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1. Introduction.

Let $C$ be an irreducible algebraic curve of degree $d$ on $P^{2}=P^{2}(C)$ and put
$V=P^{2}\backslash C$. Let $\mathcal{G}$ be the automorphism group of the algebraic surface $V$ and $\mathcal{L}$

the linear part of $\mathcal{G},$ $i.e.,$ $x=\{T\in Aut(P^{2})|T(C)=C\}$ . If $d=1$ , then $\mathcal{G}$ is generated

by linear transformations and de Jonqui\‘eres transformations of $V$ (Nagata [5]);

if $d=2$ , then generators of the similar kind have been found by Gizatullin and

Danilov [2]. In this paper we shall study the structure of $\mathcal{G}$ and at the same
time the property of $C$ in the case when $d\geqq 3$ .

We shall use the following notations in addition to the above ones. Let

(X, $Y,$ $Z$ ) be a set of homogeneous coordinates on $P^{2}$ and put $x=X/Z$ and
$y=Y/Z$ . Usually we do not treat the line $Z=0$ , so we say that for an irredu-

cible polynomial $f$ , the curve $Z^{d}f(X/Z, Y/Z)=0$ is defined by $f$ , where $d=$

deg $f$ . Especially we denote by $\Delta$ [resp. $\Delta_{e}$] the curve defined by $xy-x^{3}-y^{a}$

[resp. $y^{e}-x^{d}$ , where $(e,$ $d)=1$ and $1\leqq e\leqq d-2$]. Let $M$ be the number of the
singular points $\{P_{1}, \cdots , P_{M}\}$ of $C$ and $\mu:\tilde{C}arrow C$ the normalization of $C$. Then

let $N$ denote the number of elements of $\mu^{-1}(\{P_{1}, \cdots , P_{M}\})$ and $g$ the genus of
$\tilde{C}$ . In case $N=1$ , let $(e_{1}, \cdots , e_{p})$ be the sequence of the multiplicities of all

successive infinitely near singular points of $P_{1}$ , and put

$R=d^{2}- \sum_{i\Leftarrow 1}^{p}e_{i}^{2}-e_{p}+1$

Let $G_{a}$ and $G_{m}$ be the additive and the multiplicative groups respectively.

First we shall prove the following with the help of the Pl\"ucker relations.

PROPOSITION 1. Suppose that $d\geqq 3$ . Then the following three conditions are
equivalent.

(1) The order of $\mathcal{L}$ is infinite.
(2) The linear parf $\mathcal{L}$ is isomorphic to $G_{m}$ .
(3) The curve $C$ is projectively equivalent to $\Delta_{e}$ .

This research was partially supported by Grant-in-Aid for Scientific Research (No.

470260114807), Ministry of Education.



88 H. YOSHIHARA

Note that $X$ is a finite group if $C$ is not projectively equivalent to $\Delta_{e}$ .
Next we shall consider $\mathcal{G}$. Applying the Castelnuovo’s criterion for con-

tracting a curve, we shall give the condition that $\mathcal{G}=X$ . In case $\mathcal{G}\neq \mathcal{L}$ , let $\varphi$

be an element of $\mathcal{G}\backslash \mathcal{L}$ . Then there is a composition $\sigma$ of blow-ups such that
the induced map $\varphi\sigma$ is a morphism. Considering the total transform $\sigma^{-1}(C)$ in
detail, we shall prove the following main result.

THEOREM A. The order of $\mathcal{G}$ is finite if and only if $C$ satisfies any one of
the following conditions (1), (2) and (3).

(1) $g\geqq 1$ .
(2) $N\geqq 2$ and $C$ is projectjvely equivalent to ndther $\Delta$ nor $\Delta_{e}$ .
(3) $N=1$ and $R\leqq-1$ .

On the contrary, for the remaining curves with $d\geqq 3,$ $\mathcal{G}$ has the following prop-
erties.

(4) If $C$ is pr0jectively equivalent to $\Delta_{e}$ , where $e\geqq 2$, then $\mathcal{G}=\mathcal{L}\cong G_{m}$ .
(5) If $C$ is pr0jectively equivalent to $\Delta$ , then the order of $\mathcal{G}$ is countably

infinite and $\mathcal{L}$ is the dihedral group of order 6.
(6) If $C$ is a curve with $g=0,$ $N=1$ and $R\geqq 0$ , then $\mathcal{G}\supset(G_{a})^{n}$ for every

posrtive integer $n$ . In this class of curves the order of $X$ is infinite if and only

if $C$ is projectjvely equivalent to $\Delta_{1}$ .
REMARK. We do not know whether or not the curve with the properties

$g=0,$ $N=1,$ $R=0$ and $e_{p- 1}>e_{p}$ exists.
The structure of $\mathcal{G}$ seems to be complicated for the curve $g=0,$ $N=1$ and

$R\geqq 0$ . According to Abhyankar-Moh [1], if $C$ satisfies that $C\backslash L\cong A^{1}$ for a line
$L$ , then there is an automorphism of $P^{2}\backslash L\cong A^{2}$ by which $C$ is transformed to

a line $L_{1}$ . Hence $P^{2}\backslash (C\cup L)$ is isomorphic to $P^{2}\backslash (L_{1}\cup L)$ , this implies that $C$

is a curve with $R\geqq 2$ if $d\geqq 3$ . Moreover, if the logarithmic Kodaira dimension
$\overline{\kappa}(V)$ is $-\infty$ and $d\geqq 3$ , then $C$ is a curve with $g=0$ and $N=1$ (Iitaka [4]). By

these facts it seems interesting to study the curves of this class.

Now these curves have similarly the following properties, which will be

shown in the course of the proof of Theorem A.

THEOREM B. If $C$ is a curve wzth $g=0,$ $N=1$ and $R\geqq 0$, then there are one
or two $irredu\alpha ble$ curves $C’$ and C’ and two or three lines $L_{i}$ , where $i=1,2,3$,

wfech have the following propertjes.
(1) In case $R\neq 1$ , there is an isomorphism

$P^{2}\backslash (C\cup C’)\cong P^{2}\backslash (L_{1}\cup L_{2})$ .
(2) In case $R=1$ , there is an ismwphism

$P^{2}\backslash (C\cup C’\cup C’’)\cong P^{2}\backslash (L_{1}\cup L_{2}\cup L_{3})$ ,

where $L_{1}\cap L_{2}=L_{1}\cap L_{3}$ .
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We observe that the above curves $C’$ and $C’’$ have the same properties as
the following $c*$ .

PROPOSITION 2. If $C$ satisfies the conditions $C\backslash \{P\}\cong A^{1}$ and $R\geqq 0$, then

there is a curve $C^{*}$ having the pr0perties $C\cap C^{*}=\{P\}$ and $C^{*}\backslash \{P\}\cong A^{1}$ .
Note that, in case $d\geqq 3$ , the condition $C\backslash \{P\}\cong A^{1}$ is equivalent to the one

$g=0$ and $N=1$ . Especially Theorem $B$ implies the following

COROLLARY. If $C$ satisfies the conditions $g=0,$ $N=1$ and $R\geqq 0$ , then $\overline{\kappa}(V)=$

$-\infty$ .
This is a partial answer to the problem raised in [8]. Note that $\overline{\kappa}(V)$ is not

necessarily $-\infty$ if $R\leqq-1$ . Indeed, there exist curves with $g=0,$ $N=1,$ $R\leqq-1$

and $\overline{\kappa}(V)=1$ (Tsunoda [6] or Section 6).

The author would like to express deep appreciation to Professor S. Iitaka
for his kind advice and encouragement.

2. Structure of $\mathcal{L}$ .

Thanks to the theory of the logarithmic Kodaira dimension, we have that
$\mathcal{G}$ has a finite order if $\overline{\kappa}(V)=2$ (Iitaka [4]). Further, Wakabayashi [7] has shown
the following

LEMMA 2.1. If $C$ satisfies none of the following conditions, then $\overline{\kappa}(V)=2$ .
(a) $M=0$ and $d\leqq 3$ .
(b) $g=0$ and $M=1$ .
(c) $g=0$ and $M=N=2$ .
Later we shall make use of this lemma. $Let\sim denote$ the projective equiv-

alence. Then the curves $\Delta$ and $\Delta_{e}$ have the following properties.
(1) If $C\sim\Delta_{1}$ , then $M=N=1,$ $R=d+1$ and $\overline{\kappa}(V)=-\infty$ .
(2) If $C\sim\Delta_{e}$ and $e\geqq 2$ , then $M=N=2$ and $\overline{\kappa}(V)=1$ .
(3) If $C\sim\Delta$ , then $M=1,$ $N=2$ and $\overline{\kappa}(V)=0$ .
Let $e(P, C)$ be the multiplicity of $C$ at $P$, and $(D_{1}\cdot D_{2})_{P}$ the intersection

multiplicity of two curves $D_{1}$ and $D_{2}$ at $P$. If $C_{ij}$ is an analytically irreducible
branch of $C$ at $P_{i}$ , where $1\leqq i\leqq M$ and $j=1,2,$ $\cdots$ , then we put $e_{ij}=e(P_{i}, C_{lj})$

and $\lambda_{ij}=(C_{ij}\cdot L_{ij})_{P\ell}$ , where $L_{ij}$ is the tangent line to $C_{ij}$ at $P_{i}$ . If $P$ is a flex,

then we put $W= \sum_{P\in tflexes\}}\rho_{P}$, where $\rho_{P}=(C\cdot L_{P})_{P}-2$ and $L_{p}$ is the tangent line

to $C$ at $P$. Then we have the following formula which is one of the Pl\"ucker

relations (Iitaka [4]).

LEMMA 2.2. $W=3d+6(g-1)- \sum_{i,j}(\lambda_{ij}+e_{ij}-3)$ .

Applying this formula, we get the following

LEMMA 2.3. Suppose that $N=1$ and $e(P_{1}, C)=d-1$ . Then $C$ has one flex if
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and only if $C\sim\Delta_{1}$ .
PROOF. If $C$ has one flex $Q$ , then by a suitable projective transformation

we may assume that $P_{1}=(0,1,0),$ $Q=(O, 0,1)$ and that $C$ is defined by

$f=y+ \sum_{t=1}^{d}a_{i}x^{i}$ .

