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PROJECTIVELY FLAT FINSLER METRICS
OF CONSTANT FLAG CURVATURE

ZHONGMIN SHEN

Abstract. Finsler metrics on an open subset in Rn with straight geodesics
are said to be projective. It is known that the flag curvature of any projec-
tive Finsler metric is a scalar function of tangent vectors (the flag curvature
must be a constant if it is Riemannian). In this paper, we discuss the classi-
fication problem on projective Finsler metrics of constant flag curvature. We
express them by a Taylor expansion or an algebraic formula. Many examples
constructed in this paper can be used as models in Finsler geometry.

1. Introduction

Hilbert’s Fourth Problem is to characterize the (not necessarily reversible) dis-
tance functions on an open subset in Rn such that straight lines are shortest paths
[Hi]. It turns out that there are lots of solutions to the problem [Ha], [Bl], [Am],
[Al], [Bu], [Po], [Sz]. The main method to characterize the solutions is the inte-
gral geometric construction using quasi-positive measures on the set of all affine
hyperplanes in Rn. The integral construction using symplectic forms gives an-
other description on certain smooth solutions to the problem [Alv1], [Alv2], [AlFe],
[AlGeSm].

Distance functions induced by Finsler metrics are regarded as smooth ones. Thus
Hilbert’s Fourth Problem in the smooth case is to characterize Finsler metrics on
an open subset in Rn whose geodesics are straight lines. Such Finsler metrics are
called projective Finsler metrics. In Finsler geometry, the flag curvature K(P,y) is
an analogue of the sectional curvature in Riemannian geometry. It is known that
every projective Finsler metric is of scalar curvature, namely, the flag curvature
K(P,y) = K(y) is a scalar function of tangent vectors y. In the early 20th century,
L. Berwald studied projective Finsler metrics of constant flag curvature, particularly
in the case of zero flag curvature [Be1], [Be2]. Berwald showed that the (projective)
Hilbert metric on a strongly convex domain in Rn has constant flag curvature
K = −1. Meanwhile P. Funk classified all projective Finsler metrics with constant
flag curvature on convex domains in R2 [Fk1], [Fk2]. Later on, Funk tried to
show the uniqueness of projectively flat Finsler metrics with K = 1 on S2. With
additional conditions, he showed that the standard Riemannian metric is the only
such metric [Fk3]. In 1995-96, R. Bryant showed that there is exactly a 2-parameter
family of projectively flat Finsler metrics on S2 with K = 1 [Br1], [Br2].
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1714 ZHONGMIN SHEN

Given a projective Finsler metric F (x, y) on an open subset U ⊂ Rn, let

P (x, y) :=
Fxk(x, y)yk

2F (x, y)
.

It is known that the geodesics c(t) = (xi(t)) of F are characterized by

d2xi

dt2
+ 2P

(
x,
dx

dt

)dxi
dt

= 0.

See Lemma 3.1 below. We call P (x, y) the projective factor of F (x, y).
In this paper, we first give a general formula for x-analytic projective Finsler

metrics F (x, y) of constant flag curvature. Here F (x, y) is said to be x-analytic at
x = 0 if there is a small number ε > 0 such that for any y 6= 0, F (x, y) can be
expressed as a power series

∑
ai1···ik(y)xi1 · · ·xik in x. For an x-analytic projective

Finsler metric F (x, y) at x = 0, its projective factor P (x, y) is x-analytic at x = 0
too. We are going to show that both F (x, y) and P (x, y) are completely determined
by F (0, y) = ψ(y) and P (0, y) = ϕ(y).

Theorem 1.1. Let F (x, y) be a projective Finsler metric of constant flag curvature
K = λ on an open neighborhood U of the origin in Rn. Suppose that F (x, y) is x-
analytic at x = 0. Then F (x, y) and its projective factor P (x, y) are given by

F (x, y) =
∞∑
m=0

1
(m+ 1)!

dm

dtm

[
Ψm(y + tx)

]∣∣∣
t=0

,(1)

P (x, y) =
∞∑
m=0

1
(m+ 1)!

dm

dtm

[
Φm(y + tx)

]∣∣∣
t=0

,(2)

where

Ψm :=

 1
2
√
−λ

{(
ϕ+
√
−λψ

)m+1

−
(
ϕ−
√
−λψ

)m+1}
if λ 6= 0,

(m+ 1)ψϕm if λ = 0,

Φm :=

 1
2

{(
ϕ+
√
−λψ

)m+1

+
(
ϕ−
√
−λψ

)m+1}
if λ 6= 0,

ϕm+1 if λ = 0,

where ψ(y) := F (0, y) and ϕ(y) := P (0, y). Conversely, for any Minkowski norm
ψ(y) on Rn and any positively homogeneous function ϕ(y) of degree one on Rn,
the function F (x, y) defined in (1) is a projective Finsler metric with constant flag
curvature K = λ, and its projective factor P (x, y) is given by (2) provided that they
are convergent.

