Bull. Mater. <., Vol. 26, No. 1, January 2003, pp. 33-41. © Indian Academy of Sciences.

Projector augmented wave method: ab initio molecular dynamicswith

full wave functions

PETER E BLOCHL*, CLEMENS J FORST' and JOHANNES SCHIMPL

Clausthal University of Technology, Institute for Theoretical Physics, Leibnizstr.10, D-38678 Clausthal-Zellerfeld,
Germany

TAlso at Vienna University of Technology, Institute for Materials Chemistry, Getreidemarkt 9/165-TC, A-1060
Vienna, Austria

Abstract. A brief introduction to the projector augmented wave method is given and recent developments
arereviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular
dynamics simulations with full wave functions. It extends and combinesthe traditions of existing augmented
wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids
transferability problems of the pseudopotential approach and it has been valuable to predict properties that

depend on the full wave functions.
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1. Introduction

The main god of dectronic dructure methods is to solve
the Schrodinger eguetion for the dectrons in a molecule
or w0lid, to evduae the reaulting totd energies, forces,
response functions and other quantities of interest. In this
paper we review the projector augmented wave (PAW)
method (Blochl 1994), an dectronic sructure method for
ab initio molecular dynamics with full wave functions.
The main god of this paper is not to provide a particu-
laly complete or detaled account of the methodology,
but rather to lay out the undelying idess A more rigo-
rous description can be found in the origind paper
(Blochl 1994).

Dengty functiona theory (Hohenberg and Kohn 1964,
Kohn and Sham 1965) maps a description for interacting
dectrons onto one of non-interacting €dectrons in an eff-
ective potential. The remaining one-dectron Schrodinger
equation still poses substantid  numerical  difficulties (i)
in the atomic region near the nucleus the kinetic energy
of the dectrons is large, rexulting in rapid oscillaions of
the wave function that require fine grids for an accurae
numerical  representation. On  the other hand, the lage
kingic energy mekes the Schrodinger equation giff, 0
tha a change of the chemicd environment has little
effect on the shape of the wave function. Therefore, the
wave function in the aomic region can be represented
well dready by a smdl bass st and (ii) in the bonding
region between the atoms the dtuation is oppodste. The
kinetic energy is smdl and the wave function is smooth.
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However, the wave function is flexible and responds
dsrongly to the environment. This requires large and
nearly complete basis sts.

Combining these different requirements is non-trivia

and various strategies have been developed.

Most appeding to quantum chemists has been the
aomic point of view. Bads functions that resemble
atomic orbitds are chosen. They exploit that the wave
function in the aomic region can be described by a
few bads functions, while the bonding is described by
the overlgpping tails of these atomic orbitas Most
techniques in this cdass ae a compromise of a wdl
adepted bess st with complex matrix dements on the
one hand ad on the other hand numericdly conve
nient bass functions such as Gaussans where the
inadeguacies are compensated by larger bass sets.
Pseudopotentials regard an atom as a perturbation of
the free dectron gas The most naurd bass functions
ae plane waves Plane waves ae complete and wdl
adapted to sufficiently smooth wave functions. The
dissdvantage of the large bads sats required is offst
by the extreme smplicity to evaluate matrix €dements.
Finite plane wave expansons ae, however, absolutdy
inadequate to describe the drong oscillations of the
wave functions near the nucleus. In the pseudopotential
gpproach the Pauli repulson of the core dectrons is
therefore described by an  effective potentid  that
expds the vaence dectrons from the core region. The
resulting wave functions are smooth and can be repre-
sented well by plane waves. The price to pay is that al
information on the charge densty and wave functions
near thenucleusislost.
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Augmented wave methods compose ther bass func-
tions out of atom-like patid waves in the aomic regi-
ons and a st of functions, cdled envelope functions,
gopropriate for the bonding in between. Space is divi-
ded accordingly into aom-centred spheres,  defining
the aomic region, and an interditid region for the
bonds. The partid solutions of the different regions
ae matched a the inteface between aomic and inter-
ditia regions.

The projector augmented wave method is an extenson of
augmented wave methods and the pseudopotentiad appro-
ach, which combines their traditions into a unified dec-
tronic structure method.