Since we have that $W=d-2$ by Lemma 2.2, we get $a_{2}=\ldots=a_{d-1}=0,$ $i.e.$ ,

$f=y+a_{d}x^{d}+a_{1}x$ , where $a_{d}\neq 0$ . This implies that $C$ is projectively equivalent

to $\Delta_{1}$ . The “ if “ part is proved easily by direct computation. Q. E. D.
Now, let us prove Proposition 1.
The implication (3) $\Rightarrow(2)$ is checked by direct computation and the implication

(2) $\Rightarrow(1)$ is trivial. So let us prove the implication (1) $\Rightarrow(3)$ . Suppose that $C$ is
not projectively equivalent to $\Delta_{e}$ . Then, in case $C$ is smooth, we have that
$W=3d(d-2)$ . Hence there are at least four non-collinear flexes, which implies

the order of $\mathcal{L}$ is finite. Next let us consider the non-smooth case. Then by

Lemma 2.1 we have only to treat the curves in the cases (b) and (c). Thus we
have that $g=0$ . Let $K$ be the number of flexes of $C$. Then we note that the
order of $X$ is finite if $N+K\geqq 3$ . In fact, an element $T$ of $\mathcal{L}$ induces the auto-

morphism $\hat{T}$ of $\tilde{C}\cong P^{1}$ and this correspondence $T-\Rightarrow\hat{T}$ is injective. First let us
consider the case (b). In this case, if $N\leqq 2$ , then $W\geqq 1,$ $i.e.,$ $K\geqq 1$ . Suppose

that $N+K\leqq 2$ . Then $K\geqq 1$ . Hence we have that $N=K=1$ , thus $W\geqq d-2$ .
Since $K=1$ , it follows that $W=d-2$, which implies that $e(P_{1}, C)=d-1$ . This
is a contradiction by Lemma 2.3. Next let us consider the case (c). Let $L_{i}$ be

the tangent line to $C$ at $P_{i}$ , where $i=1,2$ . If $L_{1}$ contains $P_{2}$ , then $e_{2}+\lambda_{1}\leqq d$ ,

$e_{1}\leqq d-1$ and $\lambda_{2}\leqq d$ , hence $W\geqq 1$ . So that we may assume that $L_{1}\not\equiv P_{2}$ and
$L_{2}\yen P_{1}$ . Moreover we may assume that $L_{i}$ intersects $C$ only in $P_{i}$ , and that
$W=0$ , otherwise there is a third fixed point for $\mathcal{L}$ . Thus we have only to

consider the case when $\lambda_{1}=\lambda_{2}=d$ and $e_{1}+e_{2}=d$ . In case $e_{1}=e_{2}=e$ , seeing

from that $C$ is analytically irreducible at $P_{1}$ and $P_{2}$ , we infer that the multi-
plicities of infinitely near singular points to $P_{1}$ and $P_{2}$ of order one must be both
$e$ . Then we have that $(d-1)(d-2)<4e(e-1)$ , this contradicts the genus formula

for plane curves. Therefore $T$ fixes $L_{1},$ $L_{2}$ and the line passing through $P_{1}$ and
$P_{2}$ . By a suitable projective transformation these lines are assumed to be $Y=0$,

$Z=0$ and $X=0$ respectively. Then the equation of $C$ is

$f=y^{e}+ \sum^{*}c_{ij}x^{i}y^{j}-x^{d}$ ,

where $e=e_{1}$ and $\sum^{*}$ denotes the summation for $i$ and $j$ satisfying $d>i+j>e>$

$j>0$ . Suppose that $(d-i)(e-])=ij$ for all $i,$ $j$ in this equation. Then putting

$b=(e, d),$ $e=be’$ and $d=bd’$ , we have that $bd’e’=ie’+jd’$ . Moreover putting
$i=d’i’$ and $j=e’j’d’$ where $i’+j’=b$ , we see that $f$ is a homogeneous polynomial

with variables $x$ and $y^{e^{i}}$ Hence $f$ is factored as



Projective plane curves 91

$\Pi^{b}(y^{e^{l}}+\alpha_{i}x^{d’})$

$t\Rightarrow 1$

for some $\alpha_{i}$ , where $1\leqq i\leqq b$ . Since $C$ is irreducible, $b$ is 1, hence $C\sim\Delta_{e}$ . This

contradicts our hypothesis, so there are $i$ and $j$ such that $k=(d-i)(e-j)-ij\neq 0$ .
Since $T$ is represented as a diagonal matrix

$(\begin{array}{lll}\alpha \beta 1\end{array})$ ,

we have that $\beta^{e}=\alpha^{i}\beta^{j}=\alpha^{d},$ $i.e.,$ $\alpha^{k}=1$ . Whence $\mathcal{L}$ is a finite group. Q. E. D.

3. Relation between $\mathcal{G}$ and $\mathcal{L}$ .
Since an element $\varphi$ of $\mathcal{G}$ is the restricted mapping of a birational transfor-

mation of $P^{2}$, let us denote by $\varphi$ also the birational transformation. Let

$S_{r}arrow^{\sigma_{r}}S_{r-1}arrow\sigma_{r-1}\ldotsarrow^{\sigma_{2}}S_{1}arrow^{\sigma_{1}}S_{0}=P^{2}$

be a finite sequence of blow-ups $\sigma_{i}$ with successive centers $Q_{i}$ in $S_{i-1}$ , where
$1\leqq i\leqq r$ and $S_{0}=P^{2}$ , and put $\sigma=\sigma_{1}\cdots\sigma_{r}$ . For a birational transformation $\psi$ we
denote by $\psi(A)$ and $\psi[A]$ the total and the proper transforms of $A$ respectively.

LEMMA 3.1. Let $\varphi$ be an element of $\mathcal{G}$ . Then the following assertions hold

true.

(1) Each birational transformation $\varphi$ or $\varphi\sigma_{1}\cdots\sigma_{i}$ has at most one funda-
mental point, where $1\leqq i\leqq r$ .

(2) The proper transform $\varphi[C]$ is $C$ [resp. one point] if and only if $\varphi$

belongs to $\mathcal{L}$ [resp. $\mathcal{G}\backslash \mathcal{L}$ ].

PROOF. Note that if $\varphi$ has no fundamental points, then $\varphi$ is a birational
morphism from $P^{2}$ to $P^{2}$ and so is an isomorphism. Since $C$ is irreducible and
$\varphi$ is an automorphism of $P^{2}\backslash C$, both assertions are proved readily. Q. E. D.

Put $C_{i}=(\sigma_{1}\cdots\sigma_{i})^{-1}[C]$ and $C_{0}=C$, where $1\leqq i\leqq r$ . Let $D_{1}\cdot D_{2}$ denote the

intersection number of two curves $D_{1}$ and $D_{2}$ on some nonsingular complete

surface. In case $D_{1}=D_{2}$ , let us write $D_{1}^{2}$ instead of $D_{1}\cdot D_{1}$ and call it the weight

of $D_{1}$ for short. Then we have the following

LEMMA 3.2. If $C$ satisfies any one of the following conditions, then $\mathcal{G}=\mathcal{L}$ .
(1) $g\geqq 1$ .
(2) There is some $i(0\leqq i\leqq r)$ such that $C_{i}$ has at least two singular pdints.

(3) If $C_{i}$ is smooth, then $C_{i}^{2}\leqq-2$ , where $1\leqq i\leqq r$ .
(4) $g=0,$ $N=1$ and $R\leqq-e_{p}-1$ .
PROOF. From the above lemma and the Castelnuovo’s criterion for con-
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tracting a curve (Hartshorne [3]), the assertions (1), (2) and (3) follow easily.

Note that in the case (4) the weight $C_{p}^{2}$ is

$d^{2}- \sum_{i\Rightarrow 1}^{p}e_{i}^{2}=R+e_{p}-1$

if the center $Q_{i+1}$ of the blow-up $\sigma_{i+1}$ coincides with the singular point of $C_{i}$ ,

where $0\leqq i\leqq p-1$ . Hence this is a special case of (3). Q. E. D.
Combining Lemma 3.2 with Proposition 1, we get the following

COROLLARY 3.3. If $C$ satisfies any one of the following conditions, then $\mathcal{G}$ is

a finite group.
(1) $g\geqq 1$ .
(2) The curve $C$ is not pr0jectively equivalent to $\Delta_{e}$ and there is some $i$

$(0\leqq i\leqq r)$ such that $C_{i}$ has at least two srngular points.

(3) If $C_{i}$ is smooth, then $C_{i}^{2}\leqq-2$ , where $1\leqq i\leqq r$ .
(4) $g=0,$ $N=1$ and $R\leqq-e_{p}-1$ .
PROOF. It suffices to check (3) and (4). If $C\sim\Delta_{e}$ and $e\geqq 2$ , then let

$(e_{1}, \cdots , e_{a})$ and $(f_{1}, \cdots , f_{b})$ , where $e_{1}=e$ and $f_{1}=d-e$ , be the sequences of the

multiplicities of all infinitely near singular points of $(0,0,1)$ and $(0,1,0)$ respec-
tively. Since $(e, d)=1$ , we get

$d^{2}- \sum_{i=1}^{a}e_{t}^{2}-\sum_{j=1}^{b}f_{j}^{2}=e_{\alpha}+f_{b}$

by the Euclidean algorithm and the genus formula for plane curves. If $e=1$ ,

then the multiplicity of the singular point is $d-1$ , so $R=d+1$ . Hence the

curves in (3) and (4) are not projectively equivalent to $\Delta_{e}$ . Q. E. D.

Now the assertions (1) and (4) in Theorem A follow from Lemma 3.2 and
Proposition 1.

4. Representation of automorphisms by graphs.

In this section we follow the notations fixed in the previous sections. Here-

after we shall study the curves that have not been treated in Corollary 3.3 and
that are not projectively equivalent to $\Delta_{e}$ , where $e\geqq 2$ . Therefore we assume
that $C$ satisfies all of the following conditions $(A_{1})$ and $d\geqq 3$ .

(A)$\{\begin{array}{l}(1) g=0. (2) The proper transform C_{i} has at most one singular point for all i, where 0\leqq i\leqq r.(3) There is some i(1\leqq i\leqq r) such that C_{i} is smooth and C_{t}^{2}\geqq-1. (4) If N=1, then R\geqq-e_{p}.\end{array}$

In particular $M$ is 1. In view of the assertion (1) in Lemma 3.1 we may
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assume moreover the following condition (A2).

(A) $\{Foranelement\varphi of\mathcal{G}\backslash \mathcal{L}thebirationalmorphismofrblow- upssuchthatrisminimalinorderthat\varphi\sigma is\sigma isaamorphismcomposition$

DEFINITION 4.1. We denote by $r(\varphi)$ the number of blow-ups defined in (A2)

and call it the rank of $\varphi$ . Of course $r(\varphi)=0$ if and only if $\varphi$ belongs to $X$ .
Put $E_{i}=\sigma_{i}^{-1}(Q_{i})$ , where $1\leqq i\leqq r$ . Then the following facts hold true, of

which we shall make frequent use later.

LEMMA 4.2. If $\mathcal{G}\neq \mathcal{L}$ and $\varphi$ belongs to $\mathcal{G}\backslash \mathcal{L}$ , then we have the following.

