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PROJECTIVE RESOLUTIONS AND
POINCARÉ DUALITY COMPLEXES

D. J. BENSON AND JON F. CARLSON

Abstract. Let k be a field lof characteristic p > 0 and let G be a finite group.
We investigate the structure of the cohomology ring H*(G, k) in relation to
certain spectral sequences determined by systems of homogeneous parameters
for the cohomology ring. Each system of homogeneous parameters is associated
to a complex of projective fcG-modules which is homotopically equivalent to
a Poincaré duality Complex. The initial differentials in the hypercohomology
spectral sequence of the complex are multiplications by the parameters, while
the higher differentials are matric Massey products. If the cohomology ring is
Cohen-Macaulay, then the duality of the complex assures that the Poincaré se-
ries for the cohomology satisfies a certain functional equation. The structure
of the complex also implies the existence of cohomology classes which are in
relatively large degrees but are not in the ideal generated by the parameters. We
consider several other questions concerned with the minimal projective resolu-
tions and the convergence of the spectral sequence.

1. Introduction

For a finite dimensional algebra A, any finitely generated module is built
from simple modules by a process of extensions. The process is regulated by a
set of rules which are peculiar to the algebra. In general the rules can be very
subtle and difficult to express in simple terms. Yet, they are recorded completely
in any of several structures associated to the algebra and its module category.
Three such structures are the form and constitution of the projective modules,
the minimal projective resolutions of the simple modules, and the collection of
extension groups Ext^ between simple modules, together with the (Yoneda and
Massey) product information. Of course, there may be difficulties translating
from one structure to another. It may not be easy to construct projective resolu-
tions even with full knowledge of the projective modules. Each of the structures
has both advantages and disadvantages with respect to problems such as com-
putability and interpretation of information. However, it is certainly true that
each of these structures, if understood thoroughly, would provide a complete
picture of the module theory for the algebra.

Each of the structures mentioned above has been studied extensively for many
individual algebras and classes of algebras. We are particularly interested in
group algebras of finite groups. In this case, the amount of information needed
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448 D. J. BENSON AND J. F. CARLSON

to generate the structures is finite in the following sense. If k is a field of char-
acteristic p and G is a finite group then a theorem of Evens [13] says that the
cohomology ring H*(G, k) is a finitely generated A:-algebra. Also if M is a
finitely generated /tG-module then H*(G, M) is finitely generated as a module
over H*(G, k). From this it can be deduced that the minimal projective resolu-
tion of M has a polynomial growth rate. But what do the minimal resolutions
look like? How much information is really needed to generate them?

Although the subject of this paper is the cohomology rings of finite groups,
the roots and motivation lie firmly within the area of representation theory, and
in particular the attempt to understand minimal resolutions. The study grew
out of the authors' work in [3] and [4], where the idea of using a homogeneous
set of parameters to define nitrations on projective resolutions was first devel-
oped. In [4] we showed any module has a projective resolution which has the
minimal polynomial growth rate, and which is formed by repeatedly splicing
together certain finite complexes which are defined by the parameters. However,
in general the resulting resolutions are not minimal, and we are left with the
problem of understanding to what extent projectives may be stripped away to
yield a smaller resolution. In §9 of [3], we answered this question for groups
of p-rank two, provided certain conditions on the chain maps induced by the
parameters are satisfied.

The primary purpose is to set up a framework for dealing with this problem
in general. At present, we should honestly state that we open up more questions
than we answer, but the theory shows some promise in that several extensions
of the results have been obtained since the original manuscript for this paper
was written. The study revolves around the investigation of finite complexes
associated to systems of parameters in the cohomology ring. Each complex
consists only of finitely generated projective modules, and is zero in all but a
finite number of degrees. The complexes satisfy a Poincaré duality, and seem to
encode an enormous amount of information about minimal resolutions, and in
particular about the behaviour of the cohomology ring H*(G, k). We see, for
example, that most finitely generated A:-algebras cannot possibly be cohomology
rings of finite groups. Although we work largely with coefficients in a field of
characteristic p, the reader should notice that, with some modification, many
of the techniques and results are applicable to the more general situation of
cohomology with other coefficients.

After some generalities on chain complexes in §2, we introduce the finite
complex associated to a system of parameters in §3. Using hypercohomology, we
give a new proof in §4 of the basic result of [4], which states that the complexes
consist of projective modules. Each complex looks homologically like a product
of spheres with a free (7-action. This analogy is taken further in §5, where
we prove the Poincaré duality with respect to the top homology class. We
pass from information about the finite complex to information about minimal
resolutions and cohomology by using the hypercohomology spectral sequence.
This is explained in §4, where we also determine enough about the differentials
in the sequence to begin to understand what is happening (Theorem 5.5).

There is one case in which we do obtain very striking and easily statable
results. This is for groups whose cohomology rings are Cohen-Macaulay. Sec-
tion 6 is devoted to this case, and among other things we prove the following.
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Theorem 1.1. Suppose that H*(G, k) is a Cohen-Macaulay ring. Let r be
the p-rank of G, which by a theorem of Quillen [21] is equal to the Krull di-
mension of H*(G, k). So we may choose a homogeneous set of parameters
C\,... , Cr (*•£•> H*(G, k) is a finitely generated algebra over the polynomial
subring k[C\, ... , Cr]) with deg(£¡) > 2. Then the quotient

¿r(G,fc)/(C,,... ,Cr)
satisfies Poincaré duality in formal dimension s = £/=i(deg(C¿) - 1). More-
over, the Poincaré series Pk{t) - £¿>0t' dim*. H'(G, k), regarded as a rational
function of t, satisfies the functional equation

pk(\/t) = (-ty>wpk(t).

One interpretation of this theorem is that the minimal projective resolution
for the trivial module can be constructed by splicing together copies of the finite
complex mentioned above.

Groups with abelian Sylow p-subgroups have cohomology rings which are
Cohen-Macaulay. It also happens for some other groups. However it is impor-
tant to realise that this is far from the generic case. Consider, for example, the
following.

Proposition 1.2. If a finite group G has maximal elementary abelian p-groups
of different ranks, then H*(G, k) is not Cohen-Macaulay.

Hence, in the defining characteristic, the cohomology ring of a finite group
of Lie type is usually not Cohen-Macaulay. The proof of the proposition fol-
lows easily from Quillen's Dimension Theorem [21], which asserts that the ir-
reducible components of the maximal ideal spectrum of H*(G, k) are in one-
one correspondence with the conjugacy classes of maximal elementary abelian
/^-subgroups of G, and that the dimension of each component is equal to the
rank of the corresponding subgroup. The proof is completed by recalling that for
a ring to be Cohen-Macaulay it is necessary for the components of the maximal
ideal spectrum all to have the same dimension (see for example Matsumura [ 17,
Theorem 17.3]). We should notice further that the converse of the proposition
is false. Counterexamples include the semidihedral 2-groups (p = 2), and the
extraspecial groups of order p3 and exponent p2 (for p odd).

Another interpretation of Theorem 1.1 is that if H*(G, k) is a Cohen-
Macaulay ring, then it is a Gorenstein ring (see Stanley [27, Theorem 5.5]).
This is true not just in the usual (ungraded) sense, but in the sense that with the
appropriate degree conventions, the canonical module is isomorphic to the ring
as a graded module. Thus, for example, a polynomial ring is only Gorenstein
in the graded sense if the generators are in degree one (cf. Corollary 6.6).

In the general case, where H*(G, k) is not necessarily Cohen-Macaulay,
we can use the fact that the cohomology of an elementary abelian subgroup is
Cohen-Macaulay to show that at least some part of the finite complex is visible
in the cohomology of the group; namely the element of largest dimension. We
call this element the last survivor. In §7, we prove the following theorem.

Theorem 1.3. If Ci, ••• , Cr isan irredundant homogeneous set of parameters for
H*(G, k) with deg(C/) = n¡ > 2, then the quotient H*(G, k)f{C\, ... , Cr) by
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the ideal generated by Ci, • •• , Cr has a nonzero element in degree]C¿=i(w¿ ~ !)•
This element is a transfer from an elementary abelian subgroup.

To return to the representation theory, in §8 we show how to pass from a
complex of projectives to a filtration on a projective module. In the case of the
complexes introduced in §4, the E2 term of the spectral sequence associated
to this filtration is the Koszul complex. A distillation of the philosophy of the
paper is expressed in this section.

Section 9 discusses some structural questions suggested by our constructions.
We discuss to what extent projective modules may be eliminated from one
version of the complexes described in §4. If the questions have a positive answer,
then the Poincaré series of the cohomology ring is given by a formula described
at the end of the section. There is one situation in which these questions have a
positive answer, which is formulated in the notion of a quasi-regular sequence
in §10.

Finally, in § 11 we show how certain secondary operations expressed in terms
of matric Massey products are related to the differentials in the spectral sequence
of §4.

2. Chain complexes and hypercohomology

In this section we develop some generalities concerning chain complexes over
finite groups. Most of the results in the section are known in some sense, and
those that are not can be easily derived. However the notation and statements
of the results are very important for the sections which follow.

Suppose R is a commutative ring of coefficients and C and D are chain
complexes of left .R-modules, with differentials of degree -1. We define a new
chain complex Hom«(C, D) with

Hom*(C, D)„ = 0 HomR(Ci,Dj)
i+n=j

with differential

d„: HomR(C, D)„ -» Hom«(C, D)„_,

defined so that
dj{f(x)) = (dnf)(x) + (-irf(di(x))

for / e HomR(C; ,Dj). In other words, d„ is defined by

(dnf)(x) = dj(f(x))-(-l)nf(di(x)).
This may be expressed by writing df = [d , f]. With this definition, an element
/ G HomÄ(C, D)o is a map of chain complexes if and only if / is a cycle
(df — 0). Moreover, / and g are homotopic if and only if f - g is a
boundary.

If M is a left i?-module, we write M[n] for the chain complex consisting of
M in degree n and zero elsewhere. We also write M for the complex M[0]
consisting of M in degree 0 and zero elsewhere. If C is a chain complex of left
i?-modules, we write C[n] for R[n] ®Ä C. Namely we have (C[n])¡+n - (C),.
Note that the differential in C[n] is (-1)" times the differential in C.
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The dual of C is the chain complex HomÄ(C, R). Note that the differen-
tial on the dual is given by {d„f){x) = {-l)"~l f(d-n+\(x)). With these sign
conventions, evaluation is a map of chain complexes

HomR(C,R)®RC^R,        f®x^f{x).

Finally, we regard chain complexes and cochain complexes as being the same
thing. Namely, if (Cn, d„) is a chain complex, then setting C" — C_„ and
Ô" = d-n , we have a cochain complex (C , S"). In the end, whether we regard
a particular complex as a chain complex or a cochain complex often depends
on where it came from.

We now discuss Ext for chain complexes. This is sometimes also called
hypercohomology; see for example Cartan and Eilenberg [9].

Definition 2.1. Suppose that C is a chain complex of left .RG-modules, bounded
below. Then a projective resolution of C is a chain complex P of projective left
.RG-modules, bounded below, together with a map of chain complexes P -+ C
which is an isomorphism on homology.

Note that in the case C = M is a module concentrated in degree zero, this
agrees with the usual definition of a projective resolution of a module. Exis-
tence of projective resolutions is easy to prove inductively using the definition
of projective modules. Alternatively, one may tensor C with a projective reso-
lution of the trivial ÄG-module R. The usual comparison theorem holds for
projective resolutions of chain complexes. If R is a field (or more generally a
local ring) then minimal resolutions exist and are unique, in the following sense.
The resolution, as a complex of ÄG-modules, is uniquely determined, but the
augmentation map P —► C is only unique up to homotopy. Minimal resolutions
are characterised by the property that the image of each term is contained in
the radical of the next.

If D is another chain complex of left i?(7-modules, bounded above, we may
define

Ext£G(C, D) = Hn(HomRG(P, D)).

(Note that we are regarding this chain complex as a cochain complex by negating
the degrees.) If I is an injective resolution of D (defined dually to the above
definition) then

HomÄ(P, D) -» Hom/?(P, I) 4- Hom*(C, I)

are homotopy equivalences, and so

Ext£G(C,D)s//"(HomÄC(C,I)).