In [Be2], L. Berwald proved that for any projective Finsler metric F (x, y) of flag
curvature K = λ and its projective factor P (x, y), Fxk = (PF )yk , and the function
f(x, y) := P (x, y)±

√
−λF (x, y) satisfies

(3) fxk(x, y) = f(x, y)fyk(x, y).

By these equations, we prove Theorem 1.1 in Section 4. Theorem 1.1 shows that
x-analytic projective Finsler metrics of constant flag curvature K = λ are uniquely
determined by ψ(y) = F (0, y) and ϕ(y) = P (0, y). Note that a Finsler metric
F (x, y) expressed in (1) is reversible if and only if ψ(y) is reversible (ψ(−y) = ψ(y))
and ϕ(y) is anti-reversible (ϕ(−y) = −ϕ(y)). Thus there are lots of reversible
projective non-Riemannian Finsler metrics of constant flag curvature.
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PROJECTIVELY FLAT FINSLER METRICS 1715

We can construct smooth projective Finsler metrics of constant flag curvature
using algebraic equations.

Theorem 1.2. Let ψ(y) be an arbitrary Minkowski norm on Rn and ϕ(y) be an
arbitrary positively homogeneous function of degree one on Rn. Define Ψ±(x, y) by

(4) Ψ±(x, y) = φ±
(
y + Ψ±(x, y) x

)
,

where φ±(y) := ϕ(y)± ψ(y). Then

(5) F (x, y) :=
1
2

{
Ψ+(x, y)−Ψ−(x, y)

}
is a projective Finsler metric with constant flag curvature K = −1 and F (0, y) =
ψ(y). Its projective factor P (x, y) is given by

(6) P (x, y) =
1
2

{
Ψ+(x, y) + Ψ−(x, y)

}
with P (0, y) = ϕ(y).

The proof of Theorem 1.2 is given in Section 5. We first prove that the functions
Ψ±(x, y) defined in (4) satisfy (3), i.e., (Ψ±)xk = Ψ±(Ψ±)yk ; then, using this
equation, we show that the functions F (x, y) and P (x, y) defined in (5) and (6)
have the desired properties. That is, we construct a projective Finsler metric of
constant flag curvature K = −1 using an algebraic equation (4) for any given
data {ϕ(y), ψ(y)}. By the formulas in Theorem 1.2, we obtain many interesting
examples.

Theorem 1.3. Let ψ(y) be an arbitrary Minkowski norm on Rn and ϕ(y) be an
arbitrary positively homogeneous function of degree one on Rn. Define P (x, y) by

(7) P (x, y) = ϕ
(
y + P (x, y)x

)
.

Let

(8) F (x, y) := ψ
(
y + P (x, y) x

){
1 + Pym(x, y)xm

}
.

Then F (x, y) is a projective Finsler metric with zero flag curvature and F (0, y) =
ψ(y), and its projective factor is P (x, y) with P (0, y) = ϕ(y).

The proof of Theorem 1.3 is given in Section 6. In [Be2], Berwald showed that
any projective Finsler metric F (x, y) of zero flag curvature and its projective factor,
P (x, y), satisfy Fxk = (PF )yk and Pxk = PPyk . Then Berwald gave a formula in
certain special cases. In particular, he constructed a nontrivial projective Finsler
metric of zero flag curvature. See (49) below. In Theorem 1.3, we construct a
projective Finsler metric of zero flag curvature for any given data {ϕ(y), ψ(y)}. By
the formulas in Theorem 1.3, we obtain many interesting examples.

The construction of projective Finsler metrics of positive constant curvature is
much more complicated. We will discuss this issue in Section 7.

The above theorems only characterize the local metric structure of projective
Finsler metrics of constant flag curvature. When we impose some extra global
conditions, the projective Finsler metrics of constant curvature are much more
special. For example, H. Akbar-Zadeh proves that any Finsler metric of negative
constant flag curvature on a compact manifold must be Riemannian and any Finsler
metric of zero curvature on a compact manifold is locally Minkowskian [AZ].
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1716 ZHONGMIN SHEN

The Beltrami theorem says that a Riemannian metric is locally projectively
flat if and only if it is of constant flag curvature. For Finsler metrics, this is no
longer true. The first family of non-projectively-flat Finsler metrics of constant flag
curvature was constructed in [BaSh]. Later on, the author constructed infinitely
many non-projectively-flat Finsler metrics with constant flag curvature [Sh2], [Sh3].
So far, many known non-projectively-flat Finsler metrics of constant flag curvature
are in the form F = α + β, where α is a Riemannian metric and β is a 1-form.
Such metrics are called Randers metrics [Ran]. Recently, D. Bao and C. Robles
[BaRo] have found an equivalent condition for Randers metrics to be of constant
flag curvature. See also [MaSh]. However, the classification problem for Randers
metrics of constant flag curvature has not yet been completely solved.

