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Abstract. A brief introduction to the projector augmented wave method is given and recent developments 
are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular 
dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented 
wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids 
transferability problems of the pseudopotential approach and it has been valuable to predict properties that 
depend on the full wave functions. 
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1. Introduction 

The main goal of electronic structure methods is to solve 
the Schrödinger equation for the electrons in a molecule 
or solid, to evaluate the resulting total energies, forces, 
response functions and other quantities of interest. In this 
paper we review the projector augmented wave (PAW) 
method (Blöchl 1994), an electronic structure method for 
ab initio molecular dynamics with full wave functions. 
The main goal of this paper is not to provide a particu-
larly complete or detailed account of the methodology, 
but rather to lay out the underlying ideas. A more rigo-
rous description can be found in the original paper 
(Blöchl 1994). 
 Density functional theory (Hohenberg and Kohn 1964; 
Kohn and Sham 1965) maps a description for interacting 
electrons onto one of non-interacting electrons in an eff-
ective potential. The remaining one-electron Schrödinger 
equation still poses substantial numerical difficulties: (i) 
in the atomic region near the nucleus, the kinetic energy 
of the electrons is large, resulting in rapid oscillations of 
the wave function that require fine grids for an accurate 
numerical representation. On the other hand, the large 
kinetic energy makes the Schrödinger equation stiff, so 
that a change of the chemical environment has little 
effect on the shape of the wave function. Therefore, the 
wave function in the atomic region can be represented 
well already by a small basis set and (ii) in the bonding 
region between the atoms the situation is opposite. The 
kinetic energy is small and the wave function is smooth. 

However, the wave function is flexible and responds 
strongly to the environment. This requires large and 
nearly complete basis sets. 
 Combining these different requirements is non-trivial 
and various strategies have been developed.  
 
• Most appealing to quantum chemists has been the 

atomic point of view. Basis functions that resemble 
atomic orbitals are chosen. They exploit that the wave 
function in the atomic region can be described by a 
few basis functions, while the bonding is described by 
the overlapping tails of these atomic orbitals. Most 
techniques in this class are a compromise of a well 
adapted basis set with complex matrix elements on the 
one hand and on the other hand numerically conve-
nient basis functions such as Gaussians, where the 
inadequacies are compensated by larger basis sets. 

• Pseudopotentials regard an atom as a perturbation of 
the free electron gas. The most natural basis functions 
are plane waves. Plane waves are complete and well 
adapted to sufficiently smooth wave functions. The 
disadvantage of the large basis sets required is offset 
by the extreme simplicity to evaluate matrix elements. 
Finite plane wave expansions are, however, absolutely 
inadequate to describe the strong oscillations of the 
wave functions near the nucleus. In the pseudopotential 
approach the Pauli repulsion of the core electrons is 
therefore described by an effective potential that 
expels the valence electrons from the core region. The 
resulting wave functions are smooth and can be repre-
sented well by plane waves. The price to pay is that all 
information on the charge density and wave functions 
near the nucleus is lost.  
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• Augmented wave methods compose their basis func-
tions out of atom-like partial waves in the atomic regi-
ons and a set of functions, called envelope functions, 
appropriate for the bonding in between. Space is divi-
ded accordingly into atom-centred spheres, defining 
the atomic region, and an interstitial region for the 
bonds. The partial solutions of the different regions 
are matched at the interface between atomic and inter-
stitial regions. 