We write Hn(G, C) for Ext"RG(R, C). Note that

Ext£G(C, D) S Hn(G, HomÄ(C, D)).
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If D is bounded (i.e., bounded both above and below), then maps from P to
D may be lifted to maps to a projective resolution of D. So if E is bounded
above, then composition of maps in Horn gives rise to Yoneda composition

Ext^G(D, E) ® Ext^G(C, D) -» ExtJG(C, E),

which agrees with the usual Yoneda composition in case C, D and E are
modules concentrated in degree zero.   Indeed, this was part of the original
motivation for the definition of the derived category, which is really what we
are using in disguise (see [11, Appendix 1]).

The tensor product map

HomÄG(C, D) ® HomÄC(C, D') - Hom*G(C ® C, D ® D')

gives rise to a cup product map

Ext*G(C, D) ® Ext*RG{C, D') - Ext*G(C ® C, D ® D'),
Ç® r¡y-* ÇUrç.

For convenience of notation, we sometimes also denote the cup product by
juxtaposition.

Lemma 2.2. If C £ Ext£G(C, D), r\ e ExtRG(C, D') then the cup product

CU n e Ext^"(C® C, D® D')
is equal to the Yoneda composite of

C ® idD- e Ext£G(C ® D', D ® D')

and
idc ®n e Ext£G(C ® C, C ® D').

Proof. This follows easily from the corresponding (obvious) statement at the
level of Horn. o

Since tensor products are graded commutative, so are cup products, in the
sense that the following diagram commutes.

Ext£G(C,D)®Ext£G(C,D')    -»    Ext^"(C®C',D®D')

la j>
Ext^G(C,,D')®Ext^G(C,D)   -*   Ext^"(C'®C,D'®D)

But in general Yoneda products are not graded commutative. So Ext^G(C, C)
is in general a noncommutative graded ring and a module over the graded com-
mutative ring H*(G, R) - ExtRG{R, R).

Regarding Hom^C ,1) as a double complex, we obtain a spectral sequence,
called the hypercohomology spectral sequence

(2.3) £f = ExtpRG(Hq(C), D) =» Ext£?(C, D).

Similarly, regarding Hom«G(P, D) as a double complex, we have a spectral
sequence

E™ = ExfRG(C, //_,(D)) => Ext^(C, D).
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Theorem 2.4. Suppose that C and D are chain complexes of left RG-modules.
If HomR(C, D) is a Noetherian R-module (and hence nonzero in only finitely
many degrees) then Ext^G(C, D) is Noetherian as a module over H*(G, R).

Proof. The proof given in Evens [13] for modules generalises directly to chain
complexes. □

Corollary 2.5. If R is a commutative Noetherian ring, and C and D are com-
plexes of left RG-modules, each finitely generated as an R-module, then the ring
Ext^G(C,C) is a finitely generated R-algebra, and Ext^G(C,D) is a finitely
generated Ext^G(C, C)-module.
Proof. It is a finitely generated module over the finitely generated ^-algebra
H*(G, R), and the products are compatible by Lemma 2.2. d

Proposition 2.6. Suppose that k is a field and C has finite total dimension over
k. If Ext£G(C, C) = 0 for all n sufficiently large, then C has a finite projective
resolution.

Proof. If D is another complex of finite total dimension over k, then by
Lemma 2.2 the action of H*(G, k) on Ext£G(C, D) factors as the map

H*(G, k) = Ext*kG(k, k) - Ext£G(C, C)

followed by Yoneda composition. Since Ext£G(C, D) is finitely generated as
a module over H*(G, k) by Theorem 2.4, it is finitely generated as a module
over Ext£G(C, C). The latter has finite total dimension by the hypothesis, and
so Ext£G(C, D) = 0 for all n sufficiently large.

Now let P be the minimal resolution of C. Then for each simple /cG-module
S,

ExtnkG(C,S) = HomkG(Pn,S)

is nonzero for only finitely many n . It follows that P„ = 0 for all but finitely
many n. o

3. From parameters to complexes

In [4], we introduced a construction for projective resolutions using as the
basic building block a certain finite complex of projective modules. These com-
plexes and others, which can be similarly derived, are the main focus of the pa-
per. We present here a summary of the construction and introduce some ideas
and notations which are needed later. The proof we gave that the modules in
the complexes are projective used the machinery of varieties for modules, and
in particular depended on theorems of Quillen [21]. In §4 we give an alternative
proof avoiding this machinery.

The construction goes as follows. Suppose C € H"(G, R) = Ext"RG(R, R)
with n > 2. We choose a cocycle C :ÛnR^> R representing C > where Û"R is
the Mth kernel in a projective resolution P of R as an .RG-module. By making
P large enough, we may assume C is surjective. We denote its kernel by Lj,
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and form the pushout diagram

0 0

1 I
Lr       = Lr

I I
0^   Cl"R   -»      P„_,       -»   P„_2    -»...-»   P0   -   *   -0

if I I I ll
0-        P        -     Pn-i/Lr     -»     P„_2     -»-..-»     P0     ->     *     ->0

I I
0 0

The bottom row of this diagram is an «-fold extension representing the element
C e ExtRG(R, R). We denote by Q the chain complex

0-»PJ,_,/Lc-»P„_2->"--/b-»0

formed by truncating the bottom row of this diagram. Thus we have

«(Ce)»!; ;
if i = 0, « - 1 ,
otherwise.

We write ( for the generator of degree n - 1, and 1 for the generator of degree
zero.

The reason why we demand that deg(Ç) > 2 is that if deg(Ç) = 1 then C{ is
a complex consisting of a single module in degree zero, which is the extension
of R by R corresponding to C ■

The complex Cf should be thought of as a sort of algebraic analogue of a
sphere with G-action, with C being the transgression of the fundamental class
of the sphere.

We also write C^00' for the chain complex

• • • -► A -» P0 -» Pn-l/h - P„-2 -» • • • -» A -> P) -* 0
obtained by splicing together infinitely many copies of Q in positive degree.
It is an exact complex except in degree zero, where the homology is R. This is
the complex used in [4].

Lemma 3.1. Suppose that D ¿s a bounded chain complex of RG-modules. In
the two-row spectral sequence

EP«(C) = ExfRG(HQ(Cr), D) =* Ext&?(Cc, D)

the differential dn is given by

dn(a.C) = a.C e Ep+"'°(C) = Hp+"(G, D).
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Proof We first remark that since Hq(Cç) = R if q = 0 or n - I and is zero
elsewhere, we have

£Mfn= J#P(G,D)   if<7 = 0or«-l,
2 ^'     \0 otherwise.

So the only possible nonzero differential is d„ .
The differential dn may be obtained as follows. We have a short exact se-

quence of chain complexes

0-*C:-*c£o)-»C(foo)[n]-»0,

where [n] indicates degree shift. If P is a projective resolution of R as an
PG-module then we have a short exact sequence

0 - P ® Cr - P ® 0™] -» P ® Ör°°] [n] - 0

and hence a short exact sequence of cochain complexes

0^HomÄG(P ® C[oo), D)[-n] -» HomÄG(P ® cj00*, D)

-HomÄG(P®C{,DH0.

Now P ® CÍ00' is again a projective resolution of R as an PG-module, so
the long exact sequence in cohomology of this short exact sequence of cochain
complexes is

■- - Ext^Cf, D) -» Hr~n(G, D) * /T(G, D) -» Ext^íCc, D)

This is the long exact sequence associated to the above two-row spectral se-
quence, and so the marked homomorphism is d„ .

To identify this map as multiplication by C, we argue as follows. In general,
multiplication by C may be thought of in the following way. A cocycle repre-
senting the element C lifts to a map of projective resolutions P -> P[n]. If
a £ Hr~n(G, D) is represented by a chain map P —► D[r — n] then the product
a.C is represented by shifting and composing

P -* P[h] -♦ D[r].

So all we need check is that the map of resolutions
P®C[oo)-+P®C<oo)[n]

given above represents the element C in cohomology. But this follows from the
diagram

••• -» (P®C[oo))„ -» (P®Cjoo))„_1 -»•••-» (P®C[oo))o - P -0

I
••• - (P®Cjoo))o I I I

I
0   - P -»      P„_i/Lc      -♦••■-> Po ^P^O

since the bottom row is an exact sequence representing C ■ a
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Remark 3.2. There is a way of rewriting the above two-row spectral sequence in
such a way that the two rows are adjacent and the differentials are unchanged.
Namely, we replace the complex Cr by the truncated complex

Bf:0-^P„_i/Lc^P„_2^0
whose homology is k in degree one and i2"_2/c in degree zero.

If C\, ■ ■ ■ , Cr £ H*(G, R) are homogeneous elements of degree > 2, then
we form the complex C = Q, ® • • • ® Cjp. The Künneth formula shows that
Ht(C) has a basis consisting of elements of the form xi ® • • • ® xr where each x,
is equal to either 1 or (,. We also write (, for the element 1 ® • • • ® £,• ® • • • ® 1
of 77* (C). The complex C and the related complex B = Bfl ® • • • ® Bir (see
§8) are among the principal objects of study of this paper.

We are particularly interested in this construction in the following situation.
If P is Noetherian and D is a bounded chain complex of finitely generated
PG-modules, then by Theorem 2.4, H*(G, D) is a Noetherian module for
H*(G, R). We say that elements £i, ... , Cr e H*(G, R) forma homogeneous
set of parameters (h.s.o.p.) for H*(G,T>) if H*(G,D) is Noetherian as a
module for the subring of H*(G, P) generated by C\, ■ ■ ■ , Cr • In case D = P,
we simply speak of an h.s.o.p. for H*(G, P).

In case R = k is a field, the number r of parameters is at least the Krull
dimension of the H*(G, &)-module H*(G, D). Equality holds if and only
if C\, • • ■ , Cr generate a polynomial subring k[C\, ... , Cr] of the quotient of
H*(G, k) by the annihilator of H*(G, D). In this case, we say that C\, ■■■ , Cr
form an irredundent h.s.o.p. The Noether normalisation lemma for Noetherian
graded modules over a finitely generated commutative /c-algebra says that an
irredundent h.s.o.p. always exists. Geometrically, it is the same as saying that
the homogeneous hypersurfaces VG(d) defined by the Ci in the maximal ideal
spectrum VG — max//even(G, k) intersect in the origin, and the number of
hypersurfaces is exactly equal to the dimension of VG.

The reader should beware at this stage that most texts on commutative alge-
bra assume strict commutativity xy = yx. In our situation we have the sign
conventions xy = (-l)de^x)de^y)yx. One can check that the usual theorems
of commutative algebra are also true in this situation after trivial alterations to
the proofs.

4. The hypercohomology spectral sequence

Let d, ... , Cr be an h.s.o.p. for H*(G, k) with deg(C) = «, > 2. We
assume for convenience that the «, are even if p is odd, since in this case
elements of odd degree square to zero. We set C = Cf, ® • • • ® Cçr as in the last
section.

Suppose that D is a bounded chain complex of finitely generated kG-
modules. Then from (2.3) we have a hypercohomology spectral sequence

E? = ExtpkG(Hq(C), D) => Ext^(C, D).

In this spectral sequence, the E2 page is a tensor product

Pf s Hp(G, D)®Hg(Homk(C, k))
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and H*(Homk(C, k)) is an exterior algebra A*(Ci, •■• , Cr) on classes Ci of
degree n¡ - 1.

It should be remarked that in many cases the spectral sequence admits a
product structure. Suppose that the complex C admits a diagonal approxima-
tion C -> C ® C. There is always a diagonal approximation on a projective
resolution of k. Hence the spectral sequence with D = k (concentrated in
degree zero)

Hp(G, k) ® /f«(Homjfc(C, k)) => Hp+<1 (HomkG(C, k))

has a ring structure over which the spectral sequence

Hp(G, D)®Hq(Homk(C, k)) =* Hp+q(RomkG(C, D))
is a module.

In §5 it is shown that C satisfies Poincaré duality of formal dimension s =
Z)/=i("; - 1) > so that instead of using C^ we may use HomrC(Cf/, k)[n¡ - 1].
This turns out to be more convenient from the point of view of the diagonal
approximation. This is because while C^ usually does not admit a diagonal
approximation, it was shown in [7] that Homfc(Cfi, k)[n¡ - 1] admits a diag-
onal approximation for which the augmentation is a counit if and only if £¡
annihilates Exi*kG(L^ , Lí¿). By tensoring and using Poincaré duality, we ob-
tain a diagonal approximation C -> C ® C. It is also shown in [7] that as long
as p is odd, Ci always annihilates Exl*kG(L^., Li;), so that the above spectral
sequences have a multiplicative structure. For p = 2, the situation is less clear.

