Projective Representations of symmetric groups VIA SERGEEV DUALITY

Jonathan Brundan and Alexander Kleshchev *

1 Introduction

In this article, we determine the irreducible projective representations of the symmetric group S_{d} and the alternating group A_{d} over an algebraically closed field of characteristic $p \neq 2$. These matters are well understood in the case $p=0$, thanks to the fundamental work of Schur [24] in 1911, as well as the much more recent work of Nazarov [19, 20], Sergeev $[25,26]$ and others. So the focus here is primarily on the case of positive characteristic, where surprisingly little is known as yet. In particular, we obtain a natural combinatorial labelling of the irreducibles in terms of a certain set $\mathscr{R} \mathscr{P}_{p}(d)$ of restricted p-strict partitions of d. Such partitions arose recently in work of Kashiwara, Miwa, Peterson and Yung [11] and Leclerc and Thibon [14] on the q-deformed Fock space of the affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. Leclerc and Thibon proposed that $\mathscr{R} \mathscr{P}_{p}(d)$ should label the irreducible projective representations in some natural way, and we show here how this can be done. Note that for $p=3,5$, the labelling problem was solved in $[1,3]$, while if $p=2$ all projective representations of S_{d} and A_{d} are linear so do not need to be considered further here.

To be more precise, recall that λ is a partition of d if $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a non-increasing sequence of non-negative integers summing to d. Call λp-strict if in addition

$$
\lambda_{i}=\lambda_{i+1} \quad \Rightarrow \quad p \mid \lambda_{i} \quad \text { for each } i=1,2, \ldots
$$

Let $\mathscr{P}_{p}(d)$ denote the set of all p-strict partitions of d. Thus, the 0 -strict partitions are just the partitions with no repeated non-zero parts, while a p-strict partition for $p>0$ can only have repeated parts if they are divisible by p. Call $\lambda \in \mathscr{P}_{p}(d)$ a restricted p-strict partition if either $p=0$, or $p>0$ and

$$
\begin{cases}\lambda_{i}-\lambda_{i+1} \leq p & \text { if } p \nmid \lambda_{i}, \\ \lambda_{i}-\lambda_{i+1}<p & \text { if } p \mid \lambda_{i}\end{cases}
$$

for each $i=1,2, \ldots$ Let $\mathscr{R} \mathscr{P}_{p}(d) \subseteq \mathscr{P}_{p}(d)$ denote the restricted p-strict partitions of d. Also, define $h_{p^{\prime}}(\lambda)$ to be the number of parts of λ not divisible by p. Then, our construction leads to a labelling of the irreducible projective representations of S_{d} over an algebraically closed field of characteristic $p \neq 2$ by pairs (λ, ε) where $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$ and $\varepsilon=0$ if $d-h_{p^{\prime}}(\lambda)$

[^0]is even or ± 1 if $d-h_{p^{\prime}}(\lambda)$ is odd. For A_{d}, the labelling is by pairs (λ, ε) where $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$ and $\varepsilon= \pm 1$ if $d-h_{p^{\prime}}(\lambda)$ even or 0 if $d-h_{p^{\prime}}(\lambda)$ is odd.

The construction is based closely on the ideas of Sergeev and Nazarov in the characteristic 0 theory. In particular, the key step is to determine the irreducible "polynomial" representations of the supergroup $Q(n)$ in characteristic p. These turn out to be labelled naturally according to highest weight theory by all p-strict partitions with at most n nonzero parts. From this, we use Sergeev's superalgebra analogue [25] of Schur-Weyl duality to determine the irreducible representations of a certain twisted version of the group algebra of the hyperoctahedral group. Finally, we pass from there to the symmetric group using methods of Nazarov [20] and Sergeev [26].
Acknowledgements. We would like to thank S. Ariki for bringing the work of Sergeev [25] to our attention, and S. Donkin for making $[6,18]$ available to us.

2 Preliminaries on superalgebras

In this section, we record a number of standard results about the representation theory of finite dimensional (associative) superalgebras. As useful general references, but sometimes with different conventions to us, we cite [17, ch.3], [15] and [10].

We will always work relative to a fixed algebraically closed field \mathbb{k} of characteristic $p \neq 2$. By a vector superspace we mean a \mathbb{Z}_{2}-graded \mathbb{k}-vector space $V=V_{\overline{0}} \oplus V_{\overline{1}}$. Given a homogeneous vector $0 \neq v \in V$, we denote its degree by $\partial(v) \in \mathbb{Z}_{2}$. A subsuperspace U of V means a subspace U of V such that $U=\left(U \cap V_{\overline{0}}\right) \oplus\left(U \cap V_{\overline{1}}\right)$. Define the linear map $\delta_{V}: V \rightarrow V$ on homogeneous vectors by $\delta_{V}(v)=(-1)^{\partial(v)} v$. Then obviously, a subspace $U \subset V$ is a subsuperspace if and only if U is stable under δ_{V}.

Given vector superspaces V and W, we view the direct sum $V \oplus W$ and the tensor product $V \otimes W$ as a vector superspaces with $(V \oplus W)_{i}=V_{i} \oplus W_{i}$, and $(V \otimes W)_{\overline{0}}=V_{\overline{0}} \otimes W_{\overline{0}} \oplus V_{\overline{1}} \otimes W_{\overline{1}}$, $(V \otimes W)_{\overline{1}}=V_{\overline{0}} \otimes W_{\overline{1}} \oplus V_{\overline{1}} \otimes W_{\overline{0}}$. Also, we make the vector space $\operatorname{Hom}_{\mathbb{k}}(V, W)$ of all linear maps from V to W into a superspace by declaring that $\operatorname{Hom}_{\mathbb{k}}(V, W)_{i}$ consists of the homogeneous maps of degree i for each $i \in \mathbb{Z}_{2}$, that is, the maps $\theta: V \rightarrow W$ with $\theta\left(V_{j}\right) \subseteq W_{i+j}$ for $j \in \mathbb{Z}_{2}$. Elements of $\operatorname{Hom}_{\mathbb{k}}(V, W)_{\overline{0}}$ will be referred to as even linear maps. The dual superspace V^{*} is $\operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, where we view \mathbb{k} as a vector superspace concentrated in degree $\overline{0}$.

A superalgebra is a vector superspace A with the additional structure of an associative, unital \mathbb{k}-algebra such that $A_{i} A_{j} \subseteq A_{i+j}$ for $i, j \in \mathbb{Z}_{2}$. A superalgebra homomorphism θ : $A \rightarrow B$ is an even linear map that is an algebra homomorphism in the usual sense; its kernel is a superideal, that is, an ordinary two-sided ideal that is also a subsuperspace. Most importantly, given two superalgebras A and B, we view the tensor product $A \otimes B$ as a superalgebra with the induced grading and multiplication defined by $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=$ $(-1)^{\partial(b) \partial\left(a^{\prime}\right)}\left(a a^{\prime}\right) \otimes\left(b b^{\prime}\right)$ for homogeneous elements $a, a^{\prime} \in A, b, b^{\prime} \in B$. We note that $A \otimes B \cong B \otimes A$, an isomorphism being given by the supertwist map $T_{A, B}: A \otimes B \rightarrow$ $B \otimes A, a \otimes b \mapsto(-1)^{\partial(a) \partial(b)} b \otimes a$ for homogeneous $a \in A, b \in B$.
2.1. Example. Let V be a vector superspace with $\operatorname{dim} V_{\overline{0}}=m, \operatorname{dim} V_{\overline{1}}=n$. The tensor superalgebra is the tensor algebra $T(V)$ regarded as a superalgebra with the induced grading.

As a quotient of $T(V)$, we have the symmetric superalgebra, namely,

$$
\left.S(V)=T(V) /\left\langle v \otimes w-(-1)^{\partial(v) \partial(w)} w \otimes v\right| \text { for all homogeneous vectors } v, w \in V\right\rangle
$$

If we have in mind fixed bases v_{1}, \ldots, v_{m} for $V_{\overline{0}}$ and $\bar{v}_{1}, \ldots, \bar{v}_{n}$ for $V_{\overline{1}}$, we denote the superalgebras $T(V)$ and $S(V)$ instead by $T(m \mid n)$ and $S(m \mid n)$. These are the free superalgebra and the free commutative superalgebra on $m \mid n$ generators, respectively. Set $S(m):=S(m \mid 0)$, just the usual polynomial algebra on m generators concentrated in degree $\overline{0}$, and $\bigwedge(n):=S(0 \mid n)$, just the usual exterior algebra but with generators assigned the degree $\overline{1}$. The superalgebra $\Lambda(n)$ is called the Grassmann superalgebra. We have that

$$
\begin{aligned}
S(m) & \cong S(1) \otimes \cdots \otimes S(1) \quad(m \text { times }) \\
\bigwedge(n) & \cong \bigwedge(1) \otimes \cdots \otimes \bigwedge(1) \quad(n \text { times }) \\
S(m \mid n) & \cong S(m) \otimes \bigwedge(n)
\end{aligned}
$$

2.2. Example. Another basic example that we will meet is the Clifford superalgebra, namely, the superalgebra $C(n)$ on generators c_{1}, \ldots, c_{n} all of degree $\overline{1}$, subject to the relations $c_{i}^{2}=1$ for $i=1, \ldots, n$ and $c_{i} c_{j}=-c_{j} c_{i}$ for all $i \neq j$. If, slightly more generally, one has in mind non-zero scalars $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{k}^{\times}$, the superalgebra with generators b_{1}, \ldots, b_{n} subject to the relations $b_{i}^{2}=\lambda_{i}, b_{i} b_{j}=-b_{j} b_{i}$ is isomorphic to $C(n)$, an obvious isomorphism sending $b_{i} \mapsto \sqrt{\lambda_{i}} c_{i}$. The crucial point is that $C\left(n_{1}+n_{2}\right) \cong C\left(n_{1}\right) \otimes C\left(n_{2}\right)$. Indeed, the generators $c_{1} \otimes 1, \ldots, c_{n_{1}} \otimes 1,1 \otimes c_{1}, \ldots, 1 \otimes c_{n_{2}}$ of $C\left(n_{1}\right) \otimes C\left(n_{2}\right)$ satisfy the same relations as the generators $c_{1}, \ldots, c_{n_{1}}, c_{n_{1}+1}, \ldots, c_{n_{1}+n_{2}}$ of $C\left(n_{1}+n_{2}\right)$. It follows at once that

$$
C(n) \cong C(1) \otimes \cdots \otimes C(1) \quad(n \text { times })
$$

Let A be a superalgebra. A left A-supermodule is a vector superspace M which is a left A-module in the usual sense, such that $A_{i} M_{j} \subseteq M_{i+j}$ for $i, j \in \mathbb{Z}_{2}$. There is of course an analogous notion of right supermodule, which we omit. A homomorphism $f: M \rightarrow N$ between two left A-supermodules means a (not necessarily homogeneous) linear map such that $a(m f)=(a m) f$ for all $a \in A$ and $m \in M$. Observe we write homomorphisms between left A-supermodules on the right (and vice versa). We have now defined the category $\bmod (A)$ of all left A-supermodules. It is a superadditive category in the sense of [17, ch.3,§2.7], i.e. an additive category such that each $\operatorname{Hom}_{A}(M, N)$ is \mathbb{Z}_{2}-graded in a way that is compatible with addition and composition of morphisms. We also have the (left) parity change functor

$$
\Pi: \bmod (A) \rightarrow \bmod (A)
$$

(see [17, ch. $3, \S 1.5]$). This is defined on an object M so that ΠM is the same underlying vector space but with the opposite grading, and the new left A-action is defined by $a \cdot m=$ $(-1)^{\partial(a)}$ am for homogeneous $a \in A, m \in M$. On a morphism $f, \Pi f$ is the same underlying linear map as f.

A subsupermodule of an A-supermodule means an A-submodule in the usual sense that is a subsuperspace. An A-supermodule M is irreducible if it is non-zero and has no non-zero proper subsupermodules. Then M is either irreducible when viewed just as an ordinary A-module, in which case we say that M is absolutely irreducible, or else M is reducible as an A-module, in which case we call M self-associate.
2.3. Lemma. If M is a finite dimensional self-associate irreducible A-supermodule, then there exist bases v_{1}, \ldots, v_{n} for $M_{\overline{0}}$ and $\bar{v}_{1}, \ldots, \bar{v}_{n}$ for $M_{\overline{1}}$ such that

$$
M=\operatorname{span}\left\{v_{1}+\bar{v}_{1}, \ldots, v_{n}+\bar{v}_{n}\right\} \oplus \operatorname{span}\left\{v_{1}-\bar{v}_{1}, \ldots, v_{n}-\bar{v}_{n}\right\}
$$

as a direct sum of two non-isomorphic irreducible A-submodules. Moreover, the linear map $J_{M}: M \rightarrow M$ defined by $v_{i} \mapsto \bar{v}_{i}, \bar{v}_{i} \mapsto v_{i}$ is an A-homomorphism.

Proof. We can find an irreducible A-submodule N of M that is not a subsupermodule, i.e. is not δ_{M}-stable. It is elementary to check that $\delta_{M}(N)$ is also an irreducible A-submodule of M. Hence, $N \oplus \delta_{M}(N)$ is an A-submodule of M, even a subsupermodule since it is now $\delta_{M^{-}}$ stable. Let u_{1}, \ldots, u_{n} be a basis for N. Then, $\delta_{M}\left(u_{1}\right), \ldots, \delta_{M}\left(u_{n}\right)$ is a basis for $\delta_{M}(N)$, so $u_{1}+\delta_{M}\left(u_{1}\right), \ldots, u_{n}+\delta_{M}\left(u_{n}\right)$ is the required basis for $M_{\overline{0}}$ and $u_{1}-\delta_{M}\left(u_{1}\right), \ldots, u_{n}-\delta_{M}\left(u_{n}\right)$ is the required basis for $M_{\overline{1}}$.

If M is an A-supermodule, $\operatorname{End}_{A}(M)$ denotes the superalgebra of all A-supermodule endomorphisms of M. We stress again that we write the action of elements of $\operatorname{End}_{A}(M)$ on M on the opposite side to the action of A. We have the following analogue of Schur's lemma, which is easily proved given Lemma 2.3:
2.4. Lemma (Schur's lemma). Let M be a finite dimensional irreducible A-supermodule. Then,

$$
\operatorname{End}_{A}(M)= \begin{cases}\operatorname{span}\left\{\operatorname{id}_{M}\right\} & \text { if } M \text { is absolutely irreducible, } \\ \operatorname{span}\left\{\operatorname{id}_{M}, J_{M}\right\} & \text { if } M \text { is self-associate, }\end{cases}
$$

where J_{M} is as in Lemma 2.3.
We say that an A-supermodule M is completely reducible if it can be decomposed as a direct sum of irreducible subsupermodules. Call A a simple superalgebra if A has no nontrivial superideals, and a semisimple superalgebra if A is completely reducible viewed as a left A-supermodule. Equivalently, A is semisimple if every left A-supermodule is completely reducible. We have:
2.5. Lemma (Wedderburn's theorem). Let A be a finite dimensional superalgebra. The following are equivalent:
(i) A is simple;
(ii) A is semisimple with only one irreducible supermodule up to isomorphism;
(iii) there is a finite dimensional vector superspace V such that either $A \cong \operatorname{End}_{\mathbb{k}}(V)$ or $A \cong\left\{\theta \in \operatorname{End}_{\mathbb{k}}(V) \mid \theta \circ J=J \circ \theta\right\}$ for some involution $J \in \operatorname{End}_{\mathbb{k}}(V)_{\overline{1}}$.
Moreover, if A is semisimple then it is isomorphic to a direct product of simple superalgebras.
Notice in view of Lemma 2.3 that if A is semisimple as a superalgebra, then it is semisimple as an algebra. The converse is also true, and is proved e.g. in [18, (1.4c)]; it can also be deduced directly by considering the effect of the map δ_{A} on the irreducible submodules of A viewed as a left A-module. Somewhat more generally, we have:
2.6. Lemma. Let A be a finite dimensional superalgebra. Then, the Jacobson radical of A (viewed just as an ordinary algebra) can be characterized as the unique smallest superideal K of A such that A / K is a semisimple superalgebra.

Proof. Let J be the Jacobson radical of A viewed as an ordinary algebra, and let K be any superideal of A that is minimal with respect to the property that A / K is a semisimple superalgebra. We know that A / K is semisimple as an ordinary algebra by Lemma 2.3, so $J \subseteq K$. Conversely, we observe that J is a superideal since J is invariant under the algebra automorphism δ_{A} of A. So, A / J is a superalgebra that is semisimple as an algebra. Hence, by $[18,(1.4 \mathrm{c})]$, it is a semisimple superalgebra, so $J=K$ by minimality of K.
2.7. Example. The Jacobson radical of the Grassmann superalgebra $\bigwedge(n)$ coincides with the superideal generated by all degree $\overline{1}$ elements. The quotient superalgebra is isomorphic to \mathbb{k}. It follows that $\bigwedge(n)$ has a unique irreducible supermodule up to isomorphism, namely, \mathbb{k} itself, with all elements of $\bigwedge(n)_{\overline{1}}$ acting as zero.

We point out another immediate consequence of Wedderburn's theorem and Lemma 2.6:
2.8. Corollary. Let A be a finite dimensional superalgebra, and $\left\{V_{1}, \ldots, V_{n}\right\}$ be a complete set of pairwise non-isomorphic irreducible A-supermodules such that V_{1}, \ldots, V_{m} are absolutely irreducible and V_{m+1}, \ldots, V_{n} are self-associate. For $i=m+1, \ldots, n$, write $V_{i}=V_{i}^{+} \oplus V_{i}^{-}$as a direct sum of irreducible A-modules. Then,

$$
\left\{V_{1}, \ldots, V_{m}, V_{m+1}^{ \pm}, \ldots, V_{n}^{ \pm}\right\}
$$

is a complete set of pairwise non-isomorphic irreducible A-modules.
Given left supermodules M and N over arbitrary superalgebras A and B respectively, the (outer) tensor product $M \otimes N$ is an $A \otimes B$-supermodule with action defined by $(a \otimes b)(m \otimes n)=$ $(-1)^{\partial(b) \partial(m)} a m \otimes b n$ for all homogeneous $a \in A, b \in B, m \in M, n \in N$. (Analogously, if M and N are right supermodules, the action of $A \otimes B$ on $M \otimes N$ is defined instead by $(m \otimes n)(a \otimes b)=(-1)^{\partial(a) \partial(n)} m a \otimes n b$ for all homogeneous $a \in A, b \in B, m \in M, n \in N$.) If $f: M \rightarrow M^{\prime}$ (resp. $g: N \rightarrow N^{\prime}$) is a homogeneous homomorphism of left A - (resp. B-) supermodules, then $f \otimes g: M \otimes N \rightarrow M^{\prime} \otimes N^{\prime}$ is the $A \otimes B$-supermodule homomorphism defined by $(m \otimes n)(f \otimes g)=(-1)^{\partial(n) \partial(f)} m f \otimes n g$. The following lemma gives the other basic facts about outer tensor products that we need (cf. [10, (2.10)]):
2.9. Lemma. Suppose that A and B are finite dimensional superalgebras, and that M, N are irreducible supermodules over A, B respectively.
(i) If both M and N are absolutely irreducible, then $M \otimes N$ is an absolutely irreducible $A \otimes B$-supermodule.
(ii) If one of M or N is absolutely irreducible and the other is self-associate, then $M \otimes N$ is a self-associate irreducible $A \otimes B$-supermodule.
(iii) If both M and N are self-associate, then $M \otimes N$ decomposes as a direct sum of two isomorphic, absolutely irreducible $A \otimes B$-supermodules.
Moreover, all irreducible $A \otimes B$-supermodules arise as constituents of $M \otimes N$ for some choice of M, N.

