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Abstract This note gives a complete characterization of when the ordinal sum of two lat-
tices (the lattice obtained by placing the second lattice on top of the first) is projective. This
characterization applies not only to the class of all lattices, but to any variety of lattices,
and in particular, to the class of distributive lattices. Lattices L with the property that every
epimorphism onto L has an isotone section are also characterized.
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In this paper we will determine when an ordinal sum of two lattices is projective in an
arbitrary variety. The definition of projectivity most useful for the paper is the following
one: A lattice L is projective in a variety V of lattices if L ∈ V and whenever K ∈ V and
f : K � L is an epimorphism, there is a homomorphism g : L → K such that f (g(a)) = a

for all a ∈ L. Note g is one-to-one and ρ = gf : K → K is a retraction of K; that is, ρ is
an endomorphism of K and ρ2 = ρ. The sublattice ρ(K) = g(L) of K is isomorphic to L.
The image g(L) is a retract of K. In a slight abuse of terminology, we will also say L is a
retract of K. A lattice is projective in V if and only if it a retract of a free lattice FV (X) in
V . These remarks are well known.

Projective lattices (in the variety of all lattices) were characterized in [5, Theorem 5.7] by
a conjunction of four conditions; see also [4]. This extended the results of A. Kostinsky [7],
B. Jónsson [6], and R. McKenzie [8] who had characterized finitely generated projective
lattices.
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The map g in the definition of projective lattice is an isomorphism and hence an order-
preserving transversal to ker f , also known as an isotone section. So the question arises
which lattices L have the property that every epimorphism K � L has an isotone sec-
tion? We will show that a lattice L has this property if and only if it satisfies the following
condition.

For each a ∈ L there are two finite sets A(a) ⊆ {x ∈ L : x ≥ a} and B(a) ⊆ {x ∈
L : x ≤ a} such that if a ≤ b then A(a) ∩ B(b) �= ∅.

(A for ‘above’; B for ‘below.’) A lattice, or more generally a partially ordered set,
satisfying this condition is called finitely separable.

It is easy to see that every countable lattice is finitely separable. This was used in [4] to
show the following surprising result: the ordinal sum of two free lattices is projective if and
only if one of them is finitely generated or both are countable.

In this note we give a complete characterization of when the ordinal sum of two lattices
(the lattice obtained by placing the second lattice on top of the first) is projective. This
characterization applies not only to the class of all lattices, but to any variety of lattices, and
in particular to the class of distributive lattices.

Our main result is Theorem 12: An ordinal sum L = L0 � L1 is projective in a variety
V if and only if both L0 and L1 are projective and one of the following holds:

1. L0 has a greatest element.
2. L1 has a least element.
3. L0 has a countable cofinal chain and L1 has a countable coinitial chain.

Recall than every chain in a projective lattice in any variety is countable, so the countability
in the third condition is redundant here, but not for some of the lemmas.

The authors would like to give special thanks to George Bergman for his detailed
comments and suggestions which greatly improved this paper.

1 Isotone Sections

In this section we prove the theorem alluded to above. Much of this result is contained in
Lemma 5.6 of [4]. See [3] for additional information on isotone sections.

Theorem 1 Let L be a lattice. The following are equivalent.

1. L is finitely separable.
2. Every epimorphism K � L has an isotone section.
3. There is an epimorphism f : FL(X) � L which has an isotone section.

Proof Since every lattice is an epimorphic image of a free lattice, (2) clearly implies (3). To
see (3) implies (1) we use that, by Lemma 5.5 of [4], FL(X) is finitely separable with respect
to a pair of mappings A, B. Let g : L → FL(X) be an isotone section which exists by our
assumption. For a ∈ L set A′(a) = f (A(g(a))) and B ′(a) = f (B(g(a))). If a ≤ b in L,
then g(a) ≤ g(b) in FL(X) and hence there exists an element c ∈ A(g(a)) ∩ B(g(b)); the
element f (c) belongs to A′(a) ∩ B ′(b). Thus A′ and B ′ witness that L is finitely separable.

To see that (1) implies (2) let L be finitely separable with respect to a pair of mappings A,
B. We can define a transfinite sequence (Mγ : γ < δ) of pairwise disjoint, nonempty and
at most countable subsets of L in the following way. Suppose that the sets Mγ are already
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defined for all γ less than an ordinal number γ0 and put M = ⋃
γ<γ0

Mγ . If M = L, put
δ = γ0 and stop. If M ⊂ L, choose an element a ∈ L − M arbitrarily and define Mγ0 to be
the least subset of L containing a, disjoint from M , and such that A(b) ∪ B(b) ⊆ M ∪ Mγ0

for any b ∈ Mγ0 .
The sets Mγ define a partition of L. We shall write a ∼ b if {a, b} ⊆ Mγ for some γ .

