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Abstract. In image compression and feature extraction, linear expan-
sions are standardly used. It was recently pointed out by Lee and Seung
that the positivity or non-negativity of a linear expansion is a very power-
ful constraint, that seems to lead to sparse representations for the images.
Their technique, called Non-negative Matrix Factorization (NMF), was
shown to be a useful technique in approximating high dimensional data
where the data are comprised of non-negative components. We propose
here a new variant of the NMF method for learning spatially localized,
sparse, part-based subspace representations of visual patterns. The algo-
rithm is based on positively constrained projections and is related both
to NMF and to the conventional SVD or PCA decomposition. Two it-
erative positive projection algorithms are suggested, one based on mini-
mizing Euclidean distance and the other on minimizing the divergence of
the original data matrix and its non-negative approximation. Experimen-
tal results show that P-NMF derives bases which are somewhat better
suitable for a localized representation than NMF.

1 Introduction

For compressing, denoising and feature extraction of digital image windows,
one of the classical approaches is Principal Component Analysis (PCA) and its
extensions and approximations such as the Discrete Cosine Transform. In PCA
or the related Singular Value Decomposition (SVD), the image is projected on
the eigenvectors of the image covariance matrix, each of which provides one
linear feature. The representation of an image in this basis is distributed in the
sense that typically all the features are used at least to some extent in the
reconstruction.

Another possibility is a sparse representation, in which any given image win-
dow is spanned by just a small subset of the available features [1, 2, 6, 10]. This
kind of representations have some biological significance, as the sparse features
seem to correspond to the receptive fields of simple cells in the area V1 of the
mammalian visual cortex. This approach is related to the technique of Indepen-
dent Component Analysis [3] which can be seen as a nongaussian extension of
PCA and Factor Analysis.
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Recently, it was shown by Lee and Seung [4] that positivity or non-negativity
of a linear expansion is a very powerful constraint that also seems to yield
sparse representations. Their technique, called Non-negative Matrix Factoriza-
tion (NMF), was shown to be a useful technique in approximating high di-
mensional data where the data are comprised of non-negative components. The
authors proposed the idea of using NMF techniques to find a set of basis func-
tions to represent image data where the basis functions enable the identification
and classification of intrinsic “parts” that make up the object being imaged by
multiple observations. NMF has been typically applied to image and text data
[4, 9], but has also been used to deconstruct music tones [8].

NMF imposes the non-negativity constraints in learning the basis images.
Both the values of the basis images and the coefficients for reconstruction are all
non-negative. The additive property ensures that the components are combined
to form a whole in the non-negative way, which has been shown to be the part-
based representation of the original data. However, the additive parts learned
by NMF are not necessarily localized.

In this paper, we start from the ideas of SVD and NMF and propose a novel
method which we call Projective Non-negative Matrix Factorization (P-NMF),
for learning spatially localized, parts-based representations of visual patterns.
First, in Section 2, we take a look at a simple way to produce a positive SVD
by truncating away negative parts. Section 3 briefly reviews Lee’s and Seung’s
NMF. Using this as a baseline, we present our P-NMF method in Section 4.
Section 5 gives some experiments and comparisons, and Section 6 concludes the
paper.

2 Truncated Singular Value Decomposition

Suppose that our data1 is given in the form of an m×n matrix V. Its n columns
are the data items, for example, a set of images that have been vectorized by row-
by-row scanning. Then m is the number of pixels in any given image. Typically,
n > m. The Singular Value Decomposition (SVD) for matrix V is

V = UDÛT , (1)

where U (m × m) and Û (n × m) are orthogonal matrices consisting of the
eigenvectors of VVT and VT V, respectively, and D is a diagonal m×m matrix
where the diagonal elements are the ordered singular values of V.

Choosing the r largest singular values of matrix V to form a new diagonal
r × r matrix D̂, with r < m, we get the compressive SVD matrix X with given
rank r,

X = UD̂ÛT . (2)

1 For clarity, we use here the same notation as in the original NMF theory by Lee and
Seung
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Now both matrices U and Û have only r columns corresponding to the r largest
eigenvalues. The compressive SVD gives the best approximation X of the matrix
V with the given compressive rank r.

In many real-world cases, for example, for images, spectra etc., the original
data matrix V is non-negative. Then the above compressive SVD matrix X fails
to keep the nonnegative property. In order to further approximate it by a non-
negative matrix, the following truncated SVD (tSVD) is suggested. We simply
truncate away the negative elements by

X̂ =
1
2
(X + abs(X)). (3)

However, it turns out that typically the matrix X̂ in (3) has higher rank than X.
Truncation destroys the linear dependences that are the reason for the low rank.
In order to get an equal rank, we have to start from a compressive SVD matrix
X with lower rank than the given r. Therefore, to find the truncated matrix
X̂ with the compressive rank r, we search all the compressive SVD matrices X
with the rank from 1 to r and form the corresponding truncated matrices. The
one with the largest rank that is less than or equal to the given rank r is the
truncated matrix X̂ what we choose as the final non-negative approximation.
This matrix can be used as a baseline in comparisons, and also as a starting
point in iterative improvements. We call this method truncated SVD (t-SVD).