Combining Lemma 2.9 with Wedderburn's theorem, it follows in particular that if A and B are finite dimensional semisimple superalgebras then $A \otimes B$ is too.
2.10. Example. Consider the Clifford superalgebra $C(n)$ again. First, observe that $C(1)$ is just the simple superalgebra of 2×2 matrices of the form $\left\{\left.\left(\begin{array}{cc}a & b \\ b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{k}\right\}$, the generator c_{1} of $C(1)$ corresponding to the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. So $C(1)$ has precisely one irreducible supermodule $U(1)$ which is self-associate of dimension 2 , as in the second case of Lemma 2.5(iii). Hence, applying Lemma 2.9, $C(2)=C(1) \otimes C(1)$ has one irreducible supermodule $U(2)$, namely the unique irreducible appearing with multiplicity two in the $C(2)$-supermodule $U(1) \otimes U(1)$, and $U(2)$ is absolutely irreducible of dimension 2 . Explicitly, $U(2)$ can be described as the supermodule on basis u, \bar{u} with action defined by $c_{1} u=$ $\bar{u}, c_{1} \bar{u}=u, c_{2} u=\sqrt{-1} \bar{u}, c_{2} \bar{u}=-\sqrt{-1} u$. Finally, for $n>2, C(n)=C(n-2) \otimes C(2)$, so by Lemma 2.5(i) and (ii), it has just one irreducible supermodule $U(n)$, defined inductively by $U(n)=U(n-2) \otimes U(2)$. This is absolutely irreducible if and only if $U(n-2)$ is absolutely irreducible, which is if and only if n is even. Observe that we have just shown that $C(n)$ is a semisimple superalgebra with a unique irreducible supermodule. So by Lemma 2.5, $C(n)$ is in fact a simple superalgebra, indeed, up to isomorphism, it must be the unique simple superalgebra of dimension 2^{n}. Its unique irreducible supermodule $U(n)$ has dimension $2^{\lfloor(n+1) / 2\rfloor}$.

Following $[25, \S 1.4]$, a \mathbb{Z}_{2}-graded group is a pair (G, ∂) where G is a finite group and $\partial: G \rightarrow \mathbb{Z}_{2}$ is a group homomorphism. If (G, ∂) is a \mathbb{Z}_{2}-graded group, we can regard the group algebra $\mathbb{k} G$ as a superalgebra, the degree of $g \in G$ being $\partial(g)$. We are interested next in counting the number of irreducible $\mathbb{k} G$-supermodules in terms of conjugacy classes. Define $n_{p^{\prime}}(G, \overline{0})$ to be the number of G-conjugacy classes of p^{\prime}-elements ($=$ elements of order coprime to p) of degree $\overline{0}$ and $n_{p^{\prime}}(G, \overline{1})$ to be the number of G-conjugacy classes of p^{\prime}-elements of degree $\overline{1}$.
2.11. Lemma. Let (G, ∂) be a \mathbb{Z}_{2}-graded group. Then, there are $n_{p^{\prime}}(G, \overline{0})$ pairwise nonisomorphic irreducible $\mathbb{k} G$-supermodules. Of these, $n_{p^{\prime}}(G, \overline{0})-n_{p^{\prime}}(G, \overline{1})$ are absolutely irreducible, and the remaining $n_{p^{\prime}}(G, \overline{1})$ are self-associate.

Proof. We follow the proof of the analogous classical result for ordinary group algebras, see $[12, \S 13]$. For an arbitrary superalgebra A, write $Z(A)=\{a \in A \mid a b=b a$ for all $b \in A\}$ for its centre and $S(A)=\operatorname{span}\{a b-b a \mid a, b \in A\}$. These are both subsuperspaces of A. Let J denote the Jacobson radical of the group algebra $\mathbb{k} G$. By Lemma 2.6, J is a superideal and $A:=\mathbb{k} G / J$ is the largest semisimple superalgebra quotient of $\mathbb{k} G$. So $\mathbb{k} G$ and A have the same number of irreducible supermodules. Combining Lemma 2.4 and Lemma 2.5, we deduce that the number of irreducible $\mathbb{k} G$-supermodules is equal to $\operatorname{dim} Z(A)_{\overline{0}}$ and the number of self-associate irreducible $\mathbb{k} G$-supermodules is equal to $\operatorname{dim} Z(A)_{\overline{1}}$. By $[12,13.3]$, $A=Z(A) \oplus S(A)$, so $\operatorname{dim}[Z(A)]_{i}=\operatorname{dim}[A / S(A)]_{i}$ for $i=\overline{0}, \overline{1}$. Finally, to count this dimension in either case, use formula (14) in the proof of [12, 13.8]; this tells us at once that $\operatorname{dim}[A / S(A)]_{i}=n_{p^{\prime}}(G, i)$.

To conclude this preliminary section, we give a brief review of "Schur functors" arising from idempotents in this setting. Suppose that A is an arbitrary finite dimensional superalgebra and that $e \in A$ is a homogeneous idempotent, necessarily of degree $\overline{0}$. Then, the ring $e A e$ is a superalgebra in its own right, its identity element being the idempotent e. We have the (exact) Schur functor

$$
R_{e}: \bmod (A) \rightarrow \bmod (e A e)
$$

given on objects by left multiplication by the idempotent e and by restriction on morphisms. Given an A-supermodule M, let $O_{e}(M)$ (resp. $\left.O^{e}(M)\right)$ denote the largest (resp. smallest) subsupermodule N of M such that $N($ resp. $M / N)$ is annihilated by e. Finally, let $\bmod _{e}(A)$ denote the full subcategory of $\bmod (A)$ consisting of all A-supermodules M with $O_{e}(M)=0$ and $O^{e}(M)=M$. The following basic result is proved as in the classical case, see [9, §2]:
2.12. Lemma. The restriction of the functor R_{e} to $\boldsymbol{\operatorname { m o d }}_{e}(A)$ is an equivalence of categories between $\bmod _{e}(A)$ and $\bmod (e A e)$.

Suppose that $\{L(\lambda) \mid \lambda \in \Lambda\}$ be a complete set of pairwise non-isomorphic irreducible A-supermodules, and set $\Lambda_{e}=\left\{\lambda \in \Lambda \mid R_{e} L(\lambda) \neq 0\right\}$. Then, as an immediate consequence of Lemma 2.12, we have:
2.13. Corollary. The eAe-supermodules $\left\{R_{e} L(\lambda) \mid \lambda \in \Lambda_{e}\right\}$ give a complete set of pairwise non-isomorphic irreducible eAe-supermodules. Moreover, for $\lambda \in \Lambda_{e}, R_{e} L(\lambda)$ is absolutely irreducible if and only if $L(\lambda)$ is absolutely irreducible.

3 The Sergeev superalgebra

Let S_{d} denote the symmetric group, acting naturally on the left on the set $\{1, \ldots, d\}$. Denoting the basic transposition $(i i+1)$ by s_{i}, we recall that S_{d} is generated by s_{1}, \ldots, s_{d-1} subject to the well-known Coxeter relations.

Now let $\alpha: S_{d} \times S_{d} \rightarrow \mathbb{k}^{\times}$be a 2 -cocycle, where \mathbb{k} is a fixed algebraically closed field. Then, there is a corresponding twisted group algebra, namely, the \mathbb{k}-algebra on basis $\left\{[w] \mid w \in S_{d}\right\}$ with multiplication satisfying $[x][y]=\alpha(x, y)[x y]$ for all $x, y \in S_{d}$. Studying the projective representations of S_{d} over \mathbb{k} is equivalent to studying the representation theory of the twisted group algebras arising in this way, as α runs over representatives of all such 2 -cocycles. The following lemma is quite standard, cf. [4] or [8, Kapitel $5, \S 25$, Satz 12]:
3.1. Lemma. The Schur multiplier $H^{2}\left(S_{d}, \mathbb{k}^{\times}\right)$has exactly two elements if char $\mathbb{k} \neq 2$ and $d \geq 4$, and is trivial otherwise.

This explains in particular why all projective representations of S_{d} in characteristic 2 are linear, as remarked in the introduction. So now suppose for the remainder of the article that char $\mathbb{k} \neq 2$. Then, Lemma 3.1 implies that S_{d} has two twisted group algebras over \mathbb{k} up to isomorphism (providing $d \geq 4$). Of course, one of these is just the group algebra $\mathbb{k} S_{d}$
itself, and will not be considered further here. For the other, we may take the \mathbb{k}-algebra $S(d)$ on generators t_{1}, \ldots, t_{d-1} subject to the relations

$$
t_{i}^{2}=1, \quad t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1}, \quad t_{i} t_{j}=-t_{j} t_{i}
$$

for all $1 \leq i \leq d-1$ and all $1 \leq j \leq d-1$ with $|i-j|>1$. In what follows, we will always view $S(d)$ as a superalgebra, defining the grading by declaring the generators t_{1}, \ldots, t_{d-1} to be of degree $\overline{1}$. We are interested in determining the irreducible $S(d)$-supermodules. Recall the definition of the set $\mathscr{R} \mathscr{P}_{p}(d)$ of restricted p-strict partitions of d from the introduction.
3.2. Lemma. The number of isomorphism classes of irreducible $S(d)$-supermodules is equal to $\left|\mathscr{R} \mathscr{P}_{p}(d)\right|$.

Proof. Define \widehat{S}_{d} to be the double cover of S_{d} with generators $\zeta, \hat{s}_{1}, \ldots, \hat{s}_{d-1}$ subject to the relations

$$
\begin{aligned}
\zeta^{2}=\hat{s}_{i}^{2}=1, & \zeta \hat{s}_{i}=\hat{s}_{i} \zeta, \\
\hat{s}_{i} \hat{s}_{i+1} \hat{s}_{i}=\hat{s}_{i+1} \hat{s}_{i} \hat{s}_{i+1}, & \hat{s}_{i} \hat{s}_{j}=\zeta \hat{s}_{j} \hat{s}_{i}
\end{aligned}
$$

for all $1 \leq i \leq d-1$ and all $1 \leq j \leq d-1$ with $|i-j|>1$ (see e.g. [27, p.100]). The map sending $\zeta \mapsto 1, \hat{s}_{i} \mapsto s_{i}$ determines a surjective homomorphism $\mathbb{k} \widehat{S}_{d} \rightarrow \mathbb{k} S_{d}$, while the map defined by $\zeta \mapsto-1, \hat{s}_{i} \mapsto t_{i}$ is a surjective homomorphism $\mathbb{k} \widehat{S}_{d} \rightarrow S(d)$.

Now, the elements $\zeta_{+}=(1-\zeta) / 2$ and $\zeta_{-}=(1+\zeta) / 2$ are orthogonal central idempotents of $\mathbb{k} \widehat{S}_{d}$ summing to the identity, so

$$
\mathbb{k} \widehat{S}_{d}=\zeta_{+}\left(\mathbb{k} \widehat{S}_{d}\right) \oplus \zeta_{-}\left(\mathbb{k} \widehat{S}_{d}\right)
$$

as a direct sum of two-sided ideals. Obviously, $\zeta_{+}\left(\mathbb{k} \widehat{S}_{d}\right) \cong\left(\mathbb{k} \widehat{S}_{d}\right) /\langle\zeta-1\rangle \cong \mathbb{k} S_{d}$ and $\zeta_{-}\left(\mathbb{k} \widehat{S}_{d}\right) \cong$ $S(d)$. Making S_{d} and \widehat{S}_{d} into \mathbb{Z}_{2}-graded groups with degree function ∂ satisfying $\partial(\zeta)=\overline{0}$ and $\partial\left(\hat{s}_{i}\right)=\partial\left(s_{i}\right)=\overline{1}$, we deduce at once that the number of irreducible $\mathbb{k} \widehat{S}_{d}$-supermodules is equal to the number of irreducible $\mathbb{k} S_{d}$-supermodules plus the number of irreducible $S(d)$-supermodules. Hence, using Lemma 2.11, we deduce that the number of irreducible $S(d)$-supermodules is $n_{p^{\prime}}\left(\widehat{S}_{d}, \overline{0}\right)-n_{p^{\prime}}\left(S_{d}, \overline{0}\right)$.

Finally, $n_{p^{\prime}}\left(\widehat{S}_{d}, \overline{0}\right)-n_{p^{\prime}}\left(S_{d}, \overline{0}\right)$ can be calculated using the known labelling of the conjugacy classes of S_{d} and \widehat{S}_{d}, see e.g. [27, Theorem 2.1] or [24, p.172]. One deduces easily that the number of irreducible $S(d)$-supermodules is equal to the number of partitions λ of d with all non-zero parts of λ being odd and not divisible by p. In turn, to see that this number equals $\left|\mathscr{R} \mathscr{P}_{p}(d)\right|$, we appeal to the partition identity

$$
\sum_{d \geq 0}\left|\mathscr{R} \mathscr{P}_{p}(d)\right| t^{d}=\prod_{i \text { odd, } p \nmid i} \frac{1}{1-t^{i}},
$$

from [14, (40)], which is a special case of [2, Theorem 2].
Next, let $C(d)$ be the Clifford superalgebra on odd generators c_{1}, \ldots, c_{d} as in Example 2.2, so $c_{i}^{2}=1$ for each i. There is a unique right action of S_{d} on $C(d)$ by superalgebra
automorphisms so that $c_{i} \cdot w=c_{w^{-1} i}$ for all $i=1, \ldots, d$ and $w \in S_{d}$. The Sergeev superalgebra is the vector superspace

$$
W(d)=\mathbb{k} S_{d} \otimes C(d)
$$

(here, $\mathbb{k} S_{d}$ is viewed as a superspace concentrated in degree $\overline{0}$) with multiplication defined on generators by the rule

$$
(x \otimes c)(y \otimes d)=x y \otimes(c \cdot y) d
$$

for $x, y \in S_{d}, c, d \in C(d)$. As observed by Sergeev in [26], a check of relations shows:
3.3. Lemma. There is an injective superalgebra homomorphism $\omega: S(d) \rightarrow W(d)$ defined on generators by

$$
\omega\left(t_{i}\right)=\frac{1}{\sqrt{-2}} s_{i} \otimes\left(c_{i}-c_{i+1}\right)
$$

for each $i=1, \ldots, d-1$. Moreover, $\omega\left(t_{i}\right)\left(1 \otimes c_{j}\right)=-\left(1 \otimes c_{j}\right) \omega\left(t_{i}\right)$ for each $i=1, \ldots, d-1$ and $j=1, \ldots, d$.

Henceforth, we identify $S(d)$ with a subsuperalgebra of $W(d)$ via the embedding ω from the lemma, and also identify $C(d)$ with the subsuperalgebra $1 \otimes C(d)$ of $W(d)$. Then, Lemma 3.3 shows that multiplication defines a superalgebra isomorphism

$$
C(d) \otimes S(d) \xrightarrow{\sim} W(d), \quad c \otimes s \mapsto c s,
$$

the tensor product of superalgebras on the left hand side being defined according to the usual rule of signs.

So we can define an exact functor

$$
F: \bmod (S(d)) \rightarrow \bmod (W(d))
$$

on an object M by $F M=U(d) \otimes M$, and on a morphism $f: M \rightarrow M^{\prime}$ by $F f=\operatorname{id}_{U(d)} \otimes f$. Thus, the action of a homogeneous $s \in S(d) \subset W(d)$ on $m \otimes u \in U(d) \otimes M$ is by $s(u \otimes m)=$ $(-1)^{\partial(s) \partial(u)} u \otimes(s m)$, the action of $c \in C(d) \subset W(d)$ is by $c(u \otimes m)=(c u) \otimes m$, and $(u \otimes m)\left(\mathrm{id}_{U(d)} \otimes f\right)=u \otimes(m f)$. We also have an exact functor

$$
G: \bmod (W(d)) \rightarrow \bmod (S(d)) .
$$

This is defined on an object N by $G N=\operatorname{Hom}_{C(d)}(U(d), N)$, the action of a homogeneous $s \in S(d)$ on $f \in \operatorname{Hom}_{C(d)}(U(d), N)$ being determined by $u(s f)=(-1)^{\partial(u) \partial(s)} s(u f)$ for all homogeneous $u \in U(d)$. On a morphism $g: N \rightarrow N^{\prime}, G g: \operatorname{Hom}_{C(d)}(U(d), N) \rightarrow$ $\operatorname{Hom}_{C(d)}\left(U(d), N^{\prime}\right)$ is defined by $u(f(G g))=(u f) g$ for $u \in U(d)$ and $f \in \operatorname{Hom}_{C(d)}(U(d), N)$.

Recall the parity change functor Π defined in the previous section.
3.4. Theorem. The functors F and G form an adjoint pair, that is, there is a natural (even) isomorphism

$$
\operatorname{Hom}_{W(d)}(F M, N) \cong \operatorname{Hom}_{S(d)}(M, G N)
$$

for each $S(d)$-supermodule M and $W(d)$-supermodule N. Moreover:
(a) if d is even, then $F \circ G \cong \operatorname{Id}$ and $G \circ F \cong \mathrm{Id}$;
(b) if d is odd, then $F \circ G \cong \operatorname{Id} \oplus \Pi$ and $G \circ F \cong \operatorname{Id} \oplus \Pi$.

Proof. For adjointness, there are natural maps

$$
\begin{aligned}
\operatorname{Hom}_{W(d)}(U(d) \otimes M, N) & \rightarrow \operatorname{Hom}_{S(d)}\left(M, \operatorname{Hom}_{C(d)}(U(d), N)\right), & f & \mapsto \hat{f} ; \\
\operatorname{Hom}_{S(d)}\left(M, \operatorname{Hom}_{C(d)}(U(d), N)\right) & \rightarrow \operatorname{Hom}_{W(d)}(U(d) \otimes M, N), & g & \mapsto \tilde{g}
\end{aligned}
$$

Here, \hat{f} is defined by $u(m \hat{f})=(u \otimes m) f$ and \tilde{g} is defined by $(u \otimes m) \tilde{g}=u(m g)$. Now check that $\tilde{\hat{f}}=f$ and $\hat{\tilde{g}}=g$.

Now we prove (b), the argument for (a) being similar (and considerably easier!). Let $E=\operatorname{End}_{C(d)}(U(d))$ for short, a vector superspace on basis $I=\mathrm{id}_{U(d)}, J=J_{U(d)}$ as in Lemma 2.4. On any category of left supermodules, the functor $\mathrm{Id} \oplus \Pi$ is naturally isomorphic to the tensor functor $E \otimes$?, which sends a module M to $E \otimes_{\mathbb{k}} M$ and a morphism f to $\operatorname{id}_{E} \otimes f$ (written on the right). We will actually show that $G \circ F \cong E \otimes$? and that $F \circ G \cong E \otimes$? .

We first show that $G \circ F \cong E \otimes$?. Define a natural transformation $\eta: E \otimes ? \rightarrow G \circ F$ by defining the map

$$
\eta_{M}: E \otimes M \rightarrow \operatorname{Hom}_{C(d)}(U(d), U(d) \otimes M)
$$

for an $S(d)$-supermodule M by the formula $u \eta_{M}(f \otimes m)=u f \otimes m$ for each $u \in U(d)$, $m \in M, f \in E$. To see that η is actually a natural isomorphism, it suffices to consider the special case $M=\mathbb{k}$ when it is obvious.

Now we show that $F \circ G \cong E \otimes$?. Define a natural transformation $\eta: F \circ G \rightarrow E \otimes$? by letting

$$
\eta_{N}: U(d) \otimes \operatorname{Hom}_{C(d)}(U(d), N) \rightarrow E \otimes N
$$

for each $W(d)$-supermodule N be the map

$$
u \otimes f \mapsto I \otimes u f+(-1)^{\partial(u)} J \otimes u J f
$$

for homogeneous $u \in U(d)$ and $f \in \operatorname{Hom}_{C(d)}(U(d), N)$. To see that η is actually a natural isomorphism, it suffices (since $C(d)$ is a simple superalgebra) to consider the special case $N=U(d)$. We can pick a homogeneous basis $u_{1}, \ldots, u_{n}, \bar{u}_{1}, \ldots, \bar{u}_{n}$ for $U(d)$ so that $u_{i} J=$ $\bar{u}_{i}, \bar{u}_{i} J=u_{i}$ as in Lemma 2.3. Then, the map $\eta_{U(d)}$ maps $u_{i} \otimes I \mapsto I \otimes u_{i}+J \otimes \bar{u}_{i}$, $\bar{u}_{i} \otimes I \mapsto I \otimes \bar{u}_{i}-J \otimes u_{i}, u_{i} \otimes J \mapsto I \otimes \bar{u}_{i}+J \otimes u_{i}$ and $\bar{u}_{i} \otimes J \mapsto I \otimes u_{i}-J \otimes \bar{u}_{i}$. It is obvious from this that it is a bijection.
3.5. Corollary. (a) Suppose d is even. The functors F and G induce mutually inverse bijections between isomorphism classes of irreducible (resp. absolutely irreducible) $S(d)$ supermodules and irreducible (resp. absolutely irreducible) $W(d)$-supermodules.
(b) Suppose d is odd. The functor F induces a bijection between isomorphism classes of absolutely irreducible $S(d)$-supermodules and self-associate irreducible $W(d)$-supermodules. The functor G induces a bijection between isomorphism classes of absolutely irreducible $W(d)$-supermodules and self-associate irreducible $S(d)$-supermodules.