(i) The center $Q_{i+1}$ of $\sigma_{i+1}$ coincides with the fundamental $p\alpha nt$ of $\varphi\sigma_{1}\cdots\sigma_{i}$ ,

where $0\leqq i\leqq r-1$ and $\varphi\sigma_{0}=\varphi$ .
(ii) The center $Q_{i+1}$ of $\sigma_{i+1}$ belongs to $E_{i}$ , where $1\leqq i\leqq r-1$ .
(iii) If $C_{i}$ is not smooth, then $Q_{i+1}$ coincides with the singular $p\alpha nt$ of $C_{\ell}$ ,

where $0\leqq i\leqq r-1$ .
(iv) If $C_{t}^{2}\geqq 0$ , then $Q_{t+1}$ belongs to $E_{t}\cap C_{i}$ , where $1\leqq i\leqq r-1$ .
PROOF. First recall the assertion (1) in Lemma 3.1 and the conditions $(A_{1})$

and (A2). Then (i) is clear. Similarly we get $\sigma_{i}(Q_{i+1})=\sigma_{i}(E_{i})$ . This proves
(ii). Since $\varphi$ has a fundamental point, the proper transform $C_{r}$ must be con-
tracted owing to the assertion (2) in Lemma 3.1. Then from the Castelnuovo’s

criterion we infer (iii) and (iv). Q. E. D.
Since there will be no danger of confusion, let $E_{i}$ denote also the curve

$(\sigma_{i+1}\cdots\sigma_{r})^{-1}[E_{i}]$ on $S_{r}$ . When we treat more than one automorphism at a time,

let us write $\sigma_{i\varphi},$
$E_{i\varphi}$ and $S_{t\varphi}$ with the automorphism $\varphi$ instead of $\sigma_{i}$ , $E_{i}$ and

$S_{i}$ respectively. For a divisor we shall not consider the multiplicities of the

components, hence we identify the divisor with the reduced one obtained from it.

DEFINITION 4.3. Let $\varphi$ be an element of $\mathcal{G}\backslash \mathcal{L}$ and put $r=r(\varphi)$ . Since $\sigma$ is

determined by $\varphi$ , let $\Gamma(\varphi)=\sigma^{-1}(C),$ $i.e.,$ $\Gamma(\varphi)=E_{1\varphi}+\cdots+E_{\tau\varphi}+C_{\varphi}$ , where $C_{\varphi}=$

$\sigma^{-1}[C]$ . The total transform $\Gamma(\varphi)$ is called the graph of $\varphi$ . Define the orders

of $E_{t\varphi}$ and $C_{\varphi}$ to be $i$ and $r+1$ respectively, where $1\leqq i\leqq r$ . For an element $\psi$

of $\mathcal{G}\backslash \mathcal{L}$ , similarly $\Gamma(\psi)$ has the decomposition $E_{1\psi}+\cdots+E_{s\psi}+C_{\psi}$ . If $r=s$ and

there is an isomorphism $\alpha:S_{r\varphi}arrow S_{s\psi}$ such that $\alpha(C_{\varphi})=C_{\psi}$ and $\alpha(E_{i\varphi})=E_{i\psi}$ for all
$i$, where $1\leqq i\leqq r$ , then $\Gamma(\varphi)$ is said to be equivalent to $\Gamma(\psi)$ . Note that $\alpha$

preserves the orders of the components. Let this equivalence be denoted by $\approx$ .
This equivalence satisfies the axiom of equivalence relation.

REMARK 4.4. If $\varphi$ and $\psi$ belong to $\mathcal{G}\backslash \mathcal{L}$ , then the following hold true.

(1) $E_{r\varphi}^{2}=C_{\varphi}^{2}=-1$ and $E_{i\varphi}^{2}\leqq-2$ where $1\leqq i\leqq r-1$ .
(2) In order to check that the isomorphism $\alpha$ in DePnition 4.3 gives the

equivalence, it suffices to verify $\alpha(\Gamma(\varphi))=\Gamma(\psi)$ and $\alpha(C_{\varphi})=C_{\psi}$ [or $\alpha(E_{r\varphi})=E_{r\psi}$].

PROOF. The Prst assertion is obtained from (ii) in Lemma 4.2 and the
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Castelnuovo’s criterion. In the second assertion we have that $\alpha(C_{\varphi})=C_{\psi}$ and
$\alpha(E_{r\varphi})=E_{r\psi}$ , since $\alpha$ preserves the weights of the components. By the blow-
down $\sigma_{r\varphi}$ the isomorphism $\alpha$ defines also the isomorphism $\alpha_{r-1}$ ; $S_{r-1\varphi}arrow S_{r-1\psi}$ such

that $\alpha_{r-1}\sigma_{r\varphi}=\sigma_{r\psi}\alpha$ . Since $\sigma_{r\varphi}(E_{i\varphi})$ and $\sigma_{r\psi}(E_{i\psi})$ have the weight $-1$ if and
only if $i=r-1$ , we have that $a_{r-1}(\sigma_{r\varphi}(E_{r-1\varphi}))=\sigma_{r\psi}(E_{r-1\psi}),$ $i.e.,$ $\alpha(E_{r-1\varphi})=E_{r-1\psi}$ .
In this way we complete the proof by induction. Q. E. D.

The following lemma is trivial, so its proof is omitted.

LEMMA 4.5. We have that $\Gamma(\varphi)\approx\Gamma(l\varphi)\approx\Gamma(\varphi l)$ , where $\varphi\in \mathcal{G}\backslash \mathcal{L}$ and $l\in \mathcal{L}$ .
Since $\varphi\sigma$ is a morphism, it can be expressed as $\sigma’\tilde{\varphi},$ aPplying the same

factorization to $\varphi^{-1}$, where $\sigma’=\sigma_{1}’\cdots\sigma_{r}’$ and $\overline{\varphi}$ : $S_{r}arrow S_{r}’$ is an isomorphism. In this
expression $\sigma_{i}’$ is a blow-up $S_{i}’arrow S_{i-1}’$ , where $1\leqq i\leqq r$ and $S_{0}’=P^{2}$ . Note that $S_{r}$ ,
$S_{r}’$ and $\tilde{\varphi}$ are determined uniquely by $\varphi$ owing to (A2).

DEFINITION 4.6. The above isomorphism $\tilde{\varphi}$ is called the resolution of $\varphi$ .
Here we have that $\Gamma(\varphi^{-1})=\sigma^{\prime- 1}(C)=E_{1\varphi^{-1}}+\cdots+E_{r\varphi^{-1}}+C_{\varphi^{-1}}$ and $\tilde{\varphi}(\Gamma(\varphi))$

$=\Gamma(\varphi^{-1})$ .

REMARK 4.7. (1) If $\varphi$ belongs to $\mathcal{G}\backslash X$ , then $\overline{\varphi}(E_{r\varphi})=C_{\varphi^{-1}}$ and $\tilde{\varphi}(C_{\varphi})=E_{r\varphi^{-1}}$ .
(2) For two elements $\varphi_{1}$ and $\varphi_{2}$ of $\mathcal{G}\backslash \mathcal{L}$ we have that $\Gamma(\varphi_{1})\approx\Gamma(\varphi_{2})$ if and

only if $\Gamma(\varphi_{1}^{-1})\approx\Gamma(\varphi_{2}^{-1})$ .
PROOF. The first assertion follows from (2) in Remark 4.4. Let $\tilde{\varphi}_{i}$ be the

resolution of $\varphi_{i}$ , where $i=1,2$ , and $\alpha:S_{r\varphi_{1}}arrow S_{r\varphi_{2}}$ give the equivalence between
$\Gamma(\varphi_{1})$ and $\Gamma(\varphi_{2})$ . Then from the same assertion (2) in Remark 4.4 we see that
$\tilde{\varphi}_{2}\alpha\tilde{\varphi}_{1}^{-1}$ gives the equivalence between $\Gamma(\varphi_{1}^{-1})$ and $\Gamma(\varphi_{2}^{-1})$ . The converse is
proved similarly. Q. E. D.

First contract $\tilde{\varphi}^{-1}(E_{r\varphi^{-1}})=C_{\varphi}$ , secondly $\tilde{\varphi}^{-1}(E_{r-1\varphi^{-1}})$ , and so on. In this way,

by using $\tilde{\varphi}$ , we have the composition $\sigma’’=\sigma_{1}’’\cdots\sigma_{r}’’$ of blow-downs $\sigma_{i}’’$ : $S_{i}’’arrow S_{i-1}’’$

such that $S_{r}’’=S_{\gamma},$ $S_{0}’’=S’’$ and $\sigma’’\tilde{\varphi}^{-1}=l\sigma’$ , where $1\leqq i\leqq r$ and 1 is an isomorphism
$P^{2}arrow S’’$ . Then we have that $\varphi\sigma=l^{-1}\sigma’’$ . Note that $l$ is not necessarily the
identity mapping and that the components of $\Gamma(\varphi)$ define two morphisms $\sigma$

and $\sigma’’$ .

DEFINITION 4.8. The above morphism $\sigma’’$ is called the associate of $\sigma$ .

REMARK 4.9. Since $\sigma’(E_{r})=l(C)$ , the curve $E_{r}$ is not contracted by the

associate of $\sigma$ .
LEMMA 4.10. Let $\varphi_{1}$ and $\varphi_{2}$ be two elements of $\mathcal{G}\backslash \mathcal{L}$ . Then there are two

elements $l_{1}$ and $l_{2}$ of $\mathcal{L}$ satisfying $\varphi_{2}=l_{2}\varphi_{1}l_{1}$ if and only if $\Gamma(\varphi_{1})\approx\Gamma(\varphi_{2})$ .
PROOF. The “ onIy if ” part is an easy consequence of Lemma 4.5. Suppose

that $\Gamma(\varphi_{1})\approx\Gamma(\varphi_{2})$ and $\alpha$ is the isomorphism $S_{r\varphi_{1}}arrow S_{r\varphi_{2}}$ defining its equivalence.