 
The projector augmented wave method is an extension of 
augmented wave methods and the pseudopotential appro-
ach, which combines their traditions into a unified elec-
tronic structure method. 
 After describing the underlying ideas of the various 
methods let us briefly review the history of augmented 
wave methods and the pseudopotential approach. We do 
not discuss the atomic-orbital based methods, because 
our focus is the PAW method and its ancestors. 
 The augmented wave methods have been introduced 
in 1937 by Slater (Slater 1937) and later modified by 
Korringa (1947), Kohn and Rostokker (1954). They appro-
ached the electronic structure as a scattered electron 
problem. Consider an electron beam, represented by a 
plane wave, traveling through a solid. It undergoes mul-
tiple scattering at the atoms. If for some energy, the out-
going scattered waves interfere destructively, a bound 
state has been determined. This approach can be trans-
lated into a basis set method with energy dependent and 
potential dependent basis functions. In order to make the 
scattered wave problem tractable, a model potential had 
to be chosen: The so-called muffin–tin potential appro-
ximates the potential by a constant in the interstitial 
region and by a spherically symmetric potential in the 
atomic region. 
 The pseudopotential approach traces back to 1940 
when C Herring invented the orthogonalized plane wave 
method (Herring 1940). Later, Phillips and Kleinman 
(1959) and Antoncik (1959) replaced the orthogonality 
condition by an effective potential, that compensates the 
electrostatic attraction by the nucleus. In practice, the 
potential was modified, for example, by cutting off the 
singular potential of the nucleus at a certain value. This 
was done with a few parameters that have been adjusted 
to reproduce the measured electronic band structure of 
the corresponding solid. 
 Augmented wave and pseudopotential methods reached 
adulthood in the 1970s: At first Andersen (1975) showed 
that the energy dependent basis set of Slater’s APW 
method can be mapped onto one with energy independent 
basis functions by linearizing the partial waves for the 
atomic regions in energy. In the original APW approach 
the zeros of an energy dependent matrix had to be deter-
mined, which is problematic, if many states lie in a small 
energy region as for complex systems. With the new 
energy independent basis functions, however, the prob-

lem is reduced to the much simpler generalized eigen-
value problem, which can be solved using efficient 
numerical techniques. Furthermore, the introduction of 
well defined basis sets paved the way for full-potential 
calculations. In that case the muffin–tin approximation is 
used solely to define the basis set. The matrix elements 
of the Hamiltonian are evaluated with the full potential. 
 Hamann et al (1979) showed how pseudopotentials can 
be constructed in such a way, that their scattering prop-
erties are identical to that of an atom to first order in 
energy. These first-principles pseudopotentials relieved 
the calculations from the restrictions of empirical para-
meters. Highly accurate calculations have become possi-
ble. A main disadvantage of these pseudopotentials has 
been the large basis set size required especially for first-
row and transition metal atoms. 
 In 1985, Car and Parrinello published the ab initio 
molecular dynamics method. Simulations of the atomic 
motion have become possible on the basis of state-of-the-
art electronic structure methods. Besides making dyna-
mical phenomena and finite temperature effects accessi-
ble to electronic structure calculations, the ab initio 
molecular dynamics method also introduced a radically 
new way of thinking into electronic structure methods. 
Diagonalization of a Hamilton matrix has been replaced 
by classical equations of motion for the wave function 
coefficients. If one applies friction, the system is que-
nched to the ground state. Without friction truly dyn-
amical simulations of the atomic structure are performed. 
Electronic wave functions and atomic positions are 
treated on equal footing. 
 The Car–Parrinello method had been implemented first 
for the pseudopotential approach. There seemed to be 
unsurmountable barriers against combining the new tech-
nique with augmented wave methods. The main problem 
was related to the potential dependent basis set used so 
far: the Car–Parrinello method requires a well defined 
and unique total energy functional of atomic positions 
and basis set coefficients. Therefore, it was one of the 
main goals of the PAW method to introduce energy and 
potential independent basis sets that were as accurate and 
numerically efficient as the previously used augmented 
basis sets. Other requirements have been: (i) The method 
should match the efficiency of the pseudopotential appro-
ach for Car–Parrinello simulations, (ii) it should become 
an exact theory when converged and (iii) its convergence 
should be easily controlled. We believe that these criteria 
have been met, which explains why the PAW method has 
become increasingly wide spread today. 
 We would like to point out that most of these seem-
ingly singular developments did not come out of the blue, 
but the ideas seemed to have evolved in the community. 
In the case of the PAW method, similar ideas have been 
developed by Vanderbilt (1990) in the context of ultra-
soft pseudopotentials. The first dynamical simulations 
using a semiempirical electronic structure method have 
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been performed by Wang and Karplus (1973). The first 
ab initio pseudopotentials have been published by Zunger 
and Cohen (1978) one year before Hamann et al (1979).  

