +
1

2
(ξ1 − ξ0)

2 − 1

2
(ξ1 + ξ0)

2 .

The signature is (− + ++) in both cases, i.e. it is hyperbolic (Table 1). Its inverse
(bij)−1 = aij describes the absolute point quadric:

(aij) =

0BB@1− b
11 −1 0 −1

−1 0 0 0
0 0 1 0
−1 0 0 1

1CCA ,

a11 = 0 means that A1 lies on the absolute point quadric of H3. Then either

ηiaijη
j = (η3 − η0)2 + η2η2 − b

11
�

η0 +
1

b
11 η1

�2

+
1

b
11 η1η1

if b
11 6= 0, or

ηiaijη
j = (η3 − η0)2 + η2η2 +

1

2
(η0 − η1)2 − 1

2
(η0 + η1)2

if b
11

= 0, will be an adequate absolute point quadric for H3, respectively. Our group
generated by φ and ψ in (5.12) acts as a Euclidean plane triangle group T (2, 3, 6) gener-
ated by rotations on π, 2π/3, and π/3 at vertices of the triangle with angles π/2, π/3,
and π/6, on the horospheres centred in A1 at the absolute, We know that the intrinsic
geometry on a horosphere is Euclidean.

We do not get adequate compact space, however we see interesting phenomena.

If b = 0 in (5.13) then b11 > 0 is still possible for Nil-realization. We get again the
Euclidean plane triangle group T (2, 3, 6) with non-compact fundamental domain in Nil,
non-adequate for us now.

If (f1
2 , f1

3 ) = (0, 0) in (5.11), i.e.

Φ =

0BB@1 0 0 0
0 1 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2

1CCA , Ψ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2

1CCCA ,
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ΦΨ =

0BBB@
1 0

√
3

2
1
2

0 1 0 0

0 0 − 1
2

√
3

2

0 0 −
√

3
2

− 1
2

1CCCA , ΨΦ =

0BB@1 0 0 1
0 1 0 0

0 0 − 1
2

√
3

2

0 1 −
√

3
2

− 1
2

1CCA ,

ΦΨΦ = ΨΦΨ =

0BB@1 0 0 1
0 1 0 0
0 0 −1 0
0 0 0 −1

1CCA ,

then we get

A0(1, 0, 0, 0), A03(1, 0, 0, 1), Aφ
03

�
1, 0,−

√
3

2
,
1

2

�
,

Aψ
0

�
1, 0,

√
3

2
,
1

2

�
, Aφψ

03 (1, 0, 0, 0) = A0, Aψφ
0 (1, 0, 0, 1) = A03.

The skech in Fig. 3 is degenerate, non-adequate for us, although (3.3) and (3.8) with

(bij) =

0BB@0 0 0 0
0 b11 0 0
0 0 b 0
0 0 0 b

1CCA
provides invariant (under φ, ψ) polarities e.g. Euclidean geometry as well.

5.4.2. The proper Nil-geometric realization. This occurs in formula (5.11) if the centre

generated by τ = (φψ)3 = (ψφ)3 is not trivial, i.e. f1
2 6= −√3f1

3 .

As we have already seen, the projection of group action by 〈φ, ψ〉 on the plane A0A2A3 =
b1 is just the Euclidean plane triangle group T (2, 3, 6). Now φ, ψ are 6-rotations (Figures 2,
3). By (5.10) and (5.11) we get�

1, 0, 0,
1

2

�
φψφ =

�
1,

√
3

4
f1
2 +

3

4
f1
3 , 0,

1

2

�
,�

1, 0, 0,
1

2

�
τ =

�
1,

√
3

2
f1
2 +

3

2
f1
3 , 0,

1

2

�
.

Therefore φψφ = ψφψ is a 21 screw motion, i.e. 2-rotation about axis through A1 and
(1, 0, 0, 1

2
), composed by a half translational part of τ , according to Figures 2–3 indeed.