Then $\alpha$ induces an element 1 of $\mathcal{L}$ which satisfies $\sigma_{1\varphi_{2}}\cdots\sigma_{\tau\varphi_{2}}\alpha=l\sigma_{1\varphi_{1}}\cdots\sigma_{r\varphi_{1}}$ ,

where $\sigma_{i\varphi_{1}}$ and $\sigma_{i\varphi_{2}}$ are blow-ups, $1\leqq i\leqq r$ . Let $\tilde{\varphi}_{i}$ be the resolution of $\varphi_{i}$ ,
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$S_{r\varphi_{1}^{-1}}arrow S_{r\varphi_{2}^{-1}}$

$S_{r\varphi_{1}}arrow\tilde{\varphi}_{\nearrow_{\downarrow}}1$

a $S_{r\varphi_{2}}\tilde{\varphi}_{\nearrow}2\downarrow$

$\sigma_{1\varphi 1\downarrow’\sigma_{1\varphi_{2}}}\sigma_{r\varphi_{1}}\downarrow_{1}\sigma_{r\varphi_{2}}\downarrow’1|^{l}1\downarrow\varphi_{1}\nearrow\overline{\downarrow\nearrow\varphi}_{2}P^{2}P^{2}1$

$P^{2}\overline{l}P^{2}$

where $i=1,2$ . Since $\alpha(C_{\varphi_{1}})=C_{\varphi_{2}},$

$\alpha(E_{r\varphi_{1}})=E_{r\varphi_{2}}-1$

$\tilde{\varphi}_{i}(C_{\varphi t})=E_{r\varphi_{i}^{-1}}$ and $\tilde{\varphi}_{i}(E_{r\varphi i})=$

$C_{\varphi_{i}^{-1}}$ , where $i=1,2$, it follows that $\tilde{\varphi}_{2}\alpha\tilde{\varphi}_{1}$ preserves the orders of the irreducible

components of $\Gamma(\varphi_{1}^{-1})$ and $\Gamma(\varphi_{2}^{-1})$ by the assertion (2) in Remark 4.4. Hence we
see that the isomorphism $\tilde{\varphi}_{2}\alpha\tilde{\varphi}_{1}^{-1}$ induces an isomorphism $\varphi_{2}l\varphi_{1}^{-1}$ in $\mathcal{L}$ . Q. E. D.

Let $C$ be the set consisting of the equivalence class of the graphs of

elements of $\mathcal{G}\backslash \mathcal{L},$ $i.e.$ ,
$c=\{\Gamma(\varphi)|\varphi\in \mathcal{G}\backslash \mathcal{L}\}/\approx$ .

Then the above lemma implies the following

COROLLARY 4.11.
$\mathcal{G}\backslash \mathcal{L}=_{\Gamma}\bigcup_{(\varphi)\in C}\mathcal{L}\varphi \mathcal{L}$ .

Especially this means the following

LEMMA 4.12. If the number of elements of $\mathcal{L}$ and that of $C$ are both finite,

then so is $\mathcal{G}$ .
Now, let us proceed to the proof of Theorem A. We shall find step by step

the several conditions on which $\mathcal{G}$ is a finite group. Recalling the condition $(A_{1})$ ,

we put

$p= \min$ { $i|C_{i}$ is smooth}.

Then we have that $C_{p}^{2}\geqq-1$ . If $j\geqq i$ and $C’=-1$ , then $Q_{j+1}$ does not lie on $C_{j}$ ,

hence we put

$q= \min\{i| C’=-1\}$ .

Note that the number $q$ does not depend on $\varphi$ and that $C_{q}=C_{r}$ , where $r=r(\varphi)$ .
Since $C_{p}^{2}\geqq-1$ , we have that $C_{p-1}^{2}\geqq 3,$ $i.e.,$ $q\geqq P$ .

LEMMA 4.13. If the intersection number $C_{q}\cdot E_{q}\geqq 2$ , then $p=q=r(\varphi)$ for all $\varphi$

in $\mathcal{G}\backslash \mathcal{L}$ .
PROOF. Since $C_{q}\cdot E_{q}\geqq 2$ , the curve $C_{q-1}$ is not smooth, $i.e.$ , we have that

$q=p$ . Suppose that $r>q$ for some $\varphi$ , where $r=r(\varphi)$ . Then the fundamental
point of $\varphi\sigma_{1}\cdots\sigma_{q}$ exists on $E_{q}\backslash C_{q}$ , since $C_{q}^{2}=-1$ and $C_{q}$ has to be contracted.
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When $C_{q}$ is contracted, the image of $E_{q}$ is not smooth. By Remark 4.9 the

curve $E_{r}$ is not contracted, hence $E_{q}$ has to be contracted, since $q\neq r$ . This is
a contradiction. Q. E. D.

LEMMA 4.14. If $q=P$ , then $\mathcal{G}$ is a finite group.
PROOF. Since $q=p$ , we have that $C_{q}\cdot E_{q}\geqq 2$ , then by Lemma 4.13 $\varphi\sigma_{1}\cdots\sigma_{p}$

is a morphism for all $\varphi\in \mathcal{G}\backslash \mathcal{L}$ . Since $Q_{i}$ coincides with the singular point of
$C_{i-1}$ by Lemma 4.2, the blow-up $\sigma_{i}$ does not depend on $\varphi$ , where $1\leqq i\leqq p$ . Hence
we see that $C$ is a Pnite set (in fact it consists of at most one element). Since

the order of $X$ is Pnite by Proposition 1, so is $\mathcal{G}$ by Lemma 4.12. Q. E. D.

In view of the above lemma we may treat only the curves satisfying the

following condition $(A_{3})$ hereafter.

(A) : $q>P$ .

LEMMA 4.15. If $E_{p}$ and $C_{p}$ satisfy crther one of the following conditions,

then $\mathcal{G}=\mathcal{L}$ and it is a finite group.
(i) $E_{p}\cap C_{p}$ conststs of at least three Points.
(ii) $E_{p}\cap C_{p}$ consists of two ponnts such that $E_{p}$ and $C_{p}$ meet transversally at

none of them.

PROOF. Suppose that $\mathcal{G}\neq \mathcal{L}$ and take an element $\varphi$ of $\mathcal{G}\backslash \mathcal{L}$ . Then by the

condition $(A_{3})\varphi\sigma_{1}\cdots\sigma_{p}$ has one fundamental point $Q_{p+1}$ in $E_{p}\cap C_{p}$ . After $C_{\tau}$ ,

$r=r(\varphi)$ , is contracted, the image of $E_{p}$ is not smooth on the condition of this

lemma. Since $r\geqq q>p$ and $E_{r}$ is not contracted, the curve $E_{p}$ has to be con-
tracted by the associate of $\sigma$ . This is a contradiction. Of course $\mathcal{L}$ is a finite
group by Proposition 1. Q. E. D.

In view of the above lemma we may treat only the curves satisfying either
one of the following conditions (1) and (2) hereafter.

(A)$\{\begin{array}{l}(1) E_{p}\cap C_{p} consists of one point. (2) E_{p}\cap C_{p} consists of two points \{Q^{f}, Q’’\} such that E_{p} and C_{p} meet transversally at Q’ or Q’’.\end{array}$

LEMMA 4.16. If the total transform $(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$ has not normal crosszngs,
then we have that $r(\varphi)=q$ for every $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ , and hence $\mathcal{G}$ is a finite group.

PROOF. First of all, on the condition $(A_{4})$ the possibilities for the centers

of $\sigma_{p+1}$ for every $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ are at most two, while $Q_{j}$ coincides with
$E_{j-1}\cap C_{j-1}$ if $p+2\leqq j\leqq q$ . Thus $Q_{j}$ depends on $Q_{p+1}$ , where $P+2\leqq j\leqq q$ . Suppose

that $r(\varphi)>q$ for some $\varphi$ in $\mathcal{G}\backslash X$ . Then $Q_{q+1}$ lies in $E_{q}\backslash C_{q}$ , hence there is some
such that $C_{q}\cdot E_{i}\geqq 2$ or $C_{q},$ $E_{i}$ and $E_{j}$ meet at one point, where $i,$ $j\leqq q$ . After

the contraction of $C_{q}$ the image of $E_{i}$ has a singular point or $E_{i}$ and $E_{j}$ do not

meet transversal. Hence there is a curve not contracted besides $E_{r}$ . This is a
contradiction. Thus we have that $r(\varphi)=q$ for every $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ . In view of the
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first consideration we conclude that $C$ is a finite set (in fact it consists of at
most two elements). Since, for the curve $\Delta_{1}$ , we have that $q=2d+1$ and that
$(\sigma_{1}\cdots\sigma_{q})^{-1}(\Delta_{1})$ has normal crossings, the linear part $\mathcal{L}$ has a finite order. Hence

$\mathcal{G}$ is a finite group by Lemma 4.12. Q. E. D.

COROLLARY 4.17. If $N=1$ and $R\leqq-1$ , then $(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$ has not normal

crossings and hence $\mathcal{G}$ is a finite grouP.

PROOF. Note that $C_{p+j},$ $E_{p}$ and $E_{p+j}$ meet at one point, where $1\leqq j\leqq e_{p}-1$ .
Since $C_{p+j}^{2}=R+e_{p}-1-j$, we have that $q=P+e_{p}+R$ , hence $p+1\leqq q\leqq p+e_{p}-1$ .
This implies that $(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$ has not normal crossings. Q. E. D.

We have just proved the assertion (3) in Theorem A. In view of Lemma
4.16 we may treat only the curves satisfying the following condition $(A_{5})$ here-

after.

(A) : $(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$ has normal crossings.

Moreover the following lemma holds true.

LEMMA 4.18. If $N\geqq 3$ , then $\mathcal{G}$ is a finite grouP.

PROOF. Suppose that $N\geqq 3$ and take an element $\varphi$ of $\mathcal{G}\backslash X$ . Then $C_{r}$ and
$E_{1}+\cdots+E_{r}$ meet in at least 3 points, but $E_{r}$ and $E_{1}+\cdots+E_{r-1}$ meet in at

most 2 points, and $E_{r}=\tilde{\varphi}^{-1}(C_{\varphi^{-1}})$ meets at least three other components of $\Gamma(\varphi)$ .
Hence $E_{r}$ must meet $C_{r}$ . This means that $r(\varphi)=q$ . As was shown in the proof

of Lemma 4.16, the possibilities for the centers of blow-ups are at most two,

so that the order of $\mathcal{G}$ is finite. Q. E. D.
From the above results we may treat only the curves satisfying one of the

following conditions hereafter.
(i) $N=2$ .
(ii) $N=1$ and $R\geqq 0$ .

In this section only the case (i) is considered. The other one will be treated

in the next section.
In what follows the graphs will be represented as figures, where the fol-

lowing abbreviation will be used. The number $r$ indicates the rank $r(\varphi)$ and a
positive integer $i$ beside a component indicates the curve $E_{i}$ and a non-positive
integer $j$ beside a component indicates the weight $j$ of the component and a
component without a non-positive integer has the weight $-2$ . Since we treat
only the case of normal crossings, we often adopt dual graphs, where the symbols
$O$ and $\bullet$ indicate the components whose weights are-2 and not $-2$ respectively.

DEFINITION 4.19. If a divisor on some surface $S$ admits two ways of con-
tractions $Sarrow P^{2}$ such as $\sigma$ and $\sigma’’$ , then it is said to be contractible. Of course
the graph $\Gamma(\varphi)$ for $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ is contractible.

