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We performed an incubation experiment of seawater confined in plastic bottles with
samples collected at three depths (15, 60, and 90 m) after retrieval from a single offshore
location in the Mediterranean Sea, from a late summer stratified water column. Two
samples representative of each depth were collected and stored in opaque bottles
after two periods of 7 h. We took advantage of the “bottle effect” to investigate
changes in the natural microbial communities (abundant and rare). We recovered 94
metagenome-assembled genomes (MAGs) and 1089 metagenomic viral contigs and
examined their abundance using metagenomic recruitment. We detected a significant
fast growth of copiotrophic bacteria such as Alteromonas or Erythrobacter throughout
the entire water column with different dynamics that we assign to “clonal,” “polyclonal,”
or “multispecies” depending on the recruitment pattern. Results also showed a marked
ecotype succession in the phototropic picocyanobacteria that were able to grow at
all the depths in the absence of light, highlighting the importance of their mixotrophic
potential. In addition, “wall-chain-reaction” hypothesis based on the study of phage–
host dynamics showed the higher impact of viral predation on archaea in deeper waters,
evidencing their prominent role during incubations. Our results provide a step forward in
understanding the mechanisms underlying dynamic patterns and ecology of the marine
microbiome and the importance of processing the samples immediately after collection
to avoid changes in the community structure.

Keywords: metagenomics, rare biosphere, metagenome-assembled genomes, Mediterranean Sea, host viral
interaction, metagenomic recruitment, bottle effect, microbial diversity

INTRODUCTION

Meta-omic and single-cell genomic approaches have opened a new window to a vast world
of aquatic microbes known before only through their rRNA sequences, increasing the level of
resolution to a much finer and informative level. The relative easiness of sampling and size
fractionation by different filter sizes have been essential to facilitate the analysis, and large datasets
have been generated. Large-scale marine metagenomic studies (Sunagawa et al., 2015; Biller et al.,
2018a) have aided in the discovery of an astonishing diversity of the prokaryotic community.
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However, most of our knowledge is frequently focused on
abundant organisms, and much less attention has been devoted
to low-abundance populations. This part of the microbial
diversity, also called the “rare biosphere” (Sogin et al.,
2006), has an arbitrarily defined relative abundance < 0.1%
of the total community (Sogin et al., 2006). Nevertheless,
these underrepresented populations might eventually become
dominant in response to particular environmental disturbances
helping community resilience (Jones and Lennon, 2010). In
addition, they can also serve as an important reservoir of genetic
and functional diversity (Lynch and Neufeld, 2015). Recently,
these populations have been designated as “conditionally rare
taxa” (Shade et al., 2014) and although the ecological roles of
these rare microorganisms remain unclear, a conceptual model
based on their dynamics has been proposed in order to improve
our understanding about the microbial community stability and
resilience in the ecosystem (Shade and Gilbert, 2015).

One typical example of a change in the environment is the
deep winter convection within the water column in temperate
waters that brings nutrients to surface waters and produce
phytoplankton blooms. This spring bloom is followed by changes
in the composition of bacterial and archaeal communities due
to their decay products (Fuhrman et al., 2015). One recent
study examined fine-scale variations in the marine microbiome
in the Mediterranean Sea based on metagenomic assembly and
recruitment showed that during the winter mixing period only
some groups of bloomers (r-strategists) characterized by having a
large estimated genome size and a high GC content were favored
(Haro-Moreno et al., 2018). These bloomers have been defined as
microbes that exhibit fast growth under conditions of a sudden
increase in the availability of resources in the environment and
are the main contributors of rare taxa (Eilers et al., 2000).
This dynamic of temporary changes in the population of some
microbes in response to both biotic and abiotic factors can occur
on a time scale of hours or even months (Fuhrman et al., 2015;
Bunse and Pinhassi, 2017). It is clear that seasonal cycles are
complex, but with the data collected from different time-series
studies (Bunse and Pinhassi, 2017), it has been demonstrated
that the distribution and abundance of microorganisms were
highly predictable and determined by seasonal factors (Fuhrman
et al., 2006). Their frequency suggests that they fulfill an essential
ecological function in the environment.

Microbial succession experiments using seawater confinement
are often used to characterize the influence or responses to
naturally occurring phytoplankton blooms and their subsequent
demise, nutrient fluxes, dissolved organic matter, or viral
infection and lysis (Riemann et al., 2000; Schäfer et al., 2000;
Carlson et al., 2002; Pinhassi et al., 2004; Allers et al., 2007;
McCarren et al., 2010; Fuhrman et al., 2015; Hou et al., 2018).
During this artificial confinement, bacteria can grow up ten to
thousands of times (Waksman and Carey, 1935), and the natural
community can be altered by the growth of opportunistic bacteria
(Ferguson et al., 1984; Lee and Fuhrman, 1991), it is the so-called
“bottle effect” (Waksman and Carey, 1935; Zobell and Anderson,
1936). Within a closed system, the nutrient balance will be
negative and, in the end, only a few species will be able to survive
after a few days without reaching equilibrium. This variation

leads to a decrease of the total microbial diversity in the sample
(Massana et al., 2001), and has profound implications for studies
that imply long incubation times such as those analyzing the
degradation of dissolved carbon and microbial respiration in
aquatic habitats (Baltar et al., 2012) or the denitrification rate in
soil samples (Hartzog et al., 2017). Previous studies suggest that
this effect favors heterotrophic over autotrophic bacteria (Calvo-
Díaz et al., 2011) and mainly the growth of Gammaproteobacteria
(Eilers et al., 2000; Stewart et al., 2012; Dinasquet et al., 2013).
These effects are probably due to the combination of several
factors such as biofilm formation, temperature, or binding to
particles on the surface of the container (Fogg and Calvario-
Martinez, 1989; Eilers et al., 2000).