Similarly, �
1, 0,

√
3

6
,
1

2

�
φψ =

�
1,

√
3

6
f1
2 +

1

2
f1
3 ,

√
3

6
,
1

2

�
,�

1, 0,

√
3

6
,
1

2

�
τ =

�
1,

√
3

2
f1
2 +

3

2
f1
3 ,

√
3

6
,
1

2

�
shows φψ as a 31 screw motion, i.e. a 3-rotation about axis through A1 and (1, 0,

√
3

6
, 1

2
),

composed by the third part of τ . The transform ψφ is also a 31 srew motion with screw

axis through A1 and (1, 0,−
√

3
6

, 1
2
), see Figures 2, 3 again. For the fundamental domain
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in Fig. 3 we choose e.g. (f1
2 , f1

3 ) = (0, 2). Then we have the vertices

A0(1, 0, 0, 0), A03(1, 0, 0, 1), Aφ
03

�
1, 2,−

√
3

2
,
1

2

�
,

Aψ
0

�
1, 0,

√
3

2
,
1

2

�
, Aφψ

03 (1, 2, 0, 0), Aψφ
0 (1, 1, 0, 1).

Let U(1, 1,
√

3
6

, 1
2
) be chosen, then Uφ(1, 2,−

√
3

6
, 1

2
); let V (1, 3

2
,−

√
3

6
, 1

2
) be placed under

Uφ, then V ψ(1, 3
2
,
√

3
6

, 1
2
) will be over U . The screw component of φψ is 1

2
+ 1

2
= 1, indeed,

as desired to an adequate fundamental domain P , bounded by triangulated star-shape
faces. This construction was indicated to Fig. 3.

The invariant polarity or quadratic form by B = (bij) leads to b11 6= 0 but zeros at other
entries by (3.8), according to our Nil interpretation (see [12] and Table 1).

The case α = 5π
3

can be treated formally in “analogous way” (see [13] and [20] for a
non-trivial model of Nil-geometry, not detailed here). Formally, the only change is that

cos 5π
3

= 1
2
, sin 5π

3
= −

√
3

2
.

Thus we have completely discussed C3/1(α).

Theorem 5.9. There are geometric structures on C3/1(α) with a cone angle 0 < α < 2π.

Namely, for π
3

< α < 5π
3

there exists spherical geometry. For α = π
3

we get Nil orbifold

with a free distance parameter. For 0 < α < π
3

there exists ŜL2(R)-geometry. For α = 5π
3

we can introduce Nil-geometry (not detailed here) and for 5π
3

< α < 2π we get ŜL2(R)
geometry in a formal way by our projective-spherical model.

This result implies the following geometric structures on orbifolds.

Corollary 5.10. Orbifold C3/1(α) with α = 2π
n

is spherical for n = 2, 3, 4, 5; Nil-orbifold

for n = 6, and ŜL2(R)-orbifold for n > 7.

By Lemma 5.6 in cases of spherical orbifolds we have the following angle-lengths pairs:
(α, `) = (π, 2π); (α, `) = ( 2π

3
, π); (α, `) = ( 2π

4
, π

2
); (α, `) = ( 2π

5
, π

5
) for essential angle α

and length ` of the singular set.

6. The double link K(4, 1)

The double link K(4, 1) is presented in Fig. 9. By Minkus construction polyhedron P4/1

looks at Fig. 10.

The double link K(4, 1) is presented in Fig. 9 and the corresponding Minkus polyhedron
is described in Fig. 10. Applying Wirtinger algorithm to the link diagram in Fig. 9, it
easy to see that π1(S

3 \K(4, 1)) can be presented with four generators x, y, z, w, and
four relations as follows:

y−1w−1yx = 1, x−1y−1xz = 1, z−1x−1zw = 1, w−1z−1wy = 1

from which w = yxy−1, z = x−1yx can be expressed. Thus, relations

(x−1y−1x) x−1 (x−1yx) (yxy−1) = 1 = (yx−1y−1) (x−1y−1x) (yxy−1) y
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1
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3

4

x
z

w
y

Figure 9. The double link K(4, 1)
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A
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1

4

3

8

7

A

Figure 10. The polyhedron P4/1

hold. Finally, we get one relation for the generators x and y: xyxy = yxyx, expressing
the center generator in two forms.