Now we can use the maps of spectral sequences

EP9(Ci)=    ExtPkG(Hq(Cr,),k)    =*    ExtPkG9(Cr,,k)

I I
EP«=    ExtpkG(Hq(C), k)    =►     Extpk+Gq(C,k)

to see, using Lemma 3.1, that dni(Ci) = d in E**. In the case where the spec-
tral sequence has a multiplicative structure, this determines the differentials on
all elements of P» *, and shows that the spectral sequence is a sort of staggered
version of the Koszul complex, together with possibly some further differen-
tials. See Serre [25, Chapter IV], Matsumura [17, §16], or Carlson [8, §2] for
discussions of the Koszul complex. We may make this into an actual Koszul
complex without any staggering by using Remark 3.2. Namely, instead of C
we use the complex B = Bj, ® • • • ® Bir. In this case, we have Ci €£2*'' and
di(Ci) = Ci: e E*2 '°, so that in this case

E¡'j = TorfK'•■ 'U(R, H*(G, R)).
In particular, if H*(G, R)/(C\, ■■■ , Cr) is a finitely generated P-module then
Pj* is also a finitely generated P-module and hence so also is P" . See §8 for
more details.

Even when a spectral sequence such as given above does not have a multi-
plicative structure, it still has the structure of an H*(G, Â:)-module, and much
of the same information can be obtained about the differentials by considering
maps of spectral sequences as follows. Suppose as above that D is a bounded
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chain complex of PG-modules. Then we have maps of spectral sequences

Ep"= ExtpkG(Hq(C),D) => Ext^(C,D)

î Î
Pf (£,,... , Ci,) =ExtpkG(Hq(Cí¡] ® ■ ■ • ® CC/(), D)=*Ext>G'(Cc. ® • • • ® CC/(, D)

I Ï
Ep'"-e(Ci,) =        ExtpkG(Hq_e(Cr¡i), D)        => Ext^(C{. , D)

(where £ = J2'j=\(nij ~ !))• They are derived from the maps of complexes

c^cc.®---®cf. «-cy/].
We deduce from this that if a.Ci, ■ • ■ Ci, survives to E„t then the coefficient of
C¡, • • • C¡,_, in dn,(ot-Ch ■ ■ -Cu) is a&,, with the appropriate sign, as required.

Theorem 4.1. Suppose that R is a field, or the ring of integers in an algebraic
number field, or one of its localisations or completions. If C\, ■■■ , Cr is an
h.s.o.p. for H*(G, P) with deg(£;) = n, > 2, then the tensor product

C = (g)CCi

of the above complexes is a bounded complex of projective modules.
Proof. Since the tensor product of any module with a projective module is
projective, all the modules in C except possibly ®¿=1 P^/Lç. = Cs, s =
Y?i=i(ni - 1), are projective. The latter is at least projective as an P-module.
By [10, Theorem 78.1], it suffices to prove the theorem in case P = k is a field.
Since kG is self-injective, it is enough to demonstrate that C has a finite projec-
tive resolution. So by Proposition 2.6 it suffices to prove that Ext£G(C, C) = 0
for n sufficiently large.

We start by showing that Ext£G(C, k) = 0 for n sufficiently large. Consider
the spectral sequence

Ep2q = ExtpkG(Hq(C), k) =* Ext£+?(C, k).

The map C —» C^ given by using the augmentation Cj, —► k for j ^ /' gives
rise to a map of spectral sequences to the above spectral sequence from

Pf (C) = Ex\pkG(Hq(Crt), k) => Ext£+*(CCi, k).
The latter spectral sequence was examined in Lemma 3.1, where it was shown
that the differential dn¡ is given by dn.(a.C¡) = a.d ■ It follows that the same
formula holds in the original spectral sequence Epq .

Now P|* is finitely generated as a module over Ef = H*(G, k) by ba-
sis elements in E%* (which is dual to //»(C)). Since the differentials are
p2°-module homomorphisms, it follows that P^ is also finitely generated
as a module over P|°. The discussion preceding the theorem shows that
C\, ... , Cr act as zero on E£ , and so P¿£ is finitely generated as a module
over H*(G, k)l(C\, ... , Cr) ■ Since H*(G, k) is finitely generated as a module
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over the subring generated by C\, ■ ■ ■ » Cr, the quotient by the ideal generated
by C\, ■ ■ ■ > Cr is finite dimensional. It follows that P^ is finite dimensional,
and therefore so is Ext£G(C, k).

Finally, the spectral sequence

Ext£G(C,//_,(C))^Ext£G«(C,C)

has as its E2 term a finite number of nonzero rows each isomorphic to
Ext£G(C, k). Thus the P2 term is finite dimensional, and so is Ext£G(C, C).
This completes the proof, d

More generally, we have the following.

Theorem 4.2. Suppose that R is a field, or the ring of integers in an algebraic
number field, or one of its localisations or completions. Suppose that D is a
bounded complex of finitely generated RG-modules, and C\> ••• , Cr £ H*(G, R)
form an h.s.o.p. for Ext^G(D, D) with deg(£¡) = n¡ > 2. Then letting C -
<S>/=i Cf¡ - tne complex C ® D is homotopy equivalent to a bounded complex of
finitely generated projective modules. In particular, if D = M[n] is a module
concentrated in a single degree, then C ® D is a bounded complex of finitely
generated projective modules.
Proof. This theorem is proved in the same way as before. That is, we get it by
reducing to the case where P = k is a field, and using the spectral sequences

Ext£G(/i,(C),D'®D)    =►   Ext£G«(C,D*®D)

\\l 111
ExtpkG(Hq(C) ® D, D)    =>    Ext£G" (C ® D, D)

and

Ext£G(C®D®D*,/7_i?(C))   =>   Ext£G9(C®D®D*,C)

Ext£G(C®D,//_9(C)®D)     =*•    Ext£G?(C®D,C®D).       d

The following is in a similar vein, and will be used in §10.

Theorem 4.3. Suppose that k is a field, D is a bounded complex of finitely gen-
erated kG-modules, and C\, ■■■ > Cr is an h.s.o.p. for H*(G, D) with deg(d) =
n, > 2. Then letting C = (g)¿=1 C^., we have

H*(G, Lx ® • • • ® Lr ® D) = Ext^G(C, D) = 0,

where L¡ is the cokernel of the injective map Q~n'(Ci) : k —> Q~n'(k).
Proof. It follows as in the last two theorems from the spectral sequence

Ext^G(P/i(C),D)^Ext^(C,D)

that Ext£G(C, D) is nonzero in only finitely many degrees. Therefore, as in [5]
Theorem 1.1, Ext£G(C, D) = 0. Since Q(L,-) is the only nonprojective module
in the complex CJ., and H*(G, C* ® D) = Ext£G(C, D) = 0, it follows that
H*(G, Lx ® ■ • • ® Lr ® D) = 0. d
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5. Poincaré duality

In this section, it is shown that if C\ > • •• > Cr is a homogeneous set of param-
eters for H*(G, k), then Q, ® • • • ® C\r is homotopy equivalent to its dual,
suitably shifted in degree. We use the notation of §3. However, throughout
this section the coefficient ring P = k is a field of characterestic p, and hence
we can assume that the projective resolution of A: as a fcG-module is minimal.
This implies that the kernels £ln(k) have no projective submodules.

We begin with a general lemma about homotopy equivalences.

Lemma 5.1. Suppose C and D are bounded chain complexes of finitely gener-
ated projective kG-modules, and f : C -> D is a chain map. Then the following
are equivalent.

(i) / : C —» D induces an isomorphism in homology f : //»(C) ^ //»(D).
(ii) / is a homotopy equivalence.
(iii) There exist decompositions C = C © P', D = D' © Q', where P' and

Q' are exact sequences of projective modules, and the restriction of f to C is
an isomorphism f: C -^ D'.
Proof It is clear that (iii) => (ii) => (i), so we shall prove that (i) => (iii).
Suppose /: C —> D induces an isomorphism in homology. By adding an exact
sequence of projective modules Q to C we may make / surjective, and still a
homology isomorphism. Denote by P the kernel of /: C © Q —» D. The long
exact sequence in homology shows that P is an exact sequence of projectives.
Since projective A;G-modules are also injective, P is a bounded exact sequence
of injectives, and hence injective as a complex. So the sequence

0^P^C©Q^D^0

splits, and C © Q = D © P. The result now follows from the Krull-Schmidt
theorem for finite chain complexes of finitely generated &G-modules. o

Now if C € H"(G,k) is represented by a cocycle C '■ &"k —► k, we may
dualise to obtain a map C* '■ k —► £l~nk . Applying Q" , we get a map Q"(C*) :
Çïnk —> k . The relationship between this homomorphism and the original map
C is given in the following proposition.

Proposition 5.2. If CeH"(G, k) then

çin(C*) = (-i)^n+l^2C-

Moreover there is a map of chain complexes

0^   P„_i/Lc   -   P„_2   ->...->     Px     -* P0 ^0
II II

0- P0* ->/>,•->...->     P;_2     -»     (Pn^/Lr)*     -0

inducing an isomorphism on homology.
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Proof We build a commutative diagram

O-» Qnk -» P„_i

li*®l |f*®i
0^   &-nk®Qnk -»   Q-"ä:®P„_i

Ir I

P0 -»      Jfc      -»O
IC-oi |i*

fi-"Â:®Po ->   ß""^   -0
I II

0 P* P*rn-\ a~nk ^o

In this diagram, the bottom set of vertical arrows has been filled in using the fact
that both rows are exact sequences of projective modules, except at the ends,
and y is obtained by restricting the previous map. Now modulo maps which
factor through a projective module, there is only one dimension of maps from
fí,~nk®Cl"k to k. It follows that y is some multiple, A„.ev, of the evaluation
map (regarding Q~nk as the dual of Q"k). So the composite of the left-hand
vertical maps in the above diagram is Q"((*), and we have

£2"(n = A„.evo(C*®l) = A„.C.
(There are no nonzero maps from £lnk to k which factor through a projective
module.)

It remains to determine the constants Xn . Since the restriction of Qnk to a
subgroup H of G is Clnk © (projective) and the entire construction commutes
with restriction, it suffices to restrict to a cyclic subgroup of G of order p =
charfc and evaluate A„ there. By restricting from Z/pxZ/p to Z/p , it suffices
to determine the Xn for Z/p x Z/p. The cohomology of this group has the
property that there are nontrivial products Hm x H" -> Hm+n for every pair
of positive integers m and n .

Since the map C *-> A„.£ is an antiautomorphism of H*(G, k) (duality re-
verses Yoneda composition) we have

so that
hm*-n = (— 1)     Xm+n.

It remains only to determine X\. We leave to the reader the easy exercise of
showing that k\ = — 1. Then by induction A„ = (-l)"("+1)/2 t as desired.

To prove the second statement of the lemma, we observe that the left-hand
map, y o (C* ® I) = (-l)"("+1)/2^, in the above diagram has kernel L^, while
the right-hand map C* has cokernel L£ , and so by passing to the appropriate
quotient on the top row and subcomplex on the bottom row, we obtain a map
of complexes

O^Â:
(_iyi(»+i)/2 |

O^k

Pn-l/Lr

I
p*

rn-2

I
P
I

p:n-Z

Po

I
(Pn-l/kY

0

and hence the required homology equivalence, d
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Theorem 5.3. Suppose that Ci,... , Cr is an h.s.o.p. for H*(G, k) with deg(£¡)
= n¡ > 2. Then the complex C;, ® • ■ ■ ® Cjr is a direct sum of a complex C
satisfying Poincaré duality in formal dimension s = 23¿=i(w< ~~ *) -

Homk(C',k)[s]^C

and an exact complex P' of projective modules.
Proof. By the proposition, we have homology equivalences

Homfc(C{j,, k)[m - 1] -* CCj.

Putting these together, we obtain a homology equivalence

Homk(C,k)[s]^C.

By Theorem 4.1, C is a finite complex of projective modules, and so the theo-
rem now follows by applying Lemma 5.1. d

Corollary 5.4. If S is a simple kG-module and C and s are as in the theo-
rem, then the Poincaré series ps(t) - ]>]¿=0 f'dim^. HomfcG(C,, S) satisfies the
equation tsps(i/t) = Ps'(t) ■

We now summarise what we have established so far about the hypercohomol-
ogy spectral sequence of the complex C.