Proof. (a) This is obvious since F and G are mutually inverse equivalences of categories.
(b) Let D be an irreducible $S(d)$-supermodule. By Lemma 2.9, $F D$ is a self-associate irreducible $W(d)$-supermodule in case D is absolutely irreducible, and decomposes as a direct sum of two isomorphic absolutely irreducible $W(d)$-supermodules in case D is self-associate.

It is now straightforward to complete the proof of the corollary using the properties of F and G from Theorem 3.4.

For the remainder of the article, we in fact work with the Sergeev superalgebra $W(d)$ instead of with $S(d)$, this being justified by Theorem 3.4 and its corollary. To conclude the section, we develop notation for products of arbitrary elements in $W(d)$.

First, let W_{d} denote the hyperoctahedral group, that is, the semidirect product of S_{d} and \mathbb{Z}_{2}^{d}. To be more precise, denote elements of the Abelian group \mathbb{Z}_{2}^{d} by d-tuples $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$ with each $\varepsilon_{i} \in \mathbb{Z}_{2}$. There is a right action of S_{d} on \mathbb{Z}_{2}^{d} given by $\varepsilon \cdot w=\left(\varepsilon_{w 1}, \varepsilon_{w 2}, \ldots, \varepsilon_{w d}\right)$ for $w \in S_{d}, \varepsilon \in \mathbb{Z}_{2}^{d}$. Then, elements of W_{d} are pairs (w, ε) with $w \in S_{d}, \varepsilon \in \mathbb{Z}_{2}^{d}$, the product of two such elements being defined by

$$
(x, \varepsilon)(y, \delta)=(x y, \varepsilon \cdot y+\delta)
$$

Henceforth, we will identify $w \in S_{d}$ (resp. $\varepsilon \in \mathbb{Z}_{2}^{d}$) with the element $(w, 0) \in W_{d}$ (resp. $\left.(1, \varepsilon) \in W_{d}\right)$. It will also be convenient to extend the action of S_{d} on \mathbb{Z}_{2}^{d} to an action of all of W_{d} on \mathbb{Z}_{2}^{d}, so that $\varepsilon \cdot(w, \delta)=\varepsilon \cdot w+\delta$ for $\varepsilon \in \mathbb{Z}_{2}^{d},(w, \delta) \in W_{d}$.

For $\varepsilon \in \mathbb{Z}_{2}^{d}$, let

$$
c^{\varepsilon}=c_{1}^{\varepsilon_{1}} \ldots c_{d}^{\varepsilon_{d}} \in C(d)
$$

Then, the $\left\{c^{\varepsilon} \mid \varepsilon \in \mathbb{Z}_{2}^{d}\right\}$ form a basis for the Clifford superalgebra $C(d)$. The product of two such basis elements is given explicitly by the rule

$$
c^{\varepsilon} c^{\delta}=\alpha(\varepsilon ; \delta) c^{\varepsilon+\delta} \quad \text { where } \quad \alpha(\varepsilon ; \delta)=\prod_{1 \leq s<t \leq d}(-1)^{\delta_{s} \varepsilon_{t}}
$$

for $\varepsilon, \delta \in \mathbb{Z}_{2}^{d}$. It is worth remarking for later calculations that $\alpha\left(\varepsilon+\varepsilon^{\prime} ; \delta\right)=\alpha(\varepsilon ; \delta) \alpha\left(\varepsilon^{\prime} ; \delta\right)$ and $\alpha\left(\varepsilon ; \delta+\delta^{\prime}\right)=\alpha(\varepsilon ; \delta) \alpha\left(\varepsilon ; \delta^{\prime}\right)$.

We obtain a basis $\left\{w \otimes c^{\varepsilon} \mid w \in S_{d}, \varepsilon \in \mathbb{Z}_{2}^{d}\right\}$ for the Sergeev superalgebra $W(d)=$ $\mathbb{k} S_{d} \otimes C(d)$. The right action of $w \in S_{d}$ on the basis element c^{ε} of $C(d)$ is given by the formula

$$
c^{\varepsilon} \cdot w=\alpha(\varepsilon ; w) c^{\varepsilon \cdot w} \quad \text { where } \quad \alpha(\varepsilon ; w)=\prod_{\substack{1 \leq s<t \leq d \\ w^{-1} s>w^{-1} t}}(-1)^{\varepsilon_{s} \varepsilon_{t}}
$$

Hence, the product of two basis elements of $W(d)$ given by the formula

$$
\left(x \otimes c^{\varepsilon}\right)\left(y \otimes c^{\delta}\right)=\alpha(x, \varepsilon ; y, \delta) x y \otimes c^{\varepsilon \cdot y+\delta} \quad \text { where } \quad \alpha(x, \varepsilon ; y, \delta)=\alpha(\varepsilon ; y) \alpha(\varepsilon \cdot y ; \delta)
$$

It follows that the resulting function $\alpha: W_{d} \times W_{d} \rightarrow\{ \pm 1\},((x, \varepsilon),(y, \delta)) \mapsto \alpha(x, \varepsilon ; y, \delta)$ is a 2-cocycle on W_{d}. So $W(d)$ is a twisted group algebra of the hyperoctahedral group W_{d} over \mathbb{k}. In particular, the twisted group algebra analogue of Maschke's theorem gives:
3.6. Lemma. If $p=0$ or $p>d$, then $W(d)$ is a semisimple (super)algebra.

We finally record a technical property about the cocycle α just constructed.
3.7. Lemma. For all $\varepsilon, \delta \in \mathbb{Z}_{2}^{d}$ and $g=(w, \gamma) \in W_{d}$,

$$
\alpha(\varepsilon+\delta ; w)=\alpha(\varepsilon ; g) \alpha(\delta ; g) \alpha(\varepsilon+\delta ; \delta) \alpha(\varepsilon \cdot g+\delta \cdot g ; \delta \cdot g)
$$

Proof. Expand both sides of the equation $\left(c^{\varepsilon+\delta} c^{\delta}\right) \cdot w=\left(c^{\varepsilon+\delta} \cdot w\right)\left(c^{\delta} \cdot w\right)$ to show that $\alpha(\varepsilon+\delta ; w)=\alpha(\varepsilon ; w) \alpha(\delta ; w) \alpha(\varepsilon+\delta ; \delta) \alpha(\varepsilon \cdot w+\delta \cdot w ; \delta \cdot w)$. Now expand the definition of $\alpha(\varepsilon ; g) \alpha(\delta ; g) \alpha(\varepsilon \cdot g+\delta \cdot g ; \delta \cdot g)$ to see that it equals

$$
\begin{aligned}
& \alpha(\varepsilon ; w) \alpha(\varepsilon \cdot w ; \gamma) \alpha(\delta ; w) \alpha(\delta \cdot w ; \gamma) \alpha(\varepsilon \cdot w+\delta \cdot w ; \delta \cdot w+\gamma) \\
= & \alpha(\varepsilon ; w) \alpha(\delta ; w) \alpha(\varepsilon \cdot w+\delta \cdot w ; \delta \cdot w) \alpha(\varepsilon \cdot w ; \gamma) \alpha(\delta \cdot w ; \gamma) \alpha(\varepsilon \cdot w+\delta \cdot w ; \gamma) \\
= & \alpha(\varepsilon ; w) \alpha(\delta ; w) \alpha(\varepsilon \cdot w+\delta \cdot w ; \delta \cdot w)
\end{aligned}
$$

and the result follows.

4 The Schur superalgebra

We introduce some further notation. Suppose that $0 \neq i, j \in \mathbb{Z}$. Define $\partial_{i}=\overline{0}$ if $i>0$ or $\overline{1}$ if $i<0$; define $\partial_{i, j}=\partial_{i}+\partial_{j} \in \mathbb{Z}_{2}$. More generally, given d-tuples $\underline{i}=\left(i_{1}, \ldots, i_{d}\right)$ and $j=\left(j_{1}, \ldots, j_{d}\right)$ of non-zero integers, let

$$
\begin{aligned}
\partial_{\underline{i}}=\partial_{i_{1}}+\cdots+\partial_{i_{d}} \in \mathbb{Z}_{2}, & \partial_{\underline{i}, \dot{j}}=\partial_{\underline{i}}+\partial_{j} \in \mathbb{Z}_{2} \\
\varepsilon_{\underline{i}}=\left(\partial_{i_{1}}, \partial_{i_{2}}, \ldots, \partial_{i_{d}}\right) \in \mathbb{Z}_{2}^{d}, & \varepsilon_{\underline{i}, \dot{j}}=\varepsilon_{\underline{i}}+\varepsilon_{j} \in \mathbb{Z}_{2}^{d}
\end{aligned}
$$

Let \mathbb{Z}_{2}^{d} act on the left on $\{ \pm 1, \ldots, \pm d\}$ so that for $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right) \in \mathbb{Z}_{2}^{d}$ and $s=1, \ldots, d$, $\varepsilon(\pm s)=(-1)^{\varepsilon_{s}}(\pm s)$. Extend the natural action of S_{d} on $\{1, \ldots, d\}$ to an action on $\{ \pm 1, \ldots, \pm d\}$ so that $w(-s)=-(w s)$ for $s=1, \ldots, d$. These two actions combine to give a well-defined left action of the hyperoctahedral group W_{d} on the set $\{ \pm 1, \ldots, \pm d\}$.

Now let $I(n, d)$ denote the set of all functions $\underline{i}:\{ \pm 1, \ldots, \pm d\} \rightarrow\{ \pm 1, \ldots, \pm n\}$ such that $\underline{i}(-s)=-\underline{i}(s)$ for $s=1, \ldots, d$. We often denote the value $\underline{i}(s)$ of the function $\underline{i} \in I(n, d)$ at $s \in\{ \pm 1, \ldots, \pm d\}$ by i_{s}. Then, the element $\underline{i} \in I(n, d)$ can be thought of simply as the d-tuple $\left(i_{1}, \ldots, i_{d}\right)$: the original function \underline{i} can be recovered uniquely from knowledge of this d-tuple since $\underline{i}(-s)=-\underline{i}(s)$. The group W_{d} acts on the right on $I(n, d)$ by composition of functions, so $(\underline{i} \cdot g)(s)=\underline{i}(g s)$ for $\underline{i} \in I(n, d), g \in W_{d}$ and $s \in\{ \pm 1, \ldots, \pm d\}$. Write $\underline{i} \sim j$ if $\underline{i}, j \in I(n, d)$ lie in the same W_{d}-orbit. Also let W_{d} act diagonally on the right on the set $I(n, d) \times I(n, d)$ of double indexes, and write $(\underline{i}, \underline{j}) \sim(\underline{k}, \underline{l})$ if the double indexes (\underline{i}, j) and $(\underline{k}, \underline{l})$ lie in the same orbit.

Let V denote the vector superspace with basis $v_{ \pm 1}, \ldots, v_{ \pm n}$, where $\partial\left(v_{i}\right)=\partial_{i}$. Then, the tensor product $V^{\otimes d}$ is also a vector superspace with the induced grading. A basis is given by the monomials $v_{\underline{i}}=v_{i_{1}} \otimes \cdots \otimes v_{i_{d}}$ for all $\underline{i} \in I(n, d)$, and $\partial\left(v_{\underline{i}}\right)=\partial_{\underline{i}}$. We make $V^{\otimes d}$ into a right $W(d)$-supermodule by setting

$$
v_{\underline{i}}\left(w \otimes c^{\delta}\right)=\alpha\left(\varepsilon_{\underline{i}} ; w, \delta\right) v_{\underline{i} \cdot(w, \delta)}
$$

for all $\underline{i} \in I(n, d),(w, \delta) \in W_{d}$. The fact that this is well-defined follows from the fact that α is a 2-cocycle. To be more explicit, the action of the generator s_{i} of $S_{d} \subset W(d)$ is as the linear map $\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes T_{V, V} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}$ where the supertwist map $T_{V, V}$ is in the i th position, and the generator c_{j} of $C(d) \subset W(d)$ acts on the right (with our usual convention regarding signs) as the linear map $\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes J_{V} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}$ where the map $J_{V}: v_{i} \mapsto v_{-i}$ is in the j th tensor.

Now define the Schur superalgebra of type Q

$$
\dot{Q}(n, d):=\operatorname{End}_{W(d)}\left(V^{\otimes d}\right)
$$

So, $\dot{Q}(n, d)$ acts on $V^{\otimes d}$ on the left. In the next section, we will introduce an algebra denoted $Q(n, d)$ (using our preferred construction): the two will turn out to be the same so from then on we will drop the dot in the notation. Note for now that $\dot{Q}(n, d)$ is naturally a subsuperalgebra of the Schur superalgebra $\dot{S}(n \mid n, d)=\operatorname{End}_{k{ }_{k} S_{d}}\left(V^{\otimes d}\right)$ of type $G L$, which was studied in $[18,6]$. We observe right away by Lemma 3.6 that:
4.1. Lemma. If $p=0$ or $p>d$, then $\dot{Q}(n, d)$ is a semisimple (super)algebra.

The initial goal is to describe an explicit basis for $\dot{Q}(n, d)$.
4.2. Lemma. $\operatorname{For}(\underline{i}, j) \in I(n, d) \times I(n, d)$, the following properties are equivalent:
(i) $\partial_{i_{s}, j_{s}} \partial_{i_{t}, j_{t}}=\overline{0}$ whenever $\left|i_{s}\right|=\left|i_{t}\right|$ and $\left|j_{s}\right|=\left|j_{t}\right|$ for some $1 \leq s<t \leq d$;
(ii) $\alpha\left(\varepsilon_{i, j} ; w\right)=1$ for all $(w, \delta) \in \operatorname{Stab}_{W_{d}}(\underline{i}, j)$.

Proof. Using the fact that $\operatorname{Stab}_{S_{d}}(\underline{i}, j)$ is generated by transpositions and that α is a 2cocycle, property (ii) is equivalent to the condition that $\alpha\left(\varepsilon_{i, j} ; w\right)=1$ for all $(w, \delta) \in$ $\operatorname{Stab}_{W_{d}}(\underline{i}, j)$ with w a transposition. This weaker statement is precisely the condition (i), by the definition of α.

Call the double index $(\underline{i}, j) \in I(n, d) \times I(n, d)$ strict if it satisfies the properties in the lemma, and let $I^{2}(n, d)$ denote the set of all strict double indexes. Observe using Lemma 4.2(i) that $I^{2}(n, d)$ is W_{d}-stable. Given $(\underline{i}, \underline{j}) \sim(\underline{k}, \underline{l}) \in I^{2}(n, d)$, choose $(w, \delta) \in W_{d}$ such that $(\underline{i}, \underline{j}) \cdot(w, \delta)=(\underline{k}, \underline{l})$ and define the $\operatorname{sign} \sigma(\underline{i}, \underline{j} ; \underline{k}, \underline{l})$ to be $\alpha\left(\varepsilon_{i, j} ; w\right)$. In view of Lemma $4.2(\mathrm{ii})$, this definition of $\sigma(\underline{i}, \underline{j} ; \underline{k}, \underline{l})$ is independent of the choice of (w, δ).

Given $i, j \in\{ \pm 1, \ldots, \pm d\}$, let $\dot{e}_{i, j} \in \operatorname{End}_{\mathbb{k}}(V)$ denote the linear map with $\dot{e}_{i, j} v_{k}=\delta_{j, k} v_{i}$ for all k. Given $\underline{i}, j \in I(n, d)$, let

$$
\dot{e}_{i, j}=\dot{e}_{i_{1}, j_{1}} \otimes \dot{e}_{i_{2}, j_{2}} \otimes \cdots \otimes \dot{e}_{i_{d}, j_{d}} \in \operatorname{End}_{\mathbb{k}}(V)^{\otimes d}
$$

Now there is an isomorphism between the superalgebras $\operatorname{End}_{\mathbb{k}}(V)^{\otimes d}$ and $\operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$ under which our element $\dot{e}_{\underline{i}, j} \in \operatorname{End}_{\mathbb{k}}(V)^{\otimes d}$ corresponds to the linear map $V^{\otimes d} \rightarrow V^{\otimes d}$ with

$$
\begin{equation*}
\dot{e}_{\underline{i}, j} v_{\underline{k}}=\delta_{j, \underline{k}} \alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{j}\right) v_{\underline{i}} . \tag{4.3}
\end{equation*}
$$

We will henceforth identify $\operatorname{End}_{\mathbb{k}}(V)^{\otimes d}$ and $\operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$ in this way. Given strict $(\underline{i}, j) \in$ $I^{2}(n, d)$, define the linear map $\dot{\xi}_{i, j} \in \operatorname{End}_{\mathbb{k}_{k}}\left(V^{\otimes d}\right)$ by

$$
\begin{equation*}
\dot{\xi}_{\underline{i}, j}=\sum_{(\underline{k}, \underline{l}) \sim(\underline{i}, \underline{j})} \sigma(\underline{i}, \dot{j} ; \underline{k}, \underline{l}) \dot{e}_{\underline{k}, \underline{l}} . \tag{4.4}
\end{equation*}
$$

Obviously, if $(\underline{i}, \underline{j}) \sim(\underline{k}, \underline{l}) \in I^{2}(n, d)$, then $\dot{\xi}_{\underline{i}, j}=\sigma(\underline{i}, \underset{j}{\underline{k}} \underline{\underline{k}}, \underline{l}) \dot{\xi}_{\underline{k}, \underline{l}}$. Now choose some set $\Omega(n, d)$ of orbit representatives for the action of W_{d} on $I^{2}(n, d)$. Then:
4.5. Theorem. The elements $\left\{\dot{\xi}_{i, j} \mid(\underline{i}, j) \in \Omega(n, d)\right\}$ give a basis for $\dot{Q}(n, d)$. Moreover, given $(\underline{i}, j),(\underline{k}, \underline{l}) \in I^{2}(n, d)$,

$$
\dot{\xi}_{\underline{i}, \underline{j}} \dot{\xi}_{\underline{k}, \underline{l}}=\sum_{(\underline{s}, \underline{t}) \in \Omega(n, d)} a_{\underline{i}, \underline{i}, \underline{k}, \underline{l}, \underline{s}, \underline{t}} \dot{\xi}_{\underline{s}, \underline{t}}
$$

where

$$
a_{\underline{i}, \underline{j}, \underline{k}, l, \underline{s}, \underline{t}}=\sum_{\substack{\underline{h} \in I(n, d) \\(\underline{s}, \underline{h}) \sim(\underline{i}, j),(\underline{h}, \underline{t}) \sim(\underline{k}, l)}} \sigma(\underline{i}, j ; \underline{j}, \underline{h}, \underline{h}) \sigma(\underline{k}, \underline{l} ; \underline{h}, \underline{t}) \alpha\left(\varepsilon_{\underline{s}, \underline{h}} ; \varepsilon_{\underline{h}, \underline{t}}\right)
$$

Proof. Obviously, the given elements are linearly independent. To show that they span $\operatorname{End}_{W(d)}\left(V^{\otimes d}\right)$, let

$$
\theta=\sum_{\underline{i}, j \in I(n, d)} a_{\underline{i}, j} \dot{e}_{\underline{i}, j}
$$

be an arbitrary element of $\operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$. Take $w \in S_{d}, \delta \in \mathbb{Z}_{2}^{d}$ and set $g=(w, \delta) \in W_{d}$. For $j \in I(n, d)$, we have that $\left(\theta v_{j}\right)\left(w \otimes c^{\delta}\right)=\theta\left(v_{j}\left(w \otimes c^{\delta}\right)\right)$ if and only if

$$
\sum_{\underline{i} \in I(n, d)} a_{\underline{i}, \dot{j}} \alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{\dot{j}}\right) \alpha\left(\varepsilon_{\underline{i}} ; g\right) v_{\underline{i} \cdot g}=\sum_{\underline{i} \in I(n, d)} a_{\underline{i} \cdot g, \underline{j} \cdot g} \alpha\left(\varepsilon_{\underline{i} \cdot g, \dot{j} \cdot g} ; \varepsilon_{\dot{j} \cdot g}\right) \alpha\left(\varepsilon_{\dot{j}} ; g\right) v_{\underline{i} \cdot g}
$$

Simplifying using Lemma 3.7, we see that $\theta \in \operatorname{End}_{W(d)}\left(V^{\otimes d}\right)$ if and only if

$$
a_{\underline{i} \cdot g, j \cdot g}=\alpha\left(\varepsilon_{\underline{i}, \underline{2}} ; w\right) a_{\underline{i}, \underline{j}}
$$

for all $\underline{i}, j \in I(n, d)$ and $g=(w, \delta) \in W_{d}$. So by Lemma 4.2(ii), we must have that $a_{i \underline{i}, \underline{j}}=0$ unless (\underline{i}, j) is strict, and for strict $(\underline{h}, \underline{k}) \sim(\underline{i}, \underline{j})$, we have that $a_{\underline{h}, \underline{k}}=\sigma(\underline{i}, \underline{j} ; \underline{h}, \underline{k}) a_{i, j}$. This shows that $\theta \in \dot{Q}(n, d)$ if and only if $\theta=\sum_{(\underline{i}, j) \in \Omega(n, d)} a_{\underline{i}, j} \dot{\xi}_{i, j}$, completing the proof of the first part of the theorem.