After describing the underlying idess of the various
methods let us brigfly review the history of augmented
wave methods and the pseudopotential approach. We do
not discuss the aomic-orbitd based methods because
our focusisthe PAW method and its ancestors.

The augmented wave methods have been introduced
in 1937 by Yae (Saer 1937) and laer modified by
Korringa (1947), Kohn and Rostokker (1954). They appro-
ached the dectronic dructure as a <cattered  eectron
problem. Condder an dectron beam, represented by a
plane wave, travding through a solid. It undergoes mul-
tiple scattering a the aoms. If for some energy, the out-
going scatered waves intefere destructivdly, a bound
sate has been determined. This approach can be trans
laed into a bads st method with energy dependent and
potential dependent basis functions. In order to make the
scattered wave problem tractable, a modd potentid  had
to be chosn: The so-cdled muffintin potentiad appro-
ximates the potentid by a congant in the interdtitial

region and by a sphericdly symmetric potentiad in the
aomic region.
The pseudopotentid  approach traces back to 1940

when C Hering invented the orthogondized plane wave
method (Hering 1940). Later, Phillips axd Klenman
(1959) and Antoncik (1959) replaced the orthogondity
condition by an effective potentia, that compensates the
dectrodaic attraction by the nucleus. In practice, the
potentid was modified, for example, by cutting off the
sngular potentid of the nucleus & a cetain vdue. This
was done with a few paamees that have been adjusted
to reproduce the messured eectronic band dtructure of
the corresponding solid.

Augmented wave and pseudopotentil methods reached
adulthood in the 1970s At firs Andersen (1975) showed
that the energy dependent bass st of Saer's APW
method can be mapped onto one with energy independent
basis functions by linearizing the patid waves for the
aomic regions in energy. In the origind APW gpproach
the zeros of an energy dependent matrix had to be deter-
mined, which is problematic, if many Sates lie in a smal
enegy region as for complex sysems. With the new
energy independent basis functions, however, the prob-

lem is reduced to the much sSmple generdized eigen
vdue problem, which can be sodved usdng eficient
numerical  techniques. Furthermore, the introduction of
well defined bass sets paved the way for full-potentia
cdculations. In that case the muffintin gpproximation is
used soledly to define the bass st The matrix eements
of the Hamiltonian are eva uated with the full potentid.

Hamann et al (1979) showed how pseudopotentids can
be congructed in such a way, that ther scattering prop-
eties are identicdl to that of an atom to firs order in
energy. These firgt-principles  pseudopotentias  relieved
the cdculations from the redrictions of empiricd paa
meters.  Highly accurate cdculations have become poss-
ble A man dissdvantage of these pseudopotentiads has
been the large bads set Sze required especidly for firg-
row and trangition metal atoms.

In 1985, Car and Parindlo published the ab initio
molecular dynamics method. Simulations of the aomic
motion have become possble on the basis of date-of-the-
at dectronic dructure methods. Besides making dyna
micad phenomena and finite temperaure effects access-
ble to dectronic dructure cdculations, the ab initio
molecular dynamics method dso introduced a radicaly
new way of thinking into eectronic structure methods.
Diagondization of a Hamilton matrix has been replaced
by clasicd equations of motion for the wave function
coefficients. If one applies friction, the system is que
nched to the ground <tate. Without friction truly dyn-
amicd smulaions of the aomic dructure are performed.
Electronic wave functions and aomic postions ae
treated on equal footing.

The Ca—Parindlo method had been implemented first
for the pseudopotentid approach. There seemed to be
unsurmounteble barriers  againg  combining the new tech-
niqgue with augmented wave methods. The man problem
was related to the potentid dependent basis set used 0
fa: the Ca—Parindlo method requires a wel defined
and unique totd energy functiond of aomic postions
and bass s coefficients. Therefore, it was one of the
man gods of the PAW method to introduce energy and
potential independent basis sets that were as accurate and
numericdly efficient as the previoudy used augmented
basis sts. Other requirements have been: (i) The method
should match the efficiency of the pseudopotentia appro-
ach for Ca—Parindlo smuldions (ii) it should become
an exact theory when converged and (iii) its convergence
should be essly controlled. We believe that these criteria
have been met, which explains why the PAW method has
become increasingly wide soread today.