2. Transformation theory 

At the root of the PAW method lies a transformation, that 
maps the true wave functions with their complete nodal 
structure onto auxiliary wave functions, that are numeri-
cally convenient. We aim for smooth auxiliary wave 
functions, which have a rapidly convergent plane wave 
expansion. With such a transformation we can expand the 
auxiliary wave functions into a convenient basis set, and 
evaluate all physical properties after reconstructing the 
related physical (true) wave functions. 
 Let us denote the physical one-particle wave functions 
as |ψn〉 and the auxiliary wave functions as .~| 〉nψ  Note 
that the tilde refers to the representation of smooth 
auxiliary wave functions. n is the label for a one-particle 
state and contains a band index, a k-point and a spin 
index. The transformation from the auxiliary to the 
physical wave functions is T , 

|ψn〉 = T .~| 〉nψ  (1) 

We use here Dirac’s Bra and Ket notation. A wave func-
tion, ψn(r), corresponds to a ket |ψn〉, the complex conju-
gate wave function, ψn*(r) corresponds to a bra 〈ψn|, and 
a scalar product )()(*d 3 rr mnr ψψ∫  is written as 〈ψn|ψm〉. 
Vectors in the 3-d coordinate space are indicated by bold-
faced symbols. 
 The electronic ground state is determined by minimiz-
ing a total energy functional E[ψn] of the density func-
tional theory. The one-particle wave functions have to be 
orthogonal. This constraint is implemented with the 
method of Lagrange multipliers. We obtain the ground 
state wave functions from the extremum condition for  

,]|[][)],([
,

,,, ∑ Λ−〉〈−=Λ
mn

mnmnmnnnmn EF δψψψψ  (2) 

with respect to the wave functions and the Lagrange 
multipliers, Λn,m. The extremum condition for the wave 
functions has the form 

,|| ,∑ Λ〉=〉
m

nmmnn fH ψψ  (3) 

where the fn are the occupation numbers and  
H = )(eff

2
2 e

2
rv+∇−

m
h  is the effective one-particle 

Hamilton operator. 
 After a unitary transformation that diagonalizes the 
matrix of Lagrange multipliers, Λm,n, we obtain the 
Kohn–Sham equations 

H|ψn〉 = |ψn〉εn. (4) 

The one-particle energies, εn, are the eigenvalues of  
Λn,m .

2 mn

mn

ff

ff +  

 Now we express the functional, F, in terms of our aux-
iliary wave functions 

.]~||~[

]~[)],~([

,
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†
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∑ Λ−〉〈−
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mn

mnmnmn

nnmn EF

δψψ
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TT

TT
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The variational principle with respect to the auxiliary 
wave functions yields 

.~|~| ††
nnnH εψψ 〉=〉 TTTT  (6) 

Again we obtain a Schrödinger-like equation, but now 
the Hamilton operator has a different form, T †HT, an 
overlap operator T †T occurs and the resulting auxiliary 
wave functions are smooth. 
 When we evaluate physical quantities we need to 
evaluate expectation values of an operator A, which can 
be expressed in terms of either the true or the auxiliary 
wave functions. 

∑ ∑ 〉〈=〉〈=〉〈
n n

nnnnnn AfAfA .~||~|| † ψψψψ TT  (7) 

In the representation of auxiliary wave functions we need 
to use transformed operators, A

~
= T †AT. As it is, this 

equation only holds for the valence electrons. The core 
electrons are treated differently as will be shown below. 
 The transformation takes us conceptionally from the 
world of pseudopotentials to that of augmented wave 
methods, which deal with the full wave functions. We 
will see that our auxiliary wave functions, which are 
simply the plane wave parts of the full wave functions, 
translate into the wave functions of the pseudopotential 
approach. In the PAW method the auxiliary wave func-
tions are used to construct the true wave functions and 
the total energy functional is evaluated from the latter. 
Thus it provides the missing link between augmented 
wave methods and the pseudopotential method, which 
can be derived as a well-defined approximation of the 
PAW method. 
 In the original paper (Blöchl 1994), the auxiliary wave 
functions have been termed pseudo wave functions and 
the true wave functions have been termed all-electron 
wave functions, in order to make the connection more 
evident. We shall avoid this notation here, because it 
results in confusion in cases, where the correspondence is 
not clear cut. 