This presentation for π1(S
3 \ K(4, 1)) is equivalent to that of Minkus polyhedron P4/1

by identifying generators φ and ψ and defining relation

φψφψ = ψφψφ. (6.1)

Many steps of studying geometric structures on C4/1(α, β) are analogous to the above
considered case C3/1(α). So, we will sketch details, emphasizing the differences only.
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6.1. The case of skew axes

The projective-spherical interpretation of φ and ψ in the case of skew axes has been
introduced by (2.1) and (2.2). The relation (6.1) provides the block equations:

MβG + GFG + GMα = 0, FMβ + FGF + MαF = 0 (6.2)

and the consequences

FGMα −MαFG = 0, MβGF −GFMβ = 0. (6.3)

6.1.1. Cases α 6= π 6= β (mod 2π). Then say, FG shall have the form

FG = c ·
�

cos γ sin γ
− sin γ cos γ

�
= c ·Mγ (6.4)

for some γ and 0 6 c ∈ R. Hence the second equation of (6.2) for components of F by
(2.1) has a matrix form

(f0
2 , f1

2 ; f0
3 , f1

3 )·

·

0BB@ D sin β −c · sin γ − sin α 0
− sin β D 0 −c · sin γ − sin α

c · sin γ + sin α 0 D sin β
0 c · sin γ + sin α − sin β D

1CCA =

= (0, 0; 0, 0).

(6.5)

with D = cos α + cos β + c · cos γ.

For non-trivial solution of (6.5) we have either

cos α + cos β + c · cos γ = 0, sin α + sin β + c · sin γ = 0, (6.6)

or (just to opposite orientation β 7→ −β)

cos α + cos β + c · cos γ = 0, sin α− sin β + c · sin γ = 0, (6.7)

to be fulfilled by the argument of zero determinant in (6.5). Thus, step-by-step follow
from (6.6) and (6.5)

F = f ·Mµ, G = g ·Mν , (6.8)

f, g > 0, f · g = c = ±2 cos α−β
2

, γ = µ + ν (mod 2π). In the case of (+) we have
α+β

2
= γ + π (mod 2π), and in the case of (-) we have α+β

2
= γ (mod 2π).

Equations (6.7) and (6.5) lead analogously to

F = f ·
�

1 0
0 −1

�
·Mµ, G = g ·

�
1 0
0 −1

�
·Mµ, (6.9)

f, g > 0, f · g = c = ±2 cos α+β
2

, γ = ν − µ (mod 2π). In the case of (+) we have
α−β

2
= γ + π (mod 2π), and in the case of (-) we have α−β

2
= γ (mod 2π), where only

the second case α−β
2

= γ = ν − µ (mod 2π) leads to solution of the opposite orientation
β 7→ −β.
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6.1.2. Case of formulas (6.5) and (6.6). In (6.8) we consider the (+) case, first c =

2 cos α−β
2

> 0, and compute the matrix, presenting the generator of the center:

ΦΨΦΨ = ΨΦΨΦ =

�
Mα+β−π 02

02 Mα+β−π

�
. (6.10)

This is independent from F and G, moreover, the center is trivial if α + β = π (mod 2π).
We shall have a freedom in (6.13), later, to have economical generators φ and ψ in (2.1)
and (2.2), and a nice fundamental polyhedron P4/1 in Fig. 10. We may choose

F =

r
2 cos

α− β

2
·M( α

2 −π
2 ), G =

r
2 cos

α− β

2
·M

( β
2−π

2 )
. (6.11)

Thus we concretize polyhedron P4/1 as well, with its north pole N on axis of φ and south
pole S on axis of ψ, as follows in (6.12).

Lemma 6.1 (c = 2 cos α−β
2

> 0). The vertices and poles N and S of fundamental polyhe-
dron P4/1 can be chosen as follows:

A1(0, 1, 0, 0), Aψ−1

1

 
sin β, cos β,−

r
2 cos

α− β

2
cos

β

2
,

r
2 cos

α− β

2
sin

β

2

!
,

Aψ−1φ−1

1

 
− sin α,− cos α,−

r
2 cos

α− β

2
cos(α +

β

2
),

r
2 cos

α− β

2
sin(α +

β

2
)

!
,

Aψ−1φ−1ψ−1

1 (− sin(α + β),− cos(α + β), 0, 0), A3(0, 0, 0, 1),

Aφ−1

3

 
−
r

2 cos
α− β

2
cos

α

2
,

r
2 cos

α− β

2
sin

α

2
, sin α, cos α

!
,

Aφ−1ψ−1

3

 
−
r

2 cos
α− β

2
cos(

α

2
+ β),

r
2 cos

α− β

2
sin(

α

2
+ β),− sin β,− cos β

!
,

Aφ−1ψ−1φ−1

3 (0, 0,− sin(α + β),− cos(α + β)),

N

�
sin

α + β − π

2
, cos

α + β − π

2
, 0, 0

�
, S

�
0, 0, sin

α + β − π

2
, cos

α + β − π

2

�
.