We would like to point out that most of these seem-
ingly singular developments did not come out of the blue
but the idess seemed to have evolved in the community.
In the case of the PAW method, smilar ideas have been
developed by Vanderbilt (1990) in the context of ultra-
soft pseudopotentids. The firs dynamicd smulations
usng a semiempiricd eectronic dructure method have
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been peformed by Wang and Karplus (1973). The first
ab initio pseudopotentials have been published by Zunger
and Cohen (1978) one year before Hamann et al (1979).

2. Transformation theory

At the root of the PAW method lies a transformation, that
maps the true wave functions with their complete noda
dructure onto auxiliary wave functions, tha ae numeri-
cdly convenient. We am for smooth axiliay wave
functions, which have a rapidy convergent plane wave
expandon. With such a tranformation we can expand the
auxilialy wave functions into a convenient bass sgt, and
evduae dl physcd properties after recongtructing the
related physicd (true) wave functions.

Let us denote the physicd oneparticle wave functions
as lyafi and the auxiliay wave functions as |y ,fi Note
that the tilde refers to the representation of smooth
auxiliay wave functions. n is the labd for a one-particle
date and contains a band index, a k-point and a spin
index. The transformation from the auxiliay to the
physica wave functionsis 7,

lynfi= T |y, fi @

We use here Dirac’'s Bra and Ket notation. A wave func-
tion, yn(r), corresponds to a ket |ynii the complex conju-
gate wave function, y,*(r) corresponds to a bra ay,|, and
a scdar product od®ry ¥ (r)y ,(r) is written as &ynlymfl
Vectors in the 3-d coordinate space are indicated by bold-
faced symboals.

The dectronic ground date is determined by minimiz-
ing a totd energy functiond E[y,] of the dendty func-
tiond theory. The one-paticle wave functions have to be
orthogond. This congrant is implemented with the
method of Lagrange multiplie's. We obtan the ground
gate wave functions from the extremum condition for

FQY ol Lmn) = EYal- @ [ oY mit- o]l nm

n,m

with respect to the wave functions and the Lagrange
multipliers, L,m. The extremum condition for the wave
functions has the form

~ o ~
HlyaAfa =@ Y mfilmn, ©)
m

where 2the f, ae the occupation numbers and
H=- ZRN?+s4 (1) is the effective onepaticle
Hamilton operator.

After a unitary transformation that diagondizes the
metrix of Lagrange multiplie’s L, Wwe obtan the
K ohn-Sham equations

Hlyni= lynie. @
The onepaticle enegies &,

fnt fm
Lom 21, f

m

ae the edgewvdues of

Now we express the functiond, F, in terms of our aux-
iliary wave functions

FITYnlLmn) = E[TY ]
- é, [é?n |‘ITTI§7mﬁ' dn,m]L nm- (5)

nm

The variationa principle with
wave functionsyidds

respect to the auxiliary

THTlY A=T"T |y fe,. ©)

Agan we obtan a Schrodinger-like equation, but now
the Hamilton operator has a different form, 7 "H7Z, an
overlap operator 7 '7 occurs and the resulting  auxiliary
wave functions are smooth.

When we evduae physcd quantiies we need to
evauate expectation vaues of an operaor A, which can
be expressed in terms of either the true or the auxiliary
wave functions.

AN o 4 ~ o} = ~ o~
&A= Q oy, |Aly A= Q o, [T'AT Iy, (7)

n n

In the representation of auxiliary wave functions we need
to use transformed operators, A=7"AT As it is this
equation only holds for the vadence eectrons. The core
electrons are treated differently aswill be shown below.

The transformation tekes us conceptiondly from the
world of pseudopotentids to that of augmented wave
methods, which ded with the full wave functions We
will see tha our auxiliay wave functions, which ae
samply the plane wave pats of the full wave functions,
trandate into the wave functions of the pseudopotentia
goproach. In the PAW method the auxiliay wave func-
tions are used to condruct the true wave functions and
the totd energy functiond is evduated from the latter.
Thus it provides the mising link between augmented
wave methods and the pseudopotentid method, which
can be deived as a wdl-defined agpproximation of the
PAW method.