3. Transformation operator 

So far, we have described how we can determine the 
auxiliary wave functions of the ground state and how to 
obtain physical information from them. What is missing, 
is a definition of the transformation operator, T. 
 The operator, T, has to modify the smooth auxiliary 
wave function in each atomic region, so that the resulting 
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wave function has the correct nodal structure. Therefore, 
it makes sense to write the transformation as identity plus 
a sum of atomic contributions, SR 

.1 ∑+=
R

RST  (8) 

For every atom, SR adds the difference between the true 
and the auxiliary wave function. The index R is a label 
for an atomic site. 
 The local terms, SR, are defined in terms of solutions 
|φi〉 of the Schrödinger equation for the isolated atoms. 
This set of partial waves |φi〉 will serve as a basis set so 
that, near the nucleus, all relevant valence wave functions 
can be expressed as superposition of the partial waves 
with yet unknown coefficients 

.||for)()( ,RcR

Ri

ii rc <−= ∑
∈

Rrrr φψ  (9) 

The index i refers to a site index R, the angular momen-
tum indices (l, m) and an additional index that differenti-
ates partial waves with same angular momentum quantum 
numbers on the same site. With i ∈ R we indicate those 
partial waves that belong to site R. RR is the position of 
the nucleus of site R. 
 Note that the partial waves are not necessarily bound 
states and are therefore not normalizable, unless we trun-
cate them beyond a certain radius rc,R. The PAW method 
is formulated such that the final results do not depend on 
the location where the partial waves are truncated, as 
long as this is not done too close to the nucleus. 
 Since the core wave functions do not spread out into 
the neighbouring atoms, we will treat them differently. 
Currently we use the frozen-core approximation so that 
density and energy of the core electrons are identical to 
those of the corresponding isolated atoms. The transfor-
mation T shall produce only wave functions orthogonal to 
the core electrons, while the core electrons are treated 
separately. Therefore, the set of atomic partial waves |φi〉 
includes only valence states that are orthogonal to the 
core wave functions of the atom. 
 For each of the partial waves we choose an auxiliary 
partial wave .

~
| 〉iφ  The identity 

,
~

||
~

|

,for
~

|)1(|

〉−〉=〉

∈〉+=〉

iiiR

iRi Ri

φφφ

φφ

S

S
 

(10)
 

defines the local contribution of SR to the transformation 
operator. Since 1 + SR shall change the wave function 
only locally, we require that the partial waves |φi〉 and 
their auxiliary counterparts 〉iφ

~
|  are pairwise identical 

beyond a certain radius, rc. 

.||andfor)(
~

)( ,RcRii rRirr >−∈= Rrφφ  (11) 

In order to be able to apply the transformation operator to 
an arbitrary auxiliary wave function, we need to be able 

to expand the auxiliary wave function locally into the 
auxiliary partial waves 

,||for~|~)(
~

)(~
,RcR

Ri

ii rp <−〉〈= ∑
∈

Rrrr ψφψ  (12) 

which defines the projector functions .~| 〉ip  The projector 
functions probe the local character of the auxiliary wave 
function in the atomic region. Examples of projector 
functions are shown in figure 1. From (12) we can derive 

∑ =〉〈
i

ii p ,1|~~
| φ  

which is valid within rc. It can be shown by insertion, 
that the identity (12) holds for any auxiliary wave func-
tion 〉ψ~|  that can be expanded locally into auxiliary par-
tial waves ,

~
| 〉iφ  if 

.,for
~

|~
, Rjip jiji ∈=〉〈 δφ  (13) 

Note that neither the projector functions nor the partial 
waves need to be orthogonal among themselves.  
 By combining (10) and (12), we can apply SR to any 
auxiliary wave function 

∑ ∑
∈ ∈

〉〈〉−〉=〉〉〈=〉
Ri Ri

iiiiiRR pp .~|~)
~

|(|~|~~
|~| ψφφψφψ SS  

 (14) 