After the preliminary version of this paper was sent out in the summer of 2001,
the author received an interesting paper from R. Bryant [Br3], in which Bryant
characterizes the (generalized) Finsler metrics on Sn with K = 1 and great circles
as geodesics (see Theorem 2 in [Br3]). As argued by Bryant, the idea of Theorem
2 in [Br3] can be used to construct projective Finsler metrics with constant flag
curvature K = 1 and a prescribed tangent indicatrix at one point (see Proposition 4
in [Br3]). He also shows how to construct all possible local projective Finsler metrics
with K = 1. In a private communication, Bryant informed the author that his idea
can also be used to characterize (local) projective Finsler metrics of constant flag
curvature K = 0 or −1, although he did not give any detailed discussion on this
issue in [Br3]. Nevertheless, our results overlap Bryant’s results in the positive flag
curvature case. Here we only discuss the local construction, while Bryant in [Br3]
discusses both the local and global issues. We should point out that our approach
is different from Bryant’s; hence the expressions of our examples are also different
from his.

Many Finsler metrics with special curvature properties exist only locally. For
example, there are lots of reversible projective Finsler metrics with K = 1 on an
open subset of Sn, which cannot be extended to the whole Sn. R. Bryant shows
that the only reversible projective Finsler metric with K = 1 on S2 is the standard
Riemannian metric [Br1], [Br2]. I thank the referee for pointing out that the above
problem in higher dimensions can be resolved by the discussion around Bryant’s
Example 2 in [Br3]. Namely, the only reversible projective Finsler metric with
K = 1 on Sn is the standard Riemannian metric.

Acknowledgments. This work was done during the author’s visit to Prof. S. S.
Chern. It was presented at the 2nd National Conference on Finsler Geometry at
the Nankai Institute of Mathematics on August 1, 2001. The author would like to
thank S. S. Chern for his warm hospitality and valuable discussions, and also R.
Bryant and Z. I. Szabó for explaining their work to the author.

2. Preliminaries

A Minkowski norm ψ(y) on a vector space V is a C∞ function on V \ {0} with
the following properties: (a) ψ(y) ≥ 0, and ψ(y) = 0 if and only if y = 0; (b) ψ(y) is
a positively homogeneous function of degree one, i.e., ψ(ty) = tψ(y), t ≥ 0; (c) ψ(y)
is strongly convex, i.e., for any y 6= 0, the matrix gij(y) := 1

2 [F 2]yiyj (y) is positive
definite. A Finsler metric F on a manifold M is a C∞ function on TM \ {0} such
that Fx := F |TxM is a Minkowski norm on TxM for any x ∈M .
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PROJECTIVELY FLAT FINSLER METRICS 1717

Let F be a Finsler metric on an n-dimensional manifold M . For a non-zero
vector y ∈ TpM , F induces an inner product gy on TpM by

gy(u,v) := gij(x, y)uivj =
1
2

[F 2]yiyj(x, y)uivj .

Here x = (xi) denotes the coordinates of p ∈ M and (x, y) = (xi, yi) denotes the
local coordinates of y ∈ TpM . The geodesics are characterized by

d2xi

dt2
+ 2Gi

(
x(t),

dx

dt
(t)
)

= 0,

where Gi := 1
2g
il{[F 2]xkylyk − [F 2]xl} are called the geodesic coefficients of F . F

is said to be positively complete (resp. complete) if every geodesic defined on (a, b)
can be extended to a geodesic defined on (a,∞) (resp. (−∞,∞)). Many examples
found in this paper are positively complete, but not complete.

The Riemann curvature Ry = Rikdx
k⊗ ∂

∂xi |p : TpM → TpM is a family of linear
maps on tangent spaces, defined by

(9) Rik = 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

For a tangent plane P ⊂ TpM and a non-zero vector y ∈ TpM , the flag curvature
K(P, y) is defined by

(10) K(P,y) :=
gy(u,Ry(u))

gy(y,y)gy(u,u)− gy(y,u)2
,

where P = span{y,u}. When F is Riemannian, K(P,y) = K(P ) is independent of
y ∈ P . It is just the sectional curvature of P in Riemannian geometry. We say that
F is of scalar curvature if for any y ∈ TpM , the flag curvature K(P,y) = K(y) is
independent of P containing y ∈ TpM , which is equivalent to the following system
of equations in a local coordinate system (xi, yi) in TM :

Rik = K F 2
{
δik − F−1Fyky

i
}
.

If K is a constant, then F is said to be of constant flag curvature.
There are several non-Riemannian quantities in Finsler geometry. One of the

important non-Riemannian quantities is the E-curvature Ey = Eijdx
i ⊗ dxj |p :

TpM ⊗ TpM → R, defined by

(11) Eij :=
1
2

∂2

∂yi∂yj

[∂Gm
∂ym

]
.