It has been shown that within the photic zone of thermally
stratified water columns, there are at least three clearly different
regions with significant differences in the microbial composition,
the deep chlorophyll maximum (DCM), the upper photic (UP)
located above, and lower photic (LP) below the DCM (Haro-
Moreno et al., 2018). In order to obtain more insights into
the dynamics of microbial communities in these three layers
of the water column, we combined culture-based incubations
with metagenomic assembly and recruitment. We performed a
mesocosm experiment of seawater confined in plastic bottles after
retrieval from a single offshore location in the Mediterranean
taking advantage of this “bottle effect.” One sample representative
of each depth was analyzed after 7 and 14 h. Although limited to
a single location in the Mediterranean Sea, these results not only
improve our understanding of the dynamic patterns, ecology,
and taxonomy of the marine microbiome but also support the
previous suggestions about the importance of to maintain a high
intra-population diversity in the more abundant microbes and
the presence of bloomers as ecological drivers of environmental
perturbations (Shade and Gilbert, 2015; Jousset et al., 2017;
Jia et al., 2018).

MATERIALS AND METHODS

Sampling Collection and Processing
Samples from three different depths (15, 60, and 90 m) were
collected on 15th October 2015 at a single site from the Western
Mediterranean (37.35361◦N, 0.286194◦W), at approximately 60
nautical miles off the coast of Alicante, Spain, from the research
vessel “García del Cid.” For each depth, one seawater sample
(200 L each) was collected and quickly filtered as described in
Haro-Moreno et al. (2018). These samples corresponded with 0 h
incubation time. Two more samples per depth (six in total) were
collected and stored in 30 L opaque bottles at air temperature (ca.
25◦C), which were previously washed with NaOH 0.1 M. Bottles
were rinsed three times with seawater from the same depth. Three
samples were filtered at 7 h post-incubation and two after 14 h.

Independently of the time of the incubation, all seawater
samples were sequentially filtered on board through 20, 5,
and 0.22 µm pore size polycarbonate filters (Millipore). Filters
were immediately frozen on dry ice and stored at −80◦C
until processing. DNA was extracted from the 0.22 µm filter
as previously described (Martin-Cuadrado et al., 2008), and
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sequenced using Illumina Hiseq-4000 (150 bp, paired-end read)
(Macrogen, Republic of Korea). Unfortunately, 14 h sample
from 90 m did not pass quality control and therefore it was
discarded for sequencing.

Assembly of Metagenomic Reads and
Contig Annotation
Individual metagenomic reads were trimmed with Trimmomatic
(Bolger et al., 2014) and assembled with IDBA-UD (Peng
et al., 2012). ORFs from the assembled contigs were predicted
using Prodigal (Hyatt et al., 2010). tRNAscan-SE (Lowe and
Eddy, 1996), ssu-align (Nawrocki, 2009), and meta-rna (Huang
et al., 2009) were used to predict the tRNA and rRNA genes.
For taxonomic and functional annotation, predicted protein
sequences were compared against NCBI NR database using
DIAMOND (Buchfink et al., 2015), and against COG (Tatusov
et al., 2001) and TIGRFAM (Haft et al., 2001) using HMMscan
(Eddy, 2011).

16S rRNA Classification
Using USEARCH6 (Edgar, 2010), a database containing non-
redundant 16S rRNA sequences downloaded from the RDP
database (Cole et al., 2014) was used to identify candidate 16S
rRNA gene sequences in the raw metagenomes. Only candidate
reads that matched this database with an E-value < 10−5 were
considered, and later aligned to archaeal, bacterial, and eukaryal
16S/18S rRNA HMM models using ssu-align (Eddy, 1995) to
identify true sequences and to remove possible mismatches
and/or putative 18S rRNA sequences. Only hits to 16S rRNA
sequences were then classified using USEARCH6 against the RDP
database and classified into a high-level taxon if the sequence
identity was ≥80% and the alignment length ≥90 bp. Sequences
failing these thresholds were discarded.

GC Content and Cross-Comparison of
the Metagenomic Reads
GC content was calculated using the gecee program from the
EMBOSS package (Rice et al., 2000). A cross-comparison among
metagenomic samples using the curated 16S rRNA reads (see
section “16S rRNA Classification”) was performed using Simka
(Benoit et al., 2016) with k = 21, which represents 95% identity.
Samples were then clustered using the abundance-based Bray–
Curtis dissimilarity distance (Benoit et al., 2016).