There exists a well ordering � of L such that a ∈ Mγ1 , b ∈ Mγ2 and γ1 < γ2 imply a � b

and each Mγ is a chain of type ≤ ω with respect to the restriction of �. This well ordering
has the special property that if a, b ∈ L and b ∈ A(a) ∪ B(a), then either b � a or else
a ∼ b and b comes only finitely many places after a.

Now suppose f : K � L is an epimorphism from a lattice K onto L. For each a ∈ L

let xa be an element in K such that f (xa) = a. For a ∈ L define g(a) ∈ K by transfinite
induction with respect to � as follows:

g(a) =(xa ∧
∧

{g(b) : b ∼ a, b � a, a < b} ∧
∧

{g(b) : b � a, b ∈ A(a)})
∨

∨
{g(b) : b ∼ a, b � a, b < a} ∨

∨
{g(b) : b � a, b ∈ B(a)}.

(Empty joins or meets are simply omitted. By construction, there are only finitely many
elements with b ∼ a and b � a; hence all the meets and joins are finite.) A straightforward
induction shows that fg(a) = a for any a.

Let us prove that a ≤ b implies g(a) ≤ g(b). We shall proceed by transfinite induction
on the larger of the elements a, b with respect to �. There is an element c ∈ A(a) ∩ B(b).

First note that if a � c and b � c, then, since c ∈ A(a) ∩ B(b), the special property of
� gives a ∼ c ∼ b.

Now consider the case when a � b. If b � c, then by the above remarks a ∼ c ∼ b.
This implies g(a) is a joinand of g(b), and so g(a) ≤ g(b). Hence we may assume c � b,
and thus by induction g(a) ≤ g(c). Also g(c) is a joinand of g(b) and so g(c) ≤ g(b) and
hence g(a) ≤ g(b).

Next consider the case when b � a and either a ∼ b or b ∈ A(a). Then g(b) is a meetand
of the first joinand of g(a), so that the first joinand is ≤ g(b). Any other joinand of g(a) is
of the form g(u) with u ≤ a ≤ b, so by induction g(u) ≤ g(b). Consequently, g(a) ≤ g(b).

Finally, let b � a and neither a ∼ b nor b ∈ A(a). As we noted above, we cannot have
a � c and b � c and this implies c � a. So we have g(a) ≤ g(c) by the previous case and
g(c) ≤ g(b) by induction.

2 An Interpolation Result for Relatively Free Lattices

Theorem 1 essentially proves that every projective lattice is finitely separable. But we wish
to show that every projective lattice in a variety V is finitely separable. We do this in this
section. Along the way we prove an interpolation result of independent interest. Let V be a
variety of lattices and let FV (X) denote the free V–lattice generated by X. The following
lemma is elementary.

Lemma 2 Let Z be a finite set and let Y be a subset. Then every element of FV (Z) is either
below

∨
Y or above

∧
(Z − Y ).

Proof Let S = {w ∈ FV (Z) : w ≤ ∨
Y or w ≥ ∧

(Z − Y )}. Then S is a sublattice
of FV (Z) that contains all the generators, whence S = FV (Z). Moreover, as long as the
variety V is nontrivial, we can see that the disjunction is exclusive, i.e.,

∧
(Z − Y ) �

∨
Y ,
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by examining the homomorphism from FV (Z) to 2 which maps the elements of Y to 0 and
the other generators to 1.

For w ∈ FV (X) define the rank of w, denoted r(w), to be the the least integer k such
that there is a term of length k representing w.

Lemma 3 Let w ∈ FV (X). If w is in the sublattice generated by U for some finite subset
U of X and w = w1 ∨ · · · ∨ wn is a minimal-rank expression for w, then each wi is in the
sublattice generated by U .

Proof To see this, suppose t1 is a minimal length term representing w1 and y is a variable of
t1 which is not in U . Suppose one occurrence of y is in a meet expression (the parent of this
occurrence of y in the term tree is a meet). Let v = ∨

Z where Z is the set of all variables
occurring in t1. Let w′

1 be w1 with this single occurrence of y replaced by v. Let σ be the
endomorphism of FV (X) induced by sending y �→ v and x �→ x otherwise. Clearly σ is the
identity map on the sublattice generated by U , and so σ(w) = w. Also w1 ≤ w′

1 ≤ σ(w1).
Hence

w ≤ w′
1 ∨ w2 ∨ · · · ∨ wn ≤ σ(w1) ∨ σ(w2) ∨ · · · ∨ σ(wn) = σ(w) = w.