(6.12)

Now comes the invariant polarity under φ and ψ on the base of Section 3. Formulas (3.5)
and (3.6) provide

B02 =
b

2 sin β
2

·M
(−π

2−
β
2 )
·G =

b

2 sin α
2

· F T ·M( α
2 + π

2 ), (6.13)

and (6.11) just implies easily

B =

0BBBBBB@
sin β

2
0 −

q
1
2

cos α−β
2

0

0 sin β
2

0 −
q

1
2

cos α−β
2

−
q

1
2

cos α−β
2

0 sin α
2

0

0 −
q

1
2

cos α−β
2

0 sin α
2

1CCCCCCA . (6.14)
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The invariant quadratic form for a “variable plane” biξi is

ξib
ijξj = sin

α

2

 
ξ2 − 1

sin α
2

r
1

2
cos

α− β

2
ξ0

!2

+ sin
β

2

 
ξ1 − 1

sin β
2

r
1

2
cos

α− β

2
ξ3

!2

− 1

2 sin α
2

cos
α + β

2
ξ0ξ0 − 1

2 sin β
2

cos
α + β

2
ξ3ξ

3,

(6.15)

for −π
2

< α−β
2

< π
2

(mod 2π), i.e. (+) case in (6.8).

Hence we look for the signature of bij at (6.15):

(i) S3(+ + ++), π
2

< α+β
2

< 3π
2

(mod 2π), −π
2

< α−β
2

< π
2
,

(ii) ŜL2(R)(−−++), −π
2

< α+β
2

< π
2

(mod 2π), −π
2

< α−β
2

< π
2
,

(iii) (0 0 ++), α+β
2

= ±π
2
, i.e. with trivial center, needs extra discussions with intersecting

axes of φ and ψ, later on.

Thus we can overview the spherical S3-realizations and ŜL2(R)-realizations for any 0 <

α, β < 2π, α+β
2

6= ±π
2

(mod 2π) above in the projective-spherical space PS3(R). The
vertices and poles of P4/1 in Lemma 6.1, and the other data of P4/1 need some discussions,
of course. We have also freedom in choosing P4/1.

Now consider the (-) case in (6.8)

c = − cos
α− β

2
> 0, γ = µ + ν =

α + β

2
(mod 2π) (6.16)

The generator of the center will be again as that in (6.10). Now we have to choose for
Φ and Ψ, by (2.1) and (2.2), respectively: F = f ·Mµ, and G = g ·Mν , with f, g > 0,
fg = c, and angles µ, ν above.

But our requirement for invariant polarity (bij) in (6.13)

B02 =
b · g

2 sin β
2

M
(−π

2−
β
2 +ν)

=
b · f

2 sin α
2

M( α
2 + π

2−µ)

would imply −π
2
− β

2
+ ν = α

2
+ π

2
−µ (mod 2π), i.e. 0 = α

2
+ β

2
+ π−µ− ν = π (mod 2π)

– a contradiction to (6.16).

6.1.3. Case of formulas (6.5) and (6.7). . In (6.9): c = −2 cos α+β
2

> 0, γ = ν − µ =
α−β

2
(mod 2π) leads to solution for opposite orientation β 7→ −β.

Formally, we get the same solution (i)–(iii) as in case 6.1.1 above. For (iii) we need extra
discussion as indicated.

6.1.4. Cases α = π or β = π. These cases can be considered as particular ones of (i)
and (ii).
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6.2. Spherical geometry

For the spherical realization we can start with our fundamental polyhedron P4/1 given
by Lemma 6.1 with α = β = π analogously to Fig. 7a. Then we have (see also Fig. 10):

N = A0(1, 0, 0, 0), S = A2(0, 0, 1, 0), A1(0, 1, 0, 0), Aψ−1

1 (0,−1, 0,
√

2),

Aψ−1φ−1

1 (0, 1, 0,−
√

2), Aψ−1φ−1ψ−1

1 (0,−1, 0, 0), A3(0, 0, 0, 1),

Aφ−1

3 (0,
√

2, 0,−1), Aφ−1ψ−1

3 (0,−
√

2, 0, 1), Aφ−1ψ−1φ−1

3 (0, 0, 0,−1).