Binning and Genome Reconstruction
Only assembled contigs longer than 5 kb were used for
the recovery of novel organisms. Taxonomic affiliation,
tetranucleotide frequencies, GC content, and coverage
values within the metagenomes collected in this work and
in Haro-Moreno et al. (2018) were used to bin the contigs into
metagenome-assembled genomes (MAGs). Tetranucleotide
frequencies were computed using wordfreq program in the
EMBOSS package. Contigs were taxonomically classified
to high-level taxon if >50% of the genes shared the same
taxonomy. In order to improve the completeness and remove
the redundancy, MAGs recovered from the different samples

that shared an average nucleotide identity (ANI) > 99.5%
were combined. Using BWA (Li and Durbin, 2009), pooled
contigs were then used to retrieve the short-paired reads that
mapped onto the contigs. These reads were then pooled and
assembled together with the contigs using SPAdes (Bankevich
et al., 2012). MAG completeness was estimated by detecting
the percentage of single-copy genes coded within MAGs after
comparison against two different universal gene sets (Raes
et al., 2007; Albertsen et al., 2013) using HMMscan, and by
CheckM (Parks et al., 2015). CheckM also provided the degree
of contamination. Only MAGs with a completeness in any of the
three methods used > 50% and a contamination <5% were kept
for further analyses.

Metagenomic Read Recruitments
Genomes of known marine microbes together with several MAGs
and SAGs recovered from several studies (Ghai et al., 2013;
Mizuno et al., 2015; Haro-Moreno et al., 2017, 2018; Parks et al.,
2017; Tully et al., 2018), including this work, were used to recruit
reads from our metagenomic (NCBI BioProjects PRJNA257723
and PRJNA352798) (López-Pérez et al., 2017; Haro-Moreno et al.,
2018) and Tara Mediterranean (ENA PRJEB1787) (Sunagawa
et al., 2015) datasets using BLASTN (Altschul et al., 1997)
(99% identity, > 50 bp alignment). Genomes that recruited
less than three reads per kilobase of genome per gigabase of
metagenome (RPKG) were not considered.

Phylogenomic Classification of the
Reconstructed MAGs
We performed a phylogenomic analysis using PhyloPhlAn
(Segata et al., 2013) to classify the reconstructed genomes,
together with all the reference genomes that recruited in
any of the samples. A total of 263 proteins were shared in
all the genomes.

Functional Classification and Analysis of
the Assembled Proteins
To infer the potential metabolic function of the assembled
prokaryotic community that grew during the experiment, only
contigs longer than 1 kb which increased their relative abundance
(measured in RPKG) more than three times and recruited more
than 3 RPKG after 14 h post-confinement were selected. Proteins
encoded in these contigs were compared against the SEED
subsystems (Overbeek et al., 2005) databases using DIAMOND
(blastp option, top hit, ≥50% identity, ≥50% alignment length,
E-value < 10−5) and against the CAZy database (Lombard et al.,
2014) using HMMscan (E-value < 1e−8).

Viral Contigs and Host Prediction
In order to identify the viral origin of the contigs larger
than 10 kb, we performed a manual inspection based on the
resemblance to known phages similar to methods that have
been previously described (Mizuno et al., 2013; López-Pérez
et al., 2017). These sequences were also filtered using VirFinder
(Ren et al., 2017). Several host prediction approaches have
been used such as tRNA matches, CRISPR spacers, presence of
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Auxiliary Metabolic Genes (AMGs), all-versus-all comparisons,
and terminase phylogeny (Mizuno et al., 2013).

Data Availability
Metagenomic datasets have been submitted to NCBI SRA and
are available under BioProject accession numbers PRJNA352798
(Med-OCT2015-15m [SRR5007106], Med-OCT2015-60m
[SRR5007118], Med-OCT2015-90m [SRR5007139], Med-
OCT2015-15m7h [SAMN10839273], Med-OCT2015-15m14h
[SAMN10839292], Med-OCT2015-60m7h [SAMN10839294],
Med-OCT2015-60m14h [SAMN10839296], and Med-
OCT2015-90m7h [SAMN10839330]). The reconstructed
genomes have been deposited as BioSample SAMN10841217 to
SAMN10841310 under BioProject PRJNA352798.

RESULTS AND DISCUSSION

In order to investigate the changes in the microbial community
during an incubation (“bottle effect”) experiment, samples were
collected at three different depths [15 m (UP); 60 m (DCM);
and 90 m (LP)] of the stratified water column in an off-
shore Western Mediterranean sampling site described previously
(Haro-Moreno et al., 2018). After 7 and 14 h, the bottle content
was swiftly filtered on board through 20, 5, and 0.22 µm pore
size filters. Metadata and sequencing results are described in
Supplementary Table S1.

First, we analyzed the relationship of the different time-
confined samples compared with their corresponding
metagenomes of the pre-confinement filter (those directly
filtered from the hose bringing the water from the corresponding
depth) (Haro-Moreno et al., 2018) using the number of reads
that matched to the 16S rRNA gene metagenomic fragments.
These data were then used to perform a cladogram based
on a dissimilarity pairwise comparison among the samples
(Supplementary Figure S1). We included the samples from
30 and 75 m deep collected on the same day and others from
different years and depths from the same location, as well as two
more samples collected during the winter when the photic water
column was mixed (Haro-Moreno et al., 2018), as references for
the clustering. These samples were previously used to analyze the
fine-scale variations in the water column microbiome. Clustering
showed that incubation samples at 15 m remained more similar
to the original sample than the deeper samples and separate, for
example, from the 30 m samples that clustered together within
the UP region. These small differences could be due to: (i) low
microbial diversity observed in the 15 m sample in comparison
to the rest of the water column (Haro-Moreno et al., 2018) and
(ii) the effect of temperature, since the temperature at which
the bottles were kept (ca. 25◦C) was more similar to that of
the sea surface (22.9◦C), while deeper samples showed lower
temperature values (14.5 and 13.8◦C, respectively). More marked
were the differences in deeper waters where the confined sample
at 90 m (7 h) clustered together with the group formed by 75 and
90 m samples (Supplementary Figure S1). At the DCM, while
the 7 h sample was similar to the DCM reference, the sample
after 14 h was slightly distant from both samples. In another

branch close to the DCM samples, we found the mixed water
column (winter) samples.

