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Abstract

We consider thal-Painlee Il equation arising from the birational representation of the
affine Weyl group of type&s + A1)®. We study the reduction of trgPainle\e 1l equation to
theg-Painlee Il equation from the viewpoint offine Weyl group symmetry. In particular, the
mechanism of apparent inconsistency between the hypergeometric solutions to both equations
is clarified by using factorization of fierence operators and thdéunctions.
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1 Introduction

The discrete Painlé&equations have been studied actively from various points of view. Together
with the Painle@ equations, they are now regarded as one of the most important classes of equa-
tions in the theory of integrable systems (see, for example, [6]). Originally, the discrete Bainlev
equations had been identified as single second-order equations [1-3, 33, 37] and then were gener-
alized to simultaneous first-order equations. A typical example is the following equation known as

a discrete PainleIl equation [33, 37]:

(an+b)x, + ¢

11
1_ Xn2 ’ ( )

Xnt1 + Xp-1 =
wherex, is the dependent variable,is the independent variable, aadb, c € C are parameters.
By applying the singularity confinement criterion [7], (1.1) is generalized to
(an+ b)x, + c+ (-1)d

1— X2
whered is a parameter, with its integrability preserved. Introducing the dependent varkgbles
andY, by

Xni1 + Xn-1 = , (1.2)

Xn = Xon, Yn = Xon-1, (1-3)
then (1.2) can be rewritten as

(2an+b)X,+c+d
Yoi1 + Yn = 1 an

_(@2n+1)+b)Ys1+c—-d

s Xn+l + Xn - 1-Y 12 (1-4)
n+



Equation (1.4) is known as a discrete Paigléll equation since it admits a continuous limit to
the Painlee Il equation [5]. Conversely, (1.1) can be recovered from (1.4) by puttirg0 and

(1.3). We call this proceduresymmetrizatiohof (1.4), which comes from the terminology of the
Quispel-Roberts—Thompson (QRT) mapping [34, 35]. After this terminology, (1.4) is sometimes
called the ‘asymmetrit discrete Painleg& Il equation, and (1.1) is called theymmetri& discrete
Painle\e Il equation [21].

It looks that the symmetrization is a simple specialization of parameters at the level of the
eqguation, but some strange phenomena have been reported as to their particular solutions expressed
in terms of hypergeometric functionSypergeometric solutiofsThe hypergeometric solutions to
(1.1) have been constructed as follows [9, 19]:

Proposition 1.1 For each Ne N, let 7}, be an Nx N determinant defined by

Hn Hhia o oo Hiinaa
o Hr.1+2 Hr.1+3 Hn+.N+1 , (15)
Hniono2 Hneoner o0 Higanes
where H, is a function satisfying the three-term relation
Hni1 — zH+ nH,1 = 0. (1.6)
Then, o
satisfieq1.1)with the parameters
o Zisz, o 4(1:22N), _ _4(1:22N). (1.8)

On the other hand, since (1.4) appears as thekBind transformation of the Paink¥ equation
[28, 38], its hypergeometric solutions are essentially the same as those to the@¥%ielguation
[22,31]. The explicit form of the hypergeometric solutions to (1.4) are given as follows:

Proposition 1.2 For each Ne N, let 7" be an Nx N determinant defined by

Kr? qull K%N—l
o A 19
KrTrN—l KrrﬂrN KrTrZN—Z
where K" is a function satisfying
mo—KM—tK™l =0, nK™, - (n+ )K" - (n- mtK™! = 0. (1.10)
Then, - .
Tn,m Tﬂ,m 2Tn— ,mMm=1__n,m+
Xa=2(N+2N-1) n—l,r‘r’\1l—+11 n,\il,m+1 -1 Y= f% -1 (1.11)
Tnel TN TN+l ON



satisfy(1.4) with the parameters

a:_f b_—4(—m+2N—1) C:2(1+2N)’ d:2(2n+2N—3).

7 t ’ t t

(1.12)

It is obvious that substituting = 0 into the hypergeometric solutions to (1.4) in Proposition 1.2
do not yield those to (1.1) in Proposition 1.1. In particular, we remark the followifigrdnces
between the two solutions:

(1) The hypergeometric functions arefférent. Equation (1.6) can be solved by considering
the parabolic cylinder function (Weber function), while (1.10) can be solved by consider-
ing the confluent hypergeometric function. In fact, the former function is expressed as a
specialization of the latter, but this specialization is not consistent with the symmetrization.

(2) Structures of the determinant aréfdrent. The determinant (1.5) has asymmetry in the shift
of index: the shift in the vertical direction is two while that in the horizontal direction is one.
On the other hand, the determinant (1.9) is an ordinary Hankel determinant.

We note that similar phenomena have been reported also for some other discreteeRajnkeyv

tions [8, 18, 25]. Many integrable systems admit particular solutions expressed in terms of de-
terminants, but such an asymmetric structure of the determinant solutions has been seen only in
the hypergeometric solutions to the discrete Pamleguations. Note here that these phenomena
cannot be seen for the algebraic (or rational) solutions. For example, it is known that substitut-
ing d = 0 into the determinant expression of the rational solutions to (1.4) yields those to (1.1);
see [20, 23, 24].

Ther function is one of the most important objects in the theory of integrable systems and is
regarded as carrying the underlying fundamental mathematical structures. Concerning the discrete
Painlee equations, investigation of thefunctions started [18, 19] through the search for the
explicit formulae of the hypergeometric and algebraic solutions. In fact, the above mysterious
asymmetric structure has been one motivation of further study.

It is now known that theory of birational representationsféha Weyl groups provides us with
an algebraic tool to study the Painkegsystems [27,29-32]. Moreover, a geometric framework
of the two-dimensional Painlévsystems has been presented based on certain rational surfaces
[15,39]. Combining these results enables us to study the Paisjstemsféectively. For instance,
it played a crucial role in the identification of hypergeometric functions that appear as the particular
solutions to the Painl@&/systems in Sakai’s classification [12—14].

The purpose of this paper is to clarify the mechanism of the phenomena of hypergeometric
solutions from the viewpoint of thefiine Weyl group symmetry. We shall take thePainlee
equation of type & + A)® as an example, which is the simplest non-trivial discrete Paénlev
system [39]. The key is to formulate the symmetrization in terms of the birational representation
of the dfine Weyl group, where the discrete Paidequation arises from the action of the trans-
lational subgroup. In fact, the discrete time evolution of the symmetric case can be regarded as a
“half-step” of a translation of thefine Weyl group with restricted to a certain line in the parame-
ter space. Conversely, we can derive various discrete Paiplgwations from elements of infinite
order that are not only translations by taking a projection on a certain subspace of the parameters.
We call such a procedure to obtain a “smaller” discrete time evolution of Paitfee gorojective
reduction



This paper is organized as follows: in Section 2, we introdugePainlee Ill equation and
derive ag-Painlee Il equation by applying the symmetrization. Then we give a brief review on
their hypergeometric solutions. In Section 3, we first introduce the familyagkBind transforma-
tions of theg-Painle\e Il equation, which is a birational representation of tifiene Weyl group
of type (A, + A))Y. We next lift the representation on the levelofunctions and derive various
bilinear equations. We then clarify the mechanism of the inconsistency among the hypergeometric
solutions by using this framework. Some concluding remarks are given in Section 4.

