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ABSTRACT

The proiective properties of two-level orthogonal array designs are important in
factor screening. General results are given which, in particular, allow the designs
derived by Plackett and Burman to be categorized in terms of these properties.
The following results are given:

1. every saturated fractional factorial design is of projectivity P=2;
2. a design obtained by doubling is always of projectivity P=2;

3. any saturated two-level design obtained from a orthogonal array
constructed by cyclic generation is either a factorial orthogonal
array with P=2 or else has projectivity P=3;

4. any saturated two-level design obtained from an orthogonal array
containing n=4m runs, with m odd, is of projectivity P=3.
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Pfojective Properties
of Certain Orthogonal Arrays

Geofge E.P. Box and John Tyssedal

The projective properties of two-level orthogonal array designs are important
in factor screening. General results are given which, in particular, allow the
designs derived by Plackett and Burman to be categorized in terms of these
properties. The following results are given:

1. every saturated fractional factorial design is of projectivity P=2;

2. a design obtained by doubling is always of projectivity P=2;

3. any saturated two-level design obtained from a orthogonal array
constructed by cyclic generation is either a factorial orthogonal array
with P=2 or else has projectivity P=3;

4. any saturated two-level design obtained from an orthogonal array
containing n=4m runs, with m odd, is of projectivity P=3.

1. INTRODUCTION

In what follows a two-level orthogonal design refers
to an nxk matrix D in which the elements of each
column consist of equal numbers —1's and +1's and
for which D'D=nl,. If the £1's in each row are
associated with the two levels of each of & factors, D
can define n factor combinations to be run in an
experiment to help determine how these factors affect
some response y. Such designs include the two-level
factorials (Fisher, 1935), the fractional factorials
(Finney, 1945), and arrangements obtained from
orthogonal arrays not necessarily of the factorial type
{Plackett and Burman, 1946; Rao, 1947; see also for
example Hall, 1961, 1965; Raghavarao, 1971;
Hedayat and Wallis, 1978).

Experience shows that such designs can be of
particular value for factor screening. A principle,
called by Robert Grosseteste the law of parsimony
(Crombie, 1953) and also known as Cccam's razor
and the Pareto principle, assumes that among a large
number of possibly causal entities there will be a
"vital few" and a "trivial many” (Juran, 1988). We
approximate this concept (see for example Box and
Meyer, 1986) by supposing that among the k factors
introduced into the experiment, only a few will be
active (in the same sense that they individually and/or
interactively produce changes jn the response) while

the remainder are fner: A characteristic of
importance (Box and Hunter, 1961) in choosing a
design for factor screening will here be called the
projectivity of the design. A n>xk design D will be said
o be of projectivity P if it is such that a complete
factorial (possibly with some points replicated) is
produced in every subset of P of the k factors. The
resulting design will then be called an (n, &, P)
screen.

An important source of such screening designs
are the two-level orthogonal arrays. Such an array H,
is an nxn orthogonal matrix with n=4m and m a

_ positive integer with a first column of +1's and the

remaining n-1 contrast columns consisting of an
equal number of +1's and —i's. Arrays obtained by
renumbering rows, renumbering contrast columns, or
switching all the signs in a contrast column are
regarded as equivalent. An orthogonal array (OA) can
be used to generate a statistical design by associating
k of its contrast columns with experimental factor
levels. When k=n-1 the design is sometimes called a
saturated design (Box and Wilson, 1951) or a main
effect plan (Addelman and Kempthorne, 1961}). In
such a saturated design every pair of contrast
columns must contain adjacent pairs of elements with
the signs: (- =), (+ =), (— +), (+ +) replicated m times.
It thus produces m replicates of a 2? factorial design
in any pair of factors we isolate. It is thus an (n, n—1,
P) screen with P at least 2.
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2. FACTORIAL ORTHOGONAL
ARRAYS

When # =2" it is weil known that an axn orthogonal
array can be generated from the corresponding 2*
factorial design as follows: first write down a column
of +1's, dénoted by I, followed by the r columns c,,
€2, . € .., C;. . €;0f £1's of the complete 2" factorial
design. Now represent by c, =¢«; an operation
whereby ¢; is an entry-wise product of columns cg;
Then a further n~r—1 columns corresponding to the
interaction columns of the original factorial can be
obtained from all possible products of the individual
columns, thus