Hence the transformation operator is 

∑ 〈〉−〉+=
i

iii p |,~)
~

|(|1 φφT  (15) 

where the sum runs over all partial waves of all atoms. 
The true wave function can be expressed as 

,)~|(|~|

~|~)
~

|(|~||

11∑

∑
〉−〉+〉=

〉〈〉−〉+〉=〉

R
RRn

i

iii p

ψψψ

ψφφψψ

 
(16)

 

 
 

 

Figure 1. Top: projector functions of the Cl atom for two 
s-type partial waves, middle: p-type, bottom: d-type. 
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with 

∑
∈

〉〉〈=〉
Ri

iiR p ,~|~|| 1 ψφψ  (17) 

.~|~~
|~| 1 ∑

∈

〉〉〈=〉
Ri

iiR p ψφψ  (18) 

In figure 2 the decomposition of (16) is shown for the 
example of the bonding p–σ state of the Cl2 molecule. 
 To understand the expression for the true wave 
function, (16), let us concentrate on different regions in 
space. (i) Far from the atoms, the partial waves are, 
according to (11), pairwise identical so that the auxiliary 
wave function is identical to the true wave function 
ψ(r) =ψ~ (r) and (ii) close to an atom, however, the true 
wave function, )()( 1 rr Rψψ =  is built up from partial 
waves that contain the proper nodal structure, because the 
auxiliary wave function and its partial wave expansion 
are equal according to (12). 
 In practice the partial wave expansions are truncated. 
Therefore, the identity of (12) does not hold strictly. As a 
result the plane waves also contribute to the true wave 
function inside the atomic region. This has the advantage 
that the missing terms in a truncated partial wave expan-
sion are partly accounted for by plane waves, which 
explains the rapid convergence of the partial wave 
expansions. 
 Frequently, the question comes up, whether the trans-
formation (15) of the auxiliary wave functions indeed  
 
 

 

Figure 2. Bonding p–σ orbital of the Cl2 molecule and its 
decomposition of the wave function into auxiliary wave func-
tion and the two one-centre expansions. Top-left: True and 
auxiliary wave function; top-right: auxiliary wave function and 
its partial wave expansion; bottom-left: the two partial wave 
expansions; bottom-right: true wave function and its partial 
wave expansion. 

provides the true wave function. The transformation 
should be considered merely as a change of representa-
tion analogous to a coordinate transform. If the total ene-
rgy functional is transformed consistently, its minimum 
will yield an auxiliary wave function that produces a cor-
rect wave function |ψ〉. 

4. Expectation values 

Expectation values can be obtained either from the recon-
structed true wave functions or directly from the auxi-
liary wave functions  

∑∑
=

〉〈+〉〈=〉〈
c

1

cc ||||
N

n

nn

n

nnn AAfA φφψψ  

   ,||~||~
c

1

cc† ∑∑
=

〉〈+〉〈=
N

n

nn

n

nnn AAf φφψψ TT  (19) 

where fn are the occupations of the valence states and Nc 
is the number of core states. The first sum runs over the 
valence states, and second over the core states .| c 〉nφ  
 Now we can decompose the matrix elements into their 
individual contributions according to (16) 

∑ ∑
′

′′ −+−+=〉〈
R R

RRRR AA )~(~)~(~|| 1111 ψψψψψψψψ  

44444444 344444444 21
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1111 )~||~||(~||~ ∑ 〉〈−〉〈+〉〈=
R

RRRR AAA ψψψψψψ  

4444444444 34444444444 21
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111111 )~||~~~~||~(∑ 〉−−〈+〉−−〈+
R

RRRRRR AA ψψψψψψψψ  

.~||~
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1111

44444 344444 21
∑

′≠
′′ 〉−−〈+

RR

RRRR A ψψψψ  (20) 

Only the first part of (20) is evaluated explicitly, while 
the second and third parts of (20) are neglected, because 
they vanish for sufficiently local operators as long as the 
partial wave expansion is converged: The function 