The E-curvature is closely related to the flag curvature. For a two-dimensional
plane P ⊂ TpM and a non-zero vector y ∈ TpM , the flag E-curvature E(P, y) is
defined by

(12) E(P,y) :=
F 3(y)Ey(u,u)

gy(y,y)gy(u,u)− gy(y,u)2
,

where P = span{y,u}. We say that F has constant flag E-curvature if for any flag
(P,y), E(P,y) = (n+ 1)c, which is equivalent to the following system of equations,

Eij = (n+ 1)cFyiyj .

We know that the Funk metric on a strongly convex domain satisfies K = −1/4 and
E = (n+ 1)/4 [Sh1] (see Example 5.3 below). There are many Finsler manifolds of
constant flag curvature and constant flag E-curvature [Sh2], [Sh3].
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3. Projective metrics

A distance function d on a manifold M is said to be smooth if it is induced by a
Finsler metric F on M ,

d(p, q) := inf
c

∫ 1

0

F (ċ(t))dt,

where the infimum is taken over all curves c(t), 0 ≤ t ≤ 1, joining p = c(0) to
q = c(1). Thus smooth distance functions can be studied using calculus (see [AIM],
[BCS]). Hilbert’s Fourth Problem in the smooth case is to characterize Finsler
metrics on an open subset in Rn whose geodesics are straight lines.

Let U ⊂ Rn be an open subset. A Finsler metric on U is a function on TU ∼=
U × Rn. It is known that a Finsler metric F (x, y) on U is projective if and only if
its geodesic coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,

where P (x, y) is positively y-homogeneous with degree one, P (x, ky) = kP (x, y),
k > 0. We call P (x, y) the projective factor of F (x, y). The following lemma plays
an important role.

Lemma 3.1 ([Ha], [Rap]). Let F (x, y) be a Finsler metric on an open subset
U ⊂ Rn. F (x, y) is projective on U if and only if it satisfies

(13) Fxkyl(x, y)yk = Fxl(x, y).

In this case, the projective factor P (x, y) is given by

(14) P (x, y) =
Fxk(x, y)yk

2F (x, y)
.

Let F (x, y) be a projective Finsler metric on an open subset U ⊂ Rn, and let
P (x, y) denote its projective factor. Plugging Gi = Pyi into (9) yields

(15) Rik = Ξ δik + τk y
i,

where

(16) Ξ := P 2 − Pxkyk, τk := 3(Pxk − PPyk) + Ξyk .

By the symmetry property that gjiRik = gkiR
i
j , we obtain

(17) Rik = Ξ
{
δik − F−1Fyky

i
}
.

Thus

(18) Pxk − PPyk = −
(ΞF )yk

3F
.

From (17), we see that F is of scalar curvature with flag curvature

(19) K = Ξ/F 2.

This observation was first made by L. Berwald [Be2]. The following lemma follows
from his arguments.
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Lemma 3.2. Let F (x, y) be a Finsler metric on an open subset U ⊂ Rn. Then
F = F (x, y) is projective with flag curvature K = K(x, y) if and only if there are
a positively y-homogeneous function P = P (x, y) of degree one and a positively
homogeneous function K = K(x, y) of degree zero on TU ∼= U × Rn such that

(20) Fxk = (PF )yk

and

(21) Pxk = PPyk −
1

3F
(KF 3)yk .

In this case, P is the projective factor of F .

4. Analytic solutions

In this section, we are going to determine the local structures of x-analytic
projective Finsler metrics F (x, y) of constant flag curvature by solving the first-
order partial differential equations (20) and (21).

Let F (x, y) be a projective Finsler metric of constant flag curvature K = λ on
a neighborhood of the origin in Rn, and P (x, y) be the projector factor. It follows
from Lemma 3.2 that

(22) Fxk = (PF )yk , Pxk = PPyk − λFFyk .
Let Ψm(y) and Φm(y) be defined as in Theorem 1.1.

Assume that λ 6= 0. Let Ψ±(x, y) := P (x, y)±
√
−λF (x, y). Then we can express

F (x, y) and P (x, y) in terms of Ψ±(x, y). It follows from (22) that

(23) (Ψ±)xk = Ψ±(Ψ±)yk .

This observation is due to Berwald [Be2].
Now we are going to use (22) and (23) to find the Taylor expansion for x-analytic

projective Finsler metrics of constant flag curvature K = λ 6= 0.
Differentiating Ψ±(x, y) and using (23), we obtain

(24) (Ψ±)xi1 ···xim (0, y) =
1

m+ 1

[
(ϕ±

√
−λψ)m+1

]
yi1 ···yim

(y).