In the origind paper (Blochl 1994), the auxiliay wave
functions have been termed pseudo wave functions and
the true wave functions have been termed dl-dectron
wave functions in order to meke the connection more
evident. We dhdl avoid this notation here, because it
results in confuson in cases, where the correspondence is
not clear cut.

3. Transformation operator

So fa, we have dexribed how we can deermine the
auxiliary wave functions of the ground state and how to
obtain physcd informaion from them. What is missng,
isadefinition of the transformation operator, 7.

The operator, 7, has to modify the smooth auxiliary
wave function in each aomic region, so that the resulting
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wave function has the correct nodal sructure. Therefore,
it makes sense to write the transformation as identity plus
asum of atomic contributions, Sy

T=1+§ Sk 6)
R

For every atom, Si adds the difference between the true
and the auxiliay wave function. The index R is a labd
for an aomic site.

The locd terms, Sg, ae defined in terms of solutions
[fifi of the Schrodinger equation for the isolaed aoms
This set of patial waves [fifi will serve as a basis st 0
that, near the nudeus, dl rdevant vdence wave functions
can be expressed as superpostion of the patid waves
with yet unknown coefficients

yO) =@ fi0)g for [r- Rgl<reg. ©

iR

The index i refers to a dte index R, the angular momen-
tum indices (I,m) and an additiond index that differenti-
ates patid waves with same angula momentum quantum
numbers on the same ste. With iT R we indicate those
patid waves tha belong to ste R Ry is the postion of
the nucdleus of sSte R.

Note that the partiad waves are not necessarily bound
dates and are therefore not normdizable, unless we trun-
cate them beyond a certain radius rcg. The PAW method
is formulated such that the fina results do not depend on
the location where the patid waves are truncated, as
long asthisis not done too closeto the nucleus.

Since the core wave functions do not spread out into
the neighbouring aoms, we will treat them differently.
Currently we use the frozen-core approximation so that
densty and energy of the core dectrons are identicd to
those of the corresponding isolated aoms. The transfor-
mation 7 shal produce only wave functions orthogond to
the core dectrons, while the core dectrons ae treated
separatedly. Therefore, the st of atomic patid waves [fif
includes only vadence dates tha ae orthogond to the
core wave functions of the atom.

For each of the patid waves we choose an auxiliary
patiad wave |f; i Theidentity

|f fi= (1+ Sg) |f;fi for il R,

SeIfifi=|f; /- |fifi (20
defines the locd contribution of Sg to the transformation
operaor. Since 1+Sg ddl change the wave function
only locdly, we require that the partid waves [fifi and
their auxiliary counterparts |f, i ae parwise identica
beyond a certain radius, r.

f(r)=f,(r) for i1 R ad |r- Rg|>rr. 1)

In order to be able to apply the transformation operator to
an abitrary auxiliay wave function, we need to be able

to expand the auxiliay wave function localy into the
auxiliary partia waves

V) =Q fi (&R |yh for |r- Rg|<rog, (12)

iTR

which defines the projector functions | fi The projector
functions probe the locad character of the auxiliay wave
function in the aomic region. Examples of projector
functions are shown in figure 1. From (12) we can derive

o -~ ~

a |fifép; =1,

1
which is vdid within r.. It can be shown by insation,
that the identity (12) holds for any auxiliay wave func-
tion |y that can be expanded locdly into auxiliay par-
tid waves |f, i if

ap If i=d; for i,jT R 13)

Note that neither the projector functions nor the partia
waves need to be orthogona among themsdlves.

By combining (10) and (12), we can goply Sg to any
auxiliary wave function

~. O ~ Y~  ~. © T o~ o~
Srlyfi=Q Sk lfifép |yi=q (If;i+ |f;ap [yh
iTR

iTR
(14)
Hence the transformation operator is
o o T
T=1+aQ (f;n- |f;Map; | (15

where the sum runs over dl patid waves of al aoms
Thetrue wave function can be expressed as

X o~ 9 T~
lyn=|yn+q (fif- |fiRap; yn

I
~ o ~ ~
=y i+ (y &+ YRR, (16)
R

Figure 1. Top: projector functions of the Cl atom for two
s-type partial waves, middle: p-type, bottom: d-type.
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with
~ 9 o~ o~
ly kii= Q If; fép; |y 17
iTR
- o
ly kii= @ If i fép; |y i (19)

In figure 2 the decomposition of (16) is shown for the
example of the bonding p—s state of the Cl, molecule.