In the same way, analysis of the prokaryotic community
structure at the level of phylum derived from 16S rRNA gene
metagenomic fragments revealed a shift in microbiome
composition during the confinement (Supplementary
Figure S2). We found that at the DCM Archaea represented
nearly 11% of the total population but decreased to
approximately 2% in only 14 h (Supplementary Figure S2).
Specifically, at the DCM sample, Poseidonarchaea and
Thalassoarchaea (formerly Marine Group II Euryarchaeota)
(Rinke et al., 2019) decreased from ca. 5% of the population in the
time 0 h sample to close to nothing in the 14 h sample (at 7 h their
decrease was already very apparent) (Supplementary Figure S2).
In deeper waters (90 m), while MGII/III Euryarchaeota
also decreased, Thaumarchaeota increased slightly after 7 h
conditions. Whereas the proportion of Bacteroidetes (mainly
Flavobacteriaceae) and Gammaproteobacteria remained constant
during surface seawater confinement, both increased with time
in samples from deeper layers of the photic zone. The most
dominant group in all depths, Alphaproteobacteria, had a
different behavior, decreasing with time at 15 and 90 m and
increasing in the DCM. Noteworthy was the increase of
Cyanobacteria regardless of the depth, although all the samples
were incubated in opaque bottles (Supplementary Figure S2).
The proportion of 16S rRNA reads assigned to unclassified
bacteria decreased with time in all depths, likely due to the
increase of known microbes, probably bloomers that are easy to
obtain in pure culture.

Analysis of the GC content from metagenomic reads showed
a trend, independently of the depth, toward a GC of ca.
41% 14 h post-confinement (Supplementary Table S1), value
previously found for the winter samples (Haro-Moreno et al.,
2018). It has been suggested that these changes in genomic
features are evolutionary strategies in response to environmental
conditions such as the availability of nitrogen and energy
(Mende et al., 2017).

MAGs Recovery and Phylogeny
From the stored bottles, we were able to recover 94 novel (< 99%
ANI) MAGs, all of them with an estimated completeness higher
than 50% and less than 5% contamination (Supplementary
Table S2). In order to cover as much as possible the diversity of
these samples, we used the MAGs together with those recovered
from the same and other locations (Ghai et al., 2013; Mizuno
et al., 2015; Haro-Moreno et al., 2017, 2018; Parks et al., 2017;
Tully et al., 2018), several single-cell genomes (Berube et al.,
2018), and marine reference culture genomes (adding up to more
than 10,000 individual genomes in total). After de-replication
at 99% identity, we selected only genomes that recruited at
least three RPKG with an identity higher than 99%. In the end,
only 445 genomes recruited with this threshold in at least one
of the samples (Supplementary Table S3) and we focused on
them. Phylogenomic analysis using shared proteins (262) among
the recruiting genomes placed all of them consistently with
the same taxonomic groups found by 16S rRNA metagenomic
fragment analysis (Figure 1A and Supplementary Figure S2).
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FIGURE 1 | (A) Phylogenetic analysis of the 445 genomes that recruit in any of the samples. A maximum likelihood genome tree was constructed with 100
bootstraps using 262 conserved proteins. Branches in the tree are sorted and colored according to their taxonomy. Metagenome-assembled genomes (MAGs)
reconstructed in this study are indicated as red circles and those recovered in a previous study (Haro-Moreno et al., 2018) in yellow. Black circles show reference
genomes. (B) Metagenomic recruitment (≥ 99% identity) of genomes that recruited at least three RPKGs in any of the samples. Genomes are sorted with colored
dot according to their taxonomy.

A total of 219 genomes (∼50%) were classified within the
phylum Proteobacteria that was the major contributor among
them, consistent with the high numbers of 16S rRNA reads that
were classified into this group (Figure 1A and Supplementary
Figure S2). Representatives of Gammaproteobacteria were the
most abundant, followed by Alphaproteobacteria, Bacteroidetes,
Planctobacteria, and Actinobacteria (Figure 1A). Although it has
been possible to recover almost 100 new high-quality genomes
through assembly, it is known that very frequently the assembly
has biases on genomes that are not very abundant or with
great genomic diversity. For this reason, the recruitment of
genomes from reference microbes obtained from other studies is
an advantage in order to bring to light all the diversity hidden
behind a sample.

MAGs Abundance in Marine
Metagenomes
However, these changes in the prokaryotic community should be
interpreted with caution since this is a semi-quantitative study
and there are stochastic effects over which we have no control,
e.g., interactions between phytoplankton and associated bacteria
(Amin et al., 2015). For this reason, we sought to examine the
relative abundance of all the MAGs across these incubation
samples and other samples collected from the Mediterranean
Sea, including samples from the same location in different years
and depths (Haro-Moreno et al., 2017; López-Pérez et al., 2017)