The last eight points lie on the line (main circle) A1A3 in the intersection of planes (b0),
(b2). For their angle β02 we have by (6.14) as formerly

< b0, b2 >= cos(π − β02) = − cos β02 = − 1√
2
, i.e. β02 =

π

4
.

That means, the points in equivalent open segments (Fig. 10) have ball-like neighborhood
by our “lens” construction.

Of cause, other α, β in (i) deform our P4/1 above (see Fig. 7b) with star-like upper and
lower faces formed out as triangulations from the corresponding poles N and S in axes
of φ and ψ, respectively.

The inverse matrix (aij) = (bij−1
) from (6.14) is

(aij) =
−2

cos α+β
2

·

0BBBBBB@
sin α

2
0

q
1
2

cos α−β
2

0

0 sin α
2

0
q

1
2

cos α−β
2q

1
2

cos α−β
2

0 sin β
2

0

0
q

1
2

cos α−β
2

0 sin β
2

1CCCCCCA . (6.17)

The length of axis of φ with angle α is `α =
\

A1NAψ−1φ−1ψ−1

1 = α + β − π and `β =
\

A3SAφ−1ψ−1φ−1

3 is the same for axis length of ψ, both are between 0 and 3π.

Corollary 6.2. The following orbifolds C4/1(α, β) admit spherical geometry:
12) α = β = π; `α = `β = π; the group is of order 8.
13) α = π, β = 2π

3
; `α = `β = 2π

3
; the group is of order 24.

1n) α = π, β = 2π
n

; `α = `β = 2π
n

; the group is of order 8n, n ∈ N, n > 4.

2) α = 2π
3

= β; `α = `β = π
3
; the group is of order 24.

3) α = 2π
3

, β = π
2
; `α = `β = π

6
; the group is of order 48.

4) α = 2π
3

, β = 2π
5

; `α = `β = π
15

, the group is of order 120.

6.3. ŜL2(R)-geometry

For ŜL2(R) realizations, the signature of the quadratic form in (6.15) is (−−++), i.e.

−π

2
<

α− β

2
<

π

2
, −π

2
<

α + β

2
<

π

2
(mod 2π). (6.18)

We can use the hyperboloid model as in Section 5.2, Fig. 8 with the machinery elaborated
in [12]. This is on the base of projective metric induced by bilinear forms (scalar products)
of (bij) in (6.14) and its inverse (aij) in (6.17).
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Formally, we have the fundamental polyhedron P4/1 in (6.12) with its triangulation by

N and S there in the sense of universal covering space. That means a fiber line (over H2)
through point X(x0, x1, x2, x3) is defined by

(x0x1, x2, x3) ·

0BB@cos φ sin φ 0 0
sin φ cos φ 0 0

0 0 cos φ − sin φ
0 0 sin φ cos φ

1CCA
where φ ∈ R and

−x0x0 − x1x1 + x2x2 + x3x3 < 0,

in an appropriate orthogonal basis pairs (bij) and (aij) by formulas (6.14) and (6.17),
respectively (Fig. 8).

By (6.18) we get the following.

Corollary 6.3. There is an infinite series of orbifolds C4/1(α, β) admitting ŜL2(R)-geomet-
ry. The first examples are:
1) α = 2π

3
, β = 2π

7
; `α = `β = | 2π

3
+ 2π

7
− π| = π

21
;

2) α = 2π
3

, β = 2π
8

; `α = `β = π
12

;

3) α = 2π
4

, β = 2π
5

; `α = `β = π
10

;

4) α = 2π
3

, β = 2π
9

; `α = `β = π
9
.

6.4. Intersecting axes, Nil-geometry

Now we choose φ and ψ by formulas (2.6) and (2.7), respectively (see Figures 2 and 3).
We write (φψ)2 = (ψφ)2 in block matrix form, first in general. Then we shall follow the
arguments shortly as in case C3/1 of Section 5, but for C4/1(α, β) now.

Let us start with

(ΦΨ)2 =

�
12 + GF G(12 + FG + MαMβ)

(12 + FG + Mα + Mβ)F FG(12 + FG + 2 ·MαMβ) + (Mα + Mβ)2

�
(ΨΦ)2 =

�
(12 + GF )2 + GMαMβF (12 + GF )GMα + GMαMβMα

MβF (12 + GF ) + MβMαMβF MβFGMα + (MβMα)2

�
.