DEFINITION 4.20. By using the resolution $\tilde{\varphi}$ of $\varphi$ , we define a permutation



98 H. YOSHIHARA

$\varphi^{*}$ of the set $\{E_{1\varphi}, \cdots , E_{r\varphi}, C_{\varphi}\}$ as follows:

$\varphi^{*}(C_{\varphi})=E_{r\varphi}$ , $\varphi^{*}(E_{\iota_{\varphi}})=\tilde{\varphi}^{-1}(E_{i\varphi^{-1}})$ , where $1\leqq i\leqq r$ .

Let us call $\varphi^{*}$ the permutation of $\Gamma(\varphi)$ and denote by $D(\varphi)$ the divisor consisting

of all the components of $\Gamma(\varphi)$ that are fixed by $\varphi^{*}$ . In case all the components

are moved, then we put $D(\varphi)=0$ . Let us call $D(\varphi)$ the center of $\Gamma(\varphi)$ . If $\varphi^{*}$

has the order 2, then we may regard $\Gamma(\varphi)$ as being symmetrical about $D(\varphi)$ .
Now, let us study the curves with $N=2$ .

DEFINITION 4.21. A divisor $D= \sum_{i=1}^{n}D_{i}$ is said to contain a loop if a subset
$\bigcup_{j\in I}D_{j}$ forms a closed path for some $I\subset\{1,2, \cdots , n\}$ . The divisor $D$ is said to

form a simple loop if the following two conditions are satisfied:
(1) $D$ has normal crossings.

(2) Every irreducible component is nonsingular and rational and intersects

others at two points.

Note that a divisor consists of just one loop if it forms a simple loop.

LEMMA 4.22. The following three conditions are equivalent.

(1) $\mathcal{G}\neq \mathcal{L}$ and $\Gamma(\varphi)$ forms a simple loop for some $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ .
(2) The singular point $P_{1}$ of $C$ is a node, $i$ . $e.,$ $e(P_{1}, C)=N=2$ and $p=1$ .
(3) $C\sim\Delta$ .
PROOF. If $\Gamma(\varphi)$ forms a simple loop, then by contracting the components

of $\Gamma(\varphi)$ we see that $P_{1}$ turns out to be a node. Next we assume that $P_{1}$ is a
node. Since $g=0$ , we have that $d=3$ by the genus formula for plane curves,

which means that $C\sim\Delta$ . Finally we assume that $C\sim\Delta$ . Then by successive
blow-ups we get the following figure.

In this figure, first contract $C_{7}$ , secondly $E_{1}$ , and so on. Eventually we get a
curve which is projectively equivalent to $\Delta$ . From these blow-ups and blow-
downs we obtain an element $\varphi$ of $\mathcal{G}\backslash \mathcal{L}$ . Q. E. D.

Let us study the case (i) by examining the following cases separately.
(i-1) The curve $C$ is not projectively equivalent to $\Delta$ .
(i-2) The curve $C$ is projectively equivalent to $\Delta$ .
First let us consider the case (i-1).

Then by the above lemma we have that $\mathcal{G}=\mathcal{L}$ or $\Gamma(\varphi)$ does not form a
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simple loop for all $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$ . In the former case $\mathcal{G}$ has a finite order owing to

Proposition 1 and the assumption that $M=1$ and $N=2$ . Hence let us treat only

the latter case. Put $\Gamma_{i}=(\sigma_{1}\cdots\sigma_{i})^{-1}(C)$ , where $i\geqq q$ . By the condition $(A_{5})\Gamma_{i}$

has normal crossings. The divisor $E_{1}+\cdots+E_{t}$ is connected and does not contain

a loop, but it connects two points in $C_{i}$ . Hence $\Gamma_{i}$ contains just a simple loop,

to which $C_{i}$ belongs. We denote it by $\Gamma_{i}^{0}$ .

LEMMA 4.23. If $\varphi\sigma_{1}\cdots\sigma_{i}$ has a fundamental point, where $i\geqq q$ , then the

center $Q_{i+1}$ of $\sigma_{i+1}$ is not a free point on $E_{i}$ , hence $E_{i+1}$ is a component of $\Gamma_{r}^{0}=$

$\Gamma(\varphi)^{0}$ . The curve $E_{q}$ is a component of $\Gamma_{q}^{0}$ , hence $\Gamma_{r}^{0}$ is obtained from $\Gamma_{q}^{0}$ by

successive blow-ups.

PROOF. Since $\Gamma(\varphi)^{0}$ [resp. $\Gamma(\varphi^{-1})^{0}$ ] is the unique simple loop contained in
$\Gamma(\varphi)$ [resp. $\Gamma(\varphi^{-1})$ ], the resolution $\tilde{\varphi}$ maps $\Gamma(\varphi)^{0}$ onto $\Gamma(\varphi^{-1})^{0}$ . As is mentioned
above $\Gamma(\varphi)^{0}$ [resp. $\Gamma(\varphi^{-1})^{0}$ ] contains $C_{\varphi}$ [resp. $C_{\varphi^{-1}}$], hence $\Gamma(\varphi)^{0}$ contains also
$\tilde{\varphi}^{-1}(C_{\varphi^{-1}})=E_{r\varphi}$ . Since $\Gamma_{q}^{0}$ has normal crossings, and $E_{q}$ and $C_{q}$ meets, and $N=2$ ,

the curve $E_{q}$ is a component of $\Gamma_{Q}^{0}$ . The above consideration proves the
lemma. Q. E. D.

Since $\Gamma(\varphi)$ does not form a simple loop but contains the one $\Gamma_{r}^{0}$ , there is a
component $E_{k}$ of $\Gamma_{r}^{0}$ which meets at least three other components. (For example,

see the following figure, though it is not contractible, obtained from the curve

$(y-x^{2})^{2}+tx^{2}y^{2}+xy^{3}=0$ , where $t\neq 0$ .

In this case $k=3.$ )

By Lemma 4.23 we have that $k\leqq q$ , in other words, for any $i>q,$ $E_{i}$ is a com-
ponent of $\Gamma_{r}^{0}$ . Taking note of the position of $E_{k}$ , we infer that the possibilities

of graphs which represent automorphisms are finite. To explain this in detail,

let us consider the one route in $\Gamma_{r}^{0}$ that connects $C_{r}$ and $E_{k}$ and that does not
pass through $E_{r}$ . Then let $h$ be the sum of the weights of the divisors in the

route, $i.e.,$ $h=C_{r}^{2}+\cdots+E_{k}^{2}$ . For the sake of simplicity, let us take $E_{k}$ that gives

the minimum value for $-h$ . Of course $h$ is determined uniquely by $C$ and is
independent of $\varphi$ . Suppose that $-h\ll r$ . Then there are a great many compo-

nents in the other route, because the center $Q_{q+1}\in E_{q}\backslash C_{q}$ and we have the facts
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in Lemma 4.23. Now, let us contract the graph from $C_{r}$, then, after the

contraction of $E_{k}$ , we will have a divisor with not normal crossings, but the

number of its components will be still more than $q+1$ , since $-h\ll r$ . This is a
contradiction, hence we have the conclusion mentioned above. Thus $C$ consists
of finitely many elements, $i.e.,$ $\mathcal{G}$ is a finite group.

Putting together all the results obtained above, we complete the proof of ( $2\rangle$

in Theorem A.

Next let us consider the case (i-2).

Since $C$ is projectively equivalent to $\Delta$ , the linear part $X$ is the dihedral
group of order 6. Let us consider non-linear elements.

LEMMA 4.24 (Wakabayashi). For every element $\varphi$ of $Aut(P-\Delta)\backslash X$ , the

graph $\Gamma(\varphi)$ forms a simple loop and its figure is as follows.

In this figure $t$ is a non-negative integer determined by $\varphi$ and the number of com-
ponents of $\Gamma(\varphi)$ is $8+6t,$ $i.e.,$ $r(\varphi)=6t+7$ . Conversely, such a figure yields an
element of $Aut(P^{2}-\Delta)$ .

PROOF. We perform successive blow-ups of $P^{2}$ in order that the total
transform of $\Delta$ may become contractible. In the proof of Lemma 4.22, we have
obtained that $q=7$ and the figure with $t=0$ . Then, noting that Lemma 4.23 is
also applicable to this case, we continue blow-ups if there is still a fundamental
point. The center $Q_{8}$ must coincide with $E_{6}\cap E_{7}$ , and $Q_{9}$ with $E_{7}\cap E_{8}$ , and so
on. When the weight of the proper transform of $E_{7}$ becomes $-7$ , we may stop

the blow-ups and get the contractible divisor with $t=1$ in the above figure. In
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case there is still a fundamental point, the center $Q_{14}$ must coincide with $E_{12}\cap E_{13}$

and we proceed similarly. Finally we get all contractible divisors by such
a manner, which are illustrated as above. Conversely, the above divisor is
contractible and two curves which are images of the divisor are projectively

equivalent. Hence from this divisor we get an element of $\mathcal{G}\backslash \mathcal{L}$ . Q. E. D.
This lemma shows that the centers of blow-ups are always the intersection

points of two curves, hence the order of $\mathcal{G}$ is countably infinite. Thus the
assertion (5) in Theorem A is proved.

Concerning the assertion (2) in Theorem A we raise the following conjecture,

which is true for all examples we now have.

CONJECTURE. Suppose that $N\geqq 2$ and that $C$ is not projectively equivalent

to $\Delta$ . Then $\mathcal{G}=\mathcal{L}$ .

5. Curves with $g=0,$ $N=1$ and $R\geqq 0$ .
In this section also we follow the notations fixed in the previous sections

and assume that $C$ is a curve with $g=0,$ $N=1$ and $R\geqq 0$ . Recall that $(A_{2})$ is
always assumed, so $C$ satisfies all the conditions $(A_{i}),$ $1\leqq i\leqq 5$ .

DEFINITION 5.1. Let $D_{t}$ be a component of a divisor $D=\Sigma_{i=1}^{n}D_{t}$ . Then a
point $Q$ on $D_{i}$ is called a free point on $D_{i}$ if $Q$ does not belong to any other
component $D_{j}$ , where $j\neq i$ . The divisor $D$ is called a zigzag (or a divisor of
type $A_{n}$) if its components are nonsingular and rational and it has the following

expression:

$D_{i}\cdot D_{j}=\{\begin{array}{l}-2 if i=j. 1 if |i-j|=1, 0 if |i-j|\geqq 2.\end{array}$ where $1\leqq i,$ $j\leqq n$ .

In the figures of graphs we sometimes use a dotted line which represents a
zigzag. When we try to find the graphs of elements of $\mathcal{G}\backslash \mathcal{L}$ , we shall make

good use of the following facts freely.