By (24) we obtain

Fxi1 ···xim (0, y) =
1

(m+ 1)

[
Ψm

]
yi1 ···yim

(y),(25)

Pxi1 ···xim (0, y) =
1

(m+ 1)

[
Φm
]
yi1 ···yim

(y).(26)

By (25) and (26), we immediately obtain (1) and (2).
Now assume that λ = 0. It follows from (22) that

(27) Fxk = (PF )yk , Pxk = PPyk .

By the first equation of (27), we have

(28) Fxi1 ···xim (x, y) = (FPm)yi1 ···yim (x, y).

Setting x = 0 in (28) yields

Fxi1 ···xim (0, y) =
1

(m+ 1)

[
Ψm

]
yi1 ···yim

(y).
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Since P (x, y) satisfies the second equation of (27) with P (0, y) = ϕ(y), we have

Pxi1 ···xim (0, y) =
1

m+ 1

[
Φm
]
yi1 ···yim

(y).

By the above identities, we obtain (1) and (2) in the case when λ = 0.
The second part of the theorem is left for the reader to verify. �

5. K = −1

In this section, we are going to construct smooth solutions F (x, y) of constant
flag curvature K = −1 with F (0, y) = ψ(y) and Fxk(0, y)yk = 2ψ(y)ϕ(y) for any
given pair {ψ(y), ϕ(y)}. We need the following lemma.

Lemma 5.1. Let φ(y) be an arbitrary positively homogeneous function of degree
one on Rn. Suppose that φ is C∞ on Rn \ {0}. There is a unique real-valued
function f := f(x, y) satisfying the following:

(29) f(x, y) = φ
(
y + f(x, y) x

)
.

Moreover, f satisfies

(30) fxk = ffyk .

Proof. Let h(t) := t− φ(y + tx). Observe that there is a small δ > 0 such that for
any x ∈ Rn with |x| < δ, at any t where y + tx 6= 0,

h′(t) = 1− φyi(y + tx)xk ≥ 1
2
.

Thus there is a unique to such that h(to) = 0. Setting f(x, y) := to, we obtain the
unique solution.

Differentiating (29) with respect to xk and yk, respectively, we obtain(
1− φymxm

)
fxk = φykf,(

1− φymxm
)
fyk = φyk .

For x close to 0, φymxm < 1. Thus (30) holds. �

Proof of Theorem 1.2. Let Ψ±(x, y) be the functions defined in (4). By Lemma
5.1, Ψ± = Ψ±(x, y) satisfy (30), i.e.,

(31) (Ψ±)xk = Ψ±(Ψ±)yk

with Ψ±(0, y) = φ±(y) = ϕ(y)± ψ(y). Let F := 1
2{Ψ+ −Ψ−} be defined in (5). It

follows from (31) that
(Ψ±)xkyly

k = (Ψ±)xl .

Thus F (x, y) satisfies (13), and it is projective by Lemma 3.1. Observe that

Fxky
k =

1
2

{
Ψ+(Ψ+)yk −Ψ−(Ψ−)yk

}
yk =

1
2

{
Ψ2

+ −Ψ2
−

}
.

Thus the projective factor P = 1
2F
−1Fxky

k is given by

P :=
Fxky

k

2F
=

1
2

Ψ2
+ −Ψ2

−
Ψ+ −Ψ−

=
1
2

{
Ψ+ + Ψ−

}
.
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By a similar argument, we obtain

Ξ = P 2 − Pxkyk = −
(Ψ+ −Ψ−

2

)2

= −F 2.

Thus the flag curvature K = −1 by (19). �

Example 5.1. Let φ(y) be a Minkowski norm on Rn and U :=
{
y ∈ Rn | φ(y) < 1

}
.

Define Θ(x, y) by

(32) Θ(x, y) = φ
(
y + Θ(x, y) x

)
, y ∈ TxU .

Θ(x, y) is a Finsler metric on U satisfying the following system of equations [Ok]:

(33) Θxk = ΘΘyk .

By Lemma 3.2, F (x, y) := Θ(x, y) is a projective Finsler metric on U with constant
flag curvature K = −1/4, and its projective factor is given by P (x, y) := 1

2Θ(x, y).
Let φ+ = φ, and let φ− be an arbitrary positively y-homogeneous function of

degree one on Rn. Let

ϕ(y) :=
1
2

{
φ+(y) + φ−(y)

}
, ψ(y) :=

1
2

{
φ+(y)− φ−(y)

}
.

Let Ψ±(x, y) be the solutions of (4). Let F (x, y) and P (x, y) be the functions
defined in (5) and (6) using Ψ±(x, y). By Theorem 1.2, F (x, y) is projective with
K = −1, and its projective factor is P (x, y).

Note that Ψ+(x, y) = Θ(x, y). If φ−(y) := −φ(−y), then Ψ−(x, y) = −Θ(x,−y).
In this case,

F (x, y) =
1
2

{
Θ(x, y) + Θ(x,−y)

}
,(34)

P (x, y) =
1
2

{
Θ(x, y)−Θ(x,−y)

}
.(35)

We call F the Hilbert metric on U .