Now we show how to deduce the product rule. To calculate $a_{i, j, j, k, l, s, \underline{t}}$ in the product expansion, we need by (4.4) to determine the coefficient of $\dot{e}_{s, t}$ in

$$
\dot{\xi}_{i, j} \dot{\xi}_{\underline{k}, \underline{l}}=\sum_{\left(\underline{i}^{\prime}, \dot{j}^{\prime}\right) \sim(\underline{i}, j)} \sum_{\left(\underline{k}^{\prime}, \underline{l}^{\prime}\right) \sim(\underline{k}, \underline{l})} \sigma\left(\underline{i}, \underline{i} ; \underline{i}^{\prime}, \dot{j}^{\prime}\right) \sigma\left(\underline{k}, \underline{l} ; \underline{k}^{\prime}, \underline{l}^{\prime}\right) \dot{e}_{\underline{i}^{\prime}, \dot{j}^{\prime}} \dot{\underline{k}}_{\underline{k}^{\prime}, \underline{l}^{\prime}}
$$

 therefore precisely as in the theorem (with $\underline{h}=j^{\prime}=\underline{k}^{\prime}$).

5 The coordinate ring

Now we proceed to give an entirely different construction of the Schur superalgebra in the spirit of Green's monograph [7]. We begin by reviewing some basic facts about cosuperalgebras and bisuperalgebras, following [18].

A cosuperalgebra is a vector superspace A with the additional structure of a \mathbb{k}-coalgebra, such that both the comultiplication $\Delta: A \rightarrow A \otimes A$ and the counit $\epsilon: A \rightarrow \mathbb{k}$ are even linear
maps. Given two cosuperalgebras A and $B, A \otimes B$ is a cosuperalgebra with comultiplication $\operatorname{id}_{A} \otimes T_{A, B} \otimes \operatorname{id}_{B} \circ\left(\Delta_{A} \otimes \Delta_{B}\right)$. A cosuperalgebra homomorphism $\theta: A \rightarrow B$ means an even linear map that is a coalgebra homomorphism in the usual sense. Cosuperideals and subcosuperalgebras are also the obvious graded version of the usual notions.

Given a cosuperalgebra A, a right A-cosupermodule is a vector superspace M together with an even linear map $\eta: M \rightarrow M \otimes A$, called the structure map of M, which makes M into a right A-comodule in the usual sense. A homomorphism between two A-cosupermodules means an A-comodule homomorphism in the usual sense; note we write homomorphisms between right A-cosupermodules on the left (and vice versa). We let $\operatorname{comod}(A)$ denote the (superadditive) category of all right A-cosupermodules.

A bisuperalgebra is a vector superspace A that is both a superalgebra and a cosuperalgebra, such that the comultiplication $\Delta: A \rightarrow A \otimes A$ (recall how $A \otimes A$ is viewed as a superalgebra!) and counit $\epsilon: A \rightarrow \mathbb{k}$ are superalgebra homomorphisms. If A is a bisuperalgebra, we have a natural notion of (inner) tensor product of two right A-cosupermodules M and N, namely, the vector superspace $M \otimes N$ with structure map defined by the composition

$$
M \otimes N \xrightarrow{\eta_{M} \otimes \eta_{N}} M \otimes A \otimes N \otimes A \xrightarrow{\mathrm{id} \otimes T_{A, N} \otimes \mathrm{id}} M \otimes N \otimes A \otimes A \xrightarrow{\mathrm{id} \otimes \mathrm{id} \otimes \mu} M \otimes N \otimes A,
$$

where $\eta_{M}: M \rightarrow M \otimes A$ and $\eta_{N}: N \rightarrow N \otimes A$ are the structure maps of M, N, respectively, and $\mu: A \otimes A \rightarrow A$ denotes the multiplication in A (one needs to know here that μ is a cosuperalgebra homomorphism, see e.g. [6, §2.2]).

Let A be a finite dimensional cosuperalgebra. We make the dual superspace A^{*} into a superalgebra by defining the product $f_{1} f_{2}$ of homogeneous $f_{1}, f_{2} \in A^{*}$ by $\left(f_{1} f_{2}\right)(a)=$ $\left(f_{1} \bar{\otimes} f_{2}\right) \Delta(a)$, interpreting the right hand side according to the usual rule of signs. Given a right A-cosupermodule M with structure map $\eta: M \rightarrow M \otimes A$, we can view M as a left A^{*}-supermodule, with action defined by $f m=\left(\mathrm{id}_{M} \bar{\otimes} f\right) \eta(m)$ for $f \in A^{*}, m \in M$. Now suppose that $\theta: M \rightarrow N$ is a homogeneous morphism of right A-cosupermodules and define $\tilde{\theta}: M \rightarrow N$ by $m \tilde{\theta}:=(-1)^{\partial(m) \partial(\theta)} \theta m$ for homogeneous $m \in M$. Then, viewing M and N as left A^{*}-supermodules as just explained, the map $\tilde{\theta}$ is a morphism of left A^{*}-supermodules. One obtains in this way an isomorphism between the categories $\operatorname{comod}(A)$ and $\bmod \left(A^{*}\right)$.

Finally in this review of definitions, we mention a standard general result about direct sums of cosuperalgebras. Suppose A is a (possibly infinite dimensional) cosuperalgebra and that $A=\bigoplus_{i \in I} A_{i}$ as a direct sum of subcosuperalgebras. Then, as in [7, p.20] we have:
5.1. Lemma. With the preceeding notation, let M be a right A-cosupermodule with structure map $\eta: M \rightarrow M \otimes A$. Then, $M=\bigoplus_{i \in I} M_{i}$ where M_{i} is the unique maximal subcosupermodule of M with $\eta\left(M_{i}\right) \subseteq M_{i} \otimes A_{i}$.

As a corollary, one obtains that the category of right A-cosupermodules is equivalent to the product of the categories of right A_{i}-cosupermodules for all $i \in I$.

Now we begin the alternative construction of the Schur superalgebra. Start with the free superalgebra $F(n)$ on non-commuting generators $\left\{f_{i, j} \mid i, j= \pm 1, \ldots, \pm n\right\}$, where $\partial\left(f_{i, j}\right)=$ $\partial_{i, j}$. Then, $F(n)$ is naturally \mathbb{Z}-graded by degree as

$$
F(n)=\bigoplus_{d \geq 0} F(n, d)
$$

Given a double index $(\underline{i}, j) \in I(n, d) \times I(n, d)$, define $f_{i, j}=f_{i_{1}, j_{1}} f_{i_{2}, j_{2}} \ldots f_{i_{d}, j_{d}}$. The elements $\left\{f_{i, j} \mid(\underline{i}, j) \in I(n, d) \times I(n, d)\right\}$ form a basis for $F(n, d)$. One checks that the unique superalgebra maps $\epsilon: F(n) \rightarrow \mathbb{k}$ and $\Delta: F(n) \rightarrow F(n) \otimes F(n)$ defined on generators by

$$
\begin{aligned}
\epsilon\left(f_{i, j}\right) & =\delta_{i, j}, \\
\Delta\left(f_{i, k}\right) & =\sum_{j \in\{ \pm 1, \ldots, \pm n\}}(-1)^{\partial_{i, j} \partial_{j, k}} f_{i, j} \otimes f_{j, k}
\end{aligned}
$$

make $F(n)$ into a bisuperalgebra. We point out that for $(\underline{i}, \underline{k}) \in I(n, d) \times I(n, d)$,

$$
\Delta\left(f_{i, k}\right)=\sum_{j \in I(n, d)}(-1)^{\partial_{i, j} \partial_{j, k}} \alpha\left(\varepsilon_{j, k} ; \varepsilon_{i, j}\right) f_{i, j} \otimes f_{j, \underline{k}} .
$$

Hence, each $F(n, d)$ is a finite dimensional subcosuperalgebra of $F(n)$. Make the vector superspace V from the previous section into a right $F(n)$-cosupermodule with structure map $V \rightarrow V \otimes F(n)$ defined by

$$
v_{j} \mapsto \sum_{i \in\{ \pm 1, \ldots, \pm n\}}(-1)^{\partial_{i} \partial_{i, j}} v_{i} \otimes f_{i, j} .
$$

Then, for each $d \geq 1, V^{\otimes d}$ is also automatically a right $F(n)$-cosupermodule with structure map $V^{\otimes d} \rightarrow V^{\otimes d} \otimes F(n)$ given explicitly by the formula

$$
v_{\underline{j}} \mapsto \sum_{\underline{i} \in I(n, d)}(-1)^{\partial_{\underline{i}} \partial_{i, j}} \alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{\underline{i}}\right) v_{\underline{i}} \otimes f_{\underline{i}, \underline{j}} .
$$

In particular, $V^{\otimes d}$ can be viewed as a right $F(n, d)$-cosupermodule.
Let $E(n, d)=F(n, d)^{*}$ be the dual superalgebra. Let $e_{i, j}$ denote the element of $E(n, d)$ with

$$
e_{i, j}\left(f_{i, j}\right)=\alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{i, j}\right), \quad e_{\underline{i}, j}\left(f_{\underline{k}, \underline{l}}\right)=0 \text { for }(\underline{k}, \underline{l}) \neq(\underline{i}, j) .
$$

Then, the $\left\{e_{i, j} \mid \underline{i}, j \in I(n, d)\right\}$ give a basis for $E(n, d)$.
The right $F(n, d)$-cosupermodule $V^{\otimes d}$ is a left $E(n, d)$-supermodule in the way described above. Let $\rho_{d}: E(n, d) \rightarrow \operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$ be the resulting representation.
5.2. Lemma. The representation ρ_{d} is an isomorphism between $E(n, d)$ and $\operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$. Moreover, $\rho_{d}\left(e_{i, j}\right)=\dot{e}_{i, j}$ for all $\underline{i}, j \in I(n, d)$.

Proof. It suffices to check that $e_{i, i} v_{\underline{k}}=\dot{e}_{\underline{i}, \boldsymbol{j}} v_{\underline{k}}$ for all $\underline{i}, j, \underline{k} \in I(n, d)$. By the definition of the action of $E(n, d)$, we have that

$$
\begin{aligned}
e_{\underline{i}, j} v_{\underline{\underline{k}}} & =\left(\operatorname{id} \bar{\otimes} e_{\underline{i}, \underline{j}}\right)\left(\sum_{\underline{h} \in I(n, d)}(-1)^{\left.\partial_{\underline{h}} \partial_{\underline{h}, \underline{\underline{k}}} \alpha\left(\varepsilon_{\underline{h}, \underline{\underline{k}}} ; \varepsilon_{\underline{\underline{h}}}\right) v_{\underline{\underline{h}}} \otimes f_{\underline{\underline{h}}, \underline{\underline{k}}}\right)}\right. \\
& =\delta_{j, \underline{k}} \alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{\underline{i}}\right) \alpha\left(\varepsilon_{i, j} ; \varepsilon_{i, j}\right) v_{\underline{i}}=\delta_{j, \underline{k}} \alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{j}\right) v_{\underline{i}}=\dot{e}_{i, j} v_{\underline{\underline{k}}} .
\end{aligned}
$$

This completes the proof.

Now consider the superideal $\mathscr{I}(n)$ of $F(n)$ generated by the elements

$$
\left\{f_{i, j}-f_{-i,-j}, f_{i, j} f_{k, l}-(-1)^{\partial_{i, j} \partial_{k, l}} f_{k, l} f_{i, j} \mid i, j, k, l= \pm 1, \ldots, \pm n\right\}
$$

A short calculation reveals that this is actually a bisuperideal, so the quotient

$$
B(n):=F(n) / \mathscr{I}(n)
$$

is a bisuperalgebra quotient of $F(n)$. Let $b_{i, j}=f_{i, j}+\mathscr{I}(n)$. Then, $B(n)$ is just the free commutative superalgebra on the degree $\overline{0}$ generators $b_{i, j}=b_{-i,-j}$ and degree $\overline{1}$ generators $b_{i,-j}=b_{-i, j}$, for all $1 \leq i, j \leq n$. The superideal $\mathscr{I}(n)$ is homogeneous, so graded as $\mathscr{I}(n)=\bigoplus_{d \geq 0} \mathscr{I}(n, d)$. So $B(n)$ is also \mathbb{Z}-graded by degree as $B(n)=\bigoplus_{d \geq 0} B(n, d)$, with $B(n, d) \cong F(n, d) / \mathscr{I}(n, d)$. Moreover, $B(n, d)$ is spanned by all monomials $b_{i, j}=$ $b_{i_{1}, j_{1}} \ldots b_{i_{d}, j_{d}}$ for $\underline{i}, j \in I(n, d)$. The monomial $b_{i, j}$ is non-zero if and only if (\underline{i}, j) is strict, and for strict $(\underline{i}, j) \sim(\underline{k}, \underline{l})$, we have that

$$
b_{\underline{i}, \underline{j}}=\sigma(\underline{i}, \underline{j} ; \underline{k}, \underline{l}) b_{\underline{k}, \underline{l}} .
$$

It follows that $B(n, d)$ has basis $\left\{b_{i, j} \mid(\underline{i}, j) \in \Omega(n, d)\right\}$, where $\Omega(n, d)$ is the choice of W_{d}-orbit representatives in $I^{2}(n, d)$ made in the previous section.

Now, let $Q(n, d)$ denote the dual superalgebra $B(n, d)^{*}$. Since $B(n, d)=F(n, d) / \mathscr{I}(n, d)$, $Q(n, d)$ is naturally identified with the annihilator $\mathscr{I}(n, d)^{\circ} \subseteq E(n, d)$. For $(\underline{i}, j) \in I^{2}(n, d)$, let $\xi_{i, j} \in Q(n, d) \subseteq E(n, d)$ denote the unique function with

$$
\xi_{\underline{i}, j}\left(b_{\underline{i}, j}\right)=\alpha\left(\varepsilon_{\underline{i}, j} ; \varepsilon_{\underline{i}, j}\right), \quad \text { and } \quad \xi_{\underline{i}, j}\left(b_{\underline{k}, \underline{l}}\right)=0 \text { for }(\underline{k}, \underline{l}) \nsim(\underline{i}, j) .
$$

The $\left\{\xi_{i, j} \mid(\underline{i}, j) \in \Omega(n, d)\right\}$ give a basis for $Q(n, d)$.
We can regard the $F(n, d)$-cosupermodule $V^{\otimes d}$ instead as a $B(n, d)$-cosupermodule by restriction. Dualizing, we obtain a natural representation $Q(n, d) \rightarrow \operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$, which is nothing more than the restriction of the representation $\rho_{d}: E(n, d) \xrightarrow{\sim} \operatorname{End}_{\mathbb{k}}\left(V^{\otimes d}\right)$ defined earlier to the subsuperalgebra $Q(n, d) \subseteq E(n, d)$. Then:
5.3. Theorem. The representation ρ_{d} gives an isomorphism between $Q(n, d)$ and the Schur superalgebra $\dot{Q}(n, d)$. Moreover, $\rho_{d}\left(\xi_{\underline{i}, j}\right)=\dot{\xi}_{\underline{i}, j}$ for all $(\underline{i}, j) \in I^{2}(n, d)$.

Proof. Pick $(\underline{i}, j) \in I^{2}(n, d)$. Since $Q(n, d) \subseteq E(n, d)$, we can write

$$
\xi_{\underline{i}, j}=\sum_{\underline{k}, \underline{l} \in I(n, d)} a_{\underline{k}, \underline{l}} e_{\underline{k}, \underline{l}}
$$

for coefficients $a_{\underline{k}, \underline{l}} \in \mathbb{k}$. To calculate the coefficient $a_{\underline{k}, \underline{l},}$, evaluate both sides at the element $f_{\underline{k}, \underline{l}} \in F(n, d)$ to see that $a_{\underline{k}, \underline{l}} \alpha\left(\varepsilon_{\underline{k}, \underline{l}} ; \varepsilon_{\underline{k}, \underline{l}}\right)=\xi_{\underline{i}, j}\left(f_{\underline{k}, \underline{l}}\right)=\bar{\xi}_{\underline{\underline{k}, j}}\left(b_{\underline{k}, \underline{l}}\right)$. So by the definition of $\xi_{\underline{i}, j}, a_{\underline{k}, \underline{l}}$ is zero unless $(\underline{k}, \underline{l}) \sim(\underline{i}, j)$, in which case, $a_{\underline{k}, \underline{l}}=\alpha\left(\varepsilon_{\underline{k}, \underline{l}} ; \varepsilon_{\underline{k}, l}\right) \sigma(\underline{i}, \dot{j} ; \underline{k}, \underline{l}) \xi_{\underline{i}, \underline{j}}\left(b_{\underline{i}, j}\right)=\sigma(\underline{i}, \underline{j} ; \underline{k}, \underline{l})$. This shows that

$$
\xi_{\underline{i}, \underline{j}}=\sum_{(\underline{k}, \underline{l}) \sim(\underline{i}, \underline{j})} \sigma(\underline{i}, j ; \underline{k}, \underline{l}) e_{\underline{\underline{k}, \underline{l}}} .
$$

Now the theorem follows at once from Lemma 5.2, Theorem 4.5 and the definition (4.4).

We will henceforth identify $Q(n, d)$, which we defined as the dual of the cosuperalgebra $B(n, d)$, with $\dot{Q}(n, d)$, which we defined as the commutant of $W(d)$ on tensor space $V^{\otimes d}$. So the dual basis element $\xi_{i, j} \in Q(n, d)$ is identified with the linear transformation $\dot{\xi}_{i, j} \in$ $\dot{Q}(n, d)$.

6 Weights and idempotents

Let $\Lambda(n, d)$ denote the set of all tuples $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of non-negative integers with $\lambda_{1}+$ $\cdots+\lambda_{n}=d$. We partially order $\Lambda(n, d)$ by the usual dominance order, so $\lambda \geq \mu$ if and only if $\sum_{s=1}^{t} \lambda_{s} \geq \sum_{s=1}^{t} \mu_{s}$ for each $t=1, \ldots, n$. For $\underline{i} \in I(n, d)$, define its weight $\mathrm{wt}(\underline{i})$ to be the composition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, d)$ where $\lambda_{s}=\left|\left\{t\left|1 \leq t \leq d,\left|i_{t}\right|=s\right\} \mid\right.\right.$. Conversely, given $\lambda \in \Lambda(n, d)$, let \underline{i}_{λ} denote the element $(1, \ldots, 1,2, \ldots, 2,3, \ldots) \in I(n, d)$ where there are λ_{1} ones, λ_{2} twos, etc., so that $\mathrm{wt}\left(\underline{i}_{\lambda}\right)=\lambda$. Define

$$
\xi_{\lambda}:=\xi_{\underline{i_{\lambda}}, \underline{i}_{\lambda}} \in Q(n, d)
$$

We call the elements $\left\{\xi_{\lambda} \mid \lambda \in \Lambda(n, d)\right\}$ weight idempotents, motivated by the following lemma:
6.1. Lemma. For $(\underline{i}, j) \in I^{2}(n, d)$,

$$
\xi_{\lambda} \xi_{i, j}=\left\{\begin{array}{ll}
\xi_{i, j} & \text { if } \mathrm{wt}(\underline{i})=\lambda, \\
0 & \text { otherwise } .
\end{array} \quad \xi_{i, 2} \xi_{\lambda}= \begin{cases}\xi_{i, j} & \text { if } \mathrm{wt}(j)=\lambda \\
0 & \text { otherwise }\end{cases}\right.
$$

In particular, $\left\{\xi_{\lambda} \mid \lambda \in \Lambda(n, d)\right\}$ is a set of mutually orthogonal idempotents whose sum is the identity element of $Q(n, d)$.