REMARK 5.2. (1) The center $Q_{i+1}$ of $\sigma_{i+1}$ is contained in $E_{t}$ , where
$1\leqq i\leqq r-1$ .

(2) The graph $\Gamma(\varphi)$ is symmetrical about $D(\varphi)$ if $\varphi^{*}$ has the order 2.
(3) There exists the associate $\sigma’’$ of $\sigma,$

$i.e.$ , a contraction can be started
from $C_{r}$ . Moreover the following fact holds true, which will not be used
explicitly. Put $\Gamma_{t}’’=\sigma_{i^{f}+1}’\cdots\sigma_{r}’’(\Gamma(\varphi))=(\sigma_{1}’’\cdots\sigma_{i}’’)^{-1}(l(C))$ . Then $\Gamma_{i}’’$ contains one
or two components with the weight $-1$ . If $\Gamma_{i}’’$ contains two such components,

then $i\geqq q$ , hence it has normal crossings.

Then by considering blow-ups we get the following

PROPOSITION 5.3. Supp0se that $R=0$ and $\mathcal{G}\neq \mathcal{L}$ . Then for every $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$
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we have $q=p+e_{p}$ . Supp0se moreover that $\varphi^{*}$ has the order 2 and that the center
$D(\varphi)$ of $\Gamma(\varphi)$ contains $E_{1}+\cdots+E_{p-1}$ . Then the figure of $\Gamma(\varphi)$ is (I) or (II) in

the following according as $e_{p-1}=e_{p}$ or $e_{p- 1}>e_{p}$ . In these figures the dotted crrcle

represents the divisor $E_{\iota}+\cdots+E_{p-1}$ .
(I) The case $e_{p-1}=e_{p}$ is separated into three subcases.

Subcase (a), $r=q+1$ .

$-1$

Subcase (b), $r=q+e_{p}+2$ .

Subcase (c), $r=q+2e_{p}+2t+1$ , where $t$ is an integer $\geqq 1$ .

(II) The case $e_{p-1}>e_{p}$ is also separated into three subcases.
Subcase (a), $r=q+1$ .
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Subcase (b), $r=q+2e_{p}+2$ .

Subcase (c), $r=q+2e_{p}+2t+3$ , where $t$ is an integer $\geqq 1$ .

PROOF. Since $N=1$ and $d^{2}- \sum"=1e_{t}^{2}-e_{p}=-1$ , we have that $q=p+e_{p}$ and

that the center $Q_{i+1}$ of the blow-up $\sigma_{i+1}$ coincides with the point $E_{i}\cap C_{i}$ if
$i\leqq q-1$ .

First let us take up the case (I). In this case the figure of $\Gamma_{q}=(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$

is as follows, since $C_{p}$ meets only $E_{p}$ .
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Note that $\Gamma_{q}$ is independent of $\varphi$ and $\varphi^{*}$ is assumed to have the order 2. Hence
by the hypothesis the divisor $E_{1}+\cdots+E_{p}$ is contained in the center $D(\varphi)$ . We
prove first $\{Q_{q+1}\}\neq E_{q}\cap E_{q-1}$ . Suppose the contrary. Then we have that $\varphi^{*}(E_{q})$

$=E_{q}$ . Since $\varphi^{*}(C_{q})=E_{r}$, the divisor $E_{r}$ must meet $E_{q}$ . Then $\Gamma(\varphi)$ cannot be
symmetrical about $D(\varphi)$ . This is a contradiction. Thus we have that $\{Q_{q+1}\}$

$\neq E_{q}\cap E_{q-1}$ . Hence let us study this case (I) by examining the following cases
separately.

(1) $Q_{q+1}$ is a free point on $E_{q}$ .
(2) $\{Q_{q+1}\}=E_{p}\cap E_{q}$ .
In the first case (1) the divisor $E_{1}+\cdots+E_{p}+E_{q}$ is contained in the center

$D(\varphi)$ . Since $\varphi^{*}(C_{q})=E_{r}$, we get $r=q+1$ and the figure of subcase (a).

In the second case (2) the center $Q_{q+2}$ is a free point on $E_{q+1}$ or coincides
with the point $E_{p}\cap E_{q+1}$ . Since the contraction can be started from $C_{q}$, the
weight of the proper transform of $E_{q+1}$ must be $-e_{p}-1$ . Now, in the former
case, taking note that $\Gamma(\varphi)$ is symmetrical about $E_{1}+\cdots+E_{p}+E_{q+1}$ , we get the
figure of subcase (b).

On the other hand, in the latter case, we get the following Pgure.
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Then $Q_{q+e_{p}+2}$ is a free point on $E_{q+e_{p}+1}$ or coincides with the point $E_{q+e_{p}+1}\cap E_{q+e_{p}}$ .
In the former case, taking note that $\Gamma(\varphi)$ is symmetrical about $E_{1}+\cdots+E_{p}+E_{q+2}$

$+\cdots+E_{q+e_{p}+1}$ , we get the figure (c) with $t=1$ . In the latter case, $Q_{q+e_{p}+3}$ is a
free point on $E_{q+e_{p}+2}$ or coincides with the point $E_{q+e_{p}}\cap E_{q+e_{p}+2}$ . Then we get

the figure (c) with $t=2$ by the same reason as above or we proceed similarly.

In this way we get the figures of subcase (c). From the above procedure we
see that every possible case is exhausted.

Next let us take up the case (II). Since $C_{p-1}\cdot E_{p-1}=e_{p-1}>e_{p}$ , the curve $E_{p-1}$

is a tangent to $C_{p-1}$ , hence $C_{p},$ $E_{p}$ and $E_{p-1}$ meet at $Q_{p+1}$ . So that the figure

of $\Gamma_{q}=(\sigma_{1}\cdots\sigma_{q})^{-1}(C)$ is as follows.

Note that $\Gamma_{q}$ is independent of $\varphi$ and $\varphi^{*}$ is assumed to have the order 2. Hence
by the hypothesis the divisor $E_{1}+\cdots+E_{p-1}+E_{p+1}+\cdots+E_{q-1}$ is contained in
the center $D(\varphi)$ . Then we conclude similarly that $\{Q_{q+1}\}\neq E_{p}\cap E_{q}$ . Hence let

us study this case (II) by examining the following cases separately.

(1) $Q_{q+1}$ is a free point on $E_{q}$ .
(2) $\{Q_{q+1}\}=E_{q-1}\cap E_{q}$ .

In the first case (1) $E_{q}$ is also contained in the center $D(\varphi)$ . Since $\varphi^{*}(C_{q})=E_{r}$ ,
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we get $r=q+1$ and the figure of subcase (a). In the second case (2) the weight

of the proper transform of $E_{q-1}$ must be $-e_{p}-2$ , since the contraction can be
started from $C_{q}$ and $E_{p}$ must be contracted. Then we get the following Pgure.

Similarly, since $E_{p}$ must be contracted, we have that $\{Q_{q+e_{p}+1}\}\neq E_{q+e_{p}}\cap E_{q+e_{p^{-1}}}$ .
Then $Q_{q+e_{p}+1}$ is a free point on $E_{q+e_{p}}$ or coincides with the point $E_{q-1}\cap E_{q+e_{p}}$ .
In the former case, taking note that $\Gamma(\varphi)$ is symmetrical about $E_{1}+\cdots+E_{p-1}$

$+E_{p+1}+\cdots+E_{q-1}+E_{q+e_{p}}$ , we get $r=q+2e_{p}+2$ and the figure of subcase (b). In
the latter case, since $E_{p}$ must be contracted, we have that $\{Q_{q+e_{p}+2}\}=$

$E_{q+e_{p}}\cap E_{q+e_{p}+1}$ . Then similarly $\{Q_{q+e_{p}+3}\}\neq E_{q+e_{p}}\cap E_{q+e_{p}+2},$
$i$ . $e.,$ $Q_{q+e_{p}+3}$ is a free

point on $E_{q+e_{p}+2}$ or coincides with $E_{q+e_{p}+1}\cap E_{q+e_{p}+2}$ . In the former case, taking

note that $\Gamma(\varphi)$ is symmetrical, we get the figure (c) with $t=1$ . In the latter

case $Q_{q+e_{p}+4}$ is a free point on $E_{q+e_{p}+3}$ or coincides with $E_{q+e_{p}+1}\cap E_{q+e_{p}+3}$ . Then
we get the figure (c) with $t=2$ by the same reason as above or proceed similarly.

In this way we get the figures of subcase (c). From the above procedure we
see that every possible case is exhausted. Q. E. D.

PROPOSITION 5.4. Supp0se that $R\geqq 1$ and $\mathcal{G}\neq \mathcal{L}$ . Then for every $\varphi$ in $\mathcal{G}\backslash \mathcal{L}$

we have that $q=p+e_{p}+R$ . Supp0se moreover that $\varphi^{*}$ has the order 2 and the
center $D(\varphi)$ of $\Gamma(\varphi)$ contains $E_{1}+\cdots+E_{q-2}$ . Then $r=q+2t-1$ , where $t$ is a
posjtive integer determined by $\varphi$ , and the figure of $\Gamma(\varphi)$ is as follows, where the
dotted circle represents the divisor $E_{1}+\cdots+E_{q-2}$ .
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PROOF. By Lemma 4.2 we have that $\{Q_{i}\}=E_{i-1}\cap C_{i-1}$ for $i\leqq q$ . Since
$C_{q}=-1$ , the center $Q_{q+1}$ lies in $E_{q}\backslash C_{q}$ . First we consider the case when $Q_{q+1}$

is a free point on $E_{q}$ . Then $E_{1}+\cdots+E_{q}$ is the center $D(\varphi)$ , since $E_{1},$ $\cdots$ , Eq-z

are contained in the center, hence we get $r=q+1$ and the figure with $t=1$ .

stop, $t=1$ .
$\sigma_{q+1\prime}$

$\backslash ^{\sigma_{q+1}}$

$\sigma_{q+2\prime}$

$\nwarrow^{\sigma_{q+2}}$

Next we consider the case when $\{Q_{q+1}\}=E_{q-1}\cap E_{q}$ . Then we see that $Q_{q+2}$ lies

in $E_{q+1}\backslash E_{q}$ . In case $Q_{q+2}$ is a free point on $E_{q+1}$ , then $E_{1}+\cdots+E_{q-1}+E_{q+1}$ is
the center $D(\varphi)$ . Hence we get $r=q+3$ and the figure with $t=2$ . On the other
hand in case $\{Q_{q+2}\}=E_{q-1}\cap E_{q+1}$ , then we proceed similarly in order to get

contractible graphs. Seeing from this procedure, we infer that every possible

case is exhausted. Q. E. D.

