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RESEARCH ARTICLE Open Access

Prolactin-induced mouse mammary carcinomas
model estrogen resistant luminal breast cancer
Lisa M Arendt1,3, Debra E Rugowski1, Tara A Grafwallner-Huseth1, Maria Jose Garcia-Barchino2,4, Hallgeir Rui2,
Linda A Schuler1*

Abstract

Introduction: Tumors that express estrogen receptor alpha (ERa+) comprise 75% of breast cancers in women.
While treatments directed against this receptor have successfully lowered mortality rates, many primary tumors
initially or later exhibit resistance. The paucity of murine models of this “luminal” tumor subtype has hindered
studies of factors that promote their pathogenesis and modulate responsiveness to estrogen-directed therapeutics.
Since epidemiologic studies closely link prolactin and the development of ERa+ tumors in women, we examined
characteristics of the aggressive ERa+ and ERa- carcinomas which develop in response to mammary prolactin in a
murine transgenic model (neu-related lipocalin- prolactin (NRL-PRL)). To evaluate their relationship to clinical
tumors, we determined phenotypic relationships among these carcinomas, other murine models of breast cancer,
and features of luminal tumors in women.

Methods: We examined a panel of prolactin-induced tumors for characteristics relevant to clinical tumors:
histotype, ERa/progesterone receptor (PR) expression and estrogen responsiveness, Activating Protein 1 (AP-1)
components, and phosphorylation of signal transducer and activator of transcription 5 (Stat5), extracellular signal
regulated kinase (ERK) 1/2 and AKT. We compared levels of transcripts in the ERa-associated “luminal” signature
that defines this subtype of tumors in women and transcripts enriched in various mammary epithelial lineages to
other well-studied genetically modified murine models of breast cancer. Finally, we used microarray analyses to
compare prolactin-induced ERa+ and ERa- tumors, and examined responsiveness to estrogen and the anti-
estrogen, Faslodex, in vivo.

Results: Prolactin-induced carcinomas were markedly diverse with respect to histotype, ERa/PR expression, and
activated signaling cascades. They constituted a heterogeneous, but distinct group of murine mammary tumors,
with molecular features of the luminal subtype of human breast cancer. In contrast to morphologically normal and
hyperplastic structures in NRL-PRL females, carcinomas were insensitive to ERa-mediated signals. These tumors
were distinct from mouse mammary tumor virus (MMTV)-neu tumors, and contained elevated transcripts for factors
associated with luminal/alveolar expansion and differentiation, suggesting that they arose from physiologic targets
of prolactin. These features were shared by ERa+ and ERa- tumors, suggesting a common origin, although the
former exhibited transcript profiles reflecting greater differentiation.

Conclusions: Our studies demonstrate that prolactin can promote diverse carcinomas in mice, many of which
resemble luminal breast cancers, providing a novel experimental model to examine the pathogenesis, progression
and treatment responsiveness of this tumor subtype.

* Correspondence: schulerl@svm.vetmed.wisc.edu
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Full list of author information is available at the end of the article
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Introduction
The hormone, prolactin (PRL), is critical for the devel-

opment and functional differentiation of the mammary

gland [1]. Although its physiologic importance suggests

a role in breast carcinogenesis, such activity has been

controversial. However, accumulating evidence from a

variety of sources now supports a link between this hor-

mone and breast disease. Large prospective epidemiolo-

gic studies have correlated circulating levels of PRL with

an increased risk of particularly estrogen receptor posi-

tive (ERa+) invasive tumors [2]. Although the relation-

ship between circulating PRL and patient survival has

been examined only in smaller studies, higher levels

have been associated with tumor aggression, higher risk

of metastasis and poor long term survival (reviewed in

[2,3]). Moreover, the pituitary is not the only source of

PRL to the breast. PRL is also expressed within the

mammary gland, particularly in humans, permitting

autocrine/paracrine actions [4-6]. Recent studies have

begun to link genetic variations in the genes for PRL

and the prolactin receptor (PRLR) and breast cancer

[7-9]. Furthermore, in addition to PRL itself, human

growth hormone is also a potent agonist at the PRLR;

thus PRLR-transduced signals also may mediate some

signals of this other oncogenic hormone [10,11]. Finally,

many primary breast tumors, both ERa+ and ERa-,

express the PRLR, pointing to its potential utility as a

therapeutic target and prognostic indicator [4,12,13].