Proof. It is elementary to check that the matrix units $\left\{e_{\underline{\underline{h}}, \underline{h}} \mid \underline{h} \in I(n, d)\right\}$ in $E(n, d)$ are a set of mutually orthogonal idempotents whose sum is the identity, with $e_{\underline{h}, \underline{\underline{h}}} e_{i, j}=\delta_{\underline{h}, \underline{\underline{h}}} e_{\underline{i}, \underline{j}}$ and $e_{\underline{i}, j} e_{\underline{h}, \underline{h}}=\delta_{\underline{h}, j} e_{\underline{i}, j}$ for all $\underline{h}, \underline{i}, j \in I(n, d)$. Now according to (4.4), $\xi_{\lambda}=\sum_{\underline{h}} e_{\underline{h}, \underline{h}}$ summing over all $\underline{h} \in I(n, d)$ with $\operatorname{wt}(\underline{h})=\lambda$, as an element of $E(n, d)$. The lemma follows easily from these remarks.

Let ω denote the weight $\left(1^{d}\right)$, which is an element of $\Lambda(n, d)$ providing $n \geq d$. Assuming this, the weight idempotent ξ_{ω} is a well-defined element of $Q(n, d)$, and $\xi_{\omega} Q(n, d) \xi_{\omega}$ is naturally a superalgebra in its own right, its identity element being the idempotent ξ_{ω}. We have the following double centralizer property:
6.2. Theorem. Assume that $n \geq d$.
(i) The map $\phi: Q(n, d) \xi_{\omega} \rightarrow V^{\otimes d}, \xi_{i, i_{\omega}} \mapsto v_{\underline{i}}$ for $\underline{i} \in I(n, d)$ is an even isomorphism of $Q(n, d)$-supermodules. In particular, $V^{\otimes d}$ is a projective $Q(n, d)$-supermodule.
(ii) The map $\psi: W(d) \rightarrow \xi_{\omega} Q(n, d) \xi_{\omega}, x \otimes c^{\delta} \mapsto \xi_{\underline{-}_{\omega} \cdot(x, \delta), \underline{i}_{\omega}}$ for all $(x, \delta) \in W_{d}$, is a superalgebra isomorphism.
(iii) $\operatorname{End}_{Q(n, d)}\left(V^{\otimes d}\right) \cong W(d)$.

Proof. For (i), we first claim that $\xi_{i, i_{\omega}} v_{i_{\omega}}=v_{\underline{i}}$. Well, $\xi_{i, i_{\omega}}=\sum_{(\underline{k}, l) \sim\left(i, i, i_{\omega}\right)} e_{\underline{k}, l}$, and $e_{\underline{k}, \underline{l}} v_{i_{i \omega}}=$ $\delta_{l, i_{\omega}} v_{\underline{k}}$. Now observe that $\left(\underline{k}, i_{\omega}\right) \sim\left(\underset{i}{i}, i_{\omega}\right)$ if and only if $\underline{k}=\underline{i}$, since $\operatorname{Stab}_{W_{d}}\left(\underline{i}_{\omega}\right)=1$. It now follows easily that $\xi_{i, i_{\omega}} v_{i_{\omega}}=v_{i}$ as claimed. So in particular, $\xi_{\omega} v_{i_{\omega}}=v_{i_{\omega}}$, so there is a well-defined $Q(n, d)$-module homomorphism $Q(n, d) \xi_{\omega} \rightarrow V^{\otimes d}$ such that $\xi_{\omega} \mapsto v_{i_{\omega}}$. By the claim, this is precisely the map ϕ. Finally, observe that $Q(n, d) \xi_{\omega}$ has as basis the elements $\left\{\xi_{i, i_{\omega}} \mid \underline{i} \in I(n, d)\right\}$, so that ϕ is an isomorphism.

For (ii) and (iii), ξ_{ω} is an idempotent, so the superalgebras $\operatorname{End}_{Q(n, d)}\left(Q(n, d) \xi_{\omega}\right)$ and $\xi_{\omega} Q(n, d) \xi_{\omega}$ are naturally isomorphic. There is a homomorphism $W(d) \rightarrow \operatorname{End}_{Q(n, d)}\left(V^{\otimes d}\right)$ defined by the representation of $W(d)$ on $V^{\otimes d}$. Combining these with (i), we obtain a superalgebra homomorphism $\psi: W(d) \rightarrow \xi_{\omega} Q(n, d) \xi_{\omega}$. By definition, it maps the element $x \otimes c^{\delta} \in W(d)$ to the unique element ξ of $\xi_{\omega} Q(n, d) \xi_{\omega}$ with $\xi \phi=v_{i_{\omega}}\left(x \otimes c^{\delta}\right)$. But $v_{i_{\omega}}\left(x \otimes c^{\delta}\right)=$ $v_{i_{\omega} \cdot(x, \delta)}$, so $\psi\left(x \otimes c^{\delta}\right)=\xi_{i_{\omega} \cdot(x, \delta), i_{\omega}}$ as in the lemma. It remains to observe that the elements $\left\{\xi_{i_{\omega} \cdot(x, \delta), i_{\omega}} \mid(x, \delta) \in W_{d}\right\}$ give a basis for $\xi_{\omega} Q(n, d) \xi_{\omega}$, so that ψ is an isomorphism.

Using Theorem 6.2(ii), Corollary 2.13, Lemma 3.2 and Corollary 3.5, we deduce:
6.3. Lemma. For $n \geq d$, the number of irreducible $Q(n, d)$-supermodules not annihilated by ξ_{ω} is equal to $\left|\mathscr{R} \mathscr{P}_{p}(d)\right|$.

There is one other situation where Schur functors arising from weight idempotents will be useful. Suppose now that $m \geq n$. We embed $\Lambda(n, d)$ into $\Lambda(m, d)$ as the set of all weights of the form $\left(\lambda_{1}, \ldots, \lambda_{n}, 0, \ldots, 0\right)$, and $I(n, d)$ into $I(m, d)$ as the set of all $\underline{i} \in I(m, d)$ with $i_{s} \in\{ \pm 1, \ldots, \pm n\}$ for each $s=1, \ldots, d$. To avoid confusion with the corresponding elements of $Q(n, d)$, we denote the elements $\xi_{\lambda}, \xi_{i, j} \in Q(m, d)$ for $\lambda \in \Lambda(m, d),(\underline{i}, j) \in I^{2}(m, d)$ instead by $\widehat{\xi}_{\lambda}, \widehat{\xi}_{i, j}$ respectively. Let $e \in Q(m, d)$ denote the idempotent

$$
\begin{equation*}
e=\sum_{\lambda \in \Lambda(n, d) \subseteq \Lambda(m, d)} \widehat{\xi}_{\lambda} . \tag{6.4}
\end{equation*}
$$

If $\underline{i}, j \in I(n, d) \subseteq I(m, d)$, the element $\widehat{\xi}_{i, j} \in Q(m, d)$ lies in $e Q(m, d) e$.
6.5. Lemma. The map $\iota: Q(n, d) \rightarrow e Q(m, d) e, \xi_{i, j} \mapsto \widehat{\xi}_{i, j}$ for all $(\underline{i}, j) \in I^{2}(n, d)$, is a superalgebra isomorphism.

Proof. Consider the \mathbb{Z}-graded superideal $\mathscr{J}(m)=\bigoplus_{d \geq 0} \mathscr{J}(m, d)$ of $B(m)$ generated by the elements

$$
\left\{b_{i, j} \mid i \text { or } j \text { equals } \pm(n+1), \pm(n+2), \ldots, \pm m\right\} .
$$

One checks easily that $\Delta(\mathscr{J}(m)) \subseteq \mathscr{J}(m) \otimes B(m)+B(m) \otimes \mathscr{J}(m)$, so that the comultiplication Δ on $B(m)$ induces a well-defined comultiplication on $B(m) / \mathscr{J}(m)$ (though $\mathscr{J}(m)$ is not a cosuperideal). Evidently, $B(m) / \mathscr{J}(m) \cong B(n)$ as superalgebras, the induced comultiplication on $B(m) / \mathscr{J}(m)$ corresponding to the usual comultiplication on $B(n)$ under the isomorphism. Dualizing, we obtain a multiplicative even isomorphism between $Q(n, d)$ and $\mathscr{J}(m)^{\circ} \subseteq e Q(m, d) e$, being precisely the map ι. Finally, observe that $e Q(m, d) e=\mathscr{J}(m)^{\circ}$ to complete the proof.

Next, we introduce a subsuperalgebra of $Q(n, d)$ which plays the role of Cartan subalgebra. Let $\mathscr{J}_{0}(n)=\bigoplus_{d \geq 0} \mathscr{J}_{0}(n, d)$ denote the \mathbb{Z}-graded superideal of $B(n)$ generated by the elements

$$
\left\{b_{i, j}|i, j= \pm 1, \ldots, \pm n,|i| \neq|j|\}\right.
$$

It is elementary to check that $\mathscr{J}_{0}(n)$ is a bisuperideal of $B(n)$, so we can form the bisuperalgebra quotient $B_{0}(n):=B(n) / \mathscr{J}_{0}(n)$. For $i=1, \ldots, n$, let x_{i} denote the image of $b_{i, i}=b_{-i,-i}$ in $B_{0}(n)$, and \bar{x}_{i} denote the image of $b_{i,-i}=b_{-i, i}$. Then $B_{0}(n)$ is precisely the free commutative superalgebra on the generators $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$. Comultiplication $\Delta: B_{0}(n) \rightarrow B_{0}(n) \otimes B_{0}(n)$ is given explicitly on these generators by

$$
\Delta\left(x_{i}\right)=x_{i} \otimes x_{i}-\bar{x}_{i} \otimes \bar{x}_{i}, \quad \Delta\left(\bar{x}_{i}\right)=x_{i} \otimes \bar{x}_{i}+\bar{x}_{i} \otimes x_{i}
$$

As usual, $B_{0}(n)$ is \mathbb{Z}-graded by degree as $\bigoplus_{d \geq 0} B_{0}(n, d)$, with $B_{0}(n, d) \cong B(n, d) / \mathscr{J}_{0}(n, d)$ being a subsupercoalgebra of $B_{0}(n)$ for each $d \geq 0$. The dual superalgebra $Q_{0}(n, d)=$ $B_{0}(n, d)^{*}$ can be identified with the annihilator $\mathscr{J}_{0}(n, d)^{\circ} \subseteq Q(n, d)$, giving us a subsuperalgebra of $Q(n, d)$.

Consider the special case $Q_{0}(1, d)$ for $d \geq 1$ in more detail (obviously, $Q_{0}(1,0)=\mathbb{k}$). Writing $x=x_{1}, \bar{x}=\bar{x}_{1}$, the elements $\left\{x^{d}, x^{d-1} \bar{x}\right\}$ give a basis for $B_{0}(1, d)$, with comultiplication $\Delta: B_{0}(1, d) \rightarrow B_{0}(1, d) \otimes B_{0}(1, d)$ satisfying

$$
\Delta\left(x^{d}\right)=x^{d} \otimes x^{d}-d x^{d-1} \bar{x} \otimes x^{d-1} \bar{x}, \quad \Delta\left(x^{d-1} \bar{x}\right)=x^{d-1} \bar{x} \otimes x^{d}+x^{d} \otimes x^{d-1} \bar{x}
$$

As a basis for $Q_{0}(1, d)$, take the dual basis $\left\{y_{d}, \bar{y}_{d}\right\}$ to the basis $\left\{x^{d}, x^{d-1} \bar{x}\right\}$ of $B_{0}(1, d)$. The superalgebra multiplication, dual to the comultiplication in $B_{0}(1, d)$, is then given by $y_{d} y_{d}=y_{d}, y_{d} \bar{y}_{d}=\bar{y}_{d}=\bar{y}_{d} y_{d}, \bar{y}_{d} \bar{y}_{d}=d y_{d}$. Hence, for $d \geq 1$,

$$
Q_{0}(1, d) \cong \begin{cases}C(1) & \text { if } p \nmid d, \\ \wedge(1) & \text { if } p \mid d,\end{cases}
$$

recalling Example 2.2.
Now in general, the subsuperalgebra $Q_{0}(n, d) \subseteq Q(n, d)$ contains each weight idempotent ξ_{λ} for $\lambda \in \Lambda(n, d)$ in its center. So,

$$
\begin{equation*}
Q_{0}(n, d) \cong \prod_{\lambda \in \Lambda(n, d)} \xi_{\lambda} Q_{0}(n, d) \tag{6.6}
\end{equation*}
$$

Moreover, one can see that

$$
\begin{equation*}
\xi_{\lambda} Q_{0}(n, d) \cong Q_{0}\left(1, \lambda_{1}\right) \otimes \cdots \otimes Q_{0}\left(1, \lambda_{n}\right) \cong C\left(h_{p^{\prime}}(\lambda)\right) \otimes \bigwedge\left(h_{p}(\lambda)\right) \tag{6.7}
\end{equation*}
$$

where $h_{p}(\lambda)$ denotes the number of non-zero parts of λ that are divisible by p, and $h_{p^{\prime}}(\lambda)$ denotes the number of parts of λ that are coprime to p. We deduce immediately using Lemma 2.9, Example 2.7 and Example 2.10 that $\xi_{\lambda} Q_{0}(n, d)$ has a unique irreducible supermodule up to isomorphism, of dimension $2^{\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor}$. We pick one such and denote by $U(\lambda)$. Note $U(\lambda)$ is absolutely irreducible if and only if $h_{p^{\prime}}(\lambda)$ is even. Finally, regarding $U(\lambda)$ as an $Q_{0}(n, d)$-supermodule by inflation, we have shown:
6.8. Lemma. The supermodules $\{U(\lambda) \mid \lambda \in \Lambda(n, d)\}$ give a complete set of pairwise nonisomorphic irreducible $Q_{0}(n, d)$-supermodules. The dimension of $U(\lambda)$ is $2^{\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor}$, and $U(\lambda)$ is absolutely irreducible if and only if $h_{p^{\prime}}(\lambda)$ is even.

Recalling Lemma 5.1, we have thus determined the irreducible $B_{0}(n)$-cosupermodules, namely, the $B_{0}(n)$-cosupermodules $\{U(\lambda) \mid \lambda \in \Lambda(n)\}$, where $\Lambda(n):=\bigcup_{d \geq 0} \Lambda(n, d)$. Now let M be an arbitrary finite dimensional $B(n)$-cosupermodule with structure map $\eta: M \rightarrow$ $M \otimes B(n)$. By Lemma 5.1, M decomposes as $M=\bigoplus_{d \geq 0} M_{d}$ where M_{d} is the largest subcosupermodule with $\eta\left(M_{d}\right) \subseteq M_{d} \otimes B(n, d)$. Each M_{d} is naturally a $B(n, d)$-cosupermodule, hence a $Q(n, d)$-supermodule. Then, for $\lambda \in \Lambda(n, d)$, we define the λ-weight space of M to be the space $M_{\lambda}:=\xi_{\lambda} M_{d}$. Recalling (6.6), M_{λ} is a $Q_{0}(n, d)$-subsupermodule of M_{d}. Equivalently, M_{λ} is a $B_{0}(n)$-subcosupermodule of M, viewing M as a $B_{0}(n)$-cosupermodule by restriction, and

$$
M=\bigoplus_{\lambda \in \Lambda(n)} M_{\lambda} .
$$

Let $X(n)$ denote the free polynomial algebra $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and for $\lambda \in \Lambda(n)$, set $x^{\lambda}=$ $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{n}^{\lambda_{n}}$. Define the formal character

$$
\operatorname{ch} M=\sum_{\lambda \in \Lambda(n)} \operatorname{dim} M_{\lambda} x^{\lambda} \in X(n)
$$

Note that for finite dimensional $B(n)$-cosupermodules M, N, we have that $\operatorname{ch}(M \oplus N)=$ ch $M+\operatorname{ch} N$ and $\operatorname{ch}(M \otimes N)=\operatorname{ch} M$.ch N. In other words, the map ch: $\operatorname{Grot}(B(n)) \rightarrow X(n)$ is a ring homomorphism from the Grothendieck ring of the category of finite dimensional right $B(n)$-cosupermodules to $X(n)$.

7 The big cell

Let $\mathscr{J}_{b}(n)=\bigoplus_{d \geq 0} \mathscr{J}_{b}(n, d)$ and $\mathscr{J}_{\sharp}(n)=\bigoplus_{d \geq 0} \mathscr{J}_{\sharp}(n, d)$ denote the \mathbb{Z}-graded superideals of $B(n)$ generated by the elements

$$
\left\{b_{i, j}|i, j= \pm 1, \ldots, \pm n,|i|<|j|\}, \quad\left\{b_{i, j}|i, j= \pm 1, \ldots, \pm n,|i|>|j|\}\right.\right.
$$

respectively. One easily checks that these are cosuperideals. Hence, we can form the bisuperalgebras quotients

$$
B_{b}(n):=B(n) / \mathscr{J}_{b}(n), \quad B_{\sharp}(n):=B(n) / \mathscr{J}_{\sharp}(n) .
$$

Both $B_{b}(n)$ and $B_{\sharp}(n)$ are \mathbb{Z}-graded with degree d component, denoted $B_{b}(n, d)$ and $B_{\sharp}(n, d)$ respectively, being cosuperalgebra quotients of $B(n, d)$. The corresponding dual superalgebras to these, namely $Q_{b}(n, d)=\mathscr{J}_{b}(n, d)^{\circ}$ and $Q_{\sharp}(n, d)=\mathscr{J}_{\sharp}(n, d)^{\circ}$, are therefore subsuperalgebras of $Q(n, d)$, called the negative Borel and positive Borel subsuperalgebras respectively. They are spanned by the elements

$$
\left\{\xi _ { i , j } | (\underline { i } , j) \in I ^ { 2 } (n , d) , | \underline { i } | \geq | j | \} \quad \text { and } \quad \left\{\xi_{i, j}\left|(\underline{i}, j) \in I^{2}(n, d),|\underline{i}| \leq|i|\right\}\right.\right.
$$

respectively, where $|\underline{i}| \geq|j|$ means that $\left|i_{k}\right| \geq\left|j_{k}\right|$ for each $k=1, \ldots, d$. Let $\pi_{b}: B(n) \rightarrow$ $B_{b}(n)$ and $\pi_{\sharp}: B(n) \rightarrow B_{\sharp}(n)$ denote the natural quotient maps and set $b_{i, j}^{b}=\pi_{b}\left(b_{i, j}\right)$, $b_{i, i}^{\sharp}=\pi_{\sharp}\left(b_{i, j}\right)$ for $\underline{i}, j \in I(n, d)$. In particular, $b_{i, i}^{b}=0$ unless $|\underline{i}| \geq|j|$ and $b_{i, j}^{\sharp}=0$ unless $|\underline{i}| \leq|j|$. Let

$$
\pi: B(n) \rightarrow B_{b}(n) \otimes B_{\sharp}(n)
$$

be the map $\left(\pi_{b} \otimes \pi_{\sharp}\right) \circ \Delta$. We wish to prove that this map π is injective, this being an analogue of the existence of the big cell in reductive algebraic groups, crucial for highest weight theory. It is possible to give a quick proof in the setting of algebraic supergroups. Since we wish to avoid introducing this language, we content ourselves with an elementary direct proof, though it is rather lengthy:

7.1. Theorem. π is injective.

Proof. We proceed in a number of steps. Observe right away that it is enough to prove that π is injective on each $B(n, d)$ separately. So, fix $d \geq 1$ and consider the restriction $\pi: B(n, d) \rightarrow B_{b}(n, d) \otimes B_{\sharp}(n, d)$. Let

$$
Y=\{(\underline{i}, \underline{k}, \underline{l}, j) \in I(n, d) \times I(n, d) \times I(n, d) \times I(n, d)| | \underline{i}|\geq|\underline{k}|,|\underline{l}| \leq|\dot{j}|\} .
$$

Write $(\underline{i}, \underline{k}, \underline{l}, j) \approx\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, j^{\prime}\right)$ if both $(\underline{i}, \underline{k}) \sim\left(\underline{i}^{\prime}, \underline{k}^{\prime}\right)$ and $(\underline{l}, j) \sim\left(\underline{l}^{\prime}, j^{\prime}\right)$. Also call $(\underline{i}, \underline{k}, \underline{l}, \underline{j})$ strict if both $(\underline{i}, \underline{k})$ and (\underline{l}, j) are strict in the sense of Lemma 4.2. Then:
7.2. If Z is a choice of representatives for the \approx-equivalence classes of strict $(\underline{i}, \underline{k}, \underline{l}, j) \in Y$, then $\left\{b_{i, k}^{b} \otimes b_{l, j}^{\sharp} \mid(\underline{i}, \underline{k}, \underline{l}, j) \in Z\right\}$ is a basis for $B_{b}(n, d) \otimes B_{\sharp}(n, d)$.