Example 5.2. Let φ(y) be an arbitrary Minkowski norm on Rn, and let Θ(x, y)
denote the Funk metric of φ defined by (32). Let δ 6= 0 and λ be constants, and

ψ(y) :=
1
2

{
φ(y) − δφ(λy)

}
, ϕ(y) :=

1
2

{
φ(y) + δφ(λy)

}
.

We assume that δ and λ are such that ψ(y) is a Minkowski norm on Rn. We have

(ϕ+ ψ)(y) = φ(y), (ϕ− ψ)(y) = δφ(λy).

Let Ψ+(x, y) and Ψ−(x, y) be defined in (4) with φ+(y) = φ(y) and φ−(y) :=
δφ(λy), respectively. Then

Ψ+(x, y) = Θ(x, y), Ψ−(x, y) = δΘ(δλx, λy).

By Theorem 1.2, we conclude that the function

(36) F (x, y) :=
1
2

{
Θ(x, y)− δΘ(δλx, λy)

}
is a projective Finsler metric on its domain with K = −1, and its projective factor
is given by

(37) P (x, y) =
1
2

{
Θ(x, y) + δΘ(δλx, λy)

}
.

By taking δ = −1 and λ = −1 in (36), we obtain the Hilbert metric.
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Take a look at the special case when φ(y) = |y|, the Funk metric on Bn, is given
by

(38) Θ(x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2 , y ∈ TxBn.

Let ε := δ|λ|. Then the Finsler metric defined in (36) is given by

F (x, y) =
1
2

{√|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1− |x|2

− ε
√
|y|2 − ε2(|x|2|y|2 − 〈x, y〉2) + ε2〈x, y〉

1− ε2|x|2
}
.(39)

Clearly, F is positively complete on Bn(1) if |ε| < 1, and F is the Klein metric
when ε = −1. By the above argument, we know that F is projective with constant
flag curvature K = −1.

Example 5.3. Let φ(y) be an arbitrary Minkowski norm on Rn, and let Θ(x, y)
denote the Funk metric of φ. For a constant vector a ∈ Rn, let

ψ(y) :=
1
2

(
φ(y) + 〈a, y〉

)
, ϕ(y) :=

1
2

(
φ(y) − 〈a, y〉

)
be such that

ϕ(y) + ψ(y) = φ(y), ϕ(y)− ψ(y) = −〈a, y〉.
Let Ψ+(x, y) and Ψ−(x, y) be the functions defined by (4) with φ+(y) = φ(y) and
φ−(y) = −〈a, y〉, respectively. We have

Ψ+(x, y) = Θ(x, y), Ψ−(x, y) = − 〈a, y〉
1 + 〈a, x〉 .

By Theorem 1.2, we know that the function

(40) F (x, y) =
1
2

{
Θ(x, y) +

〈a, y〉
1 + 〈a, x〉

}
is a projective Finsler metric with K = −1, and its projective factor is given by

(41) P (x, y) =
1
2

{
Θ(x, y)− 〈a, y〉

1 + 〈a, x〉
}
.

Since the geodesic coefficients are in the form Gi = Pyi, a direct computation gives

∂Gm

∂ym
= (n+ 1)P.

Thus

Eij =
1
2

∂2

∂yi∂yj

[∂Gm
∂ym

]
=
n+ 1

2
Pyiyj .

By (33) again, one immediately obtains

P (x, y) =
1
2

{
Θ(x, y)− 〈a, y〉

1 + 〈a, x〉
}
.
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Observe that

Eij =
n+ 1

4

[
Θ− 〈a, y〉

1 + 〈a, x〉
]
yiyj

=
n+ 1

4

[
Θ +

〈a, y〉
1 + 〈a, x〉

]
yiyj

=
n+ 1

2
Fyiyj .

Thus the Finsler metric F in (40) also has constant flag E-curvature, E = 1
2 (n+1).

Take a look at the special case when φ(y) = |y|. The Funk metric Θ(x, y) on the
unit ball Bn(1) is given by (38). Thus for any constant vector a ∈ Rn with |a| < 1,
the function

(42) F (x, y) =
1
2

{√|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1− |x|2 +

〈a, y〉
1 + 〈a, x〉

}
is a projective Finsler metric on Bn(1) with K = −1 and E = 1

2 (n + 1). In [Sh4],
we prove that a Randers metric is projective with constant flag curvature if and
only if it is locally Minkowskian or, up to a scaling, isometric to the metric in (42).

6. K = 0

In this section, we are going to prove Theorem 1.3, and then construct some
interesting projective Finsler metrics F (x, y) with zero flag curvature K = 0.