Theorem 5.5. Suppose that Ci > • • • , Cr is an h.s.o.p. for H*(G, k) with deg((¡)
= n¡ > 2. Then the complex C = Cj, ® ■ • ■ ® Cif = C © P' is a finite complex
of projective modules with cohomology an exterior algebra

H*(Homk(C, k)) = H*(Romk(C,k)) = A*(Cl.Cr)

with deg(C/) = M, - 1.   The complex C satisfies Poincaré duality in formal
dimension s = £]¿=1(m¡ - 1), and P' is a split exact sequence of projectives.

There is a spectral sequence with

E?=H*(G,k)®h*(Cx,... ,Cr)

and converging to H*(HomfcG(C, k)), which also satisfies Poincaré duality in
formal dimension s. In this spectral sequence we have dn.(Ci) = d ■

If char k is odd, then the above spectral sequence has a multiplicative structure
(but see also §3 for a discussion of the remaining case).

Further information about the differentials in this spectral sequence is given
in§ 11.

6. The Cohen-Macaulay case

We begin with a brief review of Cohen-Macaulay rings.

Definition 6.1. Suppose that A — ©„>0^n is a finitely generated graded com-
mutative Ä:-algebra, and M = 0„>o Mn is a (nonzero) finitely generated graded
^-module. A sequence C\, ■■■ , Cr of homogeneous elements of degree n, > 0
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in A is said to be a regular sequence for M if for each i = I, ... , r the map

Mn/Mn n (Cx,... , d-i)M -> Mn+n(/Mn+n¡ n (Ci,... , d-\)M
induced by multiplication by Ci is injective, for all n . Note that we are not
asking that Mn/Mn n (C\, ... , i,-_i)Af be nonzero.

The depth of M is the length of the longest regular sequence. M is said
to be Cohen-Macaulay if its depth is equal to its Krull dimension. The ring
A is said to be Cohen-Macaulay if it is Cohen-Macaulay as a module over
itself. This is equivalent to the condition that there is a polynomial subring
k[C\,... , Cr] Q A generated by homogeneous elements Ci, such that A is a
finitely generated free module over k[C\, ... , Cr]■

The following theorem is proved in Serre [25, p. IV-20, Theorem 2]; see
also Stanley [26, Proposition 3.1]. Actually the proof given in Serre [25] is
for strictly commutative local rings, but the proof carries over verbatim to the
graded commutative case.
Theorem 6.2. Suppose that A is a finitely generated graded commutative k-alge-
bra. Then the following are equivalent.

(i) There exists a polynomial subring k[C\, ... , Cr] ç A generated by ho-
mogeneous elements Ci • such that A is a finitely generated free module over
k[Ci,... ,Cr]-

(ii) For every polynomial subring k[Ci, ... , Cr] Q A generated by homoge-
neous elements C¡, such that A is finitely generated as a module over
k[Ci, ... , Cr] (i-e-, C\, ■ • • , Cr is an h.s.o.p. for A), A is a free module.

If P is an elementary abelian p-group then H*(E, k) is Cohen-Macaulay.
Quillen's calculations [23] show that the cohomology rings of general linear
groups at primes other than the natural one are Cohen-Macaulay, and his
work on extraspecial 2-groups [22] shows that these also have Cohen-Macaulay
cohomology rings. If G is a semidihedral 2-group then H*(G, k) is not
Cohen-Macaulay (see Evens and Priddy [14]). Also, if G is a split meta-
cyclic p-group with p odd, then usually H*(G, k) is not Cohen-Macaulay (see
Diethelm [12]).

It is interesting to note that, until recently (see [1]), in every example which
had been computed, H*(G,k) was Cohen-Macaulay whenever G was simple.
This is not a general fact because, as noted in the introduction, the Cohen-
Macaulay condition requires that all irreducible components of the maximal
ideal spectrum of H*(G, k) have the same dimension. Hence if G is any
group having maximal elementary abelian /7-subgroups of unequal ranks, then
H*(G, k) is not Cohen-Macaulay.
Theorem 6.3. Suppose that H*(G, k) is Cohen-Macaulay, and that C\, ■■■ , Cr
is an irredundant h.s.o.p. with deg(Ç,) = n,■ > 2. Then the quotient

H*(G,k)/(Cu... ,Cr)
satisfies Poincaré duality with formal dimension s = £-=1(«; - 1).
Proof. Let C = Cfl ® ■ • ■ ® CCr = C © P' as in Theorem 5.3. Then by Theo-
rem 5.5 we have a spectral sequence with

E?=H*(G,k)®A*(Ci,... ,Cr).
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In §3, we described enough differentials in this spectral sequence to be able to
identify it with a staggered version of the Koszul complex for H*(G, k) as a
module over k[C\, ... , Cr]- Since H*(G, k) is Cohen-Macaulay, it is a free
module over k[C\, ... , Cr], and so the £«, page of this spectral sequence is the
quotient H*(G, k)/(Ci, ... , Cr) concentrated along the bottom row. It follows
that we have an isomorphism

H*(G,k)/(d,... ,Cr)^H*(HomkG(C,k)),
so that this quotient of the cohomology ring satisfies Poincaré duality with for-
mal dimension s = ]C/=i(w/ _ 1) • °

Remark 6.4. The proof of this theorem also shows that if D is a bounded chain
complex of fcG-modules with the property that H*(G, D) is Cohen-Macaulay
as a module over H*(G, k), then

H*(G, D)/(C,, ... , Cr) = H*(HomkG(C, D)).
Corollary 6.5. Suppose that H*(G, k) is Cohen-Macaulay, and that Ci, ■■■ > Cr
is an irredundant h.s.o.p. with deg(£,) = n¡■> 2. Then the Poincaré series

Pk(t) = Y/t'dimkH'(G,k)
i>0

is of the form p(0/ll/=i(l ~~ *"')> where p(t) is a polynomial satisfying p(t) =
tsp(\/t) where s = £i=i(n« - 1). As rational functions of t, we have

PkiMt) = (-typât).
Proof Basis elements of the fc-vector space H*(G, k)/(C\, ... , Cr) may be
lifted to give free generators of H*(G, k) as a module over k[C\, ... , Cr]■ So
the Poincaré series Pk(t) is of the form p(t)/ IX=i(1 _ **') > where p(t) is the
Poincaré series (polynomial) of H*(G, k)/(C\, ... , Cr) •

By the above theorem, H*(G, k)/(C\, ... , Cr) satisfies Poincaré duality with
formal dimension s = J2ri=l(n¡ - 1), and so we have tsp(l/t) — p(t). This
means that

* (j) =p (j) ■ n izW=^w. n ^=(-typk(t). u
x     y X     '      i=\ 1=1

Remark. By a theorem of Quillen [21], the integer in the above theorem, namely
the Krull dimension, r, of H*(G, k), is equal to the p-rank rp(G).

Corollary 6.6. If H*(G, k) is a polynomial ring, then chark = 2, the generators
are in degree one and G/0(G) is an elementary abelian 2-group (here, 0(G)
denotes the largest odd order normal subgroup of G).
Proof. If H*(G, k) = k[C\, ... , Cr] with deg(£¡) = «, then the Poincaré series
is

pk(t) = i/fl(i-ni=\
and so

pk(i/t) = (-tr+-+n'Pk(t).
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It thus follows from the above theorem that «i + • • • + nr — r, so that each
n,■= 1. In odd characteristic, elements of degree one square to zero, so
char k = 2. Moreover, examining Hl(G, k), we see that G has an elementary
abelian quotient P with the property that inflation H*(E, k) -» H*(G, k) is
an isomorphism, so the kernel has odd order, d

We finish this section by showing that for H*(G, k) to be Cohen-Macaulay
it is sufficient (but not necessary) for the cohomology of the Sylow /^-subgroup
to be Cohen-Macaulay. The following lemma is well known.

Lemma 6.7. Let P be a Sylow p-subgroup of G. Then
resG,P:H*(G,k)^H*(P,k)

is injective, and makes H*(P, k) into a finitely generated H*(G, k)-module,
which has H*(G, k) as a direct summand.
Proof. This follows from the fact that the transfer map

tvP>G:H*(P,k)^H*(G,k)
satisfies

(i) resG,p(tr/>,G(x)) = |G:P|x
(ii) x.trP¡G(y) = trPiG(resGj/>(x).};)

for x £ H*(G, k) and y £ H*(P, k). Finite generation follows from Evens'
theorem (cf. Theorem 2.4) and the fact that the Shapiro isomorphism

H*(P,k)^H*(G,kpf)
is an isomorphism of H*(G, fc)-modules, where kp 1G is the permutation mod-
ule for G on the cosets of P. a

Proposition 6.8. Let P be a Sylow p-subgroup of G. If H*(P ,k) is Cohen-
Macaulay then so is H*(G, k).
Proof. We may choose the polynomial subring k[C\, ... , Cr] Q H*(P, k) of
part (ii) of Theorem 6.2 to lie inside H*(G, k), by the lemma. Thus H*(G, k)
is a direct summand of a finitely generated free module over k[Ci, ... , Cr] and
is hence free, o

Remark. The converse of this proposition is not true. For example, the Sylow
2-subgroup of M\\ is a semidihedral group of order 16, whose cohomology in
characteristic two is not Cohen-Macaulay (Evens and Priddy [14]), whereas the
cohomology of Mn in characteristic two is Cohen-Macaulay, see [3].

Corollary 6.9. If a Sylow p-subgroup P of G is abelian then H*(G,k) is
Cohen-Macaulay.

7. The last survivor

In this section we prove Theorem 1.3. The idea is that the top degree ele-
ment in the cohomology of HomfcG((g)¿=1 C{(, k) lifts to a nonzero element of
H*(G, k), which we think of as the "last survivor" of the cohomology of this
finite complex.

So let C\, ■■■ , Cr be an irredundant h.s.o.p. for H*(G, k) with deg(d) =
n¡; > 2, and let C = Q, ® • • • ® C^r be the finite complex of projective modules
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discussed in Theorem 5.5. Let P be a projective resolution of k as a kG-
module. Since P is exact and C consists of projective modules, there is a
chain map C —> P inducing an isomorphism in degree zero homology (the
degree zero homology of both complexes is k), and any two such maps are
chain homotopic. So if D is a bounded complex of /cG-modules, we obtain a
well defined map

e: H*(HomkG(P, D)) =H*(G, D) -» H*(HomkG(C, D))

which is the horizontal edge homomorphism of the spectral sequence

Ef = ExtpkG(Hq(C), D) => H*(HomkG(C, D))

that was discussed in §4. The map e commutes with restriction to subgroups.
We saw in §6 (see Remark 6.4) that if H*(G, D) is Cohen-Macaulay as a

module over H*(G, k) then the P^ page of this spectral sequence consists of
the quotient H*(G, D)/(£i, ... , Cr) concentrated along the bottom row, and
so the edge map e is surjective in this case.

We may interpret this as follows. Write C as C © P', where P' is an
exact sequence of projective modules and C has no summands which are exact
sequences of projective modules (so that according to §5, C is self-dual). Then
for S a simple /cG-module we have

#*(Hom*G(C, S)) ^ HomkG(C,S).

If P is a minimal resolution of k then

H*(G,S) = HomkG(P,S).

Thus if H*(G, S) is a Cohen-Macaulay module of Krull dimension r over
H*(G,k) for each simple /cG-module S in the principal block, the edge ho-
momorphisms

HomfcG(P,S)-HomfcG(C',S)
are all surjective, and so the original map of complexes C —> P is injective. We
have thus proved the following embeddability theorem.

Theorem 7.1. Suppose that for each simple kG-module S in the principal block
ofkG, H*(G,S) is a Cohen-Macaulay module of Krull dimension r = rp(G)
over H*(G,k). For an irredundant h.s.o.p. Ci,--- , Cr in H*(G,k) with
deg(C¡) = n¡ > 2, we express C = Cj, ® • • • ® Cir as a direct sum C © P',
where P' is an exact sequence of projective modules and C has no summands
which are exact sequences of projective modules. Then there is an embedding of
C in the minimal resolution of k as a kG-module, which induces an isomor-
phism on Ho.

Remark. The hypothesis of this theorem fails to hold if H*(G, S) has Krull
dimension smaller than that of H*(G, k). For example, if G = SL(2, 4) = A5
and char(/c) = 2, then the simple modules in the principal block are k, M
and N, with dimfc(M) = dimk(N) = 2 and with projective covers Pk, Pm
and Pv •  If we take Ci  and Cz to be nonzero elements of degrees two and
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three, then C is as follows

0 -» Pk - PM®Pn -»Pm®Pn -* Pk -* 0,
whereas the minimal resolution is of the form

-► P* - Pii/ © Pjv -» P* - 0.
All of this can be verified using diagrams [3].