11 ~
RR ψψ −  vanishes per construction beyond some aug-

mentation region, because the partial waves are pairwise 
identical beyond that region. The function, ,~~ 1

Rψψ −  
vanishes inside the augmentation region, if the partial 
wave expansion is sufficiently converged. In no region of 
space both functions 11 ~

RR ψψ −  and 1~~
Rψψ −  are simul-

taneously nonzero. Similarly the functions 11 ~
RR ψψ −  from 

different sites are never non-zero in the same region in 
space. Hence, the second and third parts of (20) vanish 
for operators such as the kinetic energy 2

2 e

2
∇−

m
h  and the 
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real space projection operator |r〉〈r|, which produces the 
electron density. For truly nonlocal operators the second 
and third parts of (20) would have to be considered exp-
licitly. 
 The expression, (20), for the expectation value can 
therefore be written as 

∑
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where Di,j is the one-centre density matrix defined as 

 .~|~~|~~|~~|~
, ∑∑ 〉〈〉〈=〉〉〈〈=
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n

nijnnji pfpppfD ψψψψ  
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The auxiliary core states, 〉c~
| nφ  allow to incorporate the 

tails of the core wave function into the plane wave part, 
and therefore assure, that the integrations of partial wave 
contributions cancel strictly beyond rc. They are identical 
to the true core states in the tails, but are a smooth con-
tinuation inside the atomic sphere. It is not required that 
the auxiliary wave functions are normalized. 
 For example, the electron density is given by 

,))(~)(()(~)( 11∑ −+=
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where nc,R is the core density of the corresponding atom 
and Rcn ,

~ is the auxiliary core density that is identical to 
nc,R outside the atomic region and a smooth continuation 
inside. 

 Before we continue, let us discuss a special point: The 
matrix element of a general operator with the auxiliary 
wave functions may be slowly converging with the plane 
wave expansion, because the operator A may not be well 
behaved. An example for such an operator is the singular 
electrostatic potential of a nucleus. This problem can be 
alleviated by adding an intelligent zero: If an operator B 
is purely localized within an atomic region, we can use 
the identity between the auxiliary wave function and its 
own partial wave expansion 

.~||~~||~0 11 〉〈−〉〈= nnnn BB ψψψψ  (25) 

Now we choose an operator B so that it cancels the 
problematic behaviour of the operator A, but is localized 
in a single atomic region. By adding B to the plane wave 
part and the matrix elements with its one-centre expan-
sions, the plane wave convergence can be improved 
without affecting the converged result. 

5. Total energy 

Like wave functions and expectation values also the total 
energy can be divided into three parts 
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The plane-wave part, ,
~
E  involves only smooth functions 

and is evaluated on equi-spaced grids in real and recipro-
cal space. This part is computationally most demanding, 
and is similar to the expressions in the pseudopotential 
approach 
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where )(
~ rZ  is an angular dependent core-like density 

that will be described in detail below. The remaining 
parts can be evaluated on radial grids in a spherical 
harmonics expansion. The nodal structure of the wave 
functions can be properly described on a logarithmic 
radial grid that becomes very fine near nucleus,  
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The nuclear charge density –eZ(r) is defined as a sum of 
δ-functions on the nuclear sites, Z(r) = – ∑RZRδ(r–R), 
with the atomic numbers ZR. Note that the self energy of 
a point charge is infinite and must be subtracted out. 
 The compensation density )(

~
)(

~ rr RR ZZ ∑=  is given as 
a sum of angular momentum dependent Gauss functions, 
which have an analytical Fourier transform. A similar term 
occurs also in the pseudopotential approach. In contrast 
to the norm-conserving pseudopotential approach how-
ever, the compensation charge is non-spherical and it is 
constantly adapting to the instantaneous environment. It 
is constructed such that the augmentation charge den-
sities 

),(
~

)(~)()( 11 rrrr RRRR ZnZn −−+  (30) 

have vanishing electrostatic multi-pole moments for each 
atomic site. As a result the sum of all one-centre contri-
butions from one atom does not produce an electrostatic 
potential outside their own atomic region. This is the rea-
son that the electrostatic interaction of the one-centre 
parts between different sites vanish. 
 The compensation charge density as given here is still 
localized within the atomic regions, but a technique similar 
to an Ewald summation allows to replace it by a very ex-
tended charge density. Thus we can achieve, that all funct-
ions in E

~
 converge as fast as the auxiliary density itself. 