as well as from Tara Oceans database (Sunagawa et al., 2015).
We performed fragment recruitment analysis of all these MAGs
that recruited in at least two samples with a similarity ≥ 95%.
The resulting heatmap based on the clustering of the samples
revealed five main branches, three of them corresponding to
the previously defined regions (UP, DCM, and LP) (Haro-
Moreno et al., 2018), the bathypelagic sample (1000 m) that
could be considered as an outgroup compared to all the other
samples and another branch where is included the 60m-14h
sample (Supplementary Figure S3). All the samples appeared
associated with the corresponding partners according to their
depth. However, while the initial times clustered with similar
samples at both 15 and 60 m, the incubation samples appeared
as outgroups indicating a slight change in the community. The
exception was the 60m-14h sample that formed a different branch
with three samples from the Eastern Mediterranean (Aegean and
Ionian Sea). These samples clustered together, probably due to the
ultraoligotrophic conditions of this region (Moutin et al., 2012).
The lack of metagenomes from LP regions limits the assessment
of incubations on these samples but, although they appeared
in the same branch, sample from 90 m was more similar to
the 75 m than to the 90m–7h. Together, these results showed
a shift in microbiome composition during the confinement
(Supplementary Figure S3), much more accentuated in the
DCM. Thus, the composition of the prokaryotic community in
the incubation samples could be used to detect the “bottle effect”
in other samples as quality control. These results highlight the
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DCM not only as the section of the water column with the highest
population density of marine microbes but also the reservoir of
greatest diversity. Furthermore, it is evident that maintaining
incubated seawater without adding any nutrients, but also to a
lesser extent, light, oxygen availability, and water temperature
change the structure of the microbial community in a short time.

These data also have important implications in the
implementation and development of experimental systems
in marine microbial ecology. Very often, samples in oceanic
expeditions are retrieved and stored in plastic bottles or other
kinds of containers while the large volume of water involved is
pumped through the filters. For example, when deep samples
are taken, the Niskin bottle takes several hours to come from
the deep (more than 1 h/1000 m). The use of this short−term
temporal dynamics experiment revealed that confinement
periods can produce changes in the overall community structure
in 7 h (probably less), although changes keep happening after
14 h without adding any nutrient. Our results highlight the
importance of processing the samples swiftly after collection, to
avoid changes and obtain the most accurate representation of the
in situ community.

Microbial Succession During the “Bottle
Effect”
These metagenomics approaches allowed us not only to
recover nearly a hundred new genomes but also obtain a
finer resolution at the species or ecotype level, unlike 16S
rRNA-related techniques. We have first analyzed those groups
where the most significant changes in relative abundance occur
during incubation.

Bloomers or r-Strategists
Metagenomic recruitments showed a pronounced increase in
some marine copiotrophic bacteria (Figure 1B). For instance,
members of Erythrobacter and Limnobacter (recently classified
within the class Gammaproteobacteria; Parks et al., 2018)
rose after confinement of the 15 and 60 m depth samples
(Figure 1B). At 15 m, we also observed the increase of the
MAG Oceanococcus MED-G154 (Gammaproteobacteria) and
the MAG Sandaracinaceae MED-G138 (Deltaproteobacteria).
However, they disappeared in the 14 h sample. Alteromonas also
increased in our experiment, but only in the DCM and LP post-
confinement samples. Genomes of Sphingomonas increased at all
depths. This genus was only found in situ at 15 and 1000 m (Haro-
Moreno et al., 2018), so their growth in the DCM and LP regions,
on which they were not detected before confinement, strengthens
the previously advanced idea that Sphingomonas behaves as a
truly eurybathic microbe (Haro-Moreno et al., 2018). All these
microorganisms are considered opportunistic (bloomers) with
trends toward large genome size and encoding a wide variety of
metabolic pathways to exploit a wide range of substrates. Results
suggest the shift of the initial community toward organisms that
can be easily retrieved in pure culture (r-strategists), as it has been
previously described (Eilers et al., 2000).

The recruitment plots in Figure 2A show that although
these genomes recruit along their entire lengths, they showed
different genome-level diversity patterns during the bottle

confinement. In the case of Limnobacter, we observed a
likely clonal amplification, with a linear recruitment plot with
most reads having >99% identity to the reference genome.
However, Alteromonas and Erythrobacter showed a “polyclonal”
amplification with a similarity cloud down to a nucleotide
identity of 95% (Figure 2A). In the case of Sphingomonas,
recruitment indicated that several species of the genus (ANI
below 95%) were capable of growing at the same time
representing a “multispecies” amplification (Figure 2A).

Picocyanobacteria
Unexpectedly, we found a very significant increase in the number
of reads assigned to picocyanobacteria, mainly Synechococcus,
even at depths (60 and 90 m deep) (Figure 2B) where they
were not previously detected (Haro-Moreno et al., 2018). It is
known that picocyanobacteria are capable of mixotrophic growth
when they are in darkness, probably due to their interaction
with heterotrophs as has been previously suggested (Yelton
et al., 2016), and particularly Synechococcus contains several
organic carbon transporters in their relatively large genomes.
However, different ecotypes (Scanlan, 2012) were found to
increase differentially depending on the depth of the sample.
In the 15 m sample, members of the clades II, III (exclusive
of the Mediterranean Sea; Farrant et al., 2016) and WPC1
(all of the subcluster 5.1), and members of the subcluster 5.3
increased their recruitment. Members of these groups are found
primarily in warm, coastal, and off-shore areas (Scanlan, 2012;
Farrant et al., 2016). In the DCM sample, members of the
clades I, III, IV, and IX were found to increase their abundance
(Figure 1B). At the 90 m sample, only clades I and IV were
found to increase after confinement although they were nearly
absent in the sample processed directly. Members of the clade I
had been characterized as opportunists in cold/coastal habitats
(Scanlan, 2012), reaching higher numbers after environmental
perturbation (Dufresne et al., 2008). Therefore, it is plausible
that at least clade I experienced an increase in a short time.
Remarkably, in the absence of significant light, only one
picocyanobacterial ecotype was found to decrease at the DCM
depth sample belonging to the Low-Light I of Prochlorococcus,
although both Low-Light I and IV increased their abundance at
the confined 90 m sample.