2 g-Py andg-Py

We consider the following system gtdifference equations [11,17, 39]:

q2N+1cz 1+ aoqn fn q2N+102 1+ a2a0qn—mgn+l
gn+1 = n ’ fn+1 = n—m ’ (21)
faon  aq"+ f, faOne1  @2800"™ + Ont1

for the unknown functiond,, = f,(m, N) andg, = g,(m, N) and the independent varialihec Z.

Herem, N € Z anday, a,, C,q € C* are parameters. Equation (2.1) has the (extend@dpa/Neyl
group symmetry of type&, + A)® and is known as a-Painle¢ Il equation ¢-Py,) since the
continuous limit yields the Painlévlll equation. We also consider the followirggdifference
equation [25, 36]:

GPN1e? 1+ g X
XiXic1 agQp + X

Xis1 = (22)

for the unknown functionX, = X((N) and the independent varialkkee Z. Equation (2.2) is a
g-Painlee Il equation ¢-P,)) and actually it admits a continuous limit to the Pai@dlvequation.
Note that substituting

m=0, a;,= q%, (2.3)

and putting
fi(0, N) = Xak(N),  9k(0, N) = Xa1(N), (2.4)

in (2.1) yield (2.2).
We shall briefly review the hypergeometric solutiongjtB,, andg-P, following [11, 25].

2.1 Hypergeometric solutions tog-Py,

First, we review the hypergeometric solutionsgi®;,. For eachN € Z.o, lety " be anN x N
determinant defined by

I:n,m I:n+1,m T I:n+N—1,m
lﬁrlll,m — I:n—l,m I:r.1,m te I:n+N—2,m ’ lﬁgm — 1, (2.5)
I:n—N+1,m I:n—N+2,m T l:n,m
whereF, , satisfies -
I:n+l,m - I:n,m = —ap"q nl:n,m—la (26)

— —2~2mH+2
I:n,m+1 - I:n,m = —ay q I:n—l,m-
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Lemma 2.1 ([11]) y" satisfies the following bilinear glerence equations

a02q2n—2wr':|111,m—1l//r,:l,m _ qZNl//r,:l,m—lwr':I—Jrll,m + wr’:l—l,m—ll//r':i:nl =0, (2.7)
l//rlliTll//Rl,m—l _ q—2N rlll—l,mwr’:jtrlimﬂ _ aOZanle,meiTIl =0, (2.8)
l//r’:‘,Tll//rlll—l,m—l _ l//r'll,TIlel—l,m + a2—2q2ml//r’limwr’;1im—l — 0, (2.9)
'//rlllTIl'r//le _ a2—2q2m¢r’:ljrlim—ll//r’:|+l,m _ wr’:l,m—lwr’wl =0. (2_10)

Proposition 2.2 ([11]) The hypergeometric solutions to grP(2.1), with c= 1 are given by

_ n 'f//rl:lT]lele _ a —N—m+1 lf//rl:l’leRl_l’m_l
fo = —aq nm ,nm-1’ O =20 n-1,m-1,nm " (2'11)
$N+le % wN+l le
Proposition 2.2 follows from Lemma 2.1.

Remark 2.3 (1) F,n, satisfies the three-term relation:
I:n+1,m + (a02q2n - a272q2m+2 - 1) Fn,m + a272C12r1%L2|:n—1,m = O’ (2-12)
whose general solution is given by

B A
(a2 292™2; ).,

- H-4. - 2n 0 . +
+ B (a2 °™* 0w (az lqml) 11 (a2—2q2m+41 o, a°q”" 2)- (2.13)

0 _
I:n,m 1¥1 (azzq—Zm; qz’ a22a02q2n Zm)

Here,A andB are arbitrary constants, and, is the basic hypergeometric function defined
by [4]

k

a, _ N (a; q)k Ky . _ a1
597D Faeq, (VO L @a[a-add e

(2) yy" satisfies the discrete Toda equation:
2 _
TR = (RT) + R = 0 (2.15)
In general, (2.15) admits a solution expressed in terms of the Toeplitz type determinant
U™ = det(Cois ,-,m)i’j:1 (N > 0), (2.16)
for an arbitrary functiore, ,, under the boundary conditions
Yo =1, Yy =0 (N<O) (2.17)

Since the hypergeometric solutionsgd?,, satisfy the conditions (2.17), the bilinear equa-
tion (2.15) is regarded as to fix the determinant structure of the solutions.



2.2 Hypergeometric solutions tog-Py,

Next, we review the hypergeometric solutionsgg®,. For eachN € Z., let ¢ be anN x N
determinant defined by

Gk Gk—l te Gk—N+l
G, Gy, < Gions
o= T R gk=1 (2.18)
C':‘k+2N—2 Gk+2N—3 e Gk+N—l
whereG, satisfies
Gk+1 - Gk + aozquk_l =0. (219)
Lemma 2.4 ( [25]) ¢k satisfies the following bilinear gierence equations
80 20 TONAON T+ dnaadN — O Badn = O, (2.20)
A PnadN ” + a0 2 NN — dNLadh T = 0. (2.22)
Proposition 2.5 ( [25]) The hypergeometric solutions to gsK2.2), with c= 1 are given by
k k-1
Ky 1PN
X = —agqz N (2.22)
¢|lil+11¢|lil
Proposition 2.5 follows from Lemma 2.4.
Remark 2.6 (1) The general solution to (2.19) is given by
Gy =0(-20q 7 ;?)
e 0 1 . ax ki 0 1. |z
x sAez 11 —q%; 02, —iapq ¢ |+ Be 2 1y —q%; gz,ia0q 4 |- (2.23)
Here,®(a; ) denotes the Jacobi theta function, which is defined by
O(a a) = (& (@™ Qoo (2.24)
and satisfies
0(ga; q) = —a'0(a; a). (2.25)
(2) ¢k also satisfies the bilinear equation
PRaON1 — PNON -+ O O =0, (2.26)
which is a variant of the discrete Toda equation. Under the conditions
¢=1 ¢n=0 (N<O), (2.27)

(2.26) admits a solution expressed by
o = det(ck+2i—j—1)i’j:1

for an arbitrary functiort,. Hence, (2.26) can be regarded as the bilinear equation that fixes
the determinant structure of the hypergeometric solutionsRg.

(N > 0), (2.28)
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2.3 Comparing the hypergeometric solutions

By comparing the hypergeometric solutionsg¢®,;, andg-P, (see Propositions 2.2 and 2.5, re-
spectively) one may immediately notice that aweeapplication of the specialization, (2.3), to the
former does not yield the latter. As analogous to the phenomena seen in Section 1, we find the
following differences between the two solutions:

(i) the hypergeometric functions areférent. In fact, substituting, = q% into (2.12) and (2.13)
do not yield (2.19) and (2.23), respectively;

(i) the determinant structures ardfdrent.

Remark 2.7 The correspondence between the rational solutiorggRg (see [10]) and that to
g-P, (see [25]) are straightforward. It is easily verified that substituéing: q% into the former
yields the latter.

3 Projective reduction from g-P;, to g-Py

3.1 Birational representation of\TV((Az + Al)(l))

We formulate the family of Bcklund transformations @fP,, as a birational representation of the
extended fiine Weyl group of typeA, + A))® [11, 17]. We refer to [27] for basic ideas of this
formulation.