Therefore w = w′
1 ∨ w2 ∨ · · · ∨ wn. But since v is above all the other meetands in the meet

expression containing it, we can eliminate v from w′
1. The resulting term is the same as w1

with y eliminated from this same place. This shows that there is a shorter expression for w,
a contradiction.

For Y a finite subset of X, let τY be the endomorphism of FV (X) extending the
map on X:

τY (z) =
{

z if z ∈ Y
∨

Y if z /∈ Y

Lemma 4 Let V be a nontrivial variety of lattices, let Y be a finite subset of X, and let
τ = τY . Suppose w ≤ ∨

Y in FV (X) and that w is in the sublattice generated by U for
some subset U of X. Then w ≤ τ(w) and r(τ (w)) ≤ r(w) and τ(w) is in the lattice
generated by Y ∩ U .

Proof We induct on the rank of w. If w is in X, then w ≤ ∨
Y implies w ∈ Y since V is

nontrivial. Also w ∈ U so the result holds in this case.
If w = w1 ∨ · · · ∨ wn, where this is a minimal-rank expression, then an easy inductive

argument gives the desired result.
Let Z be a finite subset of X containing Y such that w lies in the sublattice generated

by Z and assume w = w1 ∧ · · · ∧ wn is a minimal-rank expression. Since
∨

Y is meet
prime by Lemma 2, there is an i with wi ≤ ∨

Y . By renumbering we may assume that
wi ≤ ∨

Y for 1 ≤ i ≤ m and, by Lemma 2, wj ≥ ∧
(Z − Y ) for j > m. By induction,

wi ≤ τ(wi) and r(τ (wi)) ≤ r(wi) and τ(wi) is in the sublattice generated by U , for i ≤ m.
For j > m, τ(wj ) ≥ τ(

∧
(Z − Y )) = ∨

Y . Clearly the image of τ lies below
∨

Y ; hence
τ(wi) ≤ τ(wj ) if i ≤ m and j > m. Thus

τ(w) =
n∧

i=1

τ(wi) =
m∧

i=1

τ(wi) ≥
m∧

i=1

wi ≥ w
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and r(τ (w)) ≤ r(w). Since τ(w) = ∧m
i=1 τ(wi) we have that τ(w) is in the sublattice

generated by U .

Now suppose that w ≤ u in FV (X). Let Y and Z be a finite subsets of X such that the
lattice generated by Y contains u and the lattice generated by Z contains w. Let τ = τY .
Since u ≤ ∨

Y , Lemma 4 gives

w ≤ τ(w) ≤ τ(u) = u (1)

and τ(w) lies in the sublattice generated by Y ∩ Z. In the case w = u, we see that if w lies
in the sublattice generated by Y and by Z, then it lies in the sublattice generated by Y ∩ Z.
Thus, for each w ∈ FV (X) there is a unique smallest subset Y of X such that w is in the
sublattice generated by Y . We let var(w) denote this subset.

Now for our interpolation theorem.

Theorem 5 If w ≤ u in FV (X), there is a v with w ≤ v ≤ u such that var(v) ⊆
var(w) ∩ var(u) and r(v) ≤ min(r(w), r(u)).

Proof If r(w) ≤ r(u), let v = τvar(u)(w) and the result follows from (1) and Lemma 4. If
r(w) > r(u), then a dual argument implies the result.

Using this interpolation theorem we can show that every lattice projective in V is finitely
separable.

Theorem 6 If L is a projective lattice in V then L is finitely separable.

Proof Finite separability is clearly preserved by retractions; thus it suffices to prove this
theorem for L = FV (X). For a ∈ L, let

A(a) = {w ∈ FV (X) : w ≥ a, var(w) ⊆ var(a), and r(w) ≤ r(a)}
and define B(a) dually. The theorem follows from Theorem 5.

3 Projective Ordinal Sums

In this section we characterize when the ordinal sum of two lattices is projective in V . We
begin with some results of independent interest.

Lemma 7 Suppose L is finitely separable and that it is generated by a set P of elements
that are meet and join prime. Then P is finitely separable, where P is the partially ordered
set on P with the order inherited from L.