Now define $\underline{m}(\underline{i}, j)$, for any $\underline{i}, j \in I(n, d)$, to be the unique element $\underline{m} \in I(n, d)$ with

$$
m_{s}= \begin{cases}i_{s} & \text { if }\left|i_{s}\right|<\left|j_{s}\right| \\ j_{s} & \text { if }\left|i_{s}\right| \geq\left|j_{s}\right|\end{cases}
$$

for all $s=1, \ldots, d$. Observe that $\underline{m}(\underline{i} \cdot g, j \cdot g)=\underline{m}(\underline{i}, j) \cdot g$ for all $g \in W_{d}$. We claim:
7.3. Suppose $\underline{i}, j \in I(n, d)$ and $g \in W_{d}$ are such that $\underline{m}(\underline{i}, j)=\underline{m}(\underline{i}, j \cdot g)=\underline{m}(\underline{i} \cdot g, j \cdot g)$. Then, $(\underline{i}, j) \sim(\underline{i}, j \cdot g)$.

We prove (7.3) by induction on d. Let $\underline{m}=\underline{m}(\underline{i}, j)$. If $d=1$, then the assumption that $\underline{m} \cdot g=\underline{m}$ forces $g=1$, and the lemma follows trivially. Now suppose that $d>1$ and that we have proved (7.3) for all smaller d. Write $\{ \pm 1, \ldots, \pm d\}=I \sqcup J$ where

$$
\begin{aligned}
& I=\left\{ \pm s\left|1 \leq s \leq d,\left|i_{s}\right| \geq\left|j_{s}\right|\right\},\right. \\
& J=\left\{ \pm s\left|1 \leq s \leq d,\left|i_{s}\right|<\left|j_{s}\right|\right\} .\right.
\end{aligned}
$$

Suppose first that g stabilizes I. Then, we can write $g=x y$ where x fixes J pointwise and y fixes I pointwise. The assumption that $\underline{m}=\underline{m} \cdot g$ implies that both $\underline{m}=\underline{m} \cdot x$ and $\underline{m}=\underline{m} \cdot y$. For $s \in J, m_{s}=i_{s}$ and $m_{y s}=i_{y s}$, so since $m_{s}=m_{y s}$, we see that $i_{s}=i_{y s}$. Hence $\underline{i} \cdot y=\underline{i}$, and a similar argument gives that $j \cdot x=j$. So, $(\underline{i}, j \cdot g)=(\underline{i} \cdot y, j \cdot y) \sim(\underline{i}, j)$ as required.

Now suppose that g does not stabilize I. Then, we can pick $s \in I$ such that $g s \in J$. Let $t=g s \in J$ and define x to be the unique element of W_{d} with $x s=t, x t=s$ and fixing all other elements of $\{ \pm 1, \ldots, \pm d\} \backslash\{ \pm s, \pm t\}$. Set $g^{\prime}=x g, j^{\prime}=j \cdot x$, so $j^{\prime} \cdot g^{\prime}=j g$. Using that $\underline{m} \cdot g=\underline{m}$, we have that $j_{s}=m_{s}=m_{t}=i_{t}$. So, $\left|j_{t}\right|>\left|i_{t}\right|=\left|m_{t}\right|=\left|m_{s}\right|$. Using $\underline{m}=\underline{m}(\underline{i}, j \cdot g)$, we must therefore have that $m_{s}=i_{s}=i_{t}=m_{t}$. This shows that $\underline{i} \cdot x=\underline{i}$ and $\underline{m} \cdot x=\underline{m}$. Now,

$$
\begin{aligned}
\underline{m}(\underline{i}, j) & =\underline{m}(\underline{i} \cdot x, j \cdot x)=\underline{m}\left(\underline{i}, j^{\prime}\right), \\
\underline{m}(\underline{i}, j \cdot g) & =\underline{m}\left(\underline{i}, j^{\prime} \cdot g^{\prime}\right), \\
\underline{m}(\underline{i} \cdot g, j \cdot g) & =\underline{m}\left(\underline{i} \cdot g^{\prime}, j^{\prime} \cdot g^{\prime}\right) .
\end{aligned}
$$

So by our assumption, $\underline{m}\left(\underline{i}, j^{\prime}\right)=\underline{m}\left(\underline{i}, j^{\prime} \cdot g^{\prime}\right)=\underline{m}\left(\underline{i} \cdot g^{\prime}, j^{\prime} \cdot g^{\prime}\right)$. Now, $g^{\prime} s=s$, so we deduce by induction that $\left(\underline{i}, j^{\prime}\right) \sim\left(\underline{i}, j^{\prime} \cdot g^{\prime}\right)$. Hence, $(\underline{i}, j) \sim(\underline{i} \cdot x, j \cdot x)=\left(\underline{i}, j^{\prime}\right) \sim\left(\underline{i}, j^{\prime} \cdot g^{\prime}\right)=(\underline{i}, j \cdot g)$ as required to complete the proof of (7.3).

Now we apply (7.3) to show:
7.4. Let $\underline{i}, j, \underline{i}^{\prime}, j^{\prime} \in I(n, d)$ and $\underline{m}=\underline{m}(\underline{i}, j), \underline{m}^{\prime}=\underline{m}\left(\underline{i}^{\prime}, j^{\prime}\right)$. If $(\underline{i}, \underline{m}, \underline{m}, j) \approx\left(\underline{i}^{\prime}, \underline{m}^{\prime}, \underline{m}^{\prime}, j^{\prime}\right)$ then $(\underline{i}, j) \sim\left(\underline{i}^{\prime}, i^{\prime}\right)$.

Indeed, take $g, h \in W_{d}$ such that $(\underline{i}, \underline{m})=\left(\underline{i}^{\prime} \cdot g, \underline{m}^{\prime} \cdot g\right)$ and $(\underline{m}, j)=\left(\underline{m}^{\prime} \cdot g h, \dot{j}^{\prime} \cdot g h\right)$. Set $\underline{k}=j^{\prime} \cdot g$. Now,

$$
\begin{aligned}
\underline{m} & =\underline{m}(\underline{i}, j)=\underline{m}\left(\underline{i}, j^{\prime} \cdot g h\right)=\underline{m}(\underline{i}, \underline{k} \cdot h), \\
\underline{m}^{\prime} \cdot g & =\underline{m}\left(\underline{i}^{\prime} \cdot g, j^{\prime} \cdot g\right)=\underline{m}(\underline{i}, \underline{k}), \\
\underline{m}^{\prime} \cdot g h & =\underline{m}\left(\underline{i}^{\prime} \cdot g h, \dot{j}^{\prime} \cdot g h\right)=\underline{m}(\underline{i} \cdot h, \underline{k} \cdot h) .
\end{aligned}
$$

So, observing that $\underline{m}=\underline{m}^{\prime} \cdot g=\underline{m}^{\prime} \cdot g h$, we have that $\underline{m}(\underline{i}, \underline{k})=\underline{m}(\underline{i}, \underline{k} \cdot h)=\underline{m}(\underline{i} \cdot h, \underline{k} \cdot h)$. Hence by $(7.3),(\underline{i}, \underline{k}) \sim(\underline{i}, \underline{k} \cdot h)$. So $\left(\underline{i}^{\prime}, j^{\prime}\right) \sim\left(\underline{i}^{\prime} \cdot g, j^{\prime} \cdot g\right)=(\underline{i}, \underline{k}) \sim(\underline{i}, \underline{k} \cdot h)=(\underline{i}, \dot{j})$.

Next we claim:
7.5. Let $\underline{i}, j \in I(n, d)$ and $\underline{m}=\underline{m}(\underline{i}, j)$. If (\underline{i}, j) is strict, then $(\underline{i}, \underline{m}, \underline{m}, j)$ is strict.

To prove this, take (\underline{i}, j) strict and suppose that $(\underline{i}, \underline{m})$ is not strict. Then, there exist $1 \leq s<t \leq d$ with $\left|i_{s}\right|=\left|i_{t}\right|,\left|m_{s}\right|=\left|m_{t}\right|$ and $\partial_{i_{s}, m_{s}} \partial_{i_{t}, m_{t}}=\overline{1}$. So, $i_{s} \neq m_{s}, i_{t} \neq m_{t}$, hence by the definition of $\underline{m}, m_{s}=j_{s}, m_{t}=j_{t}$. But this contradicts the fact that $(\underset{i}{i}, j)$ is strict. Hence, $(\underline{i}, \underline{m})$ is strict, and a similar argument shows that (\underline{m}, j) is strict.

Recall that $\Omega(n, d)$ is some set of representatives of the \sim-equivalence classes of strict $(\underline{i}, j) \in I(n, d) \times I(n, d)$. In view of (7.4) and (7.5), all $\{(\underline{i}, \underline{m}, \underline{m}, j) \mid(\underline{i}, j) \in \Omega(n, d), \underline{m}=$ $\underline{m}(\underline{i}, j)\}$ are strict and lie in different \approx-equivalence classes. So they are linearly independent by (7.2), and we have now proved:
7.6. The elements $\left\{b_{\underline{i}, \underline{m}}^{b} \otimes b_{\underline{m}, \underline{j}}^{\sharp} \mid(\underline{i}, j) \in \Omega(n, d), \underline{m}=\underline{m}(\underline{i}, j)\right\}$ are linearly independent.

Now we can prove the theorem. Call $(\underline{i}, \underline{k}, \underline{l}, \underline{j}) \in Y$ special if there exists $g \in W_{d}$ such that

$$
\begin{gathered}
i_{g s}=k_{g s}=l_{s} \text { whenever }\left|l_{s}\right|<\left|j_{s}\right| \\
l_{s}=j_{s}=k_{g s} \text { whenever }\left|l_{s}\right|=\left|j_{s}\right|
\end{gathered}
$$

for all $s=1, \ldots, d$. We point out that if $\underline{m}=\underline{m}(\underline{i}, j)$, then $(\underline{i}, \underline{m}, \underline{m}, j)$ is special. Now, if $(\underline{i}, \underline{k}, \underline{l}, \underline{j}) \approx\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, \dot{j}^{\prime}\right)$ and $(\underline{i}, \underline{k}, \underline{l}, \underline{j})$ is special, then $\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, j^{\prime}\right)$ is too. So the property of being special is a property of \approx-equivalence classes. Choose a total order \succ on the set of all special \approx-equivalence classes such that the following hold for all special $(\underline{i}, \underline{k}, \underline{l}, j),\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, j^{\prime}\right) \in Y:$
(1) if $\mathrm{wt}\left(\underline{k}^{\prime}\right)>\mathrm{wt}(\underline{k})$ (in the dominance order) then $\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, j^{\prime}\right) \succ(\underline{i}, \underline{k}, \underline{l}, \underline{j})$;
(2) if $\mathrm{wt}(\underline{k})=\mathrm{wt}\left(\underline{k^{\prime}}\right)$ and $\left|\left\{s \mid 1 \leq s \leq d, i_{s}=k_{s}\right\}\right|>\left|\left\{s \mid 1 \leq s \leq d, i_{s}^{\prime}=k_{s}^{\prime}\right\}\right|$ then $\left(\underline{i}^{\prime}, \underline{k}^{\prime}, \underline{l}^{\prime}, j^{\prime}\right) \succ(\underline{i}, \underline{k}, \underline{l}, j)$.

We need one more claim:
7.7. Let $\underline{i}, j \in I(n, d)$ and $\underline{m}=\underline{m}(\underline{i}, j)$. Then,

$$
\pi\left(b_{i, j}\right)= \pm b_{\underline{i}, \underline{m}}^{b} \otimes b_{\underline{m}, j}^{\sharp}+A+B
$$

where A is a linear combination of terms of the form $b_{\underline{i}, \underline{k}}^{b} \otimes b_{\underline{k}, \underline{j}}^{\sharp}$ with $(\underline{i}, \underline{k}, \underline{k}, \underline{j})$ special and $(\underline{i}, \underline{k}, \underline{k}, j) \succ(\underline{i}, \underline{m}, \underline{m}, j)$, and B is a linear combination of terms of the form $b_{\underline{i}, \underline{k}}^{b} \otimes b_{\underline{k}, j}^{\sharp}$ with ($\underline{i}, \underline{k}, \underline{k}, j$) not special.

To prove (7.7), we have from the definition of π that $\pi\left(b_{i, j}\right)= \pm b_{i, m}^{b} \otimes b_{m, j}^{\sharp} \pm b_{i,-m}^{b} \otimes b_{-m, j}^{\sharp}+\left(\right.$ a linear combination of $b_{i, k}^{b} \otimes b_{k, j}^{\sharp}$ with $\left.|k|<|m|\right)$ where $m=\min (|i|,|j|)$. So, writing $\underline{m}=\underline{m}(\underline{i}, j)$,

$$
\pi\left(b_{\underline{i}, \dot{j}}\right)=\sum_{\delta \in \mathbb{Z}_{2}^{d}} \pm b_{\underline{i}, \underline{m} \cdot \delta}^{b} \otimes b_{\underline{m} \cdot \delta, j}^{\sharp}+\left(\text { a linear combination of } b_{\underline{i}, \underline{k}}^{b} \otimes b_{\underline{k}, \dot{j}}^{\sharp} \text { with } \mathrm{wt}(\underline{k})>\mathrm{wt}(\underline{m}) \cdot\right)
$$

Therefore, we just need to show that for all $(\overline{0}, \overline{0}, \ldots, \overline{0}) \neq \delta \in \mathbb{Z}_{2}^{d}$ such that $(\underline{i}, \underline{m} \cdot \delta, \underline{m} \cdot \delta, j)$ is special, we have that $\left|\left\{s \mid 1 \leq s \leq d, i_{s}=m_{s}\right\}\right|>\left|\left\{s \mid 1 \leq s \leq d, i_{s}=m_{\delta s}\right\}\right|$. Take $\delta \in \mathbb{Z}_{2}^{d}$ such that $(\underline{i}, \underline{m} \cdot \delta, \underline{m} \cdot \delta, j)$ is special. Then certainly we have that $m_{\delta s}=j_{s}$ whenever $\left|m_{s}\right|=\left|j_{s}\right|$, when $m_{s}=j_{s}$ by definition of \underline{m}. So for s with $\left|m_{s}\right|=\left|j_{s}\right|$, we have that $m_{\delta s}=m_{s}$, whence $\delta_{s}=\overline{0}$. Instead, take t with $\left|m_{t}\right|<\left|j_{t}\right|$. Then, $m_{t}=i_{t}$ so $m_{t}=i_{\delta t}$ if and only if $\delta_{t}=\overline{0}$. These observations establish that

$$
\left|\left\{s \mid 1 \leq s \leq d, i_{s}=m_{s}\right\}\right| \geq\left|\left\{s \mid 1 \leq s \leq d, i_{s}=m_{\delta s}\right\}\right|
$$

with equality if and only if $\delta=(\overline{0}, \overline{0}, \ldots, \overline{0})$. This completes the proof of (7.7).
Now the theorem follows easily from (7.6), (7.7) and a unitriangular argument involving the order \succ.
7.8. Corollary. The natural multiplication map $\mu: Q_{b}(n, d) \otimes Q_{\sharp}(n, d) \rightarrow Q(n, d)$ is surjective.

8 Highest weight theory

Now we can classify the irreducible $Q(n, d)$-supermodules using highest weight theory. Recall that $Q_{\sharp}(n, d)$ denotes the positive Borel subsuperalgebra of $Q(n, d)$. We begin by determining the irreducible $Q_{\sharp}(n, d)$-supermodules.

The superideal $\mathscr{J}_{\sharp}(n)$ from $\S 7$ is contained in the superideal $\mathscr{J}_{0}(n)$ from $\S 6$. It follows that $Q_{0}(n, d) \subseteq Q_{\sharp}(n, d)$. On the other hand, let $Q_{+}(n, d)$ denote the subsuperspace of $Q_{\sharp}(n, d)$ spanned by the elements

$$
\left\{\xi_{\underline{i}, j}\left|(\underline{i}, j) \in I^{2}(n, d),|\underline{i}| \leq|j|,\left|i_{s}\right|<\left|j_{s}\right| \text { for some } s\right\} .\right.
$$

It follows from Lemma 6.1 that $Q_{+}(n, d)$ is a superideal of $Q_{\sharp}(n, d)$. Moreover, $Q_{\sharp}(n, d)=$ $Q_{0}(n, d) \oplus Q_{+}(n, d)$ as a vector superspace, and $Q_{\sharp}(n, d) / Q_{+}(n, d) \cong Q_{0}(n, d)$. Analogously, $Q_{-}(n, d)$ denotes the superideal spanned by the elements $\left\{\xi_{i, j}\left|(\underline{i}, j) \in I^{2}(n, d),|\underline{i}| \geq|j|,\left|i_{s}\right|>\right.\right.$ $\left|j_{s}\right|$ for some $\left.s\right\}$, and $Q_{b}(n, d)=Q_{0}(n, d) \oplus Q_{-}(n, d)$.

If M is any $Q_{0}(n, d)$-supermodule, we can view it as a $Q_{\sharp}(n, d)$-supermodule by inflation along the quotient map $Q_{\sharp}(n, d) \rightarrow Q_{0}(n, d)$. In particular, we obtain irreducible $Q_{\sharp}(n, d)$ modules denoted $\{U(\lambda) \mid \lambda \in \Lambda(n, d)\}$, namely, the inflations of the irreducible $Q_{0}(n, d)$ supermodules constructed in Lemma 6.8.

Now suppose that M is a non-zero $Q_{\sharp}(n, d)$-supermodule and $\lambda \in \Lambda(n, d)$. By Lemma 6.1, for $\xi \in Q_{+}(n, d), \xi M_{\lambda} \subseteq \bigoplus_{\mu>\lambda} M_{\mu}$. It follows at once that for any weight λ maximal in the dominance order such that $M_{\lambda} \neq 0$ (such a weight certainly exists as there are finitely many weights!), the weight space M_{λ} is annihilated by $Q_{+}(n, d)$. So M_{λ} is a $Q_{\sharp}(n, d)$-subsupermodule of M and the action of $Q_{\sharp}(n, d)$ on M_{λ} factors through the quotient $Q_{0}(n, d)$. In particular, if M is an irreducible $Q_{\sharp}(n, d)$-supermodule, $M \cong U(\lambda)$.

Given an arbitrary weight λ, we call a $Q(n, d)$-supermodule M a highest weight module of highest weight λ if the following conditions hold:
(1) M_{λ} is a $Q_{\sharp}(n, d)$-subsupermodule of M isomorphic to $U(\lambda)$;
(2) M is generated as an $Q(n, d)$-supermodule by M_{λ}.

For $\lambda \in \Lambda(n, d)$, define

$$
\begin{equation*}
V(\lambda):=Q(n, d) \otimes_{Q_{\sharp}(n, d)} U(\lambda) . \tag{8.1}
\end{equation*}
$$

Call the weight λ an admissible weight if $V(\lambda) \neq 0$.
8.2. Lemma. For admissible $\lambda, V(\lambda)$ is a highest weight module of highest weight λ. Moreover, $V(\lambda)_{\mu}=0$ unless $\mu \leq \lambda$.

Proof. Recalling Corollary 7.8, we certainly have that

$$
V(\lambda)=Q_{b}(n, d) \otimes U(\lambda)=Q_{-}(n, d) \otimes U(\lambda) \oplus Q_{0}(n, d) \otimes U(\lambda)
$$

All weights of $Q_{-}(n, d) \otimes U(\lambda)$ are strictly lower than λ in the dominance order. So the λ-weight space of $V(\lambda)$ is equal to $1 \otimes U(\lambda)$, a homomorphic image of $U(\lambda)$. The assumption that λ is admissible is equivalent to $1 \otimes U(\lambda)$ being non-zero, in which case it is isomorphic to $U(\lambda)$ as $U(\lambda)$ is irreducible.

The admissible $V(\lambda)$ have the following universal property:
8.3. Lemma. Suppose that M is a highest weight module of highest weight λ. Then, λ is admissible and M is a homomorphic image of $V(\lambda)$. In particular, $M_{\mu}=0$ unless $\mu \leq \lambda$.