Proof of Theorem 1.3. Let P (x, y) and F (x, y) be defined in (7) and (8) respec-
tively. By Lemma 5.1, P (x, y) satisfies

(43) Pxk = PPyk

with P (0, y) = ϕ(y). It follows from (43) that

(44) Pxkym =
1
2

(P 2)ykym = Pxmyk .

Differentiating (8) with respect to xk and using (43), we obtain

Fxk = ψym(y + Px)
{
Pδmk + Pxkx

m
}{

1 + Pylx
l
}

+ ψ(y + Px)
{
Pyk + Pymxkx

m
}
.

It follows from (43) and (8) that

(45) PF = ψ(y + Px)
{
P + Pxmx

m
}
.

Differentiating (45) with respect to yk yields

(PF )yk = ψym(y + Px)
{
δmk + Pykx

m
}{

P + Pxlx
l
}

+ ψ(y + Px)
{
Pyk + Pxmykx

m
}
.

By (43), we have{
Pδmk + Pxkx

m
}{

1 + Pylx
l
}

=
{
δmk + Pykx

m
}{

P + Pxlx
l
}
.

In virtue of (44), we conclude that F satisfies

(46) Fxk = (PF )yk .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1724 ZHONGMIN SHEN

By Lemma 3.2, we conclude that the function F (x, y) is a projective Finsler metric
on its domain with K = 0, and its projective factor is P (x, y). �
Example 6.1. Let φ(y) be a Minkowski norm on Rn, and let Θ(x, y) denote
the Funk metric on U := {y ∈ Rn | φ(y) < 1}, which is defined in (32). Let
ψ(y) = φ(y) + 〈a, y〉 and ϕ(y) = φ(y). Let P (x, y) and F (x, y) be defined in (7)
and (8) respectively. We have

P (x, y) = Θ(x, y).

Observe that
φ(y + Px) = φ(y + Θx) = Θ.

Thus
ψ(y + Px) = Θ + 〈a, y〉+ 〈a, x〉Θ.

This gives

F (x, y) =
{(

1 + 〈a, x〉
)

Θ(x, y) + 〈a, y〉
}{

1 + Θyk(x, y)xk
}
.

Take ψ(y) = |y|+ 〈a, y〉 and ϕ(y) = |y|. We obtain

F (x, y) =
{

1 + 〈a, x〉+
(1− |x|2)〈a, y〉√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

}

×

(√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

)2

(1 − |x|2)2
√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

.(47)

By Theorem 1.3, we know that F (x, y) is a projective Finsler metric with zero flag
curvature K = 0, and its projective factor is given by

(48) P (x, y) =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2 .

Clearly, F (x, y) is not locally Minkowskian.

Remark 6.1. Letting a = 0 in (47), we obtain

(49) F (x, y) =

(√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

)2

(1− |x|2)2
√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

.

This is just the projective Finsler metric constructed by L. Berwald [Be2]. The
Finsler metric F (x, y) in (49) is positively complete, i.e., every unit speed geodesic
on (δ, τ) can be extended to a geodesic on (δ,∞). It can be easily shown that
any complete projective Finsler metric with zero flag curvature K = 0 must be a
Minkowski metric [Be1], [Fk1].

Example 6.2. Let φ be an arbitrary Minkowski norm on Rn. Take

ψ(y) := φ(y), ϕ(y) := −〈a, y〉.
We obtain

P (x, y) = − 〈a, y〉
1 + 〈a, x〉 ,(50)

F (x, y) =
φ
(

(1 + 〈a, x〉)y − 〈a, y〉x
)

(
1 + 〈a, x〉

)2 .(51)
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By Theorem 1.3, we know that F (x, y) is a projective Finsler metric on its domain
with K = 0, and its projective factor is P (x, y).

For the Finsler metric F (x, y) in (51), the geodesic coefficients

Gi(x, y) = P (x, y)yi

are quadratic in y ∈ Rn. Thus F is a Berwald metric. It is well known that any
Berwald metric with K = 0 is locally Minkowskian. We conclude that the Finsler
metric in (51) is locally Minkowskian.

Take a Randers norm, φ(y) = |y|+ 〈b, y〉, where b ∈ Rn is a vector with |b| < 1.
We obtain a projective Randers metric with K = 0,

F (x, y) =

√
(1 + 〈a, x〉)2|y|2 − 2(1 + 〈a, x〉)〈a, y〉〈x, y〉 + 〈a, y〉2|x|2

(1 + 〈a, x〉)2

+
(1 + 〈a, x〉)〈b, y〉 − 〈a, y〉〈b, x〉

(1 + 〈a, x〉)2
.

This metric must be locally Minkowskian. This fact also follows from the main
theorem in [Sh4].