To undestand the expresson for the true wave
function, (16), let us concentrate on different regions in
sace. (i) Far from the atoms, the patid waves are
according to (11), parwise identicd so that the auxiliary
wave function is identicd to the true wave function
y(r)=y (r) ad (i) dose to an aom, however, the true
wave funcion, y (r)=y &(r) is built up from partid
waves that contain the proper nodd dsructure, because the
auxilialy wave function and its patid wave expanson
areequd according to (12).

In prectice the patid wave expansons ae truncated.
Therefore, the identity of (12) does not hold drictly. As a
result the plane waves dso contribute to the true wave
function indde the aomic region. This has the advantage
that the missng tems in a truncaed patid wave expan-
son ae patly accounted for by plane waves, which
explans the rapid convergence of the patid wave
expansons.

Frequently, the question comes up, whether the trans-
formation (15) of the auxiliay wave functions indeed

Figure 2. Bonding p—s orbita of the Cl, molecule and its
decomposition of the wave function into auxiliary wave func-
tion and the two one-centre expansions. Top-left: True and
auxiliary wave function; top-right: auxiliary wave function and
its partiad wave expansion; bottom-left: the two partial wave
expansions, bottom-right: true wave function and its partia
wave expansion.

provides the true wave function. The transformation
should be consdered merdy as a change of representa
tion andogous to a coordinate transform. If the totd ene-
rgy functiond is transformed consgently, its minimum
will yidd an auxiliay wave function that produces a cor-
rect wave function [y it

4. Expectation values

Expectation vaues can be obtaned dther from the recon
sructed true wave functions or directly from the auxi-
liary wave functions

- - <N>C,c ox
aAn=q fd, | Aly.itq &, [Alf 7

n n=1
Ne
_ 2 7 ) ~ =~ & <c cx
=aA h¥n T ATy i+t g &y [Alf R 19
n n=1

where f, are the occupations of the vadence dates and N
is the number of core daes. The firsd sum runs over the
valence states, and second over the core states |f i

Now we can decompose the marix dements into ther
individua contributions according to (16)

A’);""é, (Y%m' )71R¢)>

R¢

L, ~ ~ [¢} ~
& IAIyn=<y +aVR-Yr)

R

— AT ~~ & 1 1x =1 ~1
=y |Alyhi+tQ @ rIAlyrA- & RIAlYRD

partl

o] z -~ -~ ~
+ A YR-YRIAIY ke YRl (20)

R! R¢

part3

Only the firg pat of (20) is evauated explicitly, while
the second and third pats of (20) are neglected, because
they vanish for sufficiently loca operaors as long as the
patid wae expanson is converged: The function
YL-Y . vanishes per condrucion beyond some aug-
mentation region, because the patid waves ae parwise
identicd beyond that region. The function, y -y &,
vanishes indde the augmentation region, if the partia
wave expandgon is sufficiently converged. In no region of
space both functions y1-y . ad y~-y~§<1 ae smul-
taneoudy nonzero. Similarly the functions y L -y from
different dtes are never non-zero in the same region in
space. Hence, the second and third parts of (20) vanish
for operaors such as the kinetic energy 'theNZ and the

m,
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red space projection operator |rfér|, which produces the
dectron dendty. For truly nonlocd operators the second
and third pats of (20) would have to be consdered exp-
licitly.

The expression,
therefore be written as

(20), for the expectaion vaue can

A~ o ,~ ~ ., -~ _
aATI= Q (&, |AlY L +& | Aly afi- &1 [Aly D)
n
g‘c
+Q &C|AIFCH

n=1

_a fney |A|ynn+a6fn |A|f C~

n=1

o %0 NCR c CN('j
*a¢ab.d Al i &5 AT
R @i,jl R nl R g

e NC.R 0
[¢] [¢] ~ o ~C o
-a ¢a D IAIf e g ETIAIFTT, (@)
R @,jlR nl R I}

where D; ; is the one-centre dengity matrix defined as

o 3 ~ o~ ~ o~ o} 7=~ ~ o~ 3 ~ ~
Dij=a fhd&nlp;jfap ly i=a api lyaif,&/,[p;h
n n

(2)