Note that the tSVD only produces the non-negative low-rank approximation
X̂ to the data matrix V, but does not give a separable expansion for basis vectors
and weights as the usual SVD expansion.

3 Non-negative Matrix Factorization

Given the nonnegative m × n matrix V and the constant r, the Nonnegative
Matrix Factorization algorithm (NMF) [4] finds a nonnegative m× r matrix W
and another nonnegative r× n matrix H such that they minimize the following
optimality problem:

min
W,H≥0

||V −WH||. (4)

This can be interpreted as follows: each column of matrix W contains a basis
vector while each column of H contains the weights needed to approximate the
corresponding column in V using the basis from W. So the product WH can
be regarded as a compressed form of the data in V. The rank r is usually chosen
so that (n + m)r < nm.

In order to estimate the factorization matrices, an objective function defined
by the authors as Kullback-Leibler divergence is

F =
m∑

i=1

n∑
µ=1

[Viµ log(WH)iµ − (WH)iµ]. (5)

This objective function can be related to the likelihood of generating the
images in V from the basis W and encodings H. An iterative approach to
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reach a local maximum of this objective function is given by the following
rules [4, 5]:

Wia ← Wia

∑
µ

Viµ

(WH)iµ
Haµ,Wia ← Wia∑

j Wja
(6)

Haµ ← Haµ

∑
i

Wia
Viµ

(WH)iµ
. (7)

The convergence of the process is ensured2. The initialization is performed
using positive random initial conditions for matrices W and H.

4 The Projective NMF Method

4.1 Definition of the Problem

The compressive SVD is a projection method. It projects the data matrix V
onto the subspace of the eigenvectors of the data covariance matrix. Although
the truncated method t-SVD outlined above works and keeps nonnegativity,
it is not accurate enough for most cases. To improve it, for the given m × n
nonnegative matrix V, m < n, let us try to find a subspace B of Rm, and
an m × m projection matrix P with given rank r such that P projects the
nonnegative matrix V onto the subspace B and keeps the nonnegative property,
that is, PV is a nonnegative matrix. Finally, it should minimize the difference
||V −PV||. This is the basic idea of the Projective NMF method.

We can write any symmetrical projection matrix of rank r in the form

P = WWT (8)

with W an orthogonal (m × r) matrix3. Thus, we can solve the problem by
searching for a nonnegative (m× r) matrix W. Based on this, we now introduce
a novel method which we call Projective Non-negative Matrix Factorization (P-
NMF) as the solution to the following optimality problem

min
W≥0

||V −WWT V||, (9)

where || · || is a matrix norm. The most useful norms are the Euclidean dis-
tance and the divergence of matrix A from B, defined as follows: The Euclidean
distance between two matrices A and B is

2 The matlab program for the above update rules is available at
http://journalclub.mit.edu under the ”Computational Neuroscience” discussion
category.

3 This is just notation for a generic basis matrix; the solution will not be the same as
the W matrix in NMF.
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||A−B||2 =
∑
i,j

(Aij −Bij)2, (10)

and the divergence of A from B

D(A||B) =
∑
i,j

(Aij log
Aij

Bij
−Aij + Bij). (11)

Both are lower bounded by zero, and vanish if and only if A = B.

4.2 Algorithms

We first consider the Euclidean distance (10). Define the function

F =
1
2
||V −WWT V||2. (12)

Then the unconstrained gradient of F for W, ∂F
∂wij

, is given by

∂F
∂wij

= −2(VVT W)ij + (WWT VVT W)ij + (VVT WWT W)ij . (13)

Using the gradient we can construct the additive update rule for minimization,

Wij ← Wij − ηij
∂F

∂wij
(14)

where ηij is the positive step size.
However, there is nothing to guarantee that the elements Wij would stay

non-negative. In order to ensure this, we choose the step size as follows,

ηij =
Wij

(WWT VVT W)ij + (VVT WWT W)ij
. (15)

Then the additive update rule (14) can be formulated as a multiplicative update
rule,

Wij ← Wij
(VVT W)ij

(WWT VVT W)ij + (VVT WWT W)ij
. (16)

Now it is guaranteed that the Wij will stay nonnegative, as everything on the
right-hand side is nonnegative.

For the divergence measure (11), we follow the same process. First we calcu-
late the gradient

∂D(V||WWT V)
∂wij

=
∑

k

(
(WT V)jk +

∑
l

WljVik

)
(17)

−
∑

k

Vik(WT V)jk/(WWT V)ik (18)

−
∑

k

Vik

∑
l

WljVlk/(WWT V)lk. (19)
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Using the gradient, the additive update rule becomes

Wij ← Wij + ζij
∂D(V||WWT V)

∂wij
(20)

where ζij is the step size. Choosing this step size as following,

ζij =
Wij∑

k Vik [(WT V)jk/(WWT V)ik +
∑

l WljVlk/(WWT V)lk]
. (21)

we obtain the multiplicative update rule

Wij ← Wij

∑
k

(
(WT V)jk +

∑
l WljVik

)∑
k Vik((WT V)jk/(WWT V)ik +

∑
l WljVlk/(WWT V)lk)

.