7. K = 1

In this section, we are going to construct projective Finsler metrics F (x, y) with
constant flag curvature K = 1. Let ψ(y) be a Minkowski norm on Rn and ϕ(y)
a positively homogeneous function of degree one on Rn. We would like to find
a projective Finsler metric F (x, y) of constant flag curvature K = 1 satisfying
F (0, y) = ψ(y) and with projective factor P (0, y) = ϕ(y). Suppose that there is a
complex-valued solution to the following system:

(52) Hxk = HHyk

with H(0, y) = ϕ(y)+iψ(y). We can express H(x, y) = P (x, y)+iF (x, y). Plugging
it into (52) yields

Pxk − PPyk + FFyk + i
{
Fxk − (PF )yk

}
= 0.

We obtain
Fxk = (PF )yk , Pxk = PPyk − FFyk .

By Lemma 3.2, F (x, y) is projective with constant flag curvature K = 1 and with
F (0, y) = ψ(y), and its projective factor is P (x, y) with P (0, y) = ϕ(y).

Let

(53) H(x, y) :=
∞∑
m=0

1
(m+ 1)!

dm

dtm

[(
ϕ(y + tx) + iψ(y + tx)

)m+1]∣∣∣∣
t=0

.

We assume that the above power series is convergent for x ∈ Rn close to the
origin and any y ∈ Rn. By a direct argument, one can verify that the function
H = H(x, y) in (53) satisfies equation (52) with H(0, y) = ϕ(y) + iψ(y).

Assume that φ(y) := ϕ(y) + iψ(y) is y-analytic on Rn \ {0}, so that for any
y ∈ Rn \ {0}, it can be extended to a function φ(y + zx), z ∈ C and x ∈ Rn, such
that there is a solution H(x, y) to the following equation:

(54) H(x, y) = φ
(
y +H(x, y) x

)
.
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Note that H(0, y) = φ(y). By the same argument as in Lemma 5.1, one can show
that H = H(x, y) satisfies equation (52) with H(0, y) = ϕ(y) + iψ(y).

Example 7.1. Let ψ(y) = cos(α)|y| and ϕ(y) = sin(α)|y|, where | · | denotes the
Euclidean norm on Rn and α is an angle with |α| < π/2. We have

ϕ(y) + iψ(y) = ie−iα|y|.
Equation (54) becomes

(55) H = ie−iα
√
|y|2 + 2〈x, y〉H + |x|2H2.

We obtain

H =
−〈x, y〉+ i

√
(e2iα + |x|2〉)|y|2 − 〈x, y〉2
e2iα + |x|2 .

Express
H(x, y) = P (x, y) + iF (x, y).

Then F (x, y) is a projective Finsler metric of constant flag curvature K = 1, and
P (x, y) is the projective factor of F (x, y). Let

A : =
(

cos(2α)|y|2 + (|x|2|y|2 − 〈x, y〉2)
)2

+
(

sin(2α)|y|2
)2

,

B : = cos(2α)|y|2 + (|x|2|y|2 − 〈x, y〉2),
C : = sin(2α)〈x, y〉,
C′ : =

(
cos(2α) + |x|2

)
〈x, y〉,

D : = |x|4 + 2 cos(2α)|x|2 + 1.

For an angle α with 0 ≤ α < π/2,

√
(e2αi + |x|2)|y|2 − 〈x, y〉2 =

√√
A+B

2
+ i

√√
A−B

2
.

By an elementary argument we obtain

F (x, y) =

√√
A+B

2D
+
(C
D

)2

+
C

D
,(56)

P (x, y) = −

√√
A−B
2D

−
(C
D

)2

− C′

D
.(57)

In dimension two, one can verify that the Finsler metric F in (56) is the Bryant
metric [Br1], [Br2].

We can generalize the above construction. Let φ(y) be an arbitrary Minkowski
norm on Rn, and let Θ(x, y) denote the Funk metric of φ. Let

ψ(y) := cos(α)φ(y), ϕ(y) := sin(α)φ(y),

where α is an angle with |α| < π/2. We have

ϕ(y) + iψ(y) = ie−iαφ(y).

Equation (54) becomes

(58) H = ie−iαφ(y +Hx).
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Assume that the Funk metric Θ(x, y) is x-analytic in x ∈ Rn at x = 0, so that it
can be extended to be a function Θ(zx, y), where z ∈ C with |z| = 1, and y ∈ Rn

and x ∈ Rn are close to the origin. Then

H(x, y) := ie−iαΘ
(
ie−iαx, y

)
is a solution to (58) with H(0, y) = ie−iαφ(y) = ϕ(y) + iψ(y). By the above
argument, we know that the function

(59) F (x, y) :=
1
2i

{
ie−iαΘ

(
ie−iαx, y

)
− ie−iαΘ

(
ie−iαx, y

)}
is a projective Finsler metric with K = 1, and its projector factor is given by

(60) P (x, y) =
1
2

{
ie−iαΘ

(
ie−iαx, y

)
+ ie−iαΘ

(
ie−iαx, y

)}
.

Further, F (0, y) = cos(α)φ(y) and P (0, y) = sin(α)φ(y).
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