We define the transformatiorss(i = O, 1, 2) andr on the variabled; (j = 0, 1, 2) and parame-
tersag (k =0,1,2) by

A a + fi i
.(0.) — 9.9 ~&j ~(f.) = f.
s(aj) = aja, s(fj) = f; (1+ aifi) , (3.1)
(&) = &1, n(fi) = fi, (3.2)
fori, j € Z/3Z. Here the symmetric 8 3 matrix
2 -1 -1
A = (&; Eij =l -1 2 -1/, (3.3)
-1 -1 2
is the Cartan matrix of typé\(zl), and the skew-symmetric one
O 1 -1
U=(u)io=|-1 0 1], (3.4)
1 -1 0

represents an orientation of the corresponding Dynkin diagram. We also define the transformations



w; (j = 0,1) andr by
g 1(a-1a + aa fi + fiig i)

W, fi = , Wi y=a. 35
o i) fis(@aie + & fiss + fifi) o(@) = & (3.5)
1+afi+adafifia
nalh) = : wi(a) = a, 3.6
1(fi) a1 i (L+a-1fiog+a-18fiog f) (&) = a (3.6)
1
=1 r(@) = a. 3.7)
|

fori e Z/3Z.

Proposition 3.1 ([17]) (S0, S1, S, 7, Wo, Wy, I') forms the extendedfae Weyl group of typéA, +
A;)Y. Namely, the transformations satisfy the fundamental relations

s°=(ss)’=m"=1 ns =s.an (i € Z/3Z), Wo>=wWi?>=r?=1, rwg=wir, (3.8)
and the actions oV(ASY) = (s, 51, &, 7) andW(AY) = (wo, wy, ry commute with each other.

In general, for a functior = F(a;, f;) we let an elementv € \TV((AZ + Al)(l)) act asw.F(a;, fj) =
F(a.w, f;.w), that is,w acts on the arguments from the right. Note thgha, = q and fof,f, =
qc? are invariant under the actions W((Az + Al)(l)) and W(A), respectively. We define the
translationsT; (i = 1,2, 3,4) by

Ti=71%%, Ty=sits, Ts=sm,  Ta =Wy, (3.9)
whose actions on parametedi = 0, 1, 2) andc are given by

T1: (20, &1, 8,C) — (g2, q 'ay, &, 0),

T2 (20,1, 8,C) — (A, g1, q a2, 0), (3.10)
Ts: (@, a1, @, C) - (q'ag, &, g, C), '
Ta: (20,1, 8,C) = (a0, a1, @, q0).

Note thatT; (i = 1,2, 3,4) commute with each other afidT,T; = 1. The action ofT, on f-
variables can be expressed as

Tay(fy) = ?f :foffo Ta(fo) = foglc(zfl) :aizf"TTl 1((le)). (3.11)
Or, applyingT,:"T,™"T,N (n,m,N € Z) on (3.11) and putting
X" = Ti"T"TN()  (1=0.1,2), (3.12)
we obtain
neim _ g+ 1c2 1+ ayQq" f(m“ cam PNHIC2 1+ aaeq™ mf”+1m
fin fnmfnm 2ot + o oN = fomn oo m s f”+1m ; (3.13)

which is equivalent ta-Py,, (2.1). Then,T; (i = 1,2, 3,4) are regarded asd8klund transforma-
tions ofg-Py, .



In order to formulate the symmetrization ¢eP,, it is crucial to introduce the transformation
R; defined by

Ry = n°sy, (3.14)
which satisfies
R’ =T (3.15)
The actions oR; are given by
Ry @ (20.81,8;,C) - (8280, 80 ', @180, C), (3.16)
_qc 1+afo _

which describe the zig-zag motion around the Bae- q% on the parameter space. However, if we
puta, = q%, thenR; becomes the translation on the lime= q% with the stem% (see Figure 1). In
fact, the actions oRR; are now given by

Ry (2o, a1, 0) = (070, q 24y, ©), (3.18)
_ 9 1+aofy _
Ri(fo) = o 20t fo Ri(f1) = fo. (3.19)
Applying R*T,N on (3.19) and putting
i = RIATN(R) (1=0.1,2), (3.20)

we have .
PNic2 1+ aoQ? fcl)(,N

k fk-1 k Kk
fO,N fO,N a0q2 + fo,N

fout = , (3.21)

which is equivalent t@}-P,, (2.2). ThenR, andT, are regarded as&klund transformations of
g-Pu-

a =q

a =4q

1
i — A A —

a =1 /.\ /\ \ ap =1
a’=q ap=1 ap'=q"! a’=q ay=1 ap'=q"

Figure 1. Action ofR; on the parameter spa@e= (ap,as, a,) € (C*)3 with agaya, = q. Left:
generic case. Righs, = o2.

In general, it is possible to obtain various discrete dynamical systems of Faigles from
elements of infinite order that are not necessarily translations inffime &Veyl group by taking a
projection on an appropriate sublattice of corresponding root lattice. We call such a procedure a
projective reduction

By using the above formulation, we can now explain why thi€edence of hypergeometric
solutions tog-P,,, and that tag-P,, occurs.



3.2 Hypergeometric functions

First, we explain about the flierence of hypergeometric functions. For convenience, we define the
functionH,, by
Hn,m = ®(a02q2n+1; qZ)FrH.%,m’ (3.22)

whereF,, is given in Remark 2.3. Then, we obtain from (2.12) weth = q% the three-term
relation forHp:

[le + (q—3—2na0—2 +q Mgy - 1) T, + q-3—4na0—4] Hno = 0. (3.23)

Letn = 0. SinceR,?2 = T4, the linear diference operator in (3.23) is fourth order with respe®to
Moreover, it admits the following factorization into the second order lineéemince operators:

T2+ (20?0  +a02q? - 1) Ti+a g = (R + R+ 2 °q ) (R - Ry + a0 2q ") (3.24)
On the other hand, the three-term relation@r(see (2.19)) can be expressed as
(R - Ry +a02q)Go = 0. (3.25)

Note that the second factor in the right-hand side of (3.24) is exactly the operator in (3.25), thus,
Go also satisfies (3.23) with = 0. This factorization (3.24) implies th&y can not be obtained
simply fromF,, by a specialization of parameters (2.3).

3.3 Determinant structure

Next, in order to discuss theftkrence of determinant structures, we need to introduce filnec-
tions and lift the representation to the Weyl group on the levelfahctions [17,40]. We introduce
7 andT; (i € Z/3Z) with

%Ti+17'i—1

f = gic

(3.26)

Ti+1Ti-1

Proposition 3.2 ( [40]) We define the action of 6 = 0,1, 2), n, w; (j = 0,1), and r ont, and Ty
(k = 0,1, 2) by the following formulae

UiTis1Ti-1 + TizaTi-1

s(ni) = T . sy =1 (i#]),
Uiz?i
ViT + TiaT (3:27)
T T T o
S(7) = iTi+1Ti 1l i+1Ti l, sT)=7; (=#]),
ViZTi
n(7i) = tis1,  7(T) = Tivas (3.28)
o @13 (TTiaTive + UaTiTiaTisg + UL TiTisTiv)
Wo(Ti) = —— ,
A123Ti+1Ti+2 (329)
Wo(7i) = i,

10



1
1 . — — 1=—
Q13 (TiTisaTiv2 + VicATiTisaTis2 + V1 TiTi41Tis2)

() = ai+2%Ti+1Ti+2 ’ (3.30)
wi(Ti) = T,
r(@) =7, r@)=rm, (3.31)
with _ -
U =(3C3a, Vi=03Caq, (3.32)

where | j € Z/3Z. Then(sy, S1, S, 7, Wo, Wy, I') realizes the gine Weyl groupTV((Az + Al)(l)).