Cre1=C10Cryp =€1€3 .. G =C16 ... € (1)

The resulting nxn matrix will be called a
factorial orthogonal array (FOA). For such an array
ce,=101=1,2,.., n-1, and the # columns form a
closed group with respect to the entry-wise operation
defined above. Following Finney (1945), we note that
a design produced by the n—1 contrast columns of a
FOA is a 24D fraction of a 2" factorial with the
n—r-] generating relations given by the identities (1).
These may be conveniently written with I on the left
and the generating "word" on the right as

I=ciee, I=cieien ... I= ey, .., €0 . (2)

Multiplying these generators together in ail
possible ways produces the defining relation for the
fractional factorial with I on the left and 271 —1
words of the identity on the right from which the atias
relationships between the effects can be constructed.
For example, for r=4, n=2'=16, there are 11
interaction columns (six two-factor interaction
columns, four three-factor interaction columns, and
one four-factor interaction column) which may be
employed to accommodate 11 additional factors and
to produce a 16 x 16 factorial orthogonal array. The
n=16, k=15 design formed by the 15 contrast columns
is a 2'1% fraction of a 2!° factorial with the 11
generators giving rise to defining relations containing
2111 words. When the number of factors to be
accommodated is such that r<k<n—1, then only k—r of
the generators are involved and the defining relation
will contain only 2%7/-1 words, producing less
aliasing.

A useful criterion for the classification of such
fractional factorials is their resolution R defined as
the length of the shortest word in the defining
relation. It was shown (Box and Hunter, 1961) that
for any fractional factorial design, what is here called
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the design projectivity is one less than its resolution.
That is, for any fractional factorial P=R-1. In
particular a saturated design obtained from an FOA is
always of resclution R=3 and hence of projectivity 2.
It thus provides an {(n, n—1, 2} screen. As a further
example, when n = 27, a design of resolution 4 (and
hence of projectivity P=3) for 1/2n variables can
always be generated by dropping the 1/2(n—-1)
contrast columns.containing an even number of
letters from the generating factorial of the FOA.
Designs of this kind can alternatively be produced by

the "fold over" principle discussed by Box and
Wilson (1951). This (z, 1/2n, 3) screen is a

2727 gaction of a 2" factorial, Thus for
example, with r =4 and n = 16, a 1/16 fraction of a 28
design of resolution 4 that is a (16, 8, 3) screen is
produced by dropping from the generating factorial,
all six two-factor interactions columns and the one
four-factor interaction column. This valuable design
screens k=8 factors at projectivity P=3 producing a
duplicated 23 factorial in every one of the 56 choices
of three factors out of eight. Notice, however, that
this 16-run design provides the screen of greater
projectivity P=3 at a cost of screening only
(1/2)n=8 factors instead of the n~1=15 factors
possible with the saturated 16-run design of lesser
projectivity P=2.

3. PLACKETT BURMAN DESIGNS

Now two-level factorial orthogonal arrays exist only
when # is a power of 2; however, other orthogonal
arrays are available when n=4m and m is an integer.
In particular, Plackett and Burman (1946) derived,
with one single exception, orthogonal arrays for all
such cases when n < 100. For designs produced by
orthogonal arrays that are not factorial arrays, the
concept of design resolution is not helpful. However,

by analogy with the fractional factorials it might have

been expected that saturated designs obtained from
such arrays would provide an (n, n—1, P) screen with
projectivity P only 2. It was therefore with some
surprise that it was discovered (Bisgaard, 1987) that
such designs could be of resolution higher than 2. In
particular, a computer search showed that every one
of the 165 three dimensional projections of the k=11,
n=12 design is a 12 replicate factorial. Specifically,
it is a full 23 factorial design with the additional four
duplicated runs forming of themselves a half-
replicate, main-effect plan. Further computer
enumeration by Lin and Draper {1992) showed that
similar results were possibie for some of the saturated
designs derived from larger OAs. They referred to a
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projection in which half the vertices of the projected
factorial cube were replicated ¢ times and the
remainder of the vertices s=m—~t times a (15)
projection. Thus each of the 165-three dimensional
projections of the 12-run QA design was a (1:2)
projection.