The axiliay core sates, |f °fi alow to incorporate the
talls of the core wave function into the plane wave part,
and therefore assure, that the integrations of partid wave
contributions cancel  drictly beyond r.. They ae identicd
to the true core dtates in the tails, but are a smooth con-
tinuation insde the atomic sphere. It is not required that
the auxiliary wave functions are normalized.
For example, the dectron density isgiven by

n(r) =fi(r) + g (& (r)- Az(r), 23)
R
A= Q FY 20 o)+ 1,

nR(r)_ a DIJ ](I’)f (r)+ncR’

i, iTR

&)= & D f F (OF (1) + e, 4

i,jilTR

where ngr is the core densty of the corresponding aom
ad n.ris the axiliay core density that is identica to
N,r outsde the aomic region and a smooth continugtion
indde.

Before we continue, let us discuss a specid point: The
matrix dement of a generd operator with the auxiliary
wave functions may be dowly converging with the plane
wave expanson, because the operaor A may not be wel
behaved. An example for such an operator is the sngular
eectrogatic potentid of a nucleus. This problem can be
dlevigted by adding an inteligent zero: If an operator B
is purdy locdized within an a@omic region, we can use
the identity between the auxiliay wave function and its
own patia wave expansion

0=4,|Bly ,i- & |Bly ;i (25)

Now we choose an operator B so that it cances the
problematic behaviour of the operator A, but is locdized
in a dngle aomic region. By adding B to the plane wave
pat and the matrix elements with its one-centre expat
sons, the plane wave convergence can be improved
without affecting the converged result.

5. Total energy

Like wave functions and expectation vaues dso the totd
energy can be divided into three parts

~ ~ 0 ~
EQy,l.R)=E+Q (Ex- Eg). (26)

R
The planewave part, E, involves only smooth functions
and is evauaed on equi-spaced grids in red and recipro-

cd space. This pat is computationdly most demanding,
and is sSmilar to the expressons in the pseudopotentia

approach
)

20’ (O ,Jn(f)+Z(f)][n(f‘9+Z(f‘9]

-n .
M \
2

E:é’1<y'n

[r-rd
+ YoM e (i) + G 7R (), (27)
where Z(r) is an anguar dependent corelike density
that will be dexribed in detal bdow. The remaning

pats can be evduaed on radid grids in a sphericd
harmonics expanson. The nodd dructure of the wave
functions can be properly described on a logarithmic
radid grid that becomes very fine near nucleus,

>

JAl

€ s s IO+ ZI(r9+Z(r 9]
+8pq)olrojrv TRT

n - 7? K2

R
2m,

Eg = é. Di,j<

i,jilR
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+ Ot (1)ee (r[n'D). (23

]

& s s AN+ ZONANT 9+ Z(r Y]
+—(_',1I3'r013r'\tI ST

8Py

2

~ o) ~|- %
Er=89 D (f;
R a IY]<J2m

iiTR

NZ

e

+ O A Oee (L) + ¥ 7ORNE). (@9)

The nuclear charge densty —eZ(r) is defined as a sum of
dfunctions on the nuclear stes, Z(r) =—arzrdr-R),
with the atomic numbers zg. Note that the sdf energy of
apoint chargeisinfinite and must be subtracted out.

The compensation density Z(r) &g Z =(r) is given &
a um of angula momentum dependent Ga,& functions,
which have an andyticd Fourier transform. A smilar term
occurs adso in the pseudopotential gpproach. In  contrast
to the norm-consarving pseudopotential  approach  how-
ever, the compensation charge is non-sphericd and it is
congantly adapting to the instantaneous environment. It
is condructed such that the augmentation charge den-
Sities

NR(r) +Zg(r) - AR(r) - Zg(r), (30)
have vanishing dectrogtatic multi-pole moments for each
aomic ste. As a result the sum of dl one-centre contri-
butions from one atom does not produce an eectrodatic
potential outside their own atomic region. This is the rea
son that the eectrostdic interaction of the one-centre
parts between different sitesvanish.