Figure 2. Configuration of the functions on the lattice witiN = 0.

Then, we define the functionsry™ (n,m N € Z) by

! N
Tle = TlnszT4 (Tl). (333)
We note thato = 75™°, 11 = 70°, 72 = 754, To = 7,0, 71 = 170, andT, = 19

Proposition 3.3 The action of\TV((Az + A)D) ontpMis

SO(TRim) — TK‘n,m—n’ Sl(Tij) — Tr’I}—l,n+1, SQ(TRim) — Trlll—m,—m, ﬂ(Tr[:im) — TKIm,n—m+1’ (3.34)
Wo(rh™ = ™0 wi(zi™) = 0, r(@™ = . (3.35)

For convenience, we put

ol

ai=as, y=cs, Q= (3.36)

Though it is possible to derive more various bilinedfetience equations from Proposition 3.2, we
present here only the equations that are directly relevapfp, (3.11).

11



Proposition 3.4 The following bilinear equations hald

Tr’:l:nl r’:rl m+1 Q—3n+3m+2N 2,)/20, 3Tr|lj+1 mTRITiLl + Q—6n+6m+4N 4y4a16Tr’:lmTr’:l++llm+l — O, (337)
Trr:jillerl erm Q3n+2N+4,y a 3Tr,11mTr’llJ;21m+1 Q6n+4N+8’)/ a GTRI+1 m+17_r’::rllm — O, (3.38)
Tr’:;llmﬂ nm Q—3n+3m—2N 47 a STRJ:rllmTr’:lml + Q—6n+6m—4N 87 a GTrl:lJrl m+17_r’:IT1 =0, (3.39)
Tr':ltrllm,l_rllrl m+1 QSn 2N+2)/ a 3Tr|:lTlTRl+2 -1 QGn_4N+47/ a GTRI+1 mTrlllJ:rllnwl =0, (3_40)
TR]TlTRJml + Q_8n+4m_4do_4a/14 (TN,m) _ Q—Zn+m—1a0 1alTr’:l+1 mTRI im _ - 0. (3_41)

The proof of Proposition 3.4 will be given in the appendix A.1.
As seen belovwg-Py, (3.11) or (3.13), can be obtained from the bilinear equations. Noticing
that

Tannrml Tnm+1Tn 1m Tn 1,m_nm
fn,m _ Q4N+2 4°"N+1"N fn,m _ Q4N+2 4°N+1 °N fn,m _ Q4N+2 4 "N+1 °N (3 42)
N ™ nm_n,m+1 ° - nm+1_n-1m?’ - n-1m_nm °’ :
N TN+l N N+1 N N+1

we can rewrite (3.37) and (3.39) as

Tn+1anm+l
—6n+6m—6 6 n+lm —3n+3m+2N-2_.2 3 °N N+1
1+Q f =Q Y a1 nm _n+1mel’ (3'43)
N+1TN
Tn+1anm+1
6n—6m+6 —6 n+1m 3n-3m+2N+4_ 2 -3 "N+1 °N
1+Q fim=Q Yoa PRt (3.44)
N+1TN

respectively. Dividing (3.44) by (3.43), we have

6n—6mM+6 . —6 £N+1lm n+1,m_n,m+1 nm
1+Q af _ QBn-om+s —6TN+1 N _ QBn-6m+6, 6 ON (3.45)
_6ne6m-6. 6fN+Lm n+1,m_nm+l n+1,m’ :
1+Q a1y N TN+l f

which is equivalent to the second equation of (3.13). Similarly, (3.38) and (3.40) yield the first
equation of (3.13).

For the hypergeometric solutions, we relate ttfanctions to the determinanig,™, (2.5), by
multiplication of appropriate “gauge” factor. Set

—6n . — - N
nm _(— 1)'“(”2*1) Q—Z(m—m)N2+6Nna, ~ANZ+6N , ~2N? O(-Q%ap%, Q)B(-QMa, %, Q)
’ ’ O(Q-5-Mag5a,75, Q)

x T(Q*™ag%ay; Q, QL(Q ™ ™ e %an; Q, QI(Q ™ Ma%er; Q, Q) yn™',  (3.46)

wherel'(a; p, ) denotes the Elliptic gamma function, which is defined by

(Pat; p, 0)e
rapg=———o"—, 3.47
(& p,g) @D.0- (3.47)
and satisfies
I'(ga; g,0) = ©(a, Q)I'(a; g, g). (3.48)

12



Lety = 1. Then the bilinear equations (3.37)—(3.41) can be rewritten as

wr’:‘,ler’Irl,nHl _ Q—12n+12NaO—12l//r':l+1,mwr’:jz;+1 + Q_lznao_lzl//r;limlﬂmlimﬂ — 0’ (3.49)
;[Ir’:‘:limﬂl?[/r’lrl,m _ Q—12N¢r,:iml//r'l112im+l _ Q12n+120012l//r':l+1,m+1¢,r&:1im — 0’ (3_50)
wa:lim+l$ﬁm _ l//rlll:llmwrlllml + Q12n+12a2—12¢’r’11+1,m+1¢r’1iz11 — 0’ (3.51)
wr&:limwr,:rl,mﬂ _ lemlzaz—lzwr,wlwr':rzmﬂ _ wrl:rl,mwr,:lill,mﬂ =0, (3_52)
ORI = (R + T =0, (353

respectively. Equations (3.49)—(3.52) are equivalent to (2.7)—(2.10). Note that (3.53) is exactly
the discrete Toda equation, (2.15), which fixes the determinant structure of the hypergeometric
solutions as mentioned in Remark 2.3.

Remark 3.5 The gauge factory™/y~™" in (3.46) is obtained by solving the overdetermined
system of the bilinear éfierence equations with = 1 under the boundary condition§™ = 0
(N € Z.o) [26].

Let us consider the bilinear equations tpP,. Since we nee®,, 7;, andt; (i € Z/3Z), the
lattice is restricted to the “unit-strip” (see Figure 3). Therefore, we have only to conﬁj?jand
™t (n,N € Z). We set

™ = RT N (). (3.54)
Note that
To=To% T1=719, T2=Ty, To=T1.5 T1=Ty T2=1." (3.55)
In general, it follows that
=7 At = (3.56)
and
T8, Tt
f(l)fN — Q4N+2,y4 l\ll(+lk_l ) (357)
NTN+1

-4 -2
s152(12) = 7 To =T,

Figure 3. The actions d®, ont; (i = 0,1, 2).