Now suppose that Ci, ■■■ , Cr is an irredundant h.s.o.p. for H*(G, k) with
deg(C) = n, > 2, and let C = Cj, ® • • • ® Qr as above. By Quillen's theo-
rem [21] on nilpotent elements in H*(G, k), if P is an elementary abelian
p-subgroup of G of maximal rank, restriction to E is injective on the subring
k[C\, ... , Cr] of H*(G, k). Since H*(E, k) is Cohen-Macaulay, it follows
that if we set C[e= C © P' as above, then C embeds in the minimal resolution
of k as a /cP-module.

Now in degree 5 = £/=i(w' - 0> ^(Hom^G(C, Ac)) is one dimensional,
and so we have a canonical map

y: HS(G, k) ^ Hs(HomkG(C, k)) " fe.

By Täte duality, this corresponds to an element

y(Ci,... , Cr) e Ä-'-^G, *) = Hom*(/P(G, fc), fc).
The above discussion shows that

resGtEy(C\,... , Cr) = y(resGj£(Ci), ... , resG>£(Cr)) ¿ 0

in H~s-l(E, k), and hence y(Ci, ... , Cr) ̂  0 in H~s-l(G, k). Since the
edge homomorphism e, and hence also the map y, factors through
H*(G, k)/(C\, ... , Cr), it follows that there is a nonzero element of degree
s in H*(G, k) not in the ideal generated by Ci, • • • , Cr ■ Moreover, since the
Täte dual of restriction is transfer, this nonzero element may be taken to be a
transfer from H*(E, k). This completes the proof of Theorem 1.3.

In fact in the Cohen-Macaulay case, the element y(C\, ■■■ , Cr) 6
H~s~l(G, k) described above determines the ideal (Ci, • • • , Cr) of H*(G, k),
as we now prove.

Theorem 7.2. Suppose that H*(G, k) is Cohen-Macaulay, and that Ci, • • • , Cr
is an irredundant h.s.o.p. Let C = Q, ® • • • ® Cjr. Then

//»(Hom,G(rC,C))Sy(C,,... ,Cr)f)H*(G,k)

(capproduct). If C\, ■■■ , C'r is another irredundant h.s.o.p. with

y(Cl,...   ,Cr) = y(C[,...   ,C'r)
then setting D = C? ® • • • ® Cj<, we have isomorphisms

H.(HomkG(k, C)) a H.(HomkG(k, D)),
H*(HomkG(C, k)) Si H*(HomkG(D, k)),

and the ideals (Ci, • • • , Cr) and (C[, ■■■ , C'r) are equal.
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Proof First note that y(C) = y(C\, ... , Cr) is a class in H-S~\G, k) s
HS(G, k), and that cap product is the map HS(G, k) x H'(G, k) -* Hs-t(G, k)
for s < t induced by cup product in Täte cohomology. Let P be the minimal
projective resolution of k as a /cG-module. Set C = C © P' with P' an exact
sequence of projective modules and C having no summands of this form. Then
there is a map C -> P which induces an isomorphism in H0. Moreover, by
the same argument as used in the proof of Theorem 7.1, <f>* : HomfcG(P, k) -♦
Hom,tG(C', Ac) is surjective. The dual Homfc(P, k) is the minimal injective
resolution of k and we have a map </>*: Hom^(P, k) —> Komk(C, k) which
is a surjection on G-fixed points. Let y/ be the composite map

Homfc(P, k)[s] £ Hom^C, k)[s] 4 C & P

where s = 52¿=1(deg(C¡) - 1) and 6 is the isomorphism given in Theorem 5.3.
Now the homology of Hom¿.(P, k) is given by the dual e* of the augmentation
in degree zero. Now y/ o e* is a nonzero multiple a.y(C), so the map

H'(G,k) -^ Hs-t(G,k)
II? II'

H_t(HomkG(P,k))    -^   Hs_t(HomkG(k,P))

is cap product with a.y(C). By Theorem 7.1, the map

4>*: H.(HomkG(P, k)) - //»(Hom^G(C, k))

is surjective,

0» : //»(HomfcG(C, k))[s] -+ H,(HomkG(k, C')) = //»(HomfeG(A:, C))

is an isomorphism, and

0. : H4HomkG(k,C)) -» //»(HomfcG(,c, P))
is injective. So we have proved that

//»(HomfcG(/c, C)) S y(d , ... , Cr) n//*(G, fc).

It follows that if y(Ci, ... , Cr) is equal to y(C[, ... , C'r) as an element of
H~s~l(G, k), then we have an isomorphism

H.(HomkG(k, C)) ^ //.(HomfcG(fc, D)),

and dually we have an isomorphism H*(HomkG(C, k)) = H*(HomkG(D, k))
as modules over H*(G, k). The annihilator ideals of these modules are there-
fore equal. We saw in §6 that H*(HomkG(C, k)) ^H*(G, k)/(C\,... , Cr), so
that the annihilator of this module is the ideal (Ci > • • • , Cr) ■ D

8. Filtrations on projective modules

The aim of this section is to show how a complex C of /cG-modules which
has at most one nonprojective term M gives rise to a filtration on M © P, for
some projective module P, where the composition factors are Heller translates
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Çl±n of the homology of C. In the event that C is a complex of projective mod-
ules, this is a filtration of a projective module. The construction given here is
a rudimentary form of the equivariant cohomology spectral sequence—without
the cohomology. It would be possible to make a construction by embedding the
complex in a projective resolution or something similar. This would be equiv-
alent to resolving the homology of C piece by piece as in [4]. However, the
method given here is cleaner and gives a more satisfactory result.

Of course, any filtration on a module leads naturally to a spectral sequence
on the cohomology of the module. If the complex C is one of those constructed
in §4 then the p2-term of the spectral sequence corresponding to the filtration
is a very familiar object, namely a Koszul complex.

Suppose that
C :    0 -» Cs -»-► Q -> C0 -> 0

is a bounded complex of /cG-modules. Let

P:    ..._p1»>Jrç)»>p_1.2>p_2_>...

be a doubly infinite projective resolution of the trivial /cG-module k. This
means that the complex is exact, and that 8(Pq) = k . Now consider the double
complex C ® P. The total complex of C ® P has no homology and hence is a
doubly infinite exact sequence. Also since for each i and j, C, and P¡ are
finitely generated, so is (C ® P)m = 0(+;=m C, ® Pj.

For any index t let (C ® P)(i) denote the complex

(C ® P)W :    • • • — (C ® P),+2 -> (C ® P)M - (C ® P), -♦ 0.

It is the truncation of the total complex C ® P at the tth term.

Lemma 8.1. (i) For any bounded complex C of kG-modules, the homology

//,((C®P)W) = 0

for i^t.
(ii) //0-tA-tB-tC-tO is a short exact sequence of complexes of

kG-modules, then

0 -» (A ® P)« -» (B ® P)(i) -» (C ® P)(i) -* 0

is an exact sequence, and we have an exact sequence

0 -» Ht(A ® P)(i) -» //,(B ® P)(/) -» //,(C ® P)(i) -+ 0.

(iii) // //»(C) = 0 then Ht((C ® P)W) w projective.
(iv) Suppose that C is concentrated in degree i (that is, C¡ =0 // j ^ i).

Then
Ht((C ® P)W) = 0'-'(C<) © (projective).

Proof. The first statement follows from the fact that C ® P is exact. The second
is easily verified because, for any i and j,

O^Aj® Pj -> B¡ ® Pj -» C, ® Pj: -► 0
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is exact and hence so is

0^   0 4®P;-   0 B,®Pj^   0  C/®P;-0.
i+j=m i+j=m i+j=m

The last statement of (ii) is a consequence of the long exact sequence on ho-
mology. To demonstrate (iii), let

P :    ... _> p2 _> p, _ p0 _» o

be the nonnegative part of P, and note that C ® P has no homology. So C ® P
and hence also C ® P are totally split exact sequences of projective modules.
Hence <9((C ® P),) = Ht((C ® P)(i)) is a projective module. To prove (iv) we
need only notice that in this case (C ® P)(i) is the complex

• ■ • -» Q ® Pt-i+2 - Ci ® p_i+1 - d ® P(_, - 0,
which is a projective resolution of

d ® d(P,-j) £ d ® (Sl'-'ik) © (projective)) s Q'-''(C,) © (projective). d

Theorem 8.2. Suppose that

C:   O^C^C^i^..— Ci^Co-0
« a bounded complex of kG-modules. Let M = Ct and suppose that C, ¿s
projective whenever i ^ t. Then there exists a projective module P and a
projective resolution Q of M ® P (i.e., //*(Q) = //o(Q) = M © P) such that Q
has a filtration by complexes

Q(*)ÇQ<*-1) Ç...ÇQ(°)=Q
with the following properties.

(i) For every i > 0 and I < j < s, Q(p (and hence also Q(p/Q\J+1)) is
projective.

(ii) /7»(QW/Qa+1)) =Äro(Qt/)/Qü+1)) = ß'~-'W(C))® (projective).
(iii) Por every y i/ze induced map

//o(Qw)^//0(Q)^M©P

¿s injective. Denoting its image by Mj, this gives a filtration

0ÇMsÇ---ÇMiÇM0 = M®P
where Mj/Mj+l £ Q'-J(Hj(C)) © (projective).
Proof. As before, let

P:    ->P, ^Po^P_i -^P_2----
be a doubly infinite projective resolution of k. We claim that the complex
(C ® P)^[i] = Q satisfies the conclusion of the theorem. This is the complex
(C ® P)('> as in Lemma 8.1, shifted down in degree by t. Clearly (C ® P)(i) is
a complex of projectives with homology only in degree zero. So we must first
show that d((C ® P)t) = M © (projective).
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Let AW <^+ C be the subcomplex such that A{/] = C¡ if i < j and a\j) = 0
if i > j . Then we have an exact sequence for j < k

0 -» A*') -> A(*} -* Aw/Aw -► 0

and by part (ii) of the last lemma we have an exact sequence

o -+ (aw ® p)W -+ (Afc> ® p)(" -» (a^/aw ® p)(,) -» o.
If j = k — 1 then A(A:'/A(/:_1) is concentrated in degree k , and so

Ht{{Alk)/A.{k-l) ® P)w) = n'"k(Q) © (projective).

If k = t, then Çï'~k(Ck) = Ai, while if k ^ t then this homology is projective.
Likewise, for i < j < k we have an exact sequence

0 -» //¿((AW/A') ® P)(i)) -» H,({AW/AW ® P)(/)) -» fl"f((AÍ*VAÜ) ® P)(0) -» o.

This last sequence must split because one of the two end terms must be projec-
tive (hence also injective). The right-hand end is projective if j > t, while the
left-hand end is projective if j < t. We conclude that

5

Ht((C ® P)M) S 0//i((A^/Aü-1) ® P)(í)) = M © (projective).
7=1

For each i let B(,) ̂ »Cbe the subcomplex

BW;    ()-><:,-►-► Q+i -» Ker9,--» 0
which is nonzero only in degrees i to s. Of course B(i) is the module Ker ds
concentrated in degree s. Also B(0) = C. Now the complex

B(0/B(i+1): 0 -* C,+i/KerÖ,+1 -» KerO¿ -♦ 0

has a subcomplex

D«>: 0 -4 C,+,/KeroV, * d(Ci+l) - 0

and the quotient (B(,)/B(,+1))/D(,) is the complex consisting of the one module
//¿(C) in degree /'. By Lemma 8.1 (iii), //,((D(¿) ® í»)w) is projective. So from
Lemma 8.1(H) we get that

Äi((B<,'7B</+1> ® P)W) s Q<-''(//,(C)) © (projective).

Again by Lemma 8.1 we see that the rest of the homology groups of the complex

(B(,)/B(,'+1) ® P)(" S (B(,) ® p)W/(B(i+1) ® P)(i)
are zero.

So let QW = (B^ ® P){t)[t] ç Q. It is clear that we have a filtration

qW çq('-i) ç---çQ(0) = Q
as in statement (i). Statement (ii) is a consequence of the above paragraph. The
third condition follows directly from Lemma 8.1(a). This completes the proof.
D
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Now suppose that &,... , Cr is an h.s.o.p. for H*(G, k) with deg(C¿) -
n¡>2. Let Cj, be the complex described in §3. Then Theorem 8.2(iii) tells us
that there exists a projective module P(i) and a filtration of P„¿_i/L^ © P(i)
of length two (i.e., a short exact sequence)

(8.3) 0 -» k - P„,_i/LCi © P(i) -» «"'-'(/c) -» 0.