Proof For each a ∈ L let ta be a term with variables from P of minimal length which
evaluates to a. Suppose ta = t1∨· · ·∨tn and let ai be the interpretation of ti in L. Inductively
define var(a) to be the variables in ta together with var(ai), i = 1, . . . , n. (If a ∈ P ,
var(a) = {a}. The case ta = t1 ∧ · · · ∧ tn is defined by duality.)

Let A and B be the functions that witness the finite separability of L. For p ∈ P define

A′(p) = {r ∈ P : r ≥ p and r ∈ var(a) for some a ∈ A(p)}
Define B ′(p) dually.
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Suppose p ≤ q in P. Then there is an a ∈ L with a ∈ A(p) ∩ B(q). We show by
induction on the complexity of a that whenever p ≤ a ≤ q, there is an r ∈ var(a) with
p ≤ r ≤ q. If a ∈ P choose r = a. If a = a1 ∨ · · · ∨ an then since p is join prime, p ≤ ai

for some i. Of course ai ≤ q and var(ai) ⊆ var(a), so we can apply induction to obtain an
r ∈ var(a) with p ≤ r ≤ q. Since the original element a was in A(p) ∩ B(q), we have
r ∈ A′(p) ∩ B ′(q). A similar argument covers the case when a is a meet.

Theorem 8 If P is a partially ordered set, then FV (P) (the V lattice freely generated by P

subject to the order relations of P) is projective in V if and only if P is finitely separable.

Proof Our proof follows the proof of Lemma 7 in [5].
Suppose P is finitely separable and f : FV (X) � FV (P) is an epimorphism. We can

define an isotone map g : P → FV (X) such that fg(p) = p essentially in the same way
g was defined in Theorem 1. By definition of FV (P), g can be extended to homomorphism
FV (P) → FV (X) which of course is a retraction. This shows that FV (P) is projective in V .

Now suppose FV (P) is projective in V . By Theorem 6, FV (P) is finitely separable. The
elements of P are join and meet prime in FV (P). (This can be seen by examining homo-
morphisms from FV (P) onto the two element lattice.) Hence by Lemma 7, P is finitely
separable.

Lemma 9 An ordinal sum L0 �L1 is finitely separable if and only if L0 and L1 are finitely
separable and one of the following holds:

1. L0 has a greatest element.
2. L1 has a least element.
3. L0 has a countable cofinal chain and L1 has a countable coinitial chain.

Proof Assume that L0 and L1 are finitely separable and that at least one of the conditions
(1), (2), or (3) holds. By hypothesis there are functions ALi

and BLi
that witness the finite

separability of Li , i = 0 and 1. If L0 has a greatest element, say m, then for a ∈ L0 let

AL(a) = AL0(a) ∪ {m} and BL(a) = BL0(a)

and for b ∈ L1 let

AL(b) = AL0(b) and BL(b) = BL1(b) ∪ {m} .

Clearly the functions AL and BL have the desired properties. The same construction works
if m is the least element of L1.

So assume that (3) holds. Let c0 < c1 < c2 < · · · be a cofinal chain in L0 and let
d0 > d1 > d2 > · · · be a coinitial chain in L1. Define

A′(ci) = {d0, d1, . . . , di} ∪ {ci} and B′(di) = {c0, c1, . . . , ci} ∪ {di}.
Let a ∈ L0 and suppose that a ≤ ci but a � cj if j < i. Set A′(a) = A′(ci) and define

AL(a) = AL0(a) ∪ A′(a)

We define BL(b), for b ∈ L1, by dual considerations. Of course, BL(a) = BL0(a) and
AL(b) = AL0(b). With these definitions, it is easy to verify that L is finitely separable.

Conversely, assume that L = L0 � L1 is finitely separable, with functions A and B
witnessing its finite separability. For x ∈ Li , let ALi

(x) = A(x) ∩ Li and BLi
(x) =

B(x) ∩ Li . It is easy to check that these functions give the finite separability of L0 and L1.
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Suppose that conditions (1), (2), and (3) all fail. Since (3) fails, we may assume by duality
that L0 has no countable cofinal chain. Inductively we construct a sequence d0 > d1 >

d2 > · · · in L1 such that

dn /∈ OrdFil [BL1(dm)] if n > m (2)

where OrdFil [S] denotes the order filter generated by a set S. (Dually, OrdIdl [S] will denote
the order ideal generated by S.) That this can be done follows from the fact that, for any
y ∈ L1, L1 − OrdFil BL1(y) must be infinite since otherwise the meet of these elements
and of BL1(y) would be a least element of L1, contrary to our assumption that condition (2)
fails. Eq. (2) immediately implies that

BL1(di) ∩ BL1(dj ) = ∅ if i �= j . (3)

If OrdIdl [⋃∞
i=0 BL0(di)] = L0, then L0 would have a countable cofinal chain, contrary

to our assumption. Thus let c /∈ OrdIdl [⋃∞
i=0 BL0(di)]. Of course c < di for every i, and

hence there are elements ei ∈ L with

ei ∈ A(c) ∩ BL1(di).