Proposition 3.6 The following bilinear equations hald

—3k+4N+2
W2 5 3 k4l k-2 ~3k+aN+2. 4 -6 _k-1_k k-1 _k _
Q 7 Yar tyTna—Q Y@ TN Ther ~ Thaan = 0 (3.58)

—3k—4N-2
2 3 kel k-2 _3k—4N-2
2y fao Tyt — Q

k k+1 keaNsl o k+2_k-1 k+4N-1_4 -2 Kk _k+l
TNeTNer — Q2 Y oty Ty T - Q Y'ao “Tyty - = 0. (3.60)

4 —6_k_k-1 kK k-1 _
Y @0 TNTNgL — TN TN = 0, (3.59)

13



The proof of Proposition 3.6 will be given in the appendix A.2.
One can obtaig-P;, (3.19), from Proposition 3.6 as follows. Equations (3.58) and (3.59) can
be rewritten as

3k+aN+2 Tl,irlTk_Z
3k -6k B2 5 3 N+1
1+ Q *ag fO,N =Q 7 vy Lk (361)
N+1TN
rAN+2 TI,irllTKl_z
3k 6k ANtz o g TNy
1+ Q%ap fon =Q 7 Yao' 51— (3.62)
N+1TN
Dividing (3.62) by (3.61), we have
K 6fk k+l k-2
1+ Q% fO,N = Q¥ 6 TN+1TN = QUIIN-6,12), 6gkilgk gkl (3.63)
1 Ky 6K X T T Y @ Ign TonTon s .
+ Qo ON TN TN+1

which is equivalent to (3.21).
For hypergeometric solutions, by puttipg= 1 and

2k+3 —k+3

ALY NNDen 2TQ% 2% Q QI(Q 205 Q QI(Q % a0 % Q, Q)
T = (1) QNI NN = ®(Q3k(f(l)a/06, QPN =

k
Pn>

(3.64)
we can rewrite the bilinear equations (3.58), (3.59), and (3.60) as
QN 40y 2N 1o + QNN TN, 1 — PNadh = O, (3.65)
QM ion 2 + Qa0 PN — dN.agh Tt = 0. (3.66)
PNerPrs — MO+ ON ON - = O, (3.67)

which are equivalent to (2.20), (2.21), and (2.26), respectively. The determinant structure of the
hypergeometric solutions is fixed by (3.67) as was explained in Remark 2.6.

Therefore, the dierence of the determinant structures of the hypergeometric solutigrg,to
and that tag-P,, originates from the following procedures:

(i) the specializatiom, = q% and the restriction of functions on the “unit-strip”;
(i) taking the half-step translatid®, instead ofT; as a time evolution.

These result in the fference of the bilinear equations (3.41) (or (3.53)) and (3.60) (or (3.67)),
which fix the determinant structure of the hypergeometric solutions.

4 Concluding remarks

In this paper, we have clarified the mechanism that gives rise to the apparent “inconsistency” in
the hypergeometric solutions ¢gP,;, and that tay-P,, by using their underlyingfine Weyl group
symmetry. In general, it is also possible to explain the inconsistency among the hypergeomet-
ric solutions to other symmetric and asymmetric discrete Pa&ndmuations (see, for example,
Propositions 1.1 and 1.2).

14



We shall make a slightly technical remark on the solutiores ). Besides the hypergeometric
solution tog-P,, in Proposition 2.5, one can also obtain another solutiog-iy from that tog-
Py in Proposition 2.2 through a nee specialization (2.3). This solution, however, takeedent
expressions according to the parity of the time varidbtd g-P,, (2.2). On the other hand, the
solution in Proposition 2.5 forms a smooth functionkin In this sense it is more natural as a
solution tog-P;.

Before closing, we demonstrate another example of the projective reductions. Let us consider
the following system of dference equations [28]:

3na+ by (Bn+1)a+ b,

3n+2)a+Db
Yn +t’ Xn+l+Yn = Z—n+t, Yn+1+zn = (Z—:S

Zo+ Xy = +1, (4.1)
whereX,, Y,,, andZ, are the dependent variabless Z is the independent variable, aad;, by, b, t €
C are parameters. Equation (4.1) is one of the discrete Paisigstems of typ@\g). Namely, it
arises from a Bcklund transformation of the PainkV equation, which describes a translation in
a different direction from (1.4). Putting, = b, = bz = b, X, = X3n_1, Yn = Xan, andZ, = Xgns1, We
can reduce (4.1) to

an+b

Xn
which is known as a discrete Painéelequation [36]. This reduction from (4.1) to (4.2) is a typical
example of the projective reductions other than a symmetrization.
It seems that various projective reductions of the discrete P& slgstems change the underly-
ing symmetry and yield a number of intriguing problems. One interesting project is to make a list
of the hypergeometric functions that appear as the solutions to all the symmetric discreteéPainlev
equations in Sakai’s classification [13,14,39]. These will be discussed in forthcoming papers [16].

Xne1 + Xn-1 = +1, 4.2)
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A Derivation of bilinear equations

In this appendix, we derive various bilinear equationsrfunctions from the birational represen-
tations of\N((Az + Al)(1>) given in Proposition 3.2.

A.1 Bilinear equations for g-Py

We use the notations introduced in (3.33) and (3.36). For convenience, we classify the bilinear
equations into six types so that any equations which belong to the same type can be transformed
into each other by the action &V ((A; + Ay)®).
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Proposition A.1 (Type I: Discrete Toda type) The following bilinear equations hald

2
nm _nm An-8m+4d . -4 4 (_nm n-2m+l -1 nm+l_nm-1 _
TnNerTN-1 T Q @y @z (TN ) -Q a1 ary oty =0, (A.1)
2
nm _nm an+dm 4 - -4 (_nm n+m -1_n+1m+1_n-1m-1 _
TNeTN-1 T QT a0 a2 (TN ) — Q" oz "1y TN =0, (A.2)
2
nm _nm -8n+dm-4 -4 4 (_nm —2n+m-1_ -1 n+lm_n-1m _
TNe1TN-1 + Q Qo @ (TN ) -Q ag agTy Ty = 0. (A.3)

T
N+1
el e dm
N | N
N
........... Tnm
N-1

Figure 4. Configuration of functions for the bilinear equations of type I. Left: (A.1), center:
(A.2), right: (A.3).

Proof. Application of T4 = rwg onTg yields

_ 2 1 4 _27ToT 2 1 2 ToT 1 _1ToTiT
Ta(To) = C 38y 3ay tay 35— + C3agiay Sap——r + 3y 3 ——2, (A.4)
T1 T2 T1T2
which is rearranged as
ToT1 (QiC3auToTs + T PciarTo+T o’
_ _2 _1 1. _2TQoT1 1ToT2 T ToT2 T1T 1T _2 2
Ta(to) —C 3@ 3y a5 . _0 0 _ 0 0 +a; 3a,5—=0.
1 ToT2 T170 To
(A.5)
Applying T, = s,mrs; andTs = S,Sr on7g andty, respectively, we obtain
11 1 — 1 2 - —
q6C3a12T1T2(T0) = (Q3C3ay1oT2 + ToT2, (AG)
1 1 1 — 1 2 —_ —_
gsciay?toT3(T1) = q3C3@71To + T170. (A.7)

Using (A.6) and (A.7), we can rewrite (A.5) as
TaX(70)70 + 81383 Ta(70)? — & 825 ToTa(r0) TaTa(ry) = O. (A.8)

Then by applyingT, **T,"T," %, T,'T,"T," 1z, and T,/ T,™1T," 172 on (A.8), we obtain (A.1),
(A.2), and (A.3), respectively. O

Figure 4 shows the configurationofunctions in the bilinear equations. Each bilinear equation
takes the form of a linear combination of the three quadratic term&linctions. In the left figure,
we mark the first, the second, and the third multiplicationr &inctions of (A.1) with the square,
the circle, and the triangle, respectively. In the rest of this paper, we use similar representations as
above.
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Proposition A.2 (Type IlI: Discrete 2d-Toda type) The following bilinear djference equations hald

(1_ Q_lmazlz)TRlTlTlel Qn 1lma a 11Tr’:|+1m+1 n-1m-1 Qn 2ma, a 2Tr’11m+17_rl:|m—1 — 0’ (A.g)

121 12 nm _nm 10n+m _ 10  -1_n+1lm_n-1m n+m -1_n+1m+1l_n-1m-1

1-Q )TN+1TN 1+ Q ag oy Ty Ty = QM gy Ty, TN =0, (A.10)
12n-12m 12y_nm _nm 10n-11m_ 10 11 n+1m n Im n—-2m 2_nm+1l_nm-1

1-Q woPas )Tna1Tneg T Q @@y Ty - Q" gy T Tty T =0.