Here, we have removed the projective summands from the end two terms, at
the same time removing summands from P(i), as we may since projective
rcG-modules are also injective.

In this case the sequence (8.3) is obvious because the map k -» Pn¡-i/Lc(
is the injection of //„,._ i (C^. ). Moreover the sequence represents Ci as an
extension in

ExtlkG(Çln'-\k),k) * Extnk'G(k,k) Si //'(G, k).

The filtration on the projective module

P = Pni-i/PCl ® • ■ • ® Pn,-\/LrT © (projective)

(see Theorem 4.1) is the product filtration. It can be written as

(8.4) {0} ç Mr ç ■ ■ ■ ç Mi ç M0 = P

where Mr = k and

Mr-t/Mr-M s      0      ««"^-''(fc) © (projective)
SÇ{Cl,...,{r}

where deg(S) = ¿2ç,es deS(C¿) •
As we noted earlier, any filtration on a module gives rise to a spectral sequence

on the cohomology of that module. This can be done in either ordinary or Täte
cohomology. Let P be the doubly infinite projective resolution of k . For any
/cG-module N, we have a two-row spectral sequence coming from the filtration
(8.3). If we write it as a cohomology spectral sequence and if we shift the
degrees appropriately, then the rows on the E0 page are given by the formulas

Ê'0<1 =HomkG(Pt-ni+2®k,N),
Ê'0'° = Hom*G(P(_„1+i ® an<~l(k), N).

The E2 page has rows

Ê'2-> = È7tkG"i+2(k, N) = H'-"-+2(G, N),
Ê'2° = Ex\'k~Gi+l(Q,n--l(k), N) = H'(G, N).

Then
dz ?t,i Ê'2+2>°

H'-n'+2(G,N) Ht+2(G, N)
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is the connecting homomorphism in the long exact sequence associated to (8.3).
Specifically it is given by cup product with C¿ • Of course, the spectral sequence
converges to Ex\kG(Pni-X / Lr¡, N) suitably shifted.

On the other hand, suppose we consider the filtration given in (8.4). Here the
corresponding spectral sequence converges to zero. It has r + 1 rows. Again if
we shift the degrees appropriately then the terms on the E2 page are given by

#'=Ë7tr/+3W/M-,, n)=Esc'+v^w-'ok), m
= Y,H'+de*{S)-s'+2i(G,N),

where the sum is over all subsets S of {Ci, ... , Cr} having exactly r - i ele-
ments. Here s' = Yfi=i deg(C¿). The d2 differential is obvious from the product
structure, or from the extension classes which connect the terms in the filtration.
An easy analysis then shows the following.

Proposition 8.5. In the above spectral sequence the Ê2 page is the Koszul com-
plex of H*(G, N) asa k[C\, ... , CrV^odule. More specifically it is isomorphic
to H*(G, N) ®A Jf, where X is the Koszul complex of free modules over
A = k[C\, ... , Cr] which is the usual A-projectiveresolution of k. Thus the P3
page of the spectral sequence has terms Tor*A(k, H*(G, N)).

Remark. The Koszul complexes are well documented in the literature. See for
example Mac Lane [16]. For another treatment which is both leisurely and
considers spectral sequences as above (see [8]). It should be remarked that the
spectral sequence in the proposition is identical to the hypercohomology spectral
of the complex B considered in §§3 and 4.

9. Eliminating projectives from complexes

If 0 ^ C € Hn(G, k), we write C for the corresponding map Q"k —> k,
where Q"rc is the nth kernel in the minimal projective resolution of the trivial
/cG-module k . We write Lç for the kernel of C, so that there is a short exact
sequence

0 - Lr -» STk X k - 0.
We proved in §4 that if Ci ,-• -, Cr is an h.s.o.p. for H*(G, k) then Lj, ®

• • • ® Lfr is projective (and hence also injective). It follows from this fact, that
f.if we tensor together the complexes 0 —> Cl"'k -^ k -> 0 and the module Q."k,

and insert the module Lrx ® ■■■ ® Lçr ® Qnk to make it exact, we obtain an
exact complex each term of which is a sum of modules of the form Qsk and
projective modules (note that QJ/c ® 0,'k Si Çïs+tk © (projective)). The question
is, to what extent may we strip off the projective modules to leave a complex of
modules of the form Q,sk?

The following questions are an attempt to formalise this, and the main result
of this section is that these questions are equivalent. In the next section, we give
some conditions under which a positive answer is guaranteed. In particular, a
negative answer implies that rp(G) > 3.
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Question 9.1. Suppose Ci, ••• , Cr is an h.s.o.p. for H*(G, k). Given n > 0,
does there exist an exact sequence of the following form?

X«:     0 -» XT ̂  Xr-i Vr-1->Xx%Xo^Q

where
(i) X¡    = Xi = (Bscfa.c,}, |S|=¿ xs •
(ii) Xs Si Q«+deg(S)(Ä:) where deg(S) = £íí65deg(C¿).
(iii) If 5" = S U {Cj} with Cj & S, then the part of the boundary map

v\S'\ going from X$> to X$ is (-1)' times a map representing C/, where
t = \{i\beS,i<j}\.

(iv) If \S'\ = |S| + 1 but S % S' then the part of the boundary map u\S,\
going from Xs> to X$ is zero.

Question 9.2. Suppose &,... , Cr is an h.s.o.p. for H*(G, k). Let M be a
/cG-module, n > 0, and consider the cochain complex

Y(n)=Y(M;n;Cx,... , Cr)

defined as follows.
Yw:    0^Y°-*Y1^->Yr-1-+Yr-*0

where
W   Y(n) =Y' = 05Ç{C, ,... ,C},  |SM YS ■
(ii) 7s^//"+deg(5)(G, M) where deg(5) = ^í¿e5deg(C¿).
(iii) If S' = S l) {Cj} with Cj & S, then the part of the coboundary map

going from Ys to Ys' is (-1)' times cup product with Cj, where t = \{i \
deS,i<j}\.

(iv) If \S'\ = |5|-l-l but 5 g S' then the part of the coboundary map going
from Ys to Ys' is zero.

Is Y(„) an exact sequence? (It is easy to check that Y(„) is a cochain com-
plex.)

The complex Y(„) is actually a singly graded piece of the Ê2 page of the
spectral sequence considered at the end of the last section. That is, it is the
complex

0 —> pn+s'-2r'r _» pn+s'-Zr+Z,r-\        ...        fin+s' ,0 _^ q

where the boundary map is d2 and M is replaced by N. Interestingly, Propo-
sition 8.5 implies that Y/„) is an exact sequence for all n sufficiently large.
This is a consequence of the fact that the Tor*A(k, N) has finite Ac-dimension.
Moreover the question of whether Question 9.2 has an affirmative answer for
all n > 0 is independent of the choice of the set of parameters. See [8] for
more details.

Proposition 9.3. Suppose that Ci, • • • , Cr is an h.s.o.p. for H*(G, k). Then the
following are equivalent.

(i) Question 9.1 has an affirmative answer for the elements Ci > ••• > Cr and
for all n>0.
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(ii) Question 9.2 has an affirmative answer for the elements Ci, ••• > Cr. all
n > 0 and all simple kG-modules M.
Proof. We first prove that (i) implies (ii). Assume that for each n > 0 there is
a complex X(n) having the prescribed properties. Recall that if M is a simple
k G-module then

HomkG(Clmk,M) Si Hm(G, M)
and

Ex4G(Qm/c, M) Si HomkG(Çlm+lk, M) Si Hm+I(G, M).
Moreover if ß\ ílm+lk —> ílmk represents an element C £ H'(G, k) then

H* : HomkG(Çlmk, M) -» Hom^G(ßm+/rc, M)

is given by cup product with C • It follows that the complex Hom¿G(X("', M)
is isomorphic to Y(„) = Y(M, n ; C\ > • • • > Cr) by making the obvious identifi-
cations. Moreover

ExtlkG(X¡n\M)SiY>n+¡y

So the complex HomjtG(X("), M) can be written as

0 -+HomkG(X{0n), Af)^HomfcG(X1(n), M)^ ■ ■ ■ ̂HomfeG(^r(B), M) - 0

II' II' Hi

Since Horn is left exact, vf** is injective. Hence

//°(Y(n)) s H°{HomkG(X^, M)) = 0.

The short exact sequence

o - i/W(^B)) M jr<») Ä 4n) - o
gives rise to the long exact sequence

0 -» HomfcG(4n), M) ^ HomJtG(*1(,,), A/) ^4 HomkG(u{2n)(X{2n)), AT)

- Ex4G(4n), M) - Ertic^W , M) -> • • • .
Now for every j > 0 the map

ExtUX^.M)     -U    ExtÚX^M)

yO yi_. yl
/(«+7) ' (»+/')

is injective. So in the long exact sequence, all connecting homomorphisms are
zero and in particular /'* n is surjective. We also have a sequence

0 _ vf{X™) ^ X{2n) S4 !/«(*«) - 0,
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and the corresponding long exact sequence is

(9.4)
0 -» HomkG(u{2n)(X{2n)), M) eM Hom^^0, M) ^ HomkG(u¡n){X¡n)), M)

- Ex4G(^(Xl">), M) eM ExtkG(Xy , M) - • • • .
So the map e2 n is injective, and hence the kernel of

An)* =e*2,n°n,n- HomkG(X[n), M) - Hom^X^ , AT)

is precisely

Ker(iî>n) = i/<")'(HomjkG(*0,,), A/)) = uf^Yfa).
Therefore Hl(Y{n)) = 0. Notice further that

Ext{G(^(X^),M) st Y{\+j)/»i"+»*(Y°n+j)).

So because Hl(Yin+j)) = 0, the map

Ext^^^KM)    £M   Ext{G(X(2n), M)

\\l \\l
yl     /„("+J')VyO     ^    _> yzI(n+j)lv\ yI(n+j)> I(n+j)

is injective for all n, j > 0. Consequently in the long exact sequence (9.4), the
connecting homomorphisms are all zero, and so for every n, j > 0 the map

Exl^X^, M) 'M Ex\{G(p{;\X^), M)

is surjective, so that Ext¿G(i/£,)(^")), A/) s r^^/i/^^Cy^). Continuing
in this way, we see that 63 „ is injective and so //2(Y(„)) = 0, and so on. It
follows that the homology of Y(„) is zero and hence Y(„) is an exact sequence.
This completes the proof that (i) implies (ii).

We now give an alternative proof that (i) implies (ii). Let (P, d) be a pro-
jective resolution of the trivial /cG-module k. Consider the double complexes
X(/l) ®k p. Notice that in each such complex the rows

0 -» X{rn) ® P, - ... Z21 x[n) ® Pi î^i X(0n)®Pi - 0

are totally split exact sequences of projective modules. So the total complex of
the double complex Hom^X»"' ® P», M) is an exact sequence and hence has
zero homology.

So consider the spectral sequence of the double complex

EP9 = HomkG(Xpn)®Pq,M).

We obtain one such spectral sequence for each value of n > 0. Taking the
boundary with respect to the differential do = (1 ® d)*, we obtain the Pi term

Ep" = ExtlG(X^,M)^Ypn+q).
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This is because (XJn) ® P, 1 ® d) is a projective resolution of XJ"). The iso-
morphism with YP , was discussed earlier. But notice that the map induced
from (v ® 1)* on Epq is simply the differential on Y(„+?). So the homology
with respect to this differential is

Pf = Hp(Y{n+q)).
Since this is a first quadrant cohomological spectral sequence, the terms E2'°
and E2'° live until the £M term. By the previous paragraph the spectral
sequence converges to zero. So Pgf = 0 for all p and q . Therefore //°(Y(n)) =
E2'° = 0 and //1(Y(„)) = El'0 - 0. Since this happens for every value of
« > 0, we must have E2'g = 0 and E\'q = 0 for all q. But now E¡'°
and Pj'0 must live until the E^ term. So again //2(Y(n)) = El'0 = 0 and
//3(Y(„)) = El'0 = 0 for every n > 0. Continuing this argument we see that
//*(Y(„)) = 0 for all «>0.