4. SOME GENERAL RESULTS

This paper gives four general results which provide a
theoretical basis for these empirical discoveries.
Computer studies of other aspects of the projective
rationale for orthogonal arrays have been made by
Wang and Wu (1993) and by Lin (1993),

RESULT 4.1

Every saturated fractional factorial design is of
projectivity P=2:

Proof

This follows from the closed-group properties of an
FOA. Specificaily, if for every i and j, c,;=¢j, is a
column in the design, then since cexL, cge~I and
the design is of Resolution R = 3 and Projectivity
P=2

RESULT 4.2

A design obtained by doubling is always of
projectivity P=2.

Proof

As before let H,, be the r x n matrix of an orthogonal
array, then a 2rx2n orthogonal array may be
constructed by "doubling” as follows

= Hn Ha
2ﬂ_'- H _H"

n

The 2n-1 contrast columns of a saturated
orthogonal two-level design are then given by the 2n-
1 last columns of H,,. If these columns are denoted
€ . .. ., €3, then, for instance, ¢, = ¢,.and the
design is of projectivity P =2.

The result in 4.1 may also be considered as a
special case of that in 4.2 since the factorial
orthogonal arrays may alsc be obtained by doubling
as was mentioned by Plackett and Burman (1946).

RESULT 4.3

Any saturated two-level design obtained from an
orthogonal array constructed by cyclic generation is
either a factoriai orthogonal array with P=2 or else

has projectivity P=3.
Proof

Many of the Plackett Burman OAs are of the cyclic
type. For such a cyclic orthogonal array it is possible
to write down ail the n—1 contrast columns knowing
only the sequence of signs to be applied in the first
row. For example, the 12x12 OA may be written
down knowing only the 11 signs in the row sequence
(+ + — + + + — — — + —). Shifting this row of signs
cyclically one place 10 times and adding a final row
of minus signs and an initial column of plus signs
produces a 12x12 orthogonal array. By omitting the
first column, a 12x11 saturated orthogonal design is
obtained.

Recalling that any two contrast columns are
regarded as identical if one can be obtained from the
other by sign reversal, it follows from the cyclic
generation property that if ¢.c;,; = ¢/is in the design,
the entry-wise product of any two columns at
distance j must be in the design. Hence ¢y~
Cf€;4iCitiCiy2™= CLy; 18 in the design and more generally
¢ for R =1,2, .. . is in the design. In particular, if
€<, is in the design, the entry-wise product of any
two columns is in the design.

Now suppose ¢;c, is not in the design. Then
since ¢; will be the column that follows after ¢,_; in
the cyclic generation procedure it follows that ¢,_jc;
is not in the design either. But the distance between ¢,
and ¢, is an even number n -2 from which it follows
that the entry-wise product of no column with
distance 2 or in general with distance 24, h=1,2,. ..
can be in the design. If ;¢ ;is a column in the
design for j odd then c,,_;¢;must also be in the design.
But since n—(j+1) is an even integer, that is not
possible. Hence, if ¢,¢, is not in the design no entry-
wise product of any two columns is in the design.

Now assume a design constructed by cyclic -
generation contains ¢;¢, and thereby all of their two
factor interaction columns. If such a design contains
more columns than ¢;, ¢; and ¢;¢,, it must contain a
column e¢; orthogonal to these, and since it also
contains all the possible two factor interaction
columns it must also contain ¢;¢3, €,¢3 and ¢, ¢;¢3 and
none of these columns can be equal to any of the first
three or to a column containing only +I's. By
induction the same argument now gives us that if a
design generated by cyclic generation contains ¢, ¢, it
must have 2"~1 contrast columns for some r and must
be a factorial orthogonal array.

RESULT 4.4

Any saturated two-level design obtained from an
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orthogonal array containing n=4m runs, with m odd is
of projectivity P=3.

Proof

Consider a particular QA for which m is odd and let i
be a column vector of m unities. Then I is a column
of n=4m unities which can be written in the
partitioned form (i, i, i, i)’. Also, the rows of the
orthogonal array can be re-ordered so that the array is
partitioned into four m X n subarrays in which two
arbitrarily chosen contrast columns ¢; c; are
partitioned in the form (4, i, —i, )" and (i, i, i, -i)’.