REMARK 5.5. It seems that the above two propositions hold true without
the assumptions about $\varphi^{*}$ and $D(\varphi)$ .

Let $\Gamma$ denote a divisor on $S_{r}$ with a figure in Proposition 5.3 or 5.4. As we
see from the manner of the proof of them, we have the following result inde-
pendently of the automorphisms.
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REMARK 5.6. For a curve with $g=0,$ $N=1$ and $R\geqq 0$ we can perform

blow-ups in order to get $\Gamma$ Conversely, for any divisor $\Gamma$, there is a curve $C$

with $g=0,$ $N=1$ and $R\geqq 0$ such that $\Gamma$ is obtained from $C$ by some blow-ups.

Now, let us begin the proof of (6) in Theorem A. It suffices to find a set

of elements of $\mathcal{G}$ which dePnes the group $(G_{a})^{n}$ . By the above remark we shall

use the divisors $\Gamma$ to find such elements. In the case when $R=0$ we consider
only the graphs of subcase (c), since they turn out to yield the wanted elements.

Since $\Gamma$ is contractible, we have two curves on $P^{2}$ which are images of $\Gamma$,

but we do not know whether they are projectively equivalent. So we cannot

conclude immediately that we can get an element of $\mathcal{G}$ by the blow-ups and the

blow-downs (compare this with the case of Lemmas 4.22 and 4.24).

Starting contractions from $C_{r}$ and $E_{r}$ at the same time and contracting

components of $\Gamma$ symmetrically, we get the following Pgures (here $r$ is already

irrelevant to the rank).

(1) The case when $R=0$ and $e_{p-1}=e_{p}$ .

(2) The case when $R=0$ and $e_{p-1}>e_{p}$ .

(3) The case when $R=1$ .

(4) The case when $R\geqq 2$ .

Note that in case $R=1$ , the component $E_{q-1}$ meets $E_{p},$ $E_{q-2}$ and $E_{q+t-1}$ , hence
the figure is as above. Let $F$ be the surface obtained from $S_{r}$ by the above

contractions and $\tau_{1}$ be the morphism $S_{r}arrow F$. In the above figures let us denote
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by $E_{f}$ and $E_{s}$ the components with the weight $0$ and $-t-1$ respectively. Since
$E_{f}^{2}=0$ and $E_{f}\cdot K=-2$ , we have, by the Riemann-Roch theorem, that diml $E_{f}|$

$=1$ . Hence we have a fiber space $\rho$ : $Farrow P^{1}$ with a fiber $E_{f}$ and a section $E_{s}$ .
Let $\mathcal{E}$ be the divisor on $F$ consisting of the components of $\tau_{1}(\Gamma)$ except $E_{f}$ and
$E_{s},$ $i.e.,$ $\mathcal{E}=\tau_{1}(\Gamma)_{red}-E_{f}-E_{s}$ , where $\tau_{1}(\Gamma)_{red}$ is the reduced divisor obtained

from $\tau_{1}(\Gamma)$ . Since $\mathcal{E}$ does not meet $E_{f}$ , the divisor $\mathcal{E}$ is contained in fibers of

$\rho$ . Note that $\mathcal{E}$ is disconnected if and only if $R=1$ . In case $R\neq 1$ , let $\mathcal{F}$ be the
unique fiber of $\rho$ containing $\mathcal{E}$ , on the other hand in case $R=1$ , let $\mathcal{E}_{i}$ be a
connected component of $\mathcal{E}$ and let $\mathcal{F}_{i}$ be the fiber of $\rho$ containing $\mathcal{E}_{i}$ , where
$i=1,2$ . In this case $\mathcal{E}=\mathcal{E}_{1}+\mathcal{E}_{2}$ , and put also $\mathcal{F}=\mathcal{F}_{1}+\mathcal{F}_{2}$ .

Before proceeding further we fix some notations. Let $F_{n}$ denote the rational

ruled surface $P(O_{P^{1}}\oplus O_{P^{1}}(n))$ , where $n\geqq 0$ , and $\pi;F_{n}arrow P^{1}$ the natural morphism.

Let $B_{n}$ be the base line, $i.e.$ , it is the unique irreducible curve on $F_{n}$ with the

negative weight $-n$ in case $n\neq 0$ .
Now, let us return to the proof.

LEMMA 5.7. In case $R\neq 1$ , there is only one srngular fiber $\mathcal{F}$ . On the other

hand, in case $R=1$ , there are just two singular fibers $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ .
PROOF. Contracting components of singular fibers of $\rho$ , we get a birational

morphism $\tau_{2}$ ; $Farrow F_{n}$ for some $n\geqq 0$ . The number of components of $\tau_{2}\{\tau_{1}(\Gamma)\cup \mathcal{F}\}$

is 3 [resp. 4], in case $R\neq 1$ [resp. $R=1$].

Comparing the number of blow-ups to obtain $S_{r}$ from $P^{2}$ with that of blow-downs

to obtain $F_{n}$ from $S_{r}$ , we infer that the latter number is $r-1$ . Since the number

of components of $\Gamma$ is $r+1$ , there is one curve $D$ [resp. two curves $D_{1}$ and $D_{a}$]

not belonging to $\mathcal{E}$ and contracted by $\tau_{2}$ . Note that $\mathcal{E}$ does not contain a curve
with the weight $-1$ by the assertion (1) in Remark 4.4. So the curve $D$ has

the weight -1 and $\mathcal{F}$ consists of $\mathcal{E}$ and $D$ in case $R\neq 1$ . Similarly in the other
case, since $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ do not contain curves with the weight $-1$ , we infer that

$\mathcal{F}_{i}$ consists of $\mathcal{E}_{i}$ and $D_{i}$ such that $D_{i}^{2}=-1$ , where $i=1$ and 2. Whence the
lemma is proved. Q. E. D.

Moreover we have the following

LEMMA 5.8. There is a lnrational morphism $\tau_{2}$ ; $Farrow F_{n}$ such that
(1) $\tau_{2}$ is a cmpontion of blow-downs defined by contracting compOnents of $\mathcal{F}$ ,
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(2) $\tau_{2}$ does not contract the component $(s)$ of $\mathcal{F}$ which meet $(s)E_{s}$ , hence $n=t+1$ .
PROOF. Contracting components of $\mathcal{F}$ , we get a birational morphism $\tau_{2}’$ :

$Farrow F_{n’}$ . Since $E_{f}$ and $E_{s}$ meet transversally at one point, the curve $E_{s}$ is
carried to a section of the natural morphism $F_{n’}arrow P^{1}$ . If the weight of $\tau’,(E_{s})$

is more than $-t-1$ , then $\tau_{2}^{f-1}$ has a fundamental point at $\tau_{2}’(E_{s}\cap \mathcal{F})$ . Then by

the elementary transformation with the center at this point we have a new
surface which $F$ dominates, too. We can repeat this procedure to get the surface
$F_{n}$ on which the weight of the image of $E_{s}$ becomes equal to $-t-1$ . This
proves the whole parts of the lemma. Q. E. D.

As we have shown in the proof of Lemma 5.7, there is an irreducible curve
$D$ [resp. two irreducible curves $D_{1}$ and $D_{2}$] on $F$ such that $\mathcal{F}=\mathcal{E}+D$ [resp.

$\mathcal{F}_{i}=\mathcal{E}_{i}+D_{i}$ , where $i=1,2$]. Put $C^{f}=\sigma\tau_{1}^{-1}(D)$ [resp. $C^{f}=\sigma\tau_{1}^{-1}(D_{1})$ and $C^{\prime f}=$

$\sigma\tau_{1}^{-1}(D_{2})]$ . Then performing suitable successive elementary transformations
starting from $F_{t+1}$ , we complete the proof of Theorem B. Since $\tau_{1}^{-1}(D),$ $\tau_{1}^{-1}(D_{1})$

and $\tau_{1}^{-1}(D_{2})$ do not meet $C_{r}$ , Proposition 2 follows easily.

By definition, $F$ and $\Gamma$ depend on $t$ , so hereafter let us write $F(t)$ and $\Gamma(t)$

instead of $F$ and $\Gamma$ respectively, when we emphasize the parameter $t$ . Put

$\mathcal{G}_{1}(t)=\{\varphi\in Aut(F(t))|\varphi(\tau_{1}(\Gamma(t)))=\tau_{1}(\Gamma(t))\}$ .

Since $P^{2}\backslash C\cong F(t)\backslash \tau_{1}(\Gamma(t))$ , we have the following

LEMMA 5.9. For any integer $t\geqq 1$ , the group $\mathcal{G}_{1}(t)$ may be regarded as a
subgroup of $\mathcal{G}$ .

Let $\tau_{2}$ ; $F(t)arrow F_{t+1}$ be the morphism obtained in Lemma 5.8 and put $\Sigma=E_{f}+$

$E_{s}+\mathcal{F}$ .
First we consider the case when $R\neq 1$ . Note that $\tau_{2}(D)=A$ is a point on

the fiber $\tau_{2}(\mathcal{F})$ not lying on the base line. Then put

$\mathcal{G}_{2}(t)=$ { $\psi\in Aut(F_{t+1})|\psi(\tau_{2}(\Sigma))=\tau,(\Sigma)$ and $\psi(A)=A$ }.

We shall find elements $\psi$ of $\mathcal{G},(t)$ such that $\tau_{2}^{-1}\psi\tau_{2}\in \mathcal{G}_{1}(t)$ . Let us call such $\psi$ a

liftable element. Before stating how to Pnd liftable elements, we make some
preparation.