 The potential ,v  which occurs in (27) and (29) enters 
the total energy in the form of a zero described in (25) 
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The main reason for introducing this potential is that the 
self-consistent potential resulting from the plane wave 
part is not necessarily optimally smooth. The potential, 

,v  allows to influence the plane wave convergence bene-
ficially, without changing the converged result. v  must 
be localized within the augmentation region, where (12) 
holds. 

6. Approximations 

Once the total energy functional provided in the previous 
section has been defined, everything else follows: Forces 
are partial derivatives with respect to atomic positions. 
The potential is the derivative of the potential energy 
with respect to the density, and the Hamiltonian follows 
from derivatives with respect to wave functions. The fic-
titious Lagrangian approach of Car and Parrinello (1985) 
does not allow any freedom in the way these derivatives 
are obtained. Anything else than analytic derivatives will 
violate energy conservation in a dynamical simulation. 
Since the expressions are straightforward, even though 
rather involved, we will not discuss them here. 
 All approximations are incorporated already in the 
total energy functional of the PAW method. What are 
those approximations? 
 
• Firstly we use the frozen core approximation. In prin-

ciple this approximation can be overcome. 
• The plane wave expansion for the auxiliary wave func-

tions must be complete. The plane wave expansion is 
controlled easily by increasing the plane wave cutoff 
defined as EPW = (hGmax)/2me. Typically we use a 
plane wave cutoff of 30 Ry. 

• The partial wave expansions must be converged. Typi-
cally we use one or two partial waves per angular 
momentum (l, m) and site. It should be noted that the 
partial wave expansion is not variational, because the 
partial wave expansion changes the total energy func-
tional and not only the basis set. 

 
We do not discuss here numerical approximations such as 
the choice of the radial grid, since those are easily con-
trolled. 
 We mentioned earlier that the pseudopotential app-
roach can be derived as a well defined approximation 
from the PAW method: The augmentation part ∆E = E1 – 

1~
E  is a functional of the one-centre density matrix, Di,j, 
defined in (22). The pseudopotential approach can be 
recovered if we truncate a Taylor expansion of ∆E about 
the atomic density matrix after the linear term. The term 
linear to Di,j is the energy related to the nonlocal pseudo-
potential 
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Thus we can look at the PAW method also as a pseudo-
potential method with a pseudopotential that adapts to the 
instantaneous electronic environment, because the expli-
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cit nonlinear dependence of the total energy on the one-
centre density matrix is properly taken into account. 
 What are the main advantages of the PAW method 
compared to the pseudopotential approach?  
 Firstly all errors can be systematically controlled so 
that there are no transferability errors. As shown by Wat-
son and Carter (1998) and Kresse and Joubert (1999) 
most pseudopotentials fail for high spin atoms such as 
Cr. While it is probably true that pseudopotentials can be 
constructed that cope even with this situation, a failure 
cannot be known beforehand, so that some empiricism 
remains in practice: A pseudopotential constructed from 
an isolated atom is not guaranteed to be accurate for a 
molecule. In contrast, the converged results of the PAW 
method do not depend on a reference system such as an 
isolated atom, because it uses the full density and 
potential. 
 The PAW method provides access to the full charge 
and spin density, which is relevant for hyperfine para-
meters. Hyperfine parameters are sensitive probes of the 
electron density near the nucleus. In many situations they 
are the only information available that allows to deduce 
atomic structure and chemical environment of an atom. 
There are reconstruction techniques for the pseudopoten-
tial approach, which however, are poor man’s versions 
(Van de Walle and Blöchl 1993) of the PAW method. 
 The plane wave convergence is more rapid than in 
norm-conserving pseudopotentials and should in princi-
ple be equivalent to that of ultra-soft pseudopotentials 
(Vanderbilt 1990). Compared to the ultra-soft pseudo-
potentials, however, the PAW method has the advantage 
that the total energy expression is less complex and 
therefore is expected to be more efficient. 
 The construction of pseudopotentials requires to dete-
rmine a number of parameters. As they influence the 
results, their choice is critical. Also the PAW methods 
provide some flexibility in the choice of auxiliary partial 
waves. However, this choice does not influence the con-
verged results. 