(6.19)

Step-by-step we get in (6.19[02])

G(12 + FG + MαMα)(12 −Mα) = 0, i.e., G(12 + FG + MαMα) = 0. (6.19[02])

Then (6.19[22]) yields

Mβ(FGMα) = (FGMα)Mβ .

(i). Either β = π, then FGMα is arbitrary yet;

(ii). or β 6= π and FGMα = e ·
�

cos ε sin ε
∓ sin ε ± cos ε

�
, i.e. FG = 02 and so f0

2 = f0
3 = 0.
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In the (ii) case α + β = π (mod 2π) follows, and we get equality in (6.19). Moreover, the
central element in

(ΦΨ)2 =

0BB@1 sin β · f1
2 + (1− cos β) · f1

3 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA = τ. (6.20)

6.4.1. Trivial center. The center of π1(S
3 \K(4, 1)) is trivial if

2 sin
β

2

�
cos

β

2
· f1

2 + sin
β

2
· f1

3

�
= 0,

i.e., f1
2 /f1

3 = − tan β
2
, or f1

2 = f1
3 = 0.

In the same way as in Section 5, this trivial center does not lead to compact cone-manifold
on C4/1, although phenomena with arising hyperbolic, Nil and Euclidean structures may
occur.

6.4.2. Non-trivial center for proper Nil geometric realizations. Let us consider the non-
trivial central element τ in (6.20) iff

f1
2 /f1

3 6= tan
β

2
= − cot

α

2
, (6.21)

since α + β = π (mod2π). The projection of group action, generated by φ and ψ, is an
Euclidean plane action on A0A1A3 in Fig. 2. A picture, analogous to Fig. 3 would be
difficult to draw. We have two orbifold candidates:

Corollary 6.4. The following orbifolds C4/1(α, β) admit Nil geometry:

1) α = π
2
, β = π

2
, corresponding to Euclidean triangle group T (2, 4, 4); a denotation for

the orbifold group can be 2144.

2) α = 2π
3

, β = π
3
, corresponding to Euclidean triangle group T (2, 3, 6); denotation of the

orbifold group can be 2136.

(See also [20] for computations in Nil geometry, e.g. for geometric distances, etc.)

For a more detailed description of P4/1 now, we have to follow strategy of Fig. 10 and of

Lemma 6.1. But now, with Fig. 2 by intersecting axes, we choose f1
2 = 0, f1

3 = 1, with a
freedom, and compute:

A0(1, 0, 0, 0), Aψ
0 (1, 0, sin β, 1− cos β), Aψφψ

0 (1, 1− cos β, 0, 0),

Aψφ
0 (1, 1− cos β,− sin α, 1− cos α), Aφ

03(1, 1,− sin α, cos α),

A03(1, 0, 0, 1), Aφψ
03 (1, 1, sin β,− cos β), Aφψφ

03 (1, 1− cos β, 0, 1).

(6.22)

As we see at (6.20) for f1
2 = 0, f1

3 = 1, the translation τ has (1 − cos β)–component in

“direction” A1 (Fig. 2). The “midpoint” of axis A0A
ψφψ
0 is N(1, 1

2
(1 − cos β), 0, 0) as a

former north pole, the analogous south pole is S(1, 1
2
(1− cos β), 0, 1) on A03A

φψφ
03 . Then

come adequate star-like triangulation from N and S, analogous to that of Fig. 3.
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6.4.3. The case β = π (in above (i)). In this case with arbitrary FGMα cannot satisfy
G(12 + FG + MαMβ) = 0 in (6.19[02]) with α 6= 0 (mod 2π), as one can check. Thus, the
equality in (6.17) would not hold.

Summarizing discussions for P4/1(α, β) and C4/1(α, β) we conclude:

Theorem 6.5. For α, β ∈ (0, 2π) there are the following geometric structures on C4/1(α, β):

-spherical geometry if −π
2

< α−β
2

< π
2

and π
2

< α+β
2

< 3π
2

(mod 2π);

-Nil geometry if α+β
2

= ±π
2

(mod 2π) (with a free distance parameter of both axis lengths);

-ŜL2(R) geometry if −π
2

< α+β
2

< π
2
.

This implies formerly mentioned geometric structures on orbifolds, described above in
Corollaries 6.2, 6.3, 6.4.
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