The presence of fast growers like Erythrobacter at 15 m or
Alteromonas at 60 and 90 m might enhance the growth of
the phototrophs (both Synechococcus and Prochlorococcus), as
previously described (Sher et al., 2011; Christie-Oleza et al.,
2017; Biller et al., 2018b). They may remove certain toxic
products (Morris et al., 2011) or provide energy in the form of
certain organic reduced compounds, which are then oxidized
via the oxidative pentose (Stal and Moezelaar, 1997) or the
Entner–Doudoroff pathways, the latter proposed to be the main
route of glucose degradation during mixotrophic conditions
(Chen et al., 2016). The increase of picocyanobacteria in our
samples is consistent with the results that shows the stability
of these autotrophic bacteria during a short period of darkness
(ca. 14 h) (Biller et al., 2018b). However, our experiment
represented a more complex community that a single co-culture
of Prochlorococcus-Alteromonas or Synechococcus-Roseobacter,
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FIGURE 2 | (A) Recruitment plots of three marine species with distinct behaviors, Limnobacter MED-G173 (clonal), Alteromonas MED-G140 (polyclonal), and
Sphingomonas MED-G03 (multispecies) at time 0 and 14 h post-confinement. On the left, each blue dot represents a metagenomic read. Histogram on the right
shows the relative percentage of aligned reads in intervals of 1% identity. Black dashed line indicates the species threshold (95%). (B) Recruitment plot of two
metagenome-assembled genomes at the DCM, highlighting the differences in abundance levels across time.

and other abiotic and biotic factors might play a role in the
growth of the phototrophs in the dark.

Remarkable is that part of the great diversity hidden
until now seems to be encoded within large groups such
as marine picocyanobacteria, mainly Synechococcus. Results

clearly showed a succession of different ecotypes with a
different role within the ecosystem. Unlike all the heterotrophs
obtained (Alteromonas, Sphingomonas, or Erythrobacter), whose
metagenomic recruitment showed a low genomic diversity,
within these major clades, several ecotypes coexist simultaneously
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overcoming the disturbances of the environment. Therefore,
those ecotypes that are not dominant in these conditions may be
dominant in others where biotic or abiotic factors are propitious
for their growth consigning the other ecotypes to part of the
“rare biosphere.”

Changes in the Dominant Bacterial Taxa
One of the factors usually overlooked in such studies (Massana
et al., 2001; Lynch and Neufeld, 2015; Jia et al., 2018) is how
the growth of these microbes affects the remaining part of
the community or whether the more abundant microbes also
respond in the same way to the disturbances. For this reason, we
have analyzed the dynamics of some of the dominant groups in
the water column.

Streamlined or K-Strategist Microbes
Common marine K-strategists showed different trends
depending on the depth analyzed, although not as marked
as in the picocyanobacteria group. In general, SAR11, the most
abundant and widespread Alphaproteobacterial clade (Rappé
et al., 2002; Giovannoni et al., 2005) and SAR86, which belongs
to the class Gammaproteobacteria (Dupont et al., 2012) were
found in the three depths. However, at 15 m, they decreased
in the first 7 h and then increased, although the net growth,
that is final/initial time, was negative (Figure 1B). Curiously,
at the DCM, SAR11 clades Ia, Ib, and V increased in both
bottles, while clade II and some unclassified SAR11 genomes
decreased. This showed how, within the great diversity of these
groups, different ecotypes could respond differently to natural
perturbations in the environment. All SAR86 clades (A, E, and
unclassified) exhibited a strong increase in the number of reads
recruited between 7 and 14 h post-confinement (Figure 1B).
These two groups have very streamlined genomes with restricted
metabolism and some metabolic pathways incomplete or not
present (Dupont et al., 2012; Eiler et al., 2016). They cannot use
high molecular weight compounds (i.e., polysaccharides and
proteins) and hence, in SAR11, they rely on a disproportionate
number of ABC transporters, which are highly transcribed (Shi
et al., 2011), or TonB transporters in SAR86 for the uptake
of low complex nutrients. The growth of certain bacteria,
like Bacteroidetes or Alteromonas, during the experiment can
increase the availability of low molecular weight compounds by
the hydrolysis of high molecular weight nutrients and promote
the growth of scavenging bacteria, as previously reported in the
Atlantic Ocean (Reintjes et al., 2018).

Archaea
Remarkably, analysis of the prokaryotic community structure at
the level of phylum derived from 16S rRNA gene metagenomic
fragments revealed that, during the confinement, marine archaea
suffered the strongest decrease in abundance at 60 and 90 m
depth (Supplementary Figure S2). MGII/III Euryarchaeota are
(photo)heterotrophs that require the uptake of nutrients from the
environment. They seem to be auxotrophs for certain amino acids
(Haro-Moreno et al., 2017), so they compete for the available
dissolved carbon and nitrogen in the form of sugars, amino acids,
and small oligopeptides. Our data suggest that they perform

poorly against other microbes that use similar resources. Marine
Thaumarchaeota also decreased, but it was less pronounced
at 60 m, and almost undetectable at 90 m. However, we do
not have an explanation for this change, since they do not
compete for reduced dissolved organic matter nor are inhibited
by the presence of light. Our data suggest that Euryarchaeota
and Thaumarchaeota phages might play a major role in their
demise (see below).