The compensation charge dendty as given here is dill
locdized within the aomic regions, but a technique sSmilar
to an Ewadd summation alows to replace it by a very ex-
tended charge dendity. Thus we can achieve, that al funct-
ionsin E converge asfast asthe auxiliary dendty itsdf.

The potentid 7, which occurs in (27) and (29) enters
thetota energy in the form of azero described in (25)

|-O:

é B e, |7 ;P 71y ,A (31)
i,]

[o]
a Wl
n

-0 Q«I';gg
Q -

The main reason for introducing this potentid is tha the
sf-consgent potentia  resulting  from the plane wave
pat is not necessarily optimaly smooth. The potentid,
v, dlows to influence the plane wave convergence bene
fiddly, without changing the converged result. 77 must
be locdized within the augmentation region, where (12)
holds.

6. Approximations

Once the tota energy functiond provided in the previous
section has been defined, everything dse follows Forces
ae patia deivatives with respect to aomic positions.
The potentid is the derivative of the potentid energy
with respect to the dendity, and the Hamiltonian follows
from derivatives with respect to wave functions. The fic-
titious Lagrangian approach of Ca and Parindlo (1985)
does not dlow any freedom in the way these derivatives
ae obtaned. Anything ese than andytic derivatives will
violde energy consarvdion in a dynamicad smulation.
Snce the expressons ae draghtforward, even though
rather involved, we will not discuss them here.

All  goproximations are incorporated dready in the
totd energy functiona of the PAW mehod. Wha ae
those approximations?

Firgly we use the frozen core approximation.
ciple this gpproximation can be overcome.

The plane wave expanson for the auxiliay wave func-
tions must be complete The plane wave expangon is
controlled easlly by incressing the plane wave cutoff
defined as Epw = (iGra)/2me. Typicdly we use a
plane wave cutoff of 30 Ry.

The patid wave expandons must be converged. Typi-
cdly we ue one or two patid waves per angular
momentum (I, M and ste. It should be noted that the
patid wave expanson is not variationd, because the
patid wave expanson changes the totd energy func-
tional and not only the basis s&t.

In prin-

We do not discuss here numericd gpproximations such as
the choice of the radid grid, snce those ae easily con
trolled.

We mentioned earlier that the pseudopotentiad app-
roach can be deived as a wdl defined gpproximation
from the PAW method: The augmentation part DE=E!-
E! is a functiond of the one-centre densty matrix, Djj,
defined in (22). The pseudopotentid approach can be
recovered if we truncate a Taylor expanson of DE about
the aomic dendty matrix dfter the linear term. The term
lineer to Dy is the energy related to the nonlocal pseudo-
potential

DE(D, ;) = DE(D?)+ & (D, - D )E

i
+0(D; ; - D%)?

- Eself +a fn@/n |an |ynn+O(D| i~ Hi 1)2' (32)

n

Thus we can look a the PAW method dso as a pseudo-
potential method with a pseudopotentia that adapts to the
ingantaneous  eectronic  environment, because the expli-
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cit nonlinear dependence of the totd energy on the one
centre density matrix is properly taken into account.

What ae the man advatages of the PAW method
compared to the pseudopotentia approach?

Firgly dl erors can be sysemaicdly controlled so
that there are no transferability errors. As shown by Wat-
son and Cater (1998) and Krese and Joubert (1999)
most pseudopotentials fal for high spin atoms such as
Cr. While it is probably true that pseudopotentias can be
condructed tha cope even with this Stuation, a failure
canot be known beforehand, so that some empiricism
remans in practice A pseudopotentid constructed from
an ivlaed aom is not guaranteed to be accurate for a
molecule. In contrast, the converged results of the PAW
method do not depend on a reference system such as an
isolated aom, because it uses the full dendty and
potential.

The PAW method provides access to the full charge
and spin dengty, which is relevant for hyperfine para
meters. Hyperfine parameters are sengitive probes of the
eectron density near the nucleus. In many Stuations they
ae the only information avalable that dlows to deduce
aomic dructure and chemicd environment of an atom.
There are recongruction techniques for the pseudopoten-
tid approach, which however, ae poor man's versons
(Van de Wdle and Bléchl 1993) of the PAW method.