Proof. There is a natural isomorphism

$$
\operatorname{Hom}_{Q_{\sharp}(n, d)}(U(\lambda), M \downarrow) \xrightarrow{\sim} \operatorname{Hom}_{Q(n, d)}(V(\lambda), M) .
$$

Choose an isomorphism $\theta: U(\lambda) \rightarrow M_{\lambda} \subseteq M$ of $Q_{\sharp}(n, d)$-supermodules and let $\theta \uparrow: V(\lambda) \rightarrow$ M be the corresponding $Q(n, d)$-supermodule homomorphism. This is non-zero, hence λ is admissible, and is surjective as M is generated by M_{λ}. This shows that M is a quotient of $V(\lambda)$, and the final statement about weights follows from Lemma 8.2.

For admissible λ, define $L(\lambda)$ to be the head of $V(\lambda)$, i.e. $L(\lambda)$ is the largest completely reducible quotient supermodule of $V(\lambda)$. We remark that if $p=0$ or $p>d$, then $Q(n, d)$ is semisimple by Lemma 4.1, so that $L(\lambda)=V(\lambda)$ in these cases.
8.4. Lemma. The set $\{L(\lambda) \mid$ for all admissible $\lambda \in \Lambda(n, d)\}$ is a complete set of pairwise non-isomorphic irreducible $Q(n, d)$-supermodules. Moreover, $L(\lambda)$ is absolutely irreducible if and only if $h_{p^{\prime}}(\lambda)$ is even.

Proof. Let λ be admissible. We first claim that $V(\lambda)$ has a unique maximal subsupermodule, so that $L(\lambda)$ is irreducible. For let M, N be two maximal subsupermodules of $V(\lambda)$. Since $V(\lambda)_{\lambda}$ is irreducible over $Q_{0}(n, d)$ and generates $V(\lambda)$ over $Q(n, d)$, we must have that $M_{\lambda}=N_{\lambda}=0$, so $(M+N)_{\lambda}=0$. This shows that $M+N$ is a proper subsupermodule of $V(\lambda)$. Hence, $M=M+N=N$ by maximality, as required.

Evidently, for admissible $\lambda \neq \mu, L(\lambda)$ and $L(\mu)$ are not isomorphic, as they have different highest weights. Now suppose that L is an arbitrary irreducible $Q(n, d)$-supermodule. Choose λ maximal in the dominance order such that $L_{\lambda} \neq 0$. Then, by irreducibility, L must be a highest weight module of highest weight λ, so a quotient of $V(\lambda)$ by Lemma 8.3. Hence, $L \cong L(\lambda)$.

It remains to prove the statement about absolute irreducibility. First observe by adjointness that $\operatorname{Hom}_{Q(n, d)}(V(\lambda), L(\lambda)) \cong \operatorname{Hom}_{Q_{\sharp}(n, d)}(U(\lambda), L(\lambda) \downarrow) \cong \operatorname{End}_{Q_{0}(n, d)}(U(\lambda))$. Now there is a natural embedding $\operatorname{Hom}_{Q(n, d)}(L(\lambda), L(\lambda)) \hookrightarrow \operatorname{Hom}_{Q(n, d)}(V(\lambda), L(\lambda))$. To see that it is an isomorphism, observe that any $Q(n, d)$-homomorphism $V(\lambda) \rightarrow L(\lambda)$ annihilates the unique maximal submodule of $V(\lambda)$, hence induces a well-defined homomorphism $L(\lambda) \rightarrow L(\lambda)$. We have shown that $\operatorname{End}_{Q(n, d)}(L(\lambda)) \cong \operatorname{End}_{Q_{0}(n, d)}(U(\lambda))$. Now the final part of the lemma follows from Lemma 6.8 and Schur's lemma.

9 Classification of admissible weights

We now proceed to give a combinatorial description of the admissible weights, to complete the classification of the irreducible $Q(n, d)$-supermodules. We make some definitions. Let $\Lambda^{+}(n, d)$ denote the set of all $\lambda \in \Lambda(n, d)$ such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, i.e. λ is a partition of d with at most n non-zero parts. Let $\Lambda_{p}^{+}(n, d)$ denote the set of all $\lambda \in \Lambda^{+}(n, d)$ such that

$$
\lambda_{i}=\lambda_{i+1} \quad \Rightarrow \quad p \mid \lambda_{i} \quad \text { for each } i=1,2, \ldots, n-1
$$

Call $\lambda \in \Lambda_{p}^{+}(n, d)$ restricted if either $p=0$ or $p>0$ and

$$
\begin{cases}\lambda_{i}-\lambda_{i+1} \leq p & \text { if } p \nmid \lambda_{i} \\ \lambda_{i}-\lambda_{i+1}<p & \text { if } p \mid \lambda_{i}\end{cases}
$$

for each $i=1,2, \ldots, n-1$. Let $\Lambda_{p}^{+}(n, d)_{\text {res }}$ denote the set of all restricted $\lambda \in \Lambda_{p}^{+}(n, d)$.
We first construct another subsuperalgebra of $Q(n, d)$. Let $\mathscr{K}(n)=\bigoplus_{d \geq 0} \mathscr{K}(n, d)$ denote the \mathbb{Z}-graded superideal of $B(n)$ generated by the elements

$$
\left\{b_{i, j} \mid i=1, \ldots, n, j=-1, \ldots,-n\right\}
$$

It is a bisuperideal, so we can form the bisuperalgebra quotient

$$
A(n)=B(n) / \mathscr{K}(n)
$$

this being \mathbb{Z}-graded as $A(n)=\bigoplus_{d>0} A(n, d)$ where $A(n, d) \cong B(n, d) / \mathscr{K}(n, d)$. For $i, j=$ $1, \ldots, n$, set $c_{i, j}=b_{i, j}+\mathscr{K}(n)$. Observing that each $c_{i, j}$ has degree $\overline{0}, A(n)=A(n)_{\overline{0}}$ is precisely the free polynomial algebra on the generators $\left\{c_{i, j} \mid 1 \leq i, j \leq n\right\}$. So the dual superalgebra $S(n, d)=A(n, d)^{*}$ is just the usual classical Schur algebra as in [7] concentrated in degree $\overline{0}$. We identify $S(n, d)$ with the subsuperalgebra $\mathscr{K}(n, d)^{\circ} \subseteq Q(n, d)_{\overline{0}} \subseteq Q(n, d)$.

Now we treat the case $n=2$, copying an argument due to Penkov [21, $\S 7]$ in our setting.
9.1. Lemma. Suppose that $n=2$ and that $\lambda \in \Lambda(2, d)$ is an admissible weight. Then, either $\lambda_{1}>\lambda_{2}$, or $\lambda_{1}=\lambda_{2}=c$ for some $c \geq 0$ with $p \mid c$.

Proof. The restriction of $L(\lambda)$ to the ordinary Schur algebra $S(2, d) \subseteq Q(2, d)$ gives us an $S(2, d)$-module with maximal weight λ. We deduce from the classical theory that $\lambda_{1} \geq \lambda_{2}$. To complete the proof, suppose for a contradiction that $\lambda_{1}=\lambda_{2}=c$ but that $p \nmid c$. So $d=2 c$. Now, there are no $\mu \in \Lambda^{+}(2,2 c)$ with $\mu<\lambda$. Since we also know that $\operatorname{dim} L(\lambda)_{\lambda}=\operatorname{dim} U(\lambda)=2$, we deduce by the classical representation theory of $S(2,2 c)$ that $L(\lambda) \downarrow S(2,2 c)$ splits as a direct sum of two irreducible $S(2,2 c)$-modules both of highest weight λ. But such $S(2,2 c)$-modules are one dimensional (being just a tensor power of the determinant module). This shows that $L(\lambda)=L(\lambda)_{\lambda}$, of dimension exactly two. Hence, $L(\lambda)_{\nu}=0$ for all $\nu \neq \lambda$.

Define the following elements of $I(2,2 c)$:

$$
\begin{aligned}
\underline{i} & =(1, \ldots, 1,-2 ; 2, \ldots, 2,2), & & j=(1, \ldots, 1,2 ; 2, \ldots, 2,2), \\
\underline{k} & =(1, \ldots, 1,1 ; 2, \ldots, 2,-1), & & \underline{l}=(1, \ldots, 1,1 ; 2, \ldots, 2,1) \\
\underline{s} & =(1, \ldots, 1,-1 ; 2, \ldots, 2,2), & & \underline{t}=(1, \ldots, 1,1 ; 2, \ldots, 2,-2), \\
\underline{u} & =(1, \ldots, 1,-2 ; 2, \ldots, 2,1), & & \underline{i}_{\lambda}=(1, \ldots, 1,1 ; 2, \ldots, 2,2)
\end{aligned}
$$

where the symbol ; is between the c th and $(c+1)$ th entries. Now an explicit calculation using the product rule Theorem 4.5 shows that

$$
\xi_{\underline{x}_{\lambda}, \underline{i}} \xi_{\underline{i}, i_{\lambda}}=\xi_{\underline{s}, \underline{i}_{\lambda}}+\xi_{\underline{u}, \underline{i}_{\lambda}} \quad \text { and } \quad \xi_{\underline{i}_{\lambda}, \underline{k}} \xi_{l, \underline{i}_{\lambda}}=\xi_{\underline{t}, \underline{i}_{\lambda}}+\xi_{\underline{u}, \underline{i}_{\lambda}} .
$$

Hence,

$$
\xi_{\underline{i}_{\lambda}, j, j} \xi_{i, i_{\lambda}}-\xi_{\underline{i}_{\lambda}, \underline{k}} \xi_{l, i_{\lambda}}=\xi_{s, i_{\lambda}}-\xi_{t, i_{\lambda}} .
$$

Using the previous paragraph and a weight argument, both terms on the left hand side of this equation act as zero on $L(\lambda)_{\lambda}$. Hence, the term $\xi_{s, i_{\lambda}}-\xi_{t, i_{\lambda}} \in \xi_{\lambda} Q_{0}(n, d)$ on the right hand side acts as zero on $L(\lambda)_{\lambda} \cong U(\lambda)$. But $\xi_{\lambda} Q_{0}(n, d) \cong C(2)$ according to (6.7), so as $U(2)$ is a faithful $C(2)$-supermodule, the non-zero element $\xi_{s, i_{\lambda}}-\xi_{t, i_{\lambda}}$ of $\xi_{\lambda} Q_{0}(n, d)$ cannot act as zero on $U(\lambda)$, a contradiction.

Now observe that for $\lambda \in \Lambda(n, d), \lambda$ lies in $\Lambda_{p}^{+}(n, d)$ if and only if for each $i=1, \ldots, n-1$ $\left(\lambda_{i}, \lambda_{i+1}\right)$ lies in $\Lambda_{p}^{+}\left(2, \lambda_{i}+\lambda_{i+1}\right)$. So by an argument involving restriction to various quotients of $B(n)$ isomorphic to $B(2)$, we have the following corollary of Lemma 9.1:

9.2. Corollary. If $\lambda \in \Lambda(n, d)$ is admissible, then $\lambda \in \Lambda_{p}^{+}(n, d)$.

It remains to prove that every $\lambda \in \Lambda_{p}^{+}(n, d)$ is admissible, i.e. that there does exist some highest weight module of highest weight λ for each $\lambda \in \Lambda_{p}^{+}(n, d)$. We first give a construction of some highest weight modules in the case $p>0$ using a Frobenius twist argument. Recall from earlier in the section that $A(n)$ denotes the free polynomial algebra on generators $\left\{c_{i, j} \mid 1 \leq i, j \leq n\right\}$, viewed as a bialgebra as in the classical polynomial representation theory of $G L(n)[7]$. In particular, we can view $A(n)$ is a bisuperalgebra concentrated in degree $\overline{0}$.
9.3. Lemma. If $p>0$, the unique algebra map $\sigma: A(n) \rightarrow B(n)$, such that $c_{i, j} \mapsto b_{i, j}^{p}$ for all $1 \leq i, j \leq n$, is a bisuperalgebra embedding.

Proof. This is a routine check of relations, similar to that carried out in $[6, \S 2.3]$.
In view of the lemma, there is a natural restriction functor

$$
\operatorname{Fr}: \bmod (A(n)) \rightarrow \bmod (B(n)) .
$$

On objects, Fr is defined by sending an $A(n)$-cosupermodule M with structure map η : $M \rightarrow M \otimes A(n)$ to the $B(n)$-cosupermodule equal to M as a superspace with structure map (id $\otimes \sigma$) $\circ \eta$; we call $\operatorname{Fr} M$ the Frobenius twist of M. On morphisms, Fr sends a morphism to the same linear map but regarded instead as a $B(n)$-cosupermodule map. We note that if M is a polynomial $A(n)$-cosupermodule of degree d, then $\operatorname{Fr} M$ is a $B(n, p d)$-cosupermodule. Also, let $\operatorname{Fr}: X(n) \rightarrow X(n)$ be the linear map determined by $\operatorname{Fr}\left(x^{\lambda}\right)=x^{p \lambda}$ for each $\lambda \in \Lambda(n)$, where $p \lambda$ denotes $\left(p \lambda_{1}, \ldots, p \lambda_{n}\right)$. Then, the formula

$$
\operatorname{ch}(\operatorname{Fr} M)=\operatorname{Fr}(\operatorname{ch} M)
$$

describes the effect of the functor Fr at the level of characters.
9.4. Lemma. Suppose that $\lambda \in \Lambda\left(n, d_{1}\right)$ is an admissible weight, and that $\mu \in \Lambda^{+}\left(n, d_{2}\right)$ is arbitrary. Then, $\lambda+p \mu \in \Lambda\left(n, d_{1}+p d_{2}\right)$ is an admissible weight. Moreover, all non-zero weights of $L(\lambda+p \mu)$ are of the form $\lambda^{\prime}+p \mu^{\prime}$ for $\lambda^{\prime} \leq \lambda$ and $\mu^{\prime} \leq \mu$.

Proof. If $p=0$, there is nothing to prove. Otherwise, by the classical theory, there exists an irreducible $A(n)$-comodule $L^{\prime}(\mu)$ of highest weight μ. Regard $L^{\prime}(\mu)$ instead as an $A(n)$ cosupermodule concentrated in degree $\overline{0}$ (say) and consider the $B(n)$-cosupermodule

$$
M=L(\lambda) \otimes \operatorname{Fr} L^{\prime}(\mu) .
$$

It is a $B\left(n, d_{1}+p d_{2}\right)$-cosupermodule, hence a $Q\left(n, d_{1}+p d_{2}\right)$-supermodule. Its non-zero weights are of the form $\lambda^{\prime}+p \mu^{\prime}$ for $\lambda \leq \lambda$ and $\mu^{\prime} \leq \mu$, and the weight $\lambda+p \mu$ definitely appears as a weight of M. Hence, there exists a highest weight module of highest weight $\lambda+p \mu$, so $\lambda+p \mu$ is admissible. The statement about weights follows because $L(\lambda+p \mu)$ must then be a subquotient of M.

Now we are in a position to complete the classification of admissible weights by a counting argument. Recall the definition of the idempotent ξ_{ω} from $\S 6$.
9.5. Theorem. (i) $\lambda \in \Lambda(n, d)$ is admissible if and only if $\lambda \in \Lambda_{p}^{+}(n, d)$.
(ii) Assuming that $n \geq d$ and $\lambda \in \Lambda_{p}^{+}(n, d)$, we have that $\xi_{\omega} L(\lambda) \neq 0$ if and only if $\lambda \in \Lambda_{p}^{+}(n, d)_{\text {res }}$.

Proof. Recalling Corollary 9.2, we just need to show for (i) that if $\lambda \in \Lambda_{p}^{+}(n, d)$, then λ is admissible. We consider first the case $n \geq d$, and proceed by induction on $d=0,1, \ldots, n$. The result is trivially true in case $d=0$. For $n \geq d>0$, take $\lambda \in \Lambda_{p}^{+}(n, d)$. Suppose first that $\lambda \notin \Lambda_{p}^{+}(n, d)$ res. Then, we can write $\lambda=\lambda_{1}+p \lambda_{2}$ where $\lambda_{1} \in \Lambda_{p}^{+}\left(n, d_{1}\right)$ and $\lambda_{2} \in \Lambda^{+}\left(n, d_{2}\right)$ for some d_{1}, d_{2} with $d=d_{1}+p d_{2}$ and $d_{2} \neq 0$. By induction, λ_{1} is admissible, so we deduce from Lemma 9.4 that λ is admissible, and moreover that $\xi_{\omega} L(\lambda)=0$. But by Lemma 6.3, there are exactly $\left|\mathscr{R} \mathscr{P}_{p}(d)\right|=\left|\Lambda_{p}^{+}(n, d)_{\text {res }}\right|$ non-isomorphic irreducible $Q(n, d)$-supermodules not annihilated by ξ_{ω}. In view of Corollary 9.2 , this means that all $\lambda \in \Lambda_{p}^{+}(n, d)_{\text {res }}$ must both be admissible and satisfy $\xi_{\omega} L(\lambda) \neq 0$, else we end up with too few such modules.

Now suppose that $n<d$ and choose $m \geq d$. Let $e \in Q(m, d)$ be the idempotent defined in (6.4), and also recall the embedding $\Lambda(n, d) \hookrightarrow \Lambda(m, d)$ there. Take $\lambda \in \Lambda_{p}^{+}(n, d)$. Then, viewing λ as an element of $\Lambda_{p}^{+}(m, d)$, we have already shown in the previous paragraph that λ is admissible for $Q(m, d)$, so that there exists an irreducible $Q(m, d)$-supermodule $L(\lambda)$ of highest weight λ. Clearly, $e L(\lambda)_{\lambda} \neq 0$ as $\lambda \in \Lambda(n, d)$. Taking into account Lemma 6.5 and Corollary 2.13, $e L(\lambda)$ is an irreducible $Q(n, d)$-supermodule of highest weight λ.

10 Decomposition numbers

In Theorem 9.5(i) and Lemma 8.4, we have classified the irreducible $Q(n, d)$-supermodules; they are precisely the supermodules $\left\{L(\lambda) \mid \lambda \in \Lambda_{p}^{+}(n, d)\right\}$. Applying Lemma 5.1, we have equivalently determined the irreducible $B(n)$-cosupermodules. Let $\Lambda_{p}^{+}(n)=\bigcup_{d \geq 0} \Lambda_{p}^{+}(n, d)$ denote the set of all p-strict partitions with at most n non-zero parts. Then, we have shown:
10.1. Theorem. The $B(n)$-cosupermodules $\left\{L(\lambda) \mid \lambda \in \Lambda_{p}^{+}(n)\right\}$ give a complete set of pairwise non-isomorphic irreducible $B(n)$-cosupermodules. Moreover, $L(\lambda)$ is absolutely irreducible if and only if $h_{p^{\prime}}(\lambda)$ is even.

Next we turn our attention to constructing the irreducible representations of the Sergeev superalgebra $W(d)$. Let $n \geq d$, and identify $\Lambda_{p}^{+}(n, d)$ with the set $\mathscr{P}_{p}(d)$ of all p-strict partitions of d. Then, $\Lambda_{p}^{+}(n, d)_{\text {res }}$ is identified with $\mathscr{R} \mathscr{P}_{p}(d) \subseteq \mathscr{P}_{p}(d)$. Also let $\xi_{\omega} \in Q(n, d)$ be the idempotent from $\S 6$. For $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$, define the $W(d)$-supermodule

$$
M(\lambda):=\xi_{\omega} L(\lambda)
$$

We should note that this definition is independent of the particular choice of $n \geq d$ up to natural isomorphism (this is proved in a standard way, see e.g. [5, §3.5]). The following result is immediate from Theorem 9.5(ii) and Corollary 2.13:
10.2. Theorem. The modules $\left\{M(\lambda) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d)\right\}$ give a complete set of pairwise nonisomorphic irreducible $W(d)$-supermodules. Moreover, $M(\lambda)$ is absolutely irreducible if and only if $h_{p^{\prime}}(\lambda)$ is even.