We now turn our attention to proving that (ii) implies (i). We are given an
h.s.o.p. Ci > • • • > Cr • For each i = I, ... , r, let U^ be the chain complex

0-,    Qdeg(f,)(/c)     4       k       -0

II II
o-      t/¡°      -  i#>  ^0

having homology //»(U<¿>) = H^W) = LCi. Let U = U^ ® ■ • • ® U<r>, which
has homology

//»(U) = //„(U) = Lil®---®LCr,
which is a projective /cG-module (see the first paragraph of this section). The
implication (ii) =s> (i) is a consequence of the following proposition.

Proposition 9.5. Suppose that Question 9.2 has an affirmative answer for the
elements Ci, ■■■ > Cr 6 H*(G, k) and all simple kG-modules M. Then for all
n > 0 there exist complexes X(w) and Z(n) such that the following hold.

(i) u ® ank =■ x(") © z<">.
(ii) XM is exact (//»(X<")) = 0) and no x\n) has a projective summand.
(iii) Z<"' m a complex of projective kG-modules with //»(ZW) = Hr(Z^) =

Lç, ® • ■ ■ ® Lçr ® Q"rC .
Proof. First note that we have an exact sequence

0 -► Hr(U ® QU) -^ C/r ® Q"/c -*-► U0 ® ß"rc -► 0

where the map i is the inclusion of the homology, and

//r(U ® Q"k) = L(l®---®Lrr® Q"k,

which is a projective module. If we let Z' be the complex with Z'r =
Hr(V ® Q"rc), and Z/ = 0 for í'^ r, then we have a split injective map of com-
plexes Z' -» U ® Q"/c. Let VW be the cokernel, so that U®fi"fc^ V^ © Z'
and V("> is exact. The main step in the proof is to show that the complex
Hom^G(V(/l), M) is exact for all simple ¿cG-modules M.
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First we need some notation. If A and B are /cG-modules, we denote by
the expression PHomfcG(v4, B) the subspace of HomkG(A, B) consisting of
maps which factor through some projective module. Let

HomkG(A, B) = HomkG(A, B)/PHomfcG(^, B).

Of course if A or B is projective then YiomkG(A, B) = 0. In the event that
A = Qsk © (projective), we have HomfcG(^, B) = HS(G, B). In particular, for
M simple, Hom/cG([//"), M) Si Y'(M; n; Ci, ■■■ , Cr) ■ So we have an exact
sequence

0 -» HomfcG(F0("), M) -+ • • • - HomkG(Vr{n), M) - 0

for any n > 0. Similarly

ExtU*f > » M) Si r(M; n + t;Ci,... , Cr).
So for M simple, the sequence

0 - Ext'kG(V0{n), M) - ■ • • - Ext^F/"', A/) - 0

is exact, for all ? > 0 and « > 0.
Now let (P, d) be a projective resolution of k and let M be a simple

/cG-module. Consider the spectral sequence of the double complex

EP_« = HomkG(V¿n)®Pq,M).

As V(K) is an exact sequence, the homology of the total complex is zero and so
the spectral sequence converges to zero. Taking the boundary (1 ® d)* we get
the Pi term

Ep" = ExtlG(Vp{n),M).
Now take the boundary induced by (v ® 1)* to get

Pf = Hp(ExtlG(K{n] ,M),(v® 1)*).

If q > 0 then we have already seen that Ext£G(F»(/!), Af) = Y,*n+ •., which is
an exact sequence. So EPq = 0 for q > 0. Therefore the spectral sequence
collapses onto the first row of the E2 page, and all further differentials are zero.
Because the spectral sequence converges to zero, we have

//''(HomfcG(VW ,M),(v® 1)*) = P2'° = 0.

So the complex Hom^VW , M) is exact.
Now notice that PHomfcG(V(">, M) is a subcomplex of Hom^V^ , M).

Moreover, the quotient complex is

Horn*G(V(»>,M)=-Y(B).

So we have an exact sequence of complexes

0 ^ PHom^VW , M) -> Hom¿G(VW , M) -+ Y(n) -+ 0

in which the last two terms have no cohomology. So by the long exact sequence
in cohomology we have H*(P Hom^G(V(n), A/)) = 0.
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With this information we proceed to strip the projective modules from the
sequence V(">. Recall that we have an exact sequence

n _> v(n) A v(n) A... A v(n) -» nu    ► vr vr__x    »       ^ vo u-

Let Pm be the projective cover of the simple module Af. Then

dimfcPHomfcG(^(,!),A/)

is the number of summands isomorphic to Pm in any direct sum decomposition
of V¡ into indecomposable pieces. Let z be the least index such that we have
PHomkG(Vln), M) ¿ 0, and let 0 # 6 e PHomfcG(F¡(n), Ai). Then 6 extends
to a homomorphism y/: V¡ —► Pm (i.e., if e : Pm -» A/ then e o y/ = 6).
Since PHomfcG(V(n), M) is exact, we have Bv ^ 0. So we have a map of
chain complexes

_>    rç«   ^..._k0(b)^0

=     Pm    ^0

Note that ^ and ^f are surjective because ey/ = 6 ^0 and ey/u = du ^ 0.
So if Qm is the complex (0 -* Pm ^ Pm -» 0) concentrated in degrees z and
z + 1, then we have a split short exact sequence of complexes

0 _, \(»y _» yW - Qm -» o.

So V'"' = V^ © Qm • In this way we can eliminate (in pairs) all projective
summands from V(n) and obtain an exact sequence of the prescribed form, d

We now show how the questions above have implications for the Poincaré
series of the cohomology of G.

Proposition 9.6. Suppose that Ci, ■■■ ,Cr is an h.s.o.p. for H*(G,k) with
deg(C¿) = n¡, and let n > 0. Suppose that Question 9.2 has an affirmative
answer. Then

r
(9.7) £(-!)''       ¿2      dimkHn+de*W(G,M) = 0.

t=0 SC{Ci.{,}
\S\=i

for all n > 0 and all simple modules M, where deg(S) = X)í.6Sdeg(C¿) •

Proof. This is an easy consequence of the exactness of Y(Af ; n ; Ci, • • • , Cr) ■
D

Now let Pm(í) = Z)¿>oi' dimk H1 (G, M) be the Poincaré series for Af. Set
T = {Ci, ... , Cr}, multiply equation (9.7) by iw+des(r) and sum over n. We

o^ v;(«) V(«)
(+1

\flV

M

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



480 D. J. BENSON AND J. F. CARLSON

get
oo

0 = J] £(_i)lsir«+d*B(r)dimfc/p.-Hteg(S)(G) M)
n=0SCT

= ¿2 Y(-i)lSltdeè{T)-àeêiS)(tn+de^dimkH"+de^s\G, M))
n=0SÇT

(oo

£   í'dimfc//'(G,A/)
í=deg(S)

so that
£(_ 1)1*1 rde8m-deg(S)iVW

/deg(S)-l
= £(_l)|Slí<ieg(r)-deg(S)     j-   /'dim^//'(G,A/)

sçr \   ¿=o

Now we have
r r

J](i - i"0 = (-lyt^T) rj(i _ r»i)
;=i j=i

= (_!)»■ y^(_l)|S|rdeg(r)-deg(S)

SÇT

and so substituting in the previous equation we find that

(deg(S)-l

Y   /'dim*//'(G, A/)
¿=o

Replacing S by T\S and noting that (-l)r(-l)l5l = (-l)lr\5l, this becomes

EsçA-l)lSltde&{S) (£?!g0(r)-deg(5)-' i'dimfc//'(G, A/))

PM{t) = ~"-n;=,d-i-o •
Note that the numerator in the above expression is a polynomial.

10.   QUASI-REGULAR SEQUENCES

There is a notion weaker that that of a regular sequence, which we now
introduce, and which is good enough to give a positive answer to the questions
posed in §9.

Definition 10.1. Suppose that A = ©„>0 A is a finitely generated graded com-
mutative /c-algebra, and Af = 0„>oMi is a finitely generated graded A-
module. A sequence Ci, • • • , Cr of homogeneous elements of degree n¡ in
A is said to be a quasi-regular sequence for M if for each i — I, ... , r the
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map

Mn/Mn n (C,,... , Ci-x)M - Mn+n¡/Mn+n¡ n (Ci,... , d-x)M
induced by multiplication by Ci is injective, whenever n > n\ H-h «¿_i. In
particular, Ci : Mi -> Af„+„, is injective for all « > 0.

Serre has investigated a similar definition in which the generators are assumed
to be in the same degree. His conclusions are rather different from ours. For
further information see the letter from Serre reproduced in the appendix to
Guillemin and Sternberg [15]. Note that our terminology has nothing to do
with the terminology of quasi-regular sequences used in Matsumura [17].

Proposition 10.2. Suppose that A = 0„>o A is a finitely generated graded com-
mutative k-algebra, M = $„>0 Af„ is a finitely generated graded A-module,
and Ci, ■ • ■ , Cr is a quasi-regular sequence for M. For each n > 0, consider
the cochain complex Y(„) = Y(Af ; n ; Ci > • • • , Cr) defined as follows:

Y(B):0-* Y°^Yl -+-> r-0

where
W   Y(n) - Y' ~ ©SÇ{f,.... ,ir}, \S\=i YS ■
(ii) Ys Si Mn+iei(S) where deg(S) = £f/6Sdeg(Ci).
(iii) If S' = S\J{Cj} with Cj & S, then the part of the coboundary map going

from Ys to Ys' is (-1)' times multiplication by Cj, where t = \{i \ Ci £ S, i <
;}|.

(iv) If \S'\ = \S\ + 1 but S <¿ S' then the part of the coboundary map going
from Ys to Ys' is zero.

Then H* (Y) is concentrated in degree r, and

Hr(Y) = Mn+deg{T)/Mn+degiT) n (Ci, ... , Cr)M,

where T = {d , ... , Cr} •

Here the complexes Yin) are the singly graded pieces of the Koszul complex
of Af as a k[C\, ■■■ , Crj-module, as also in Question 9.2.

Proof. We proceed by induction on r. Note that if r = 1 then the complex Y
is simply

0^Af„^A/„+deg(il)^0
and because multiplication by Ci is injective, the proposition is obvious in this
case.

So assume that r > 1. It is easy to check that Y = Y( Af ; n ; Ci, • • • , Cr) is
a complex. The subcomplex consisting of all the Ys such that Cr £ S is

Y'[l]SY(A/;« + deg(Cr);Ci,... , Cr-i)[l],
and the quotient is

Y/Y'[l]SiY(M;n;Ci,... , Cr-i).
By induction, Y' and Y/Y'[l] satisfy the conclusion of the proposition. Thus
the long exact sequence in cohomology of the short exact sequence 0->Y'[l]-»
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Y —► Y/Y'[l] —► 0 of cochain complexes takes the form

0 -+ Hr~l(Y) -» Hr-l(Y/Y'[l]) 4 Hr~l(Y') -> Hr(Y) -» 0.

But 6 is the map

Mn+dee(T>)/Mn+àee,r) n (Ci,... , Cr-\)M
(-l)'"'Cr

-► Mi+deg(r)/Mi+deg(r) H (Çl , ...  , Cr-\)M

where P' = {Ci, •■■ , Cr—1} and T = {Ci, ■•• , Cr} • This map is injective,
according to the definition of a quasi-regular sequence. This completes the
proof of the proposition.   D

We now consider the case in which A = H*(G, k) for G a finite group and
k a field of characteristic p , and Af = H*(G, D) for D a bounded complex
of finitely generated /cG-modules.

Proposition 10.3. Let D be abounded complex of finitely generated kG-modules,
and suppose that Ci > ••• , Cr are nonzero elements of H*(G, k) forming an
h.s.o.p. for H*(G, D), with the property that Ci, ••• , Cr-i is a quasi-regular
sequence for H*(G, D). Then Ci,... , Cr is a quasi-regular sequence for the
module H*(G, D) and the complex Y = Y(H*(G, D) ; n ; Ci > • • • , Cr) is exact
(i.e., //*(Y) = 0) for all n>0.
Proof. Each Ci is represented by a unique nonzero homomorphism fí_"<(C¿) :
k -* Q-"'(/c) (cf. Proposition 6.2). Let L¡ be the cokernel of Cl~H'(&), so that
we have a short exact sequence

a—i(d)O^k-► Q-"'{k) -» L¿ -» 0.