Let $B$ be a free point on $D,$ $i.e.,$ $B$ does not lie on $\tau_{1}(\Gamma)$ . Let $T’$ be an
irreducible curve intersecting $D$ transversally at $B$ , and $U$ be a small neighbour-

hood of $B$ such that $U\cap\tau_{1}(\Gamma)=\emptyset$ . We assume that $T=T’\cap U$ and $D$ meet only

at $B$ . Let $\tau_{2}=\tau_{21}\cdots\tau_{2k}$ be the factorization of $\tau_{2}$ into blow-downs $\tau_{2i}$ . Recall
that $T,k$ is dePned by contracting D. (Here $k=p+e_{p}-2$ or $q-1$ according as
$R=0$ or $R\geqq 2$). Let $m_{i}$ be the multiplicity of $\tau_{i}\cdots\tau_{2k}(T)$ at $\tau_{2\ell}\cdots\tau_{2k}(D)$ , where
$1\leqq i\leqq k$ . Then we put $m_{0}= \sum_{i=1}^{k}m_{i}$ . Note that $m_{0}$ is independent of $t$ , since $\mathcal{F}$

is independent of $t$ , more precisely, $F(t)\backslash (E_{f}\cup E_{s})$ and $F(1)\backslash (E_{f}\cup E_{s})$ are
isomorphic for each $t$ .
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Now, for an element $\psi$ of $\mathcal{G}_{2}(t)$ we define $I(\psi)$ to be the intersection multi-
plicity $(\tau_{2}(T)\cdot\psi(\tau_{2}(T)))_{A}$ [if $\psi(\tau_{2}(T))=\tau_{2}(T)$ , then we put $I(\psi)=\infty$ ]. Then we
have the following

LEMMA 5.10. An element $\psi$ of $\mathcal{G}_{2}(t)$ is liftable if $I(\psi)\geqq m_{0}$ .
PROOF. Since $\psi(A)=A$ , we have an isomorphism $\tau_{21}^{-1}\psi\tau_{21}=\psi_{1}$ such that

$\psi_{1}(\tau_{21}^{-1}(A))=\tau_{21}^{-1}(A)$ . Since $\psi_{1}$ also fixes the center of $\tau_{22}$ by the hypothesis, we
have an isomorphism $\tau_{22}^{-1}\psi_{1}\tau_{22}=\psi_{2}$ such that $\psi_{2}(\tau_{22}^{-1}\tau_{21}^{-1}(A))=\tau_{22}^{-1}\tau_{21}^{-1}(A)$ . In view of

the above preparation this procedure can be continued to get the lift of $\psi$ .
Q. E. D.

By the way, we consider generally Aut $(F_{n})$ for a while. Let $(u_{0}, u_{1})$ be a
set of homogeneous coordinates on $P^{1}$ and $(v_{0}, v_{1})$ affine coordinates on $A^{2}$ . The

elements $(u_{0}, u_{1}, v_{0}, v_{1})$ and $(u_{0}^{f}, u_{1}’, v_{0}’, v_{1}’)$ of $P^{1}\cross(A^{2}\backslash \{(0,0)\})$ determine the same
point on $F_{n}$ if and only if there are $\alpha$ and $\beta$ in $C^{*}=C\backslash \{0\}$ such that

$u_{0}’=\alpha u_{0}$ , $u_{1}’=\alpha\beta^{n}u_{1}$ , $v_{0}’=\beta v_{0}$ , $v_{1}’=\beta v_{1}$ .

For $n>0$ automorphisms of $F_{n}$ are of the form

$\{\begin{array}{l}u_{0}’=u_{0}u_{1}’=\gamma u_{1}+u_{0}\Phi(v_{0}, v_{1}),\end{array}$ $\{\begin{array}{l}v_{0}’=av_{0}+bv_{1}v_{1}’=cv_{0}+dv_{1},\end{array}$

where $\gamma\in C^{*}$ and $\Phi$ is a form of degree $n$ , and

$(\begin{array}{ll}a bc d\end{array})\in PGL_{2}$ .

Now, let us resume the proof. In the coordinates given above, the equation

of $\tau_{2}(E_{S})$ is $u_{0}=0$ . Let the equations of $\tau_{2}(\mathcal{F})$ and $\tau_{2}(E_{f})$ be $v_{0}=0$ and $v_{1}=0$

respectively. Since $A$ is a free point on $\tau_{2}(\mathcal{F})$ , we may assume that $A=(1,0,0,1)$ .
Let $(\eta, \theta)$ be a set of local coordinates near $A$ , where $\eta=u_{1}/u_{0}$ and $\theta=v_{0}/v_{1}$ .
Since an element $\psi$ of $\mathcal{G}_{2}(t)$ fixes the curves $\tau_{2}(\mathcal{F}),$ $\tau_{2}(E_{f})$ and the point $A$ , it is
of the form

$\{\begin{array}{ll}\eta’=\gamma\eta+g(\theta), where g(\theta)=v_{1}^{t+1}\Phi(\theta, 1) and g(O)=0.\theta’=(a/d)\theta. \end{array}$

Note that $g(\theta)$ is a polynomial of $degree\leqq t+1$ . Let the local equation of $\tau_{2}(T)$

be $h(\eta, \theta)=0$ . Since the local equation of $\tau_{2}(\mathcal{F})$ is $\theta=0$ , we have that $h(\eta, 0)\not\equiv 0$ .
Then $h(\eta, \theta)$ can be expressed as

$\eta^{m}+w_{1}(\theta)\eta^{m- 1}+\cdots+w_{m}(\theta)=0$ ,

where $w_{i}(\theta),$ $1\leqq i\leqq m$ , is a convergent power series with $w_{i}(0)=0$ . Let us take

the automorphism $\psi$ with $a=d$ and $\gamma=1$ . Then the equation of $\psi(\tau_{2}(T))$ is
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$(\eta-g(\theta))^{m}+w_{1}(\theta)(\eta-g(\theta))^{m-1}+\cdots+w_{m}(\theta)=0$ .

Whence we infer that $I(\psi)\geqq sm$ if $g(\theta)=a_{t+1}\theta^{t+1}+\cdots+a_{s}\theta^{s}$ . Thus by Lemma

5.10 we see that $\psi$ is liftable to $\mathcal{G}_{1}(t)$ if $s\geqq m_{0}$ . Taking such automorphisms, we
have that $\mathcal{G}\supset(G_{a})^{t+2-S}$ by Lemma 5.9. Recalling that $m_{0}$ is independent of $t$ ,

this relation holds good for every sufficiently large $t$ , hence we complete the

proof of (6) in Theorem A when $R\neq 1$ .
Next we consider the case when $R=1$ . The point $A_{i}=\tau_{2}(D_{i})$ lies on the

fiber $\tau_{2}(\mathcal{F}_{i})$ , but not on the base line, where $i=1,2$ . Then put

$\mathcal{G}_{2}(t)=$ {$\psi\in Aut(F_{t+1})|\psi(\tau_{2}(\Sigma))=\tau_{2}(\Sigma)$ and $\psi(A_{i})=A_{t}$ for $i=1,2$}.

Similarly let $T_{i}$ be a part of a curve on $F(t)$ intersecting $D_{i}$ at a free point,

where $i=1,2$ . For an element $\psi$ of $\mathcal{G}_{2}(t)$ we define $I_{i}(\psi)$ to be $(\tau_{2}(T_{i})\cdot\psi(\tau_{2}(T_{i})))_{A_{t}}$ .
Then similarly there are integers $m_{0i}$ such that $\psi$ is liftable if $I_{i}(\psi)\geqq m_{0i}$ for
$i=1$ and 2. Since $\psi$ fixes three fibers, it is of the form $a=d$ and $b=c=0$ . Let

the equations of three fibers be $v_{0}=0,$ $v_{0}=v_{1}$ and $v_{1}=0$ respectively. We may

assume that $A_{1}=(1,0,0,1),$ $A_{2}=(\alpha_{1}, \alpha_{2},1,1)$ and $a_{1}\neq 0$ . In case $\gamma=1$ and $a=1$ ,

the automorphism fixes $A_{1}$ and $A_{2}$ if and only if $\Phi(0,1)=\Phi(1,1)=0$ . Then take

the automorphism of the form

$\{\begin{array}{l}\eta’=\eta+g(\theta), g(0)=g(1)=0,\theta’=\theta,\end{array}$

where the notations are the same as above.

Let the first condition $I_{1}(\psi)\geqq m_{01}$ be similarly described as above. The second

condition $I_{2}(\psi)\geqq m_{02}$ decreases the number of the free coefficients of $g(\theta),$ $i.e.$ ,

the order of $g(\theta+1)=a_{t+1}(\theta+1)^{t+1}+\cdots+a_{m_{01}}(\theta+1)^{m_{01}}$ must be at least $m_{02}$ , but

as we have mentioned above $t$ can take every sufficiently large integer. Hence
we conclude similarly (6) in Theorem A. Thus we have finished the proof of
the whole parts of Theorem A.

Lastly we prove the corollary, which is an immediate consequence of Theo-
rem B. In fact, if $R\neq 1$ , then we have that $\overline{\kappa}(V)\leqq\overline{\kappa}(P^{2}\backslash (C\cup C_{1}))=\overline{\kappa}(P^{2}\backslash (L_{1}\cup L_{2}))$

$=-\infty$ . If $R=1$ , then similarly we have that $\overline{\kappa}(V)\leqq\overline{\kappa}(P^{2}\backslash (L_{1}\cup L_{2}\cup L_{3}))=-\infty$ ,

since $L_{1}\cap L_{2}=L_{1}\cap L_{3}$ .

6. Examples and problems.

Also in this section we follow the notations in the previous sections. We
present examples of curves with $g=0,$ $N=1$ and $R\leqq 1$ . For the details, see [9].

Put $F(X, Y, Z)=a^{n}(YZ^{n-1}-X^{n})^{mn+1}+ \{aX(YZ^{n-1}-X^{n})^{m}+\sum_{i=1}^{m}b_{i}Z^{ni+1}(YZ^{n-1}-$

$X^{n})^{m-i}\}^{n}$ , where $a\neq 0,$ $m\geqq 1,$ $n\geqq 2$ and $b_{t}$ are arbitrary for $i=1,$ $\cdots$ $m$ . Let $C$

be the curve defined by $F/Z^{n-1}$ . Then $C$ has the following properties.
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(1) $C\backslash \{(0,1, O)\}\cong A^{1}$ .
(2) $d=mn^{2}+1$ , $p=2m+2n$ , $e_{1}=mn^{2}-mn$ , $e_{2}=\ldots=e_{2n}=mn$ ,

$e_{2n+1}=\cdots=e_{2m+2n}=n$ .
(3) $R=2-n$ .

Moreover we have the following new one. Let $\Theta_{\lambda}$ be the conic defined by

$YZ-X^{2}+\lambda Y^{2}=0$ .

Then $\Theta_{0}$ and $\Theta_{\lambda’}$ , where $\lambda’\neq 0$, meet at only one point $(0,0,1)$ . Let $\varphi$ be a
non-linear automorphism of $P^{2}\backslash \Theta_{0}$ inducing an automorphism on the line $Z=0$.
Then putting $C=\varphi(\Theta_{\lambda’})$ , we have that $C\backslash \{(0,1,0)\}\cong A^{1},$ $e_{p}=4$ and $d^{2}- \sum^{p_{i=1}}e_{i}^{2}=4$,

since the morphism $\varphi\sigma$ contracts first the proper transform $\sigma^{-1}[\Theta_{0}]$ . This shows

that $R=1$ .
Finally we raise problems concerning curves with $g=0$ and $N=1$ .

PROBLEM 1. Do there exist curves with $R=0$ and $e_{p-1}>e_{p}$ ?

PROBLEM 2. Find $\overline{\kappa}(V)$ in the case when $R\leqq-1$ . Especially do there exist
curves with $\overline{\kappa}(V)=2$ ?
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