7. Recent developments 

Since the first implementation of the PAW method in the 
CP–PAW code, a number of groups have adopted the PAW 
method. The second implementation was done by the group 
of Holzwarth (Holzwarth et al 1997). The resulting 
PWPAW code is freely available (Tackett et al 2001). This 
code is also used as a basis for the PAW implementation in 
the AbInit project (AbInit). An independent PAW code has 
been developed by Valiev and Weare (1999). Recently the 
PAW method has been implemented into the VASP code 
(Kresse and Joubert 1999). The PAW method has also been 
implemented by W. Kromen into the ESTCoMPP code of 
Blügel et al (2001). 
 Another branch of method uses the reconstruction of 
the PAW method, without taking into account the full 

wave functions in the self-consistency. Following che-
mist notation this approach could be termed ‘post-
pseudopotential PAW’. This development began with the 
evaluation for hyperfine parameters from a pseudopoten-
tial calculation using the PAW reconstruction operator 
(Van de Walle and Blöchl 1993) and is now used in the 
pseudopotential approach to calculate properties that re-
quire the correct wave functions. 
 The implementation by Kresse and Joubert (1999) has 
been particularly useful as they had an implementation of 
PAW in the same code as the ultra-soft pseudopotentials, 
so that they could critically compare the two approaches 
with each other and LAPW calculations. Their conclu-
sion is that both methods compare well in most cases, but 
they found that magnetic energies are seriously—by a 
factor of two—in error in the pseudopotential approach, 
while the results of the PAW method were in line with 
other all-electron calculations using the linear augmented 
plane wave method. As a short note, Kresse and Joubert 
incorrectly claim that their implementation is superior as 
it includes a term that is analogous to the non-linear core 
correction of pseudopotentials (Louie et al 1982): this 
term, however, is already included in the original version 
in the form of the pseudized core density. 
 Several extensions of the PAW have been done in the 
recent years: For applications in chemistry truly isolated 
systems are often of great interest. As any plane-wave 
based method introduces periodic images, the electro-
static interaction between these images can cause serious 
errors. The problem has been solved by mapping the 
charge density onto a point charge model, so that the 
electrostatic interaction could be subtracted out in a self-
consistent manner (Blöchl 1995). In order to include the 
influence of the environment, the latter was simulated by 
simpler force fields using the molecular-mechanics–
quantum-mechanics (QM–MM) approach (Woo et al 
1997, 2000). 
 In order to overcome the limitations of the density 
functional theory several extensions have been per-
formed. Bengone et al (2000) implemented the LDA + U 
approach (Anisimov et al 1991) into the CP–PAW code. 
Soon after this, Arnaud and Alouani (2000) accomplished 
the implementation of the GW approximation into the 
CP–PAW code. The VASP-version of PAW (Hobbs et al 
2000) and the CP–PAW code have now been extended to 
include a noncollinear description of the magnetic mom-
ents. In a noncollinear description the Schrödinger 
equation is replaced by the Pauli equation with two-com-
ponent spinor wave functions. 
 The PAW method has proven useful to evaluate elec-
tric field gradients (Petrilli et al 1998) and magnetic hyp-
erfine parameters with high accuracy (Blöchl 2000). 
Invaluable will be the prediction of NMR chemical shifts 
using the GIPAW method of Pickard and Mauri (2001), 
which is based on their earlier work (Mauri et al 1996). 
While the GIPAW is implemented in a post-pseudopote-



Projector  augmented  wave  method 

 

41 

ntial manner, the extension to a self-consistent PAW cal-
culation should be straightforward. An post-pseudo-
potential approach has also been used to evaluate core 
level spectra (Jayawardane et al 2001) and momentum 
matrix elements (Kageshima and Shiraishi 1997). 
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