The plane wave convergence is more rapid then in
norm-conserving  pseudopotentids  and  should in  princi-
ple be equivdent to that of ultrasoft pseudopotentias
(Vanderbilt 1990). Compared to the ultrasoft pseudo-
potentids, however, the PAW method has the advantage
that the totd energy expresson is less complex and
therefore is expected to be more efficient.

The congruction of pseudopotentials requires to dete-
rmine a number of paamees As they influence the
results, their choice is criticd. Also the PAW methods
provide some flexibility in the choice of auxiliary patid
waves. However, this choice does not influence the con-
verged results.

7. Recent developments

Since the firg implementation of the PAW method in the
CP-PAW code, a number of groups have adopted the PAW
method. The second implementation was done by the group
of Holzwarth (Holzwarth et al 1997). The resulting
PWPAW code is fredy avalable (Tackett et al 2001). This
code is ds0 used as a bass for the PAW implementation in
the Ablnit project (Ablnit). An independent PAW code has
been developed by Vdiev and Weare (1999). Recently the
PAW method has been implemented into the VASP code
(Krese and Joubert 1999). The PAW method has dso been
implemented by W. Kromen into the ESTCoMPP code of
Bligd et al (2001).

Another branch of method uses the recongtruction of
the PAW method, without taking into account the full

wave functions in the odf-condgency. Following che
mist notation this approach could be termed ‘post-
pseudopotential  PAW'. This devdlopment began with the
evdudion for hypefine paameters from a pseudopoten-
tid cdculation usng the PAW recondruction operaor
(Van de Wadle and Blochl 1993) and is now usad in the
pseudopotential  gpproach to caculate properties that re-
quire the correct wave functions.

The implementation by Kresse and Joubert (1999) has
been paticulaly useful as they had an implementation of
PAW in the same code as the ultrasoft pseudopotentids,
s0 that they could criticaly compare the two approaches
with eech other and LAPW cdculations. Their conclu-
sion is tha both methods compare well in most cases, but
they found that magnetic energies ae srioudy—by a
factor of two—in error in the pseudopotentiad approach,
while the results of the PAW method were in line with
other dl-dectron cdculaions usng the linear augmented
plane wave method. As a short note, Kresse and Joubert
incorrectly clam tha ther implementation is superior as
it includes a term tha is andogous to the non-linear core
correction of pseudopotentias (Louie et al 1982): this
term, however, is dready incuded in the origind verson
in theform of the pseudized core density.

Severd extendons of the PAW have been done in the
recent years. For agpplications in chemistry truly isolated
systems ae often of great interest. As any planewave
based method introduces periodic images, the dectro-
datic interaction between these images can cause sarious
erors. The problem has been solved by mapping the
chage densty onto a point charge mode, so tha the
dectrodatic interaction could be subtracted out in a sdf-
consgent manner (Blochl 1995). In order to include the
influence of the environment, the latter was amulated by
smpler force fidds usng the molecular-mechanics-
quantum-mechanics (QM-MM) approach (Woo et al
1997, 2000).

In order to overcome the limitations of the densty
functiond theory severd extensons have been per-
formed. Bengone et al (2000) implemented the LDA +U
goproach (Anismov et al 1991) into the CP-PAW code
Soon dter this, Arnaud and Alouani (2000) accomplished
the implementation of the GW agpproximation into the
CP-PAW code The VASP-verson of PAW (Hobbs et al
2000) and the CP-PAW code have now been extended to
indude a noncollineer description of the magnetic mom-
ents. In a noncdlinear description the  Schrodinger
equation is replaced by the Pauli equation with two-com-
ponent spinor wave functions.

The PAW mehod has proven useful to evauate dec-
tric fidd gradients (Petrilli et al 1998) and magnetic hyp-
efine paameers with high accuracy (Blochl  2000).
Invduable will be the prediction of NMR chemicd shifts
usng the GIPAW mehod of Pickad and Mauri (2001),
which is based on ther ealier work (Mauri et al 1996).
While the GIPAW is implemented in a post-pseudopote-
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ntid manner, the extendon to a sdf-condgtent PAW ca-
culation should be draghtforward. An  post-pseudo-
potentid approach has dso been used to evduae core
level spectra (Jayawardane et al 2001) and momentum
meatrix elements (Kageshimaand Shiraishi 1997).
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