By Eq. (3), these ei’s must be distinct. But this forces A(c) to be infinite.

The proof of Lemma 9 can be adapted to characterize when the ordinal sum of two
finitely separable partially ordered sets is finitely separable. The proof is left to the reader.

Theorem 10 Let P0 and P1 be two finitely separable partially ordered sets. Then P0 � P1
is finitely separable if and only if one of the following holds:

1. P0 has a finite cofinal subset.
2. P1 has a finite coinitial subset.
3. P0 has a countable cofinal subset and P1 has a countable coinitial subset.

Now let us turn our attention to projectivity in a nontrivial lattice variety V .

Lemma 11 If the ordinal sum L = L0 � L1 is projective in V , then both L0 and L1 are
projective in V .

Proof Let f : M � L0 be a surjective homomorphism. Let f̄ : M � L1 � L0 � L1
agree with f on M and the be the identity on L1. Since L0 � L1 is projective there is a
homomorphism ḡ : L0 � L1 → M � L1 such that f̄ ḡ is a retraction. Letting g be the
restriction of ḡ to L0, it is clear that fg is a retraction, proving L0 is projective. Similarly,
L1 is projective.

Theorem 12 Let V be a nontrivial variety of lattices and let L = L0 � L1, where Li ∈ V
for i = 0, 1. Then L is projective in V if and only if both L0 and L1 are projective and one
of the following holds:

1. L0 has a greatest element.
2. L1 has a least element.
3. L0 has a countable cofinal chain and L1 has a countable coinitial chain.

Proof Assume that L0 and L1 are projective in V and that one of (1), (2), or (3)
holds. Let Pi be Li as a partially ordered set, and let P = P0 � P1. By Lemma 9, L
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is finitely separable, and so by Theorem 8, FV (P0) � FV (P1) is projective. Since
Li is projective, it is a retract of FV (Pi ), for i = 1, 2. Clearly these retractions can
be patched together to show that L0 � L1 is a retract of FV (P0) � FV (P1). Thus L is
projective in V .

Conversely, suppose that L is projective in V . By Lemma 11, both L0 and L1 are pro-
jective in V . Since L is projective in V , by Theorem 6 it is finitely separable, whence by
Lemma 9, at least one of the conditions (1), (2), or (3) holds.

As an application we show how Theorem 12 implies a theorem of Balbes [1] on
projective distributive lattices.

Theorem 13 (Balbes [1]) Let L be a projective distributive lattice generated by A ∪ B

where A and B are antichains, each element of A is join irreducible, each element of B is
meet irreducible, and a ≤ b for each a ∈ A and b ∈ B. Then either A ∪ B is countable or
A or B is finite.

Proof Let L0 be the sublattice generated by A and L1 be the sublattice generated
by B. Since every element of a projective distributive lattice is both a join of join
irreducible elements and a meet of meet irreducible elements (see [2] or [5]),
L = L0 ∪ L1 with u ≤ v for all u ∈ L0, v ∈ L1. If L0 ∩ L1 �= ∅, then L would
not be projective, since the obvious map of L0 � L1 onto L has no section.
Hence L0 ∩L1 = ∅ and L = L0 �L1. By Theorem 12, one of the conditions (1), (2), or (3)
must hold.

If L0 has a greatest element u then, since L0 is generated by A, u = ∨
A′ for some finite

subset A′ of A. But in any distributive lattice join irreducible elements are join prime which
implies A = A′ and so is finite. Thus by duality we may assume that L0 has a countable
cofinal chain and L1 has a countable coinitial chain. Since L0 is generated by A, each
element ui of the cofinal chain lies in the sublattice generated by a finite subset Ai ⊆ A.
Let a ∈ A. Then a ≤ ui for some ui in the cofinal chain and so a ≤ ui ≤ ∨

Ai . Since a is
join prime and A is an antichain, this implies that a ∈ Ai . Thus A is the union of the Ai’s
and so is countable. Similarly, B is countable.