In order to obtain a labelling for all irreducible $W(d)$-modules, not just supermodules, we know by Lemma 2.3 that if $M(\lambda)$ is self-associate, it decomposes as $M(\lambda,+) \oplus M(\lambda,-)$ for two non-isomorphic irreducible $W(d)$-modules $M(\lambda,+), M(\lambda,-)$. By Corollary 2.8, the modules

$$
\left\{M(\lambda) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), h_{p^{\prime}}(\lambda) \text { even }\right\} \cup\left\{M(\lambda,+), M(\lambda,-) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), h_{p^{\prime}}(\lambda) \text { odd }\right\}
$$

then give a complete set of pairwise non-isomorphic irreducible $W(d)$-modules.
To pass to the projective representations of the symmetric group, we use the functors F and G from $\S 3$ together with Corollary 3.5. Suppose first that d is even. For $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$, set $D(\lambda)=G M(\lambda)$, an irreducible $S(d)$-supermodule which is absolutely irreducible if and only if $M(\lambda)$ is absolutely irreducible, which is if and only if $h_{p^{\prime}}(\lambda)$ is even. In the case that d is odd, take $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$. If $h_{p^{\prime}}(\lambda)$ is even, we set $D(\lambda)=G M(\lambda)$ as before, giving us a self-associate irreducible $S(d)$-supermodule. If $h_{p^{\prime}}(\lambda)$ is odd, there is an absolutely irreducible $S(d)$-supermodule $D(\lambda)$, unique up to isomorphism, such that $M(\lambda) \cong F D(\lambda)$. Then, recalling Corollary 3.5, we have:
10.3. Theorem. The modules $\left\{D(\lambda) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d)\right\}$ give a complete set of pairwise nonisomorphic irreducible $S(d)$-supermodules. Moreover, $D(\lambda)$ is absolutely irreducible if and only if $d-h_{p^{\prime}}(\lambda)$ is even.

If $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$ and $d-h_{p^{\prime}}(\lambda)$ is odd, we can decompose $D(\lambda) \cong D(\lambda,+) \oplus D(\lambda,-)$ as a direct sum of two non-isomorphic irreducible $S(d)$-modules, and by Corollary 2.8 the modules

$$
\left\{D(\lambda) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), d-h_{p^{\prime}}(\lambda) \text { even }\right\} \cup\left\{D(\lambda,+), D(\lambda,-) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), d-h_{p^{\prime}}(\lambda) \text { odd }\right\}
$$

then give a complete set of pairwise non-isomorphic irreducible $S(d)$-modules. We have thus determined the irreducible projective representations of S_{d} over \mathbb{k}.

The next theorem explains how to obtain the irreducible projective representations of the alternating group A_{d} from these. Let $A(d)=S(d)_{\overline{0}}$. Providing $d>7$, this is up to
isomorphism the only twisted group algebra of A_{d} over \mathbb{k}, other than the group algebra $\mathbb{k} A_{d}$ itself. The following theorem is proved by arguments analogous to the Clifford theory for groups with normal subgroups of index two.
10.4. Theorem. Let $\lambda \in \mathscr{R} \mathscr{P}_{p}(d)$. If $d-h_{p^{\prime}}(\lambda)$ is even, $D(\lambda) \downarrow_{A(d)} \cong E(\lambda,+) \oplus E(\lambda,-)$ for two non-isomorphic irreducible $A(d)$-modules $E(\lambda,+), E(\lambda,-)$. If $d-h_{p^{\prime}}(\lambda)$ is odd, $D(\lambda) \downarrow_{A(d)} \cong E(\lambda) \oplus E(\lambda)$ for a single irreducible $A(d)$-module $E(\lambda)$. The modules

$$
\left\{E(\lambda) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), d-h_{p^{\prime}}(\lambda) \text { od } d\right\} \cup\left\{E(\lambda,+), E(\lambda,-) \mid \lambda \in \mathscr{R} \mathscr{P}_{p}(d), d-h_{p^{\prime}}(\lambda) \text { even }\right\}
$$

then give a complete set of pairwise non-isomorphic irreducible $A(d)$-modules.
10.5. Remark. We have assumed up to now that \mathbb{k} is algebraically closed. In fact, the construction of the irreducible (super)modules of $Q(n, d), W(d), S(d)$ and $A(d)$ that we have described can be carried out in precisely the same way over any field \mathbb{k} of characteristic different from 2 providing only that \mathbb{k} contains square roots of all $\pm 1, \ldots, \pm d$. In fact, any such field is a splitting field for each of the algebras $Q(n, d), W(d), S(d)$ and $A(d)$. This is proved by reducing using a Schur functor argument to the case of $Q(n, d)$, where as explained in the proof of Lemma 8.4,

$$
\operatorname{End}_{Q(n, d)}(L(\lambda)) \cong \operatorname{End}_{Q_{0}(n, d)}(U(\lambda))
$$

If \mathbb{k} contains square roots of all $\pm 1, \ldots, \pm d$, then \mathbb{k} is a splitting field for each of the Clifford superalgebras $C(1), \ldots, C(d)$, hence for $Q_{0}(n, d)$. So the right hand side is then one or two dimensional according to whether $L(\lambda)$ is absolutely irreducible or self-associate, as required to prove that \mathbb{k} is a splitting field.

We conclude with some discussion of decomposition numbers. It is immediate from highest weight theory that the character map ch : $\operatorname{Grot}(B(n)) \rightarrow X(n)$ described at the end of $\S 6$ is an embedding of the Grothendieck ring of the category of $B(n)$-cosupermodules into $X(n)$. Set $L_{\lambda}=\operatorname{ch} L(\lambda)$, for $\lambda \in \Lambda_{p}^{+}(n)$. Then, the elements

$$
\left\{L_{\lambda} \mid \lambda \in \Lambda_{p}^{+}(n)\right\}
$$

of $X(n)$ form a \mathbb{Z}-basis for the image of ch. For $\lambda \in \Lambda^{+}(n)$, Schur's P-function P_{λ} is defined by:

$$
\begin{equation*}
P_{\lambda}=\sum_{w \in S_{n} / S_{\lambda}} w\left\{x^{\lambda} \frac{\prod_{\lambda_{i}>\lambda_{j}}\left(x_{i}+x_{j}\right)}{\prod_{\lambda_{i}>\lambda_{j}}\left(x_{i}-x_{j}\right)}\right\}, \tag{10.6}
\end{equation*}
$$

where S_{λ} denotes the stablizier of x^{λ} in S_{n} and S_{n} / S_{λ} is some choice of left coset representatives. This is the definition from $[16, \operatorname{III}(2.2)]$ (with t there equal to -1 , compare [16, III.8]). For $\lambda \in \Lambda_{p}^{+}(n)$, let

$$
E_{\lambda}=2^{\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor} P_{\lambda} .
$$

The E_{λ} arise naturally as certain Euler characteristics, in an analogous way to the construction in the work of Penkov and Serganova in characteristic 0, see [22, Prop.1] and [23].
(Fuller details in the positive characteristic case will appear elsewhere.) In particular, E_{λ} is an alternating sum of characters of $B(n)$-cosupermodules. Since E_{λ} and L_{λ} have the same leading term $2^{\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor} x^{\lambda}$ plus a linear combination of lower terms lower with respect to the dominance order, it follows easily that

$$
\left\{E_{\lambda} \mid \lambda \in \Lambda_{p}^{+}(n)\right\}
$$

also forms a \mathbb{Z}-basis for the image of $c h$. So we can write

$$
E_{\lambda}=\sum_{\mu \in \Lambda_{p}^{+}(n)} d_{\lambda, \mu} L_{\mu}
$$

for uniquely determined $d_{\lambda, \mu} \in \mathbb{Z}$ with $d_{\lambda, \lambda}=1$ and $d_{\lambda, \mu}=0$ if $\mu \not \leq \lambda$. We will call the matrix $D=\left(d_{\lambda, \mu}\right)_{\lambda, \mu \in \Lambda_{p}^{+}(n, d)}$ the decomposition matrix of $Q(n, d)$ in characteristic p.

Now suppose that (\mathbb{k}, R, K) is a p-modular system with K sufficiently large (specifically, containing square roots of $\pm 1, \ldots, \pm d)$. So, R is a complete discrete valuation ring, K is its field of fractions of characteristic 0 and our fixed algebraically closed field \mathbb{k} of characteristic p is its residue field. The bisuperalgebra $B(n)$ can be defined in exactly the same as in $\S 5$ but over the ground ring R, giving us an R-free R-bisuperalgebra $B(n)_{R}$ such that $B(n) \cong B(n)_{R} \otimes_{R} \mathbb{k}$. Set $Q(n, d)_{R}=\operatorname{Hom}_{R}\left(B(n, d)_{R}, R\right)$ to obtain an R-form of the Schur superalgebra $Q(n, d)$. So, $Q(n, d)_{R}$ is R-free as an R-module and $Q(n, d) \cong Q(n, d)_{R} \otimes_{R} \mathbb{k}$; we will from now on identify the two. Also, set $Q(n, d)_{K}=Q(n, d)_{R} \otimes_{R} K$, the analogous Schur superalgebra over the ground field K. Similarly, we can define an R-form $Q_{0}(n, d)_{R}$ of $Q_{0}(n, d)$, and set $Q_{0}(n, d)_{K}=Q_{0}(n, d)_{R} \otimes_{R} K$. We will view $Q(n, d)_{R}$ and $Q_{0}(n, d)_{R}$ as R-subsuperalgebras of $Q(n, d)_{K}$.

For $\lambda \in \Lambda_{0}^{+}(n, d)$, let $V(\lambda)_{K}$ denote the irreducible $Q(n, d)_{K^{-}}$-supermodule of highest weight λ, constructed as in (8.1). By Sergeev's character formula [25, Theorem 4],

$$
\operatorname{ch} V(\lambda)_{K}=2^{\lfloor(h(\lambda)+1) / 2\rfloor} P_{\lambda}
$$

where $h(\lambda)$ is the number of non-zero parts of λ. Denote the highest weight space of $V(\lambda)_{K}$ by $U(\lambda)_{K}$; this is precisely the $Q_{0}(n, d)_{K}$-supermodule defined as in $\S 6$. Now, the construction of $U(\lambda)_{K}$ can be carried out over R instead, because R contains square roots of each $\pm \lambda_{i}$, giving us a finitely generated R-free $Q_{0}(n, d)_{R}$-subsupermodule $U(\lambda)_{R}$ of $U(\lambda)_{K}$ such that $U(\lambda)_{K} \cong U(\lambda)_{R} \otimes_{R} K$. Let $V(\lambda)_{R}$ denote the $Q(n, d)_{R}$-subsupermodule of $V(\lambda)_{K}$ generated by $U(\lambda)_{R}$. Then, $V(\lambda)_{R}$ is a finitely generated R-free R-module such that $V(\lambda)_{K} \cong V(\lambda)_{R} \otimes_{R} K$. Now set $\bar{V}(\lambda):=V(\lambda)_{R} \otimes_{R} \mathbb{k}$. This gives us a $Q(n, d)$-supermodule such that

$$
\operatorname{ch} \bar{V}(\lambda)=\operatorname{ch} V(\lambda)_{K}=2^{\lfloor(h(\lambda)+1) / 2\rfloor-\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor} E_{\lambda} .
$$

In particular, we deduce:
10.7. Theorem. For $\lambda \in \Lambda_{0}^{+}(n)$ and $\mu \in \Lambda_{p}^{+}(n)$, the decomposition number $d_{\lambda, \mu}$ defined above is a non-negative integer.

One can hope that in fact $d_{\lambda, \mu} \geq 0$ for all $\lambda, \mu \in \Lambda_{p}^{+}(n)$.

Finally, we relate the decomposition matrix D of $Q(n, d)$ for $n \geq d$ to the decomposition matrices of the superalgebras $W(d)$ and $S(d)$. Using the subscript K to indicate that we are working over the ground field K instead of our usual \mathbb{k}, we have irreducible $W(d)_{K^{-}}$(resp. $\left.S(d)_{K^{-}}\right)$supermodules labelled by strict partitions $\lambda \in \mathscr{P}_{0}(d)$, which we denote by $M(\lambda)_{K}$ and $D(\lambda)_{K}$ respectively. By a straightforward extension of Brauer's theory, we can reduce these modulo p to obtain $W(d)$ - (resp. $S(d)$-) supermodules $\bar{M}(\lambda)$ and $\bar{D}(\lambda)$. These are not uniquely determined up to isomorphism, but at least the multiplicities of composition factors are unique. So we obtain well-defined decomposition matrices $D^{S}=\left(d_{\lambda, \mu}^{S}\right)$ and $D^{W}=\left(d_{\lambda, \mu}^{W}\right)$ of $S(d)$ and $W(d)$ respectively, for $\lambda \in \mathscr{P}_{0}(d), \mu \in \mathscr{R} \mathscr{P}_{p}(d)$, determined by the equations

$$
[\bar{M}(\lambda)]=\sum_{\mu \in \mathscr{R} \mathscr{P}_{p}(d)} d_{\lambda, \mu}^{W}[M(\mu)], \quad[\bar{D}(\lambda)]=\sum_{\mu \in \mathscr{R} \mathscr{P}_{p}(d)} d_{\lambda, \mu}^{S}[D(\mu)]
$$

written in the Grothendieck groups of $\bmod (W(d))$ and $\boldsymbol{\operatorname { m o d }}(S(d))$ respectively. The final theorem relates these decomposition numbers to those of the Schur superalgebra $Q(n, d)$:
10.8. Theorem. Let $D=\left(d_{\lambda, \mu}\right)_{\lambda, \mu \in \Lambda_{p}^{+}(n, d)}$ be the decomposition matrix of $Q(d, d)$ in characteristic p, as defined above. Then, for any $\lambda \in \mathscr{P}_{0}(d)$ and $\mu \in \mathscr{R} \mathscr{P}_{p}(d)$,

$$
d_{\lambda, \mu}^{W}=2^{\lfloor(h(\lambda)+1) / 2\rfloor-\left\lfloor\left(h_{p^{\prime}}(\lambda)+1\right) / 2\right\rfloor} d_{\lambda, \mu} .
$$

Moreover, if d is even,

$$
d_{\lambda, \mu}^{S}=d_{\lambda, \mu}^{W},
$$

while if d is odd,

$$
d_{\lambda, \mu}^{S}= \begin{cases}d_{\lambda, \mu}^{W} & \text { if } h(\lambda)-h_{p^{\prime}}(\mu) \text { is even, } \\ 2 d_{\lambda, \mu}^{W} & \text { if } h(\lambda) \text { is even and } h_{p^{\prime}}(\mu) \text { is odd, } \\ \frac{1}{2} d_{\lambda, \mu}^{W} & \text { if } h(\lambda) \text { is odd and } h_{p^{\prime}}(\mu) \text { is even. }\end{cases}
$$

Proof. The Schur functor coming from the idempotent ξ_{ω} can be defined over the ground ring R, using an R-integral version of Theorem 6.2. Using that Schur functors commute with base change, one sees that $\left[\xi_{\omega} \bar{V}(\lambda)\right]=[\bar{M}(\lambda)]$ (equality written in the Grothendieck group). In particular, it follows from this by exactness of Schur functors that $d_{\lambda, \mu}^{W}=d_{\lambda, \mu}$.

Similarly, the functors F from $\S 3$ can be defined over the ground ring R, and F evidently commutes with base change. So in the case that d is even, $[F \bar{D}(\lambda)]=[\bar{M}(\lambda)]$ and $F D(\mu)=$ $M(\mu)$ by Theorem 3.4 over K or \mathbb{k} respectively, hence $d_{\lambda, \mu}^{S}=d_{\lambda, \mu}^{W}$.

Finally, suppose that d is odd. Applying Theorem 3.4 and Lemma 2.9 over K or \mathbb{k} respectively, we have that

$$
\begin{aligned}
& {[F \bar{D}(\lambda)]= \begin{cases}{[\bar{M}(\lambda)]} & \text { if } h(\lambda) \text { is odd } \\
2[\bar{M}(\lambda)] & \text { if } h(\lambda) \text { is even; }\end{cases} } \\
& {[F D(\mu)]= \begin{cases}{[M(\mu)]} & \text { if } h_{p^{\prime}}(\mu) \text { is odd } \\
2[M(\mu)] & \text { if } h_{p^{\prime}}(\lambda) \text { is even. }\end{cases} }
\end{aligned}
$$

The theorem follows from these equations together with exactness of F.

Thus our results show that the decomposition matrices for projective representations of the symmetric group S_{d} can be deduced from knowledge of the decomposition matrix of the Schur superalgebra $Q(d, d)$. In [14], a precise conjecture is made relating decomposition matrices for projective representations of S_{d} to the specialization at $q=1$ of certain polynomials $d_{\lambda, \mu}(q)$ arising as coefficients of the canonical basis of the identity component of the Fock space of $U_{q}\left(A_{p-1}^{(2)}\right)$. Indeed, it appears that for $\lambda \in \mathscr{P}_{p}(d), \mu \in \mathscr{R} \mathscr{P}_{p}(d)$, the integer $d_{\lambda, \mu}(1)$ as defined in [14] should equal the decomposition number $d_{\lambda, \mu}$ of $Q(d, d)$ (as defined above) providing $d<p^{2}$. This statement is essentially a reformulation of the conjecture made by Leclerc and Thibon in [14]. It would be interesting to extend the Leclerc-Thibon construction of the canonical basis of the identity component of the Fock space of $U_{q}\left(A_{p-1}^{(2)}\right)$ to the entire Fock space, as was done in [13] for the case of $U_{q}\left(A_{p-1}^{(1)}\right)$, to obtain a conjectural algorithm for computing $d_{\lambda, \mu}$ for all $\mu \in \mathscr{P}_{p}(d)$.

References

[1] G. E. Andrews, C. Bessenrodt and J. B. Olsson, Partition identities and labels for some modular characters, Trans. Amer. Math. Soc. 344 (1994), 597-615.
[2] G. E. Andrews and J. B. Olsson, Partition identities with an application to group representation theory, J. reine angew. Math. 413 (1991), 198-212.
[3] C. Bessenrodt, A. O. Morris, and J. B. Olsson, Decomposition matrices for spin characters of symmetric groups at characteristic 3, J. Algebra 164 (1994), 146-172.
[4] N. Blackburn, The extension theory of the symmetric and alternating groups, Math. Z. 117 (1970), 191-206.
[5] J. Brundan, R. Dipper and A. Kleshchev, Quantum linear groups and representations of $G L_{n}\left(\mathbb{F}_{q}\right)$, to appear in Mem. Amer. Math. Soc..
[6] S. Donkin, Symmetric and exterior powers, linear source modules and representations of supergroups, preprint, Queen Mary and Westfield College, 1999.
[7] J. A. Green, Polynomial representations of $G L_{n}$, Lecture Notes in Math., vol. 830, Springer-Verlag, 1980.
[8] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[9] J. C. Jantzen and G. M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. 65 (1992), 475-504.
[10] T. Józefiak, Semisimple superalgebras, in: Algebra - some current trends (Varna, 1986), pp. 96-113, Lecture Notes in Math. 1352, Springer, Berlin-New York, 1988.
[11] M. Kashiwara, T. Miwa, J.-U. Peterson and C. Yung, Perfect crystals and q-deformed Fock spaces, Selecta Math. (N.S.) 2 (1996), 415-499.
[12] P. Landrock, Finite Group Algebras and their Modules, Cambridge University Press, Cambridge, 1983.
[13] B. Leclerc and J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, Internat. Math. Res. Notices 9 (1996), 447-456.
[14] B. Leclerc and J.-Y. Thibon, q-Deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), 6163-6176.
[15] D.A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1-64.
[16] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, second edition, OUP, 1995.
[17] Yu I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften 289, second edition, Springer, 1997.
[18] N. J. Muir, Polynomial representations of the general linear Lie superalgebra, Ph.D. thesis, University of London, 1991.
[19] M. Nazarov, Young's orthogonal form of irreducible projective representations of the symmetric group, J. London Math. Soc. 42 (1990), 437-451.
[20] M. Nazarov, Young symmetrizers for projective representations of the symmetric group, Advances in Math. 127 (1997), 190-257.
[21] I. Penkov, Characters of typical irreducible finite dimemsional $\mathfrak{q}(n)$-modules, Func. Anal. Appl. 20 (1986), 30-37.
[22] I. Penkov and V. Serganova, Cohomology of G / P for classical complex Lie supergroups G and characters of some atypical G-modules, Ann. Inst. Fourier 39 (1989), 845-873.
[23] I. Penkov and V. Serganova, Characters of irreducible G-modules and cohomology of G / P for the Lie supergroup $G=Q(N)$, J. Math. Sci. 84 (1997), no. 5, 1382-1412.
[24] I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155250.
[25] A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $G L(n, m)$ and $Q(n)$, Math. USSR Sbornik 51 (1985), 419-427.
[26] A. N. Sergeev, The Howe duality and the projective representations of symmetric groups, Represent. Theory 3 (1999), 416-434.
[27] J. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Advances in Math. 74 (1989), 87-134.
brundan@darkwing.uoregon.edu, klesh@math.uoregon.edu
Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.

[^0]: *Authors partially supported by the NSF (grant nos DMS-9801442 and DMS-9900134).