(22)
It is easy to see that both multiplicative update rules (16) and (22) can ensure
that the matrix W is non-negative.

4.3 The Relationship Between NMF and P-NMF

There is a very obvious relationship between our P-NMF algorithms and the
original NMF. Comparing the two optimality problems, P-NMF (9) and the
original NMF (4), we see that the weight matrix H in NMF is simply replaced
by WT V in our algorithms. Both multiplicative update rules (16) and (22) are
obtained similar to Lee and Seung’s algorithms [5]. Therefore, the convergence of
these two algorithms can also be proved following Lee and Seung [5] by noticing
that the coefficient matrix H is replaced by WV.

4.4 The Relationship Between SVD and P-NMF

There is also a relationship between the P-NMF algorithm and the SVD. For
the Euclidean norm, note the similarity of the problem (9) with the conventional
PCA for the columns of V. Removing the positivity constraint, this would be-
come the usual finite-sample PCA problem, whose solution is known to be an
orthogonal matrix consisting of the eigenvectors of VVT . But this is the matrix
U in the SVD of eq. (1). However, now with the positivity constraint in place,
the solution will be something quite different.

5 Simulations

5.1 Data Preparation

As experimental data, we used face images from the MIT-CBCL database and
derived the NMF and P-NMF expansions for them. The training data set con-
tains 2429 faces. Each face has 19 × 19 = 361 pixels and has been histogram-
equalized and normalized so that all pixel values are between 0 and 1. Thus
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the data matrix V which now has the faces as columns is 361 × 2429. This
matrix was compressed to rank r = 49 using either t-SVD, NMF, or P-NMF
expansions.

5.2 Learning Basis Components

The basis images of tSVD, NMF, and P-NMF with dimension 49 are shown in
Figure 1. For NMF and P-NMF, these are the 49 columns of the corresponding
matrices W. For t-SVD, we show the 49 basis vectors of the range space of the
rank-49 nonnegative matrix X̂, obtained by ordinary SVD of this matrix. Thus
the basis images for NMF and P-NMF are truly non-negative, while the t-SVD
only produces a non-negative overall approximation to the data but does not
give a separable expansion for basis vectors and weights.

All the images are displayed with the matlab command ”imagesc” without
any extra scale. Both NMF and P-NMF bases are holistic for the training set.
For this problem, the P-NMF algorithm converges about 5 times faster than
NMF.
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Fig. 1. NMF (top, left), t-SVD (bottom, left) and the two versions of the new P-NMF
method (right) bases of dimension 49. Each basis component consists of 19× 19 pixels
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Fig. 2. The original face image (left) and its reconstructions by NMF (top row), the
two versions of the new P-NMF method under 100 iterative steps (second and third
rows), and t-SVD (bottom row). The dimensions in columns 2, 3, and 4 are 25, 49 and
81, respectively

5.3 Reconstruction Accuracy

We repeated the above computations for ranks r = 25, 49 and 81. Figure 2
shows the reconstructions for one of the face images in the t-SVD, NMF, and P-
NMF subspaces of corresponding dimensions. For comparison, also the original
face image is shown. As the dimension increases, more details are recovered.
Visually, the P-NMF method is comparable to NMF.

The recognition accuracy, defined as the Euclidean distance between the orig-
inal data matrix and the recognition matrix, can be used to measure the perfor-
mance quantitatively. Figure 3 shows the recognition accuracy curves of P-NMF
and NMF under different iterative steps. NMF converges faster, but when the
number of steps increases, P-NMF works very similarly to NMF. One thing to
be noticed is that the accuracy of P-NMF depends on the initial values. Al-
though the number of iteration steps is larger in P-NMF for comparable error
with NMF, this is compensated by the fact that the computational complexity
for one iteration step is considerably lower for P-NMF, as only one matrix has
to be updated instead of two.
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Fig. 3. Recognition accuracies (unit: 108) versus iterative steps using t-SVD, NMF and
P-NMF with compressive dimension 49

6 Conclusion

We proposed a new variant of the well-known Non-negative Matrix Factorization
(NMF) method for learning spatially localized, sparse, part-based subspace rep-
resentations of visual patterns. The algorithm is based on positively constrained
projections and is related both to NMF and to the conventional SVD decompo-
sition. Two iterative positive projection algorithms were suggested, one based
on minimizing Euclidean distance and the other on minimizing the divergence of
the original data matrix and its approximation. Compared to the NMF method,
the iterations are somewhat simpler as only one matrix is updated instead of
two as in NMF. The tradeoff is that the convergence, counted in iteration steps,
is slower than in NMF.

One purpose of these approaches is to learn localized features which would
be suitable not only for image compression, but also for object recognition.
Experimental results show that P-NMF derives bases which are better suitable
for a localized representation than NMF. It remains to be seen whether they
would be better in pattern recognition, too.
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