The last theorem has a straightforward generalization to any variety V of lattices. We
leave the proof to the reader.

Theorem 14 Let L be a projective lattice in V generated by A ∪ B where A and B are
antichains, each element of A is join prime, each element of B is meet prime, and a ≤ b for
each a ∈ A and b ∈ B. Then either A ∪ B is countable or A or B is finite.

4 Ordinal Sums of More Than Two Lattices

The preceding results can be extended to the ordinal sum of a chain of lattices. Let Q
be a totally ordered set, and let Lq (q ∈ Q) be lattices. The ordinal sum

∑
q∈Q Lq

is the disjoint union
⋃̇

q∈QLq endowed with the obvious order: if x ∈ Lq and y ∈ Lr ,
then x ≤ y if q < r , or if q = r and x ≤ y in Lq . We remind the reader that
projective lattices (indeed, finitely separable lattices) satisfy the countable chain condition
(Theorem 5.69(4) of [4]), so for practical purposes we want to consider the case when Q is
a countable chain.
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Theorem 15 Let V be a nontrivial lattice variety, Q a totally ordered set, and Lq (q ∈ Q)

lattices in V . The ordinal sum L = ∑
q∈Q Lq is projective in V if and only if

1. each Lq is projective in V , and
2.

∑
q∈Q Lq is finitely separable.

Proof That L projective implies (1) is a straightforward modification of Lemma 11. That
L projective implies (2) is Theorem 6.

Conversely, let L̂ be L as an ordered set. By Theorem 8, FV (L̂) is projective in V . Map
FV (L̂) onto L in the obvious way. As in the proof of Theorem 12, each Lq is a retract of
FV (L̂q), and these maps can be patched together to get a retraction of L to FV (L̂). Thus
L is a retract of a projective lattice. Whence it is a retract of a free lattice in V , and so
projective.

We note one shortcoming of Theorem 15 as compared to the situation when Q = 2.
Lemma 9 characterizes when L0 � L1 is finitely separable, and this is readily extended to
finite chains: an ordinal sum L0 � · · · � Ln is finitely separable if and only if each Li is
finitely separable and each consecutive pair Li , Li+1 satisfies at least one of the conditions
(1), (2), or (3). But we do not have a good characterization of when

∑
q∈Q Lq is finitely

separable for the case of Q being an infinite chain. This is a good open problem.
The next result provides plenty examples of finitely separable and projective lattices that

are ordinal sums.

Theorem 16 Let Q be a countable chain. If Q has a least (resp. greatest) element, denote
it by z (resp. t).

If Lq (q ∈ Q) are finitely separable lattices, and each Lq has a least element 0Lq and
a greatest element 1Lq (except possibly Lz has no least element and/or Lt has no greatest
element), then the ordinal sum

∑
q∈Q Lq is finitely separable.

If in addition each Lq (q ∈ Q) is projective in a nontrivial lattice variety V , then the
ordinal sum

∑
q∈Q Lq is projective in V .

Proof By Theorem 15, it suffices to show that
∑

q∈Q Lq is finitely separable. Enumerate
Q = {qi : i ∈ ω}. Let Ai and Bi denote the functions witnessing the finite separability of
Lqi

. For x ∈ Lqi
, let

A(x) = Ai(x) ∪ {0Lj
: j < i and qj > qi} ∪ {1Lj

: j ≤ i and qj ≤ qi}
B(x) = Bi(x) ∪ {1Lj

: j < i and qj < qi} ∪ {0Lj
: j ≤ i and qj ≥ qi}

Now suppose x ≤ y with x ∈ Li and y ∈ Lj . This implies qi ≤ qj . If qi = qj then
Ai(x) ∩ Bi(y) is nonempty. If j < i then 0Lj

∈ A(x) ∩ B(y), while if j > i then 1Li
∈

A(x) ∩ B(y). Thus the ordinal sum is finitely separable.

On the other hand, observe that if Q is a countable chain and there is a covering pair
r ≺ s such that Lr has no greatest element and no countable cofinal chain, while Ls has no
least element and no countable coinitial chain, then

∑
q∈Q Lq is not finitely separable. For

in this event we can let K0 = ∑
q≤r Lq and K1 = ∑

q≥s Lq , and then apply Lemma 9 to
K0 �K1.

We conclude with a nice example. Let κ be an uncountable cardinal. Then by Theorem 12
the lattice FV (κ) � 1� FV (κ) is projective. But if we remove the middle element, then by
the preceding observation FV (κ) � FV (κ) is not projective.
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