Genes Coding for Key Functions
In order to make a functional characterization of the microbial
community that benefited from incubation conditions,
contigs > 1 kb that increased their relative abundance three
times or more after 14 h post-confinement were selected,
and coding sequences were annotated against the SEED
Subsystems database (Overbeek et al., 2005). Only categories
that increased or decreased their abundance (>2-fold) in
comparison with the initial point were selected (Figure 3A).
As expected from the results obtained by genome recruitment
where Synechococcus and Prochlorococcus increased at all
depths, genes related to cyanobacterial activity (CO2 fixation,
cyanobacterial circadian clock, photophosphorylation, and light-
harvesting complexes) were enriched. Additionally, categories
related to DNA metabolism (restriction and modification
systems), motility, and chemotaxis; regulation and cell signaling;
transposable elements; and virulence, disease, and defense
(resistance to toxic compounds and type II/III/IV/VI secretion)
systems increased at all depths. These results are in agreement
with the growth of opportunistic bacteria, such as Alteromonas,
Limnobacter, or Erythrobacter, that usually possess larger
genomes and encode for these genes in their flexible genome
(López-Pérez et al., 2012). We also detected changes in categories
related to the uptake, synthesis, and degradation of certain
compounds. For instance, we observed an enrichment in genes
involved in nitrate uptake and denitrification to nitrite, and
degradation of complex sugars (polysaccharides and amino
sugars—chitin), at all depths; or the synthesis of certain cofactors
(such as vitamin B12 and folates) and transport of metals (such
as Mn, Ni, Co, Zn, and iron) that only increased at 15 m
depth (Figure 3A). Furthermore, structural phage proteins,
such as terminase and capsid increased notably at 90 m, in
agreement with the changes observed in the viral community
at that depth (see below). On the other hand, light-induced
proteorhodopsins and genes related to the assimilation of
organic sulfur and dimethylsulfoniopropionate mineralization
decreased in the UP.

We also analyzed the variation in the number of genes
per 1000 encoding glycoside hydrolases enzymes, involved in
the degradation of complex sugars. Results showed an increase
(Figure 3B) regardless of the depth analyzed, although this
increment was more pronounced at the DCM. Interestingly,
followed by the increase of the number of these enzymes, we
noticed that glycoside hydrolases families present at the initial
point were replaced with others without overlap 14 h post-
confinement (Figure 3C). These patterns indicate a variation
in sugars available in the environment and therefore, in the
community that is capable of degrading them.
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FIGURE 3 | (A) SEED subsystems-based heatmap using the assembled coding sequences coming from contigs > 1 kb that increased in their relative abundance
three times or more. Categories that increased >2-fold are indicated in red, while categories that decreased the same amount are indicated in blue. (B) Number of
genes per 1000 genes assigned to glycoside hydrolases (GHs) detected in the t0 and the subset of contigs > 1 kb that increased at least three times their relative
abundance, using the Carbohydrate-Active enZYmes (CAZy) database. (C) Heatmap of the different GH families. GH families were clustered by clade abundance.

Role of Phages in Community Structure
Viruses that infect marine microbes are an integral component
of aquatic ecosystems and the most abundant entities (Suttle,
2005). They not only play an essential role in the carbon
cycle but also to maintain diversity in bacterial, archaeal,
and eukaryotic populations in the ocean by keeping at bay
microbes with high cell densities (Corinaldesi et al., 2007;
Suttle, 2007; Danovaro et al., 2008). Metagenomes (cellular
fraction > 0.2 µm) contain abundant viral material due to cells
retrieved while undergoing viral lysis or as temperate viruses
inserted in the chromosome (López-Pérez et al., 2017). This
natural amplification method increases the amount of viral DNA
available that can be assembled, and several studies have been
able to recover thousands of new viral contigs using this method
(Mizuno et al., 2013; López-Pérez et al., 2017).

In the same way as bacterial taxa, their viruses and the
phage–host dynamics may represent important players of the
rare biosphere, contributing to the functional flexibility of the
ecosystem. We used the same approach previously described
(López-Pérez et al., 2017) to select metagenomic viral contigs
from metagenomic samples and assign the host. We obtained
1089 metagenomic viral contigs longer than 10 kb for further
analysis. Besides, we included 1323 viral sequences retrieved
from a previous metagenomic study from the Mediterranean Sea

(López-Pérez et al., 2017). To avoid redundancy, we first grouped
all the sequences into clusters (>40% coverage and nucleotide
sequence identity > 90%). This resulted in 1473 different viral
clusters. We were able to assign putative hosts to 282 contigs
(ca. 20% of the total) (Supplementary Table S4). The most
frequent host prediction (ca. 63%) was Cyanobacteria, followed
by Alphaproteobacteria, mainly SAR11. Unfortunately, we have
not been able to detect any phage related to the r-strategists.