(A.11)

T+l T+
------------- R R
1+1,m+1 n,m+1

1 T’ ™~
n—1,m nalm
N Ty
- Tr_l-ijl,m ,;_n—}‘,m v
N--. N-
n—1,m-1 Tn,m—l
TN N
------------- | R nllm
n,m )
Tyn-1 TN-1

Figure 5. Configuration of functions for the bilinear equations of type II. Left: (A.9), center:
(A.10), right: (A.11).

Proof. Equation (A.9) is derived by eliminating ,, from (A.1) and (A.2). We obtain (A.10) and
(A.11) in a similar manner. O

Proposition A.3 (Type Ill) The following bilinear equations hald

2
an-8m+d -4 4 Al+4m 4 -4 n,m n+m -1_n+1m+l_n-1m-1
(Q aya = QT Mg )(T ) Q" Mgy Ty T Ty

_ Qn—2m+1 @y 1azTr’1|rmlTr’:lm 1 — 0’ (A.lZ)
AN+41 4 8n+4m-4 4 —2 1 -1 1, 1,
(Qn+mo Qn+m— )( )+Q n+m- @ OzTerTRI m
_ Qn+ma,0a,2 1Tr’:|+l m+1,l_r’:J 1m-1 — 0, (A.13)
2
—8n+dm-4 -4 4 an-8mtd . -4 4y (_nm —on+m-1 . -1 1, 1,
(Q Mgy %y * — Q™ a/)( )—Q SR Pt 2% vl vl
+ Q2™ o™it = 0, (A.14)

Proof. We obtain (A.12) by eliminating mn+17.mn-1 from (A.1) and (A.2). Other equations can
be derived in a similar manner. O

Proposition A.4 (Type IV) The following bilinear equation holds

_3nao—3(1_ Q—12m 12)Tn+lm n-1,m Q—Sm 3(1 Q 12 12)Tnm+1 n,m-1

TN

Proof. Equation (A.15) can be derived by eliminatingy" from (A.12) and (A.13). O
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n+l.m+1 nam+l
N N

1—1‘,.7%_ n+lm wm . _ntlm

Ty /N \N 7
nm “n—-1m .- v

T”_WN LI A \

N T n,m—

TN

Figure 6. Configuration of functions for the bilinear equations of type Ill. Left: (A.12), center:
(A.13), right: (A.14).

Jm+1 n+1l,m+1
" TN
n—1, n+l,m
W \/W
n—1,m-1 nm—1
N N

Figure 7. Configuration of functions for the bilinear equations of type IV.

Proposition A.5 (Type V) The following bilinear equations haold

n+1,m+1 —-2N 2 n+lm nm+1 —2n+2m-4N _ 4 -2_nm_n+1,m+1
T Ty — QMM Yy~ 204 aer -Q Yo ey TN TN =0, (A.16)
1,m_nm —2 —-2N -3 2 n+1m+1_nm-1 An—2m+4N 6. 2 _ 4_n+lm_nm
TR — QM ANy 2By ey A M ™ - QPN AP Pt P = 0,
(A.17)
n+1,m+1_n+1m n—2m-2N+1 -1 nm_n+2,m+1 -2n+4m+4N-2_4 2 -2 _n+1m+l_n+1lm
TNo N —Q Ty 2q, oty Ty — QMY Y e Ty T =0,
(A.18)
n+1,m+1_nm n+nm+2N 2 nm+l1l_n+1lm -2n-2m-4N_ -4 = -4 -2 _n+1,m+1l_nm
et Taer — QM Y’ CVl"'N N —Q Y ao a1 Ty Ty =0, (A.19)
1m —2 2N_ 2 -3 -2_nm-1_n+1m+1 4n—2m—4N 6 2 4 _nm_n+lm
T T = QT N2 B ey Py T — QN M Pt M T = 0,
(A.20)
n+1m_n+1,m+1 n—2m+2N 2_Nn+2,m+l_nm —-2n+4m-4N_ -4 = -2 -4 _n+1m_n+1m+l
Tt T —Q Yeaoa Ty, Ty — QT Y o Ca Ty Ty =0. (A.21)
Proof. First, we prove (A.16)—(A.18). We rewrite (A.4) as
_ 2 1 4 2T 12 _ 2 ToT2
Ta(To) — C 380 3@y "8y 3 —— (Q3C3auToT, + Torp) — caaoaalsaz— = 0. (A.22)
T1T2 T2
By using (A.6), we have from (A.22) that
_ 111 1 _ 2 1 2 _ _
Ta(To)T2 — C 3ag 8@y @y 271 To(To) — C3ap3ar3@7o72 = 0, (A.23)

which is equivalent to

T T (1) To(ry) — € 3ag tay 3@y 2 Ta(r0) Ty T, Ta(ry) — Ciag ey 3ap Ty Ta(ry) T, Ta(ry) = 0
(A.24)
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n+1l,m+1

nm Tn+1,m TN+1

Tn+1,m+1 N+1

am+l N+ i1 mt n+1,m+1 n+2,m+1

T

Tn+1 Jm
nm._ ¢

N le+1 m+1

Tn+1 m+1 Tn 1

N+1 N+1 Tn+1,m+1 +1,m

Tn+1,m+1 N+1 Tn+2,m+1
)

: n+l,m
7m RN Y Tn
N Sontlm+l
N-1

N-1

Figure 8. Configuration of functions for the bilinear equations of type V. Upper left: (A.16),
upper center: (A.17), upper right: (A.18), lower left: (A.19), lower center: (A.20), lower right:
(A.21).

We obtain (A.16), (A.17), and (A.18) by applyifdg T, T," %, T, T,"T," 1, andT, 1T, "T," 72
on (A.24), respectively.
Next, we prove (A.19)—(A.21). We rewrite (A.4) as

= _
T4(?0) — al%az_% 2 (q%C% QTTy + 7_'1‘['0) — C_%ao_%al_laz_% @ =0. (A25)
1T Ty
By using (A.7), we have from (A.25) that
T4(to)T1 — C3agiay 28,3 TaTa() Ta(r2) — C 320 3y 8y 8 T4(70) Ta(ry) = O. (A.26)

We obtain (A.19), (A.20), and (A.21) by applyifg' 1 T,"T," 172, T, 1T, T, 2, andT, " T,"T," 1
on (A.26), respectively. O