Now consider any other arbitrarily chosen
column ¢, = (€, €y, Cp3, Cpa) after this re-ordering
of rows. Orthogonality requires that ¢, satisfies the
linear equations ¢,I= ¢;’c;= ¢;'¢;= 0, hence

Vepi=—ay, V'epp=+a,, Vep=+a;, i'cp=-a,.

Now let #;, represent the number of plus signs in
¢y and in ¢, 4 or equivalently the number of minus
signs in ¢, and in ¢43. Then if s,=m —, , a;, =5, —1;,
and, if necessary, by switching signs in the whole
column ¢, , g, can be taken to be positive (so that #, <
s, ). Also since m is odd a; cannot be zero and it
cannet be equal to m for then ¢, would correspond to
the contrast ¢;¢;and no additional column could be
simultaneously orthogonal to ¢; ¢; and ¢,,. Thus, in the
arbitrarily chosen space of ¢;, ¢; and ¢; the projected
experimental points will lie on the vertices of a cube,
and will be distributed as follows: '

Replicated s, times Replicated #; times

+ - - + -

+ +

- + - - +
+ + + + + -

The projected design will therefore consist of a full 23
factorial replicated 7, times with an additional half-
replicate having defining relation I = ¢ ;¢ replicated
ay =5y, — t;. times. Note that the different choices of
the columns c¢;, ¢y, ¢,can result in different
combinations of tand s and hence in different
amounts of replication of the two design parts.

For illustration, Figure 1 shows a rearrangement
of the 20x20 Plackett and Burman design with
columns associated with factors A, B, C,..., T

partitioned into four subarrays obtained by setting
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A=¢;, B=c;, respectively. Since the original
design is obtainable by cyclic generation and also
since m = 5 is odd, the design is a (20, 19, 3) screen
with projections either of typeé (2, 3) or of type (1, 4).
In all, there are 969 three-dimensional projections,
912 of which are of the (2,3) type and 57 of the (1, 4)
type. The latter are generated by a singte column with
four like signs and one unlike sign in each quadrant
(for the case illustrated this is column 7). This
ensures that 1/17 of the projections will be of the (1,
4) type and 16/17 will be of the (2,3) type. Notice,
however, that the diagram does not imply that we can
omit column T to produce a (20, 18, 3) design in
which all the projections are of the (2, 3) type. This is
because a different choice of two columns ¢, c; to
define the four subarrays would produce a different
(1, 4) column.

A recent discussion of an analysis which can be
applied to such designs is given by Box and Meyer
{1992). Also, if r; and s, are each at least equal to
two, an additional analysis for dispersion effects (Box
and Meyer, 1986) may be attempted.

The arrays tabled by Plackett and Burman for
various values of n are not, of course, exhaustive.
Other OAs exists and may be of interest to the
practitioner. For example, five distinct OA's are given
by Hail (1961) for the case n = 16. All of these are
(16,15,2) screens. But we have found that if one of
the columns is dropped, one of them is also a
(16,14,3) screen. We plan to discuss the usefulness of
these and other such designs in a separate paper.

5. CONCLUSION

To illustrate the usefulness of the present results we
show in Table 1 how they characterize the
projectivity of each of the Plackett and Burman
designs for n<84. Of the 20 saturated designs
considered, fourteen are of projectivity 3, four are
FOAs of projectivity P=2 and two obtained by
doubling are also of projectivity P=2.
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Figure 1. Rearrangement of an Ly, Plackett-Burman design partitioned into four subarrays defined by the signs of
arbitrarily chosen columns labeled A and B. Addition to columns A and B of a further column such as H chosen from
columns C through S results in a (2, 3) projection, but addition of column T to A and B produces a {1, 4) projection.

Table 1.
Projectivity of Plackett and Burman designs for n<34.
=|8§ 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 T8 B0Q 84
=2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16 17 18 19 20 21

m is odd * * * * * * * * * *
Projectivi = H
jectivity P=3 Cy':hc and * * ok *® * Ok * * ¥ * ok
not FOA
P =2 (factorial, doubling) | * * * * * *
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