We have used the recruitment of metagenomic reads to
elucidate possible patterns of behavior of these phages during
the incubation and to analyze the role of this biotic component,
which is often overlooked. We took into consideration only
those clusters recruiting more than 10 RPKG of coverage with
a similarity > 99%. It is remarkable that a large number of the
viral clusters (ca. 89%) appear to be found exclusively in one
single specific depth metagenome (Figure 4A). This stenobathic
character is consistent with the narrow depth distributions
found in the previous analysis of the prokaryotic fraction
of these metagenomes (Haro-Moreno et al., 2018). Only two
singletons related to pelagiphage HTVC008M were recruited
in all the photic metagenomes and they could be considered
eurybathic. Interestingly, unlike in bacterial recruitment where
the linear representation shows all the genomic diversity of
the organisms, in these viruses, we recovered reads mainly at
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FIGURE 4 | (A) Relative abundance of the viral cluster measured by recruitment (in RPKG) from the different metagenomes. Only those viral clusters recruiting more
than 10 RPKG were taken into account. Metagenomes are clustered based on viral abundance. (B) Box plot representing recruitment total viral abundance per
sample. (C) Abundance (in RPKG) of individual viral clusters and associated host populations throughout the dataset.

identities higher than 99%, showing that we recovered a specific
clonal lineage (Supplementary Figure S4). While at 15 m, there
is a sharper decrease in the number of reads associated to
viral clusters (normalized by sample), sharper in the first 7 h,
the largest increase was detected at 7 h in the 90 m sample.
Conversely, the viral community did not change substantially at
60 m (Figure 4B).

To refine this picture, we examined the abundance of
individual viral and associated host populations throughout the
dataset (Figure 4C). Although this method is limited to the
number of genomes available in each sample and the host
prediction, this will allow us to have a more complete view of
the processes that are carried out during the incubation. While
the reads associated with Cyanobacteria increased in all depths, a
decrease was found in their phages in the UP and DCM regions
(Figure 4C). Mixotrophy can provide a competitive advantage for
the bacteria in darkness while the infection by cyanophages seems
to be very conditioned by the presence of light. Similar results
have been obtained in experiments on cyanophage infection
under daily light–dark (diel) cycles suggesting that the adsorption
of some cyanophages to their host cells is light-dependent (Ni
and Zeng, 2016). However, in deeper waters where light is scarce
(90 m), the trend changes, and we observed a slight growth
of both (bacteria and phage). On the other hand, the temporal

pattern of pelagiphages abundance appeared tightly coordinated
with that of SAR11 (Figure 4C).

Archaea are ubiquitous and abundant in marine ecosystems;
however, little is known about the interaction between virus
and archaea occurring in marine environments (Danovaro
et al., 2016; Roux et al., 2016). In fact, the first viruses
that infect Marine Group I Thaumarchaeota and Marine
group II Euryarchaeota have recently been discovered by
metagenomics (Philosof et al., 2017; López-Pérez et al.,
2018). The relative abundance of Euryarchaeota in the DCM
sample was higher at the beginning, disappearing entirely
after 14 h (see above). However, the abundance of their
only known viruses (magrovirus) slightly increases after 14 h
(Figure 4C). In deeper waters (90 m), which is the usual
habitat of these microbes, there was a strong negative
correlation. The same correlation, although less pronounced,
could be observed for the other group of Archaea at
90 m (Figure 4C).

The reasons for such rapid changes are obscure, but we
would like to advance a hypothesis that we call “wall-chain-
reaction.” While the pelagic assemblage drifts along with the
water mass in the ocean, the ratio virus/host is kept relatively
constant. Confinement will immediately change the situation,
particularly near the walls of the container where the stochastic
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movement of cells and viruses bouncing off the walls will
result in a higher local concentration of both. This could
change the delicate predator–prey balance favoring lytic viruses
that could lead to a chain reaction starting near the wall
that would result in massive lysis of some preys. This could
be the case of the Euryarchaea which populations were
shown to collapse rapidly. Cell lysis would lead to a massive
release of organic carbon that would be first taken up by
r-strategists like Erythrobacter or Alteromonas. This is the first
time where metagenomic assembly and recruitment have been
applied to analyze phage–host dynamics and viral diversity
in response to the incubations in marine samples. Phages of
these low-abundance taxa that control their populations after
environmental disturbances could be considered as the “rare
virosphere” (Holmfeldt et al., 2013). This situation is similar to
the evolutionary model of equilibrium where host-specific viruses
control the bacterial population proposed as “constant-diversity”
dynamics (Rodriguez-Valera et al., 2009).

CONCLUSION

As far as we know, this is the first time where metagenomic
assembly and recruitment have been applied to analyze the
microbial community response to the “bottle effect” in marine
samples. Although the change in the overall community structure
is not dramatic at the level of the major groups, we found
clear ecotype succession, suggesting high intra-species diversity
that provides different adaptive mechanisms at the level of
population rather than at individual level. It seems clear that
some well-known r-strategists that can grow rapidly increase
during incubation, while in the sample processed directly
(t0), they are probably only in minute amounts that are not
ecologically relevant. Furthermore, we were able to analyze the
phage–host dynamic through the assembly and recruitment of
viral genomes that are retrieved while undergoing the lytic
cycle (López-Pérez et al., 2017), showing the high impact
of this biotic factor in deeper waters. The “bottle effect”
might act by increasing the probability of contact between
viruses and prokaryotic cells resulting to be one of the main
determinants of community changes. Our results highlight the
importance of processing the samples immediately after their
collection to obtain a reliable representation of the in situ
prokaryotic community.
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