Proposition A.6 (Type VI) The following bilinear equations hald

TN+1TRJ+1 m+1 Q73n+3m+2N 2720/ 3Tr’11+1 mTR‘T}_—l + Q76n+6m+4N 47 a GTRImTr':I:llmﬂ =0, (A.27)
TRl:llmTle Q_3m+2N+172a’ 3Tr’11+1 nHlTRITll + Q_6m+4N+2)/4a 6Tr’1|+1 mTrlIlTl _ O (A.28)
Tr’::rllrml r’:|+1m Q3n+2N+4,y a STRImTr,:l:Zlmﬂ Q6n+4N+8,y a GTr':rl m+1Tr'll:11m — 0, (A.29)
Tr’::rllnwlTle Q—3n+3m—2N 4’)’ alsTr,:l:llmTr’:lmﬂ + Q—6n+6m 4N— 8‘)/ a 6Tr’11+1 m+1TrlllT1 0, (A30)
TN+1Tr':l+lm Q—3m—2N 1)/—205 3Tr’::rllm+1 nm-1 + Q—6m—4N 2)/_461’ GTrlllmTRl:llm =0, (A.31)
Trllltrllm r,:;rl m+1 Q3n—2N+2,y a STRITlTnNQ m+1 + Q6n 4N+4’)’ a 6TnN+1 mTr’:ItrllmA = 0. (A.32)
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Tn,m+l 7_1’l+1,m+1 n+1,m+1 n+2,m+1

N+1 N+1 N+1 N+1
n,m n,m n+1,m 1+1,m
TNel | _netmet TNt rbmel Ty petmet | TN4
-] N TN -]
l,n"lf«‘ ,""l+].,m
m .'izw;l m T’N Tn T’N Tn,m”a on+lm
T;l\} TN N+ N .7 N
n+1,m+1 Tn+1,m+1
N+1 ) N+l
1, Tn+ m
TI n,m 1Jl+1,m
et Nt A TN"'I N+l n+2,m+1

Figure 9. Configuration of functions for the bilinear equations of type VI. Upper left: (A.27),
upper center: (A.28), upper right: (A.29) lower left: (A.30), lower center: (A.31), lower right:
(A.32).

Proof. First, we prove (A.27)—(A.29). Equations (A.27), (A.28), and (A.29) can be derived by
applying T T,"T,", T/ T, T, "z, and T, T,"T,"72 on (A.7), respectively.
Next, we prove (A.30)—(A.32). By applyin, on g, we obtain

or8cT3ay 2Ty Ty(ro) — G 3C SanTaTo — To7o = 0. (A-33)
Equations (A.30), (A.31), and (A.32) can be derived by applyilg*T,™T,", T1'*1T,™T"x, and
T, T,"T,"7? on (A.33), respectively. O

Remark A.7 The bilinear equations in Proposition 3.4 correspond to (A.27), (A.29), (A.30),
(A.32), and (A.3).

A.2 Bilinear equations for g-P,

The bilinear equations fay-P,, are derived from the equations in Section A.1. Since the parameter
space and functions are restricted, we only have to pick up the bilinear equations that consist of
ther functions on the “unit-strip,” and to rewrite them in termsRyfinstead ofT; (see Figure 3).
Therefore, only the bilinear equations of type V and VI are relevant. We use the notation in (3.54).

Proposition A.8 The following bilinear equations hald

k=4N+2 _ _ _
Tllil++llTkN+_21 _ Q > y 2a/07_|'il+37_|’§l _ Q k+4N 2’}/4()’0 2TI[§|+1TK]+2 — O, (A34)
k+4N+2 _k—4N-2 — —
AT = Q2 Yoaory Ty — QN e PP = 0, (A.35)
3k-4N+4
— 2 -3_k+3_k —3k+4N-4_4  —6_k+1_k+2 k+1 _k+2 _
Q 2 Yty TN —Q Yo TN TN~ TN TN = 0 (A.36)
3k+4N+8
—=xaiie 2 -3 _k+3 _k —3k-4N-8_ -4  —6_k+2_k+1 k+2 _k+1 _
Q 2 Y Qo TN+]_TN - Q Y Qo TN TN+1 - TN+1TN = O. (A37)
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Proof. Noticing (3.55), we obtain from (A.23)
RiT,2(r1)Ry (1) — 07 2C Sa0t To(r)Ra~Ty(r1) - giciag SRy 2 Tu(ra)Ry " Ta(r1) = 0, (A.38)
from which (A.34) is derived by applyinB,™3T,"1. Similarly, we have
T2 (r)R (1) — 3C3a0s RiTa(r1)Ry 2 Ta(r) — 3¢ %ag 3 Ta(r)Ry 1 Tu(r) = 0. (A.39)

by applyingz on (A.26). Then we obtain (A.35) by applyirg™?2T,"* on (A.39). Equation
(A.36) is derived by applying,™3T," on

qF Ciag 2 TR Tu(ry) — GF Ciag "Ry (r)R M Ta(rs) - Ry Ta(r)R M) =0, (A.40)
which follows from (A.6). Finally, we obtain (A.37) by applyirg™3T," on
q ic 3ay 2 Ty(r)R3(re) — 03¢ a0 Ry M (TR 2Ta(r) - R Ta(r)RX(11) = 0, (A41)
which is follows from (A.33). O

Tk+1 Tk+2

N+1 N+1
c+2 c+3 k+1 c+3 4 c+1 c+2 X (+3
{ ™oty ™ [ Ty Thal Thel Tha Thil ke o
k+2 +1 ) +1 ‘ +2 ‘+3 'k )c+l ‘ +2
Tn-1 ™ ™o Ty Ty TN Ty

Figure 10. Configuration of functions for the bilinear equations in Proposition A.8. The figures
correspond to (A.34), (A.35), (A.36), and (A.37), respectively, from the left to the right.

Remark A.9 The bilinear equations in Proposition 3.6 correspond to (A.36), (A.37), and (A.34).

References

[1] E. Brézin and V.A. Kazakov, Exactly solvable theories of closed strings, Phys. L&86B
(1990) 144-150.

[2] M.R. Douglas and S.H. Shenker, Strings in less than one dimension, Nucl. P385(B90)
635—-654.

[3] A.S. Fokas, A.R. Its and A.V. Kitaev, The isomonodromy approach to matrix models in 2D
guantum gravity, Comm. Math. Phys47(1992) 395-430.

[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and
Its Applications35 (Cambridge University Press, Cambridge, 1990).

[5] B. Grammaticos, F.W. Nijh®, V. Papageorgiou, A. Ramani and J. Satsuma, Linearization
and solutions of the discrete PaingeNl equation, Phys. Lett. A85(1994) 446-452.

21



[6] B. Grammaticos and A. Ramani, Discrete PaiBl@guations: a review, Lect. Notes Phys.
644(2004) 245-321.

[7] B. Grammaticos, A. Ramani and V. Papageorgiou, Do integrable mappings have the&ainlev
property?, Phys. Rev. Le#7 (1991) 1825-1828.

[8] T. Hamamoto, K. Kajiwara and N.S. Witte, Hypergeometric solutions tgtRainle\e equa-
tion of type @, + A)®, Int. Math. Res. Not2006(2006) Article ID 84619.

[9] K. Kajiwara, The discrete Painléuvl equation and the classical special functionsSymme-
tries and integrability of dierence equationgds. by P. Clarkson and F.W. NijfipLondon
Math. Soc. Lecture Note Ser. 255(Cambridge University Press, Cambridge, 1999) 217-227.

[10] K. Kajiwara, On ag-difference Painle¥ Il equation. Il. Rational solutions, J. Nonlin. Math.
Phys.10(2003) 282—-303.

[11] K. Kajiwara and K. Kimura, On g-difference Painle¥1ll equation. I. Derivation, symmetry
and Riccati type solutions, J. Nonlin. Math. Ph¥6.(2003) 86—102.