Let Y<j,n) = Y(H*(G, D) ; n ; Ci, ■ • • , Cj) ■ We claim that Y(j,n) only has
cohomology in degree j , and that its cohomology there is

H'(yUiH)) = Hn+ZL*(G, D)/Hn+^^"'(G, D) n (Ci, ... , Cj)H*(G, D)
^//"(G,D®Li ®---®Lj).

The proof of this fact follows the scheme of the proof of the last proposition.
For 7 = 1 we have an exact sequence of chain complexes

i®n-"i(fi)
0-^D->D®Q-"l(k)^D®Ll ^0

and hence a long exact sequence

(I®Q-"i(Ci)).->Hn(G,D)-► H"(G, D ® Q-"'(k)) -» //"(G, D ® L,) ^ • • • .

But H"(G, D®Q-'!'(/c))s//"+"i(G!,D) and the map (1 ® n_"'(Ci)). is cup
product with Ci , which is injective. So all the connecting homomorphisms are
zero, and the proposition is proved in this case.
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Now suppose that 1 < j < r. Then we have an exact sequence of chain
complexes

0->D®Lx®---® Lj_i-► D® Li ® • • • ® Lj-i ® Q n'(k)
->D®Li®---®Lj->0

and the long exact sequence in cohomology takes the form

i<aor"j{tj)
-► H"(G, D ® L, ® • ■ ■ ® Lj_1)->Hn(G, D ® Lx ® • ■ • ® L¡-\ ® QTni{k))

\C, II!
fl"+"i(C,D8l| ®---®L/_i)

and by induction multiplication by Cj is injective.
As in the proof of the last proposition, we have an exact sequence of com-

plexes
0 - V0_!,„+„,.)[ 1] -» V0-,B) -» V(;_i>B) -» 0

and so taking cohomology we have

0^&-l(\-l,n)) - »'"Wi ,„+„)) -^(Vü.^-.O

II' in
Hn(G, D ® Lx ® • • • ® Lj^x)^Hn+ni(G, D ® Li ® • • • ® L;_i).

So the connecting homomorphism ¿ , which is equal to cup product with Cj,
is injective with cokernel H"(G, D ® Li ® • ■ - ® Lj), which proves the claim.

Now consider the case in which j = r. Note that by Theorem 4.3, we have
H*(G, D® Lx ® ■ ■■ ® Lr) — 0. Thus multiplication by Cr is an isomorphism
from Hn(G, D®Li ® •••®Lr_i) onto Hn+n'(G, D®Li ® •••®Lr_1). From
the exact sequence of complexes

0-*V(r_1)B+„r)[l]^V(r)B)-^V(r_1>n)^0

we get an exact sequence in cohomology

0 - Hr-\\(rtn)) - Hr-l(V{r_x,n)) - H"-\\(r_x,n+nr)) - ^(V(r,„)) - 0.

The middle map is an isomorphism, and so //*(V(r„)) = 0. Hence

V(r;„)=Y(//*(G,D);n;Ci,... , Cr)
is an exact sequence, d
Corollary 10.4. Let G be a finite group, k a field of characteristic p, and M
any kG-module. Suppose that Ci > ■ • ■ , Cr are nonzero elements of H*(G, k)
forming a h.s.o.p. for H*(G, Af), with the property that £1,... , Cr-i is a quasi-
regular sequence for H*(G, M). Then Question 9.2 has an affirmative answer
for the elements C\, ■■■ , Cr and all n > 0 for the module M.
Proof. This follows immediately from Proposition 10.3 by taking for D the
module Af concentrated in degree zero, d
Corollary 10.5. Suppose that G has p-rank 2. Let C\, Cz be a h.s.o.p. for
H*(G, k). Then either Ci. C2 is a quasi-regular sequence for H*(G, k) or Cz>
Ci is.
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Proof By the proposition, it suffices to show that either Ci or C2 is not a zero
divisor in H*(G, k). But this follows from an easy spectral sequence argument.
G

Proposition 10.6. Let P be a Sylow p-subgroup of G. If a sequence of homoge-
neous elements C\, ■■■ , Cr £ H*(G, k) ç H*(P, k) is a quasi-regular sequence
for H*(P, k), then it is also a quasi-regular sequence for H*(G, k).
Proof. This follows directly from Lemma 6.7 and the definition of quasi-regular
sequence, o
Remark. In [8] it is shown that Corollary 10.4 has a strong converse. That is,
if the answer to Question 9.2 is affirmative for some set of parameters and a
particular module Af, then H*(G, M) has a quasi-regular sequence which is
also a system of parameters for H*(G, M) in H*(G, k).

11. Secondary operations

In this section, we determine some more of the differentials in the spectral se-
quence described in Theorem 5.5. These differentials are given in terms of some
secondary operations which we describe in terms of matric Massey products.
Accounts of the theory of matric Massey products and their use in determin-
ing differentials in spectral sequences may be found in May [18], Ravenel [24,
Appendix A1.4], and McCleary [19, §8.3.3].

In case H*(G,D) is not Cohen-Macaulay as a module over H*(G, k), the
first example of a possibility for a nontrivial differential not determined by the
relations dHi(Ci) = d is the differential dn¡+nj-x(a.dCj) incase a.C¿ = a.Cj = 0.

We suppose for simplicity that the multiplication on cohomology is given by
a strictly coassociative diagonal approximation A: P —> P ® P. This can be
arranged by taking for P the bar resolution. Note, however, that the diagonal
approximation A cannot in general be chosen to be strictly cocommutative, and
it is this fact that is responsible for the existence of Steenrod operations. Simi-
larly, the lack of strict coassociativity for the minimal resolution is responsible
for the usual Massey triple products.

Suppose that D is a chain complex of /cG-modules, bounded above, and
a £ Ha(G, D) has the property that a.d = a.Cj = 0. Choose cocycles u
representing a and r/¿ representing C¿ • Since a.d = 0 we have u.n¡ = du¡,
and similarly u.n¡ = du¡ , for suitable cochains u¡ and u¡. Since

CiCj-(-l)HiniCjCi = 0,

we have
1itlj-(-l)niniVjyi = dtiij.

To simplify some signs, we shall assume that if p is odd, the n¿ are even.
This will be true in the case we are interested in, namely if the Ci generate a
polynomial ring, since elements of odd degree square to zero in case p is odd.
So we have

d(UiT]j - Ujtji - (-\)aur]ij) = 0

and we define

(«Ii« > Cj) = [«/if, - Ujtu - (-Ifurjij] £ Ha+n>+n'-\G, D).
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This operation may be expressed in terms of matric Massey products as fol-
lows:

(a|C,,C;) = (a,(C1,C;),(_^))

Lemma 11.1. In the spectral sequence

Ep"(d, Cj) = ExtpkG(Hq(Cr, ® C(J), D) => Ext^Cr, ® C(j, D)

if a£H*(G, D) with a.d = a.Cj = 0, then

d„i+nj-x(a.dCj) = (a\d, Cj)-
Proof. Consider the commutative diagram of chain complexes

0 0 0

I I I
0—Homít<j(P®C<°o)(g>C<°o), D)[ní+n;]4HomtG(P®C<oo)<8>C[oo), D)[r¡J]^Homte(P®C[oo)(8iCCy , D)[r¡,]-0

Uj u, Uj
0->   Hom/tG(P®cS.00)(g>d00),D)[fl,]   k   Hom/W(P«>d°o)®doo),D)   ^   Homj|.G(P®C<oo)<8>Q. ,D)   -0

l"j l"j l'j
0^    HomkG(P®Cri®0™) ,D)[n¡]    -^    Homtc(P®C{.igiC^oo) ,D)    -^    HomAG(PigiCc.®C{. ,D)    —0

1 L L
0                                                     0                                                 0

Taking homology, we obtain a mesh of long exact sequences, part of which is
as follows:

-> Ext^-'^D) {^i Ext^-'tC^D) -Ext?G(/c,D)i4E<G+a(/c,D)

Uj Uj iii I
^Ext^+"J+a"'(rc, D)(^Ext^G+"J'+û"1(Ci,., DHExt^/c, D)->

I
The differential

dn¡+nj-x : ExfkG(k, D) -. ExfW*-1 (k, D)

is the switchback map in this diagram. By Lemma 3.1, the maps marked C¿ >
Cj are given by multiplication by C¿ > Cj ■ By the definition of the connecting
homomorphism in cohomology, [7t¿w¿] £ Ext^Ga_1(Cj/, D) has image a = [u]
in ExtkG(k, D). We have

(7T/)*(a|C¿, Cj) = [ni(ui»j - Ujtii - (-l)auriij)]

= [nmnj - (m o d)Uj] = [UiUiMj

in ExtnkG"'+a~ (Cr,, D), and so (a|C¿, Cj) is the image of u under this switch-
back map. Note that only one of the terms in the expression for (a|C¿, Cj)
survives in this calculation; the rest of the terms are to ensure that it is a
cocycle. o
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The next example of a nontrivial differential is given as follows. If a £
Ha(G, D) satisfies (a\d, Cj) = (a\d, Ck) = HO >„&>_ = 0, then there is a
possibility for a nontrivial differential dn¡+nj+„k-2(a.dCjCk) ■ Since (a|C¿, Cj) =
0, we may choose a cochain u¡j with

duij = uflj - Ujt]i - (-\fur\ij.

Now the element

»ijlk - "iktlj + Vjkm - <li"jk + n¡r]ik - nkt]ij

is a coboundary dr]ijk . To see this, note that the complex

HomfcG(P®P®P,P)

is exact in positive degrees (the negative homology in degree —n is ExtkG(k, k)
= Hn(G, k)), and that the map sending n¿ ® n¡ ® nk to the above element is a
map of degree +1 whose coboundary is zero.

The cochain

UijVk - »ikVj + Ujk<li - Ui<]jk + UjVik - uktiij - (-\)aunijk

is a cocycle, and we denote by (a|C¿, Cj > Ck) the cohomology class it represents.
In terms of matric Massey products, this is given as follows:

/ (    °'Ck    Cj\     lb
(a\d ,Cj,Ck) = (a, (d, Cj ,Ck)A    Ck       0 -d     ,     Cj

\ \-Cj   d   o)   Ve*
The proof of the following is similar to the proof of Lemma 11.1.

Lemma 11.2. In the spectral sequence

Ep2"(Ci, Cj, Ck) = ExtpkG(Hq(Cr, ® C{, ® Cft), D) => Ext^(CCi ® CCj ® C& , D)

if a £ H*(G, D)  with (a\d, Cj) = HC¿, Ck) = HO, Ck) = 0, then
dn,+n]+nk-z(a.CiCjCk) = (a\d, Cj, Ck)-

The general case of the above construction goes as follows. We define op-
erations (a|C¿,, • ■ • , Cf,) under the conditions that ad, - ■ ■ ■ = ad, = 0, and
all operations (a| • • ■ ) are zero for ■ ■ • a proper subsequence of £,-,,... , C¿, •
The operation is described as a matric Massey product (a, Mx, ... , Mt) where
Af), ... , Af, are matrices whose entries are either zero or plus or minus one of
the Ci, ■ The rows and columns of Ms ( 1 < s < t) are indexed by subsets /
and J of {ii,... , i¡} of sizes s - 1 and s respectively. If I <¿ J then the
corresponding entry is zero, while if J = Ili{ij} then the corresponding entry
is plus or minus Ci¡ ■ The sign is (-1 ) to the power of the number of elements
of / which come before ij. It is easy to check that MsMs+x = 0. Since the
chain complex HomfcG(P's", P) is exact in positive degrees, the matric Massey
products of consecutive elements of the list M\, ... , Mt vanish. So by the
conditions on a, the matric Massey product (a, Mx, ... , Af,) is defined, and
we write (a|C¿,, . •. , C¿,) for this expression. An argument similar to the proof
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of Lemma 11.1 shows that if a.£¿,... d, lives to P**+...+„ _,+1 then

dn¡i+...+nii-t+i(a.Cii • • • Ci,) = (a\dl, ■■■ , d,)-
An example involving the last survivor described in §7 is as follows. We look

at the spectral sequence

£f = ExtPkG(Hg(C),k)=>0
of the double complex Hom¿.G(P ® C, k), where P is a complete resolution of
the trivial module. Let a be a nonzero element of the one dimensional space
H~l(G, k). Then a.Ci-.-Cr (r = rp(G)) transgresses to a nonzero element
in the base P* 0 (s = £¿=1 n¡) of this spectral sequence, representing the last
survivor:

HO,... ,Cr)eEsJsiHs(G,k)/Kcr(e).
A nontrivial example involving elements of positive degree is described in [6].
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