[12] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamadgky solution to the elliptic
Painlee equation, J. Phys. A: Math. Ge36 (2003) L263—-L272.

[13] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Hypergeometric solutions to
theg-Painle\e equations, Int. Math. Res. N@004(2004) 2497-2521.

[14] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Construction of hypergeometric
solutions to tha}-Painlee equations, Int. Math. Res. N@&005(2005) 1441-1463.

[15] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Point configurations, Cremona
transformations and the ellipticféiérence Painléy equation, 8min. Congrl4 (2006) 169—
198.

[16] K. Kajiwara and N. Nakazono, In preparation.

[17] K. Kajiwara, M. Noumi and Y. Yamada, A study on the fougtPainle\e equation, J. Phys.
A: Math. Gen.34 (2001) 8563—-8581.

[18] K. Kajiwara, Y. Ohta and J. Satsuma, Casorati determinant solutions for the discrete @ainlev
lIl equation, J. Math. PhyS6 (1995) 4162—4174.

[19] K. Kajiwara, Y. Ohta, J. Satsuma, B. Grammaticos and A. Ramani, Casorati determinant
solutions for the discrete PainkeNl equation, J. Phys. A: Math. Gep7 (1994) 915-922.

[20] K. Kajiwara, K. Yamamoto and Y. Ohta, Rational solutions for the discrete P&@nlequa-
tion, Phys. Lett. A232(1997) 189-199.

[21] M.D. Kruskal, K.M. Tamizhmani, B. Grammaticos and A. Ramani, Asymmetric discrete
Painlee equations, Regul. Chaotic Dy%(2000) 273-280.

[22] T. Masuda, Classical transcendental solutions of the P&rdgquations and their degenera-
tion, Tohoku Math. J56 (2004) 467—-490.

22



[23] T. Masuda, Y. Ohta and K. Kajiwara, Rational solutions to the Paiiéequation and the
universal characters, RIMS Kokyuroki203(2001) 97-108 (in Japanese).

[24] T. Masuda, Y. Ohta and K. Kajiwara, A determinant formula for a class of rational solutions
of Painlee V equation, Nagoya J. Math68(2002) 1-25.

[25] S. Nakao, K. Kajiwara and D. Takahashi, Multiplicative,d&#hd its ultradiscretization, Re-
ports of RIAM Symposium No. 9ME-S2, Kyushu University (1998) 125-130 (in Japanese).

[26] N. Nakazono, In preparation.

[27] M. Noumi, Painlee equations through symmetry (American Mathematical Society, Provi-
dence, 2004).

[28] Y. Ohta, Self-dual structure of the discrete Paiglequations, RIMS Kokyuroki098(1999)
130-137 (in Japanese).

[29] K. Okamoto, Studies on the Painkequations. Ill. Second and Fourth Pai@eguationpP,
andP,,, Math. Ann.275(1986) 221-255.

[30] K. Okamoto, Studies on the Paingequations. I. Sixth PainlévequationP,,, Ann. Mat.
Pura Appl.146(1987) 337-381.

[31] K. Okamoto, Studies on the Pain&equations. Il. Fifth Painlé& equationP,,, Japan. J.
Math.13(1987) 47-76.

[32] K. Okamoto, Studies on the Pain&equations. IV. Third PainlévequationP;,, Funcial.
Ekvac.30(1987) 305-332.

[33] V. Periwal and D. Shevitz, Unitary-matrix models as exactly solvable string theories, Phys.
Rev. Lett.64 (1990) 1326-1329.

[34] G.R.W. Quispel, J.A.G Roberts and C.J. Thompson, Integrable mappings and soliton equa-
tions, Phys. Lett. AL26(1988) 419-421.

[35] G.R.W. Quispel, J.A.G Roberts and C.J. Thompson, Integrable mappings and soliton equa-
tions I, Physica D84 (1989) 183-192.

[36] A. Ramani and B. Grammaticos, Discrete Paigle@guations: coalescences, limits and de-
generacies, Physica 228(1996) 150-159.

[37] A. Ramani, B. Grammaticos and J. Hietarinta, Discrete versions of the Faietpations,
Phys. Rev. Lett67 (1991) 1829-1832.

[38] A. Ramani,Y. Ohta, J. Satsuma and B. Grammaticos, Self-duality and schlesinger chains for
the asymmetric d4Pandg-P,, equations, Comm. Math. PhyEs92(1998) 67-76,

[39] H. Sakai, Rational surfaces associated witina root systems and geometry of the Paialev
equations, Comm. Math. Phy220(2001) 165-229.

[40] T. Tsuda, Tau functions af-Painle\e Il and IV equations, Lett. Math. Phyg5 (2006) 39—
47.

23



List of MI Preprint Series, Kyushu University

MI

MI2008-1

MI2008-2

MI2008-3

MI2008-4

MI2008-5

MI2008-6

MI2008-7

MI2008-8

MI2008-9

The Global COE Program
Math-for-Industry Education & Research Hub

Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-

adic field

Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical al-
gebraic decomposition

Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials



MI2008-10

MI2008-11

MI2008-12

MI2008-13

MI2008-14

MI2008-15

MI2009-1

MI2009-2

MI2009-3

MI2009-4

MI2009-5

Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Ob-
served Univariate SDE

Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L? a priori error estimates to the finite element solution of elliptic
problems with singular adjoint operator

Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek
polynomials

Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev in-
equality

Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

Yasuhide FUKUMOTO

Global time evolution of viscous vortex rings

Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predic-
tors

Hidetoshi MATSUI & Sadanori KONISHI

Variable selection for functional regression model via the L, regularization

Shuichi KAWANO & Sadanori KONISHI

Nonlinear logistic discrimination via regularized Gaussian basis expansions

Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings



MI2009-6

MI2009-7

MI2009-8

MI2009-9

MI2009-10

MI2009-11

MI2009-12

MI2009-13

MI2009-14

MI2009-15

Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1
dimensional discrete soliton equations

Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation
around the plane Couette flow

Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents
for the variance assumption

Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with
the Hesse cubic curve

Tetsu MASUDA
Hypergeometric T -functions of the g-Painlevé system of type Eél)

Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic De-
composition for Quantifier Elimination

Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and
its applications

Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L? spaces associated with the lin-
earized compressible Navier-Stokes equation in a cylindrical domain



MI2009-16

MI2009-17

MI2009-18

MI2009-19

MI2009-20

MI2009-21

MI2009-22

MI2009-23

MI2009-24

MI2009-25

Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE

Spectrum in multi-species asymmetric simple exclusion process on a ring

Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic
functions

Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expan-
sions and its application

Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expan-
sions

Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with
symbolic computations

Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally
Hermitian symmetric spaces

Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter
Interactions

Yu KAWAKAMI

Recent progress in value distribution of the hyperbolic Gauss map

Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error esti-
mates for H32-projection



MI2009-26

Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI

MI2009-28

MI2009-29

MI2009-30

MI2009-31

MI2009-32

MI2009-33

MI2009-34

Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
three-space

Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable
finite element scheme

Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of
translation and scaling invariance

Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemo-
taxis

Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme
of lumped mass type

Chikashi ARITA
Queueing process with excluded-volume effect

Kenji KAJIWARA, Nobutaka NAKAZONO and Teruhisa TSUDA
Projective reduction of the discrete Painlev’e system of type(As + A;)M