Although epidemiological data support a role for PRL

in the development and progression of breast cancer,

relatively little is known about its contributions to this

disease. In order to investigate the pathogenic actions of

PRL, we have developed a transgenic mouse model

(NRL-PRL), which mimics the high mammary PRL

synthesis observed in women. In this model, the PRL-

and estrogen- insensitive NRL promoter drives expres-

sion of the rat PRL transgene in mammary epithelia,

exposing the gland to locally elevated PRL [14,15]. Non-

parous NRL-PRL females develop mammary pathology

that exhibits many features of human disease, including

early lesions (hyperplasias and intraepithelial neoplasias,

similar to ductal carcinoma in situ in women), and

eventually, ERa+ and ERa- carcinomas. These tumors

are locally aggressive, and metastases to local lymph

nodes and lungs are occasionally observed [16]. The

development of tumors in NRL-PRL females is not

dependent on postpubertal ovarian steroids, but is accel-

erated by supplemental estrogen [17].

Expression of ERa has emerged as the foremost prog-

nostic and therapeutic indicator in primary clinical

breast tumors. However, ERa+ cancers are themselves

very diverse, and many are not susceptible to treatments

directed at this pathway. Indeed, 25% of women treated

with tamoxifen will succumb to breast cancer [18].

Large scale transcript profiling of clinical tumors has

begun to reveal the basis of ERa+ cancer diversity, as

well as that of other tumor subtypes defined by patholo-

gic markers (for review, [19]). ERa+ tumors share the

“luminal” transcript signature, which includes the ERa

itself and several other genes linked to ERa expression,

as well as defining features such as luminal cytokeratins

[19,20]. Efforts to resolve luminal tumors into subtypes

that predict therapeutic sensitivity have demonstrated

elevated expression of proliferation-related genes in

patients at higher risk for relapse, which are useful clini-

cally [21-23]. However, these studies have not revealed

vulnerabilities that can be therapeutically targeted.

Mouse models have proven to be useful in elucidating

the origins of tumor subtypes, and have revealed com-

plex etiologies and relationships to mammary epithelial

lineages [24,25]. However, the paucity of murine models

of ERa+ tumors has hindered studies of the factors that

give rise to this prevalent tumor subtype and modulate

responsiveness to estrogen-directed therapeutics. In light

of the epidemiologic evidence linking PRL exposure to

the development of ERa+ cancers in women, we investi-

gated the phenotype of the mammary carcinomas that

develop in NRL-PRL females, with regard to features

defining clinical luminal tumors, including expression of

the “ERa-associated signature”, estrogen sensitivity, and

activated signaling pathways. Our studies demonstrate

that PRL can promote diverse tumor phenotypes, many

of which display molecular features of luminal breast

cancers, providing insight into the pathogenesis of this

cancer subtype.

Materials and methods
Reagents

5-bromo-2-deoxyuridine (BrdU) was obtained from

Sigma Chemical Co. (St. Louis, MO, USA), and 17b-

estradiol (E2) was purchased from Steraloids, Inc. (New-

port, RI, USA. The following antibodies were used for

immunohistochemical analyses: BrdU (MAS-250) from

Accurate Scientific (Westbury, NY, USA), proliferating

cell nuclear antigen (PCNA; PC 10) and progesterone

receptor (PR; A0098) from DAKO Cytomation (Carpin-

teria, CA, USA), c-Fos (SC-52) and estrogen receptor

alpha (ERa; SC-542) from Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA, USA), pERK 1/2 (Thr202/Tyr204;

9102), pAkt (S473; 3787), and c-Jun (9162) from Cell

Signaling Technology (Beverly, MA, USA), pStat5 (AX1)

from Advantex BioReagents, LLP (El Paso, TX, USA).

Mouse models

NRL-PRL mice (line 1655-8, TgN(Nrl-Prl)24EPS) were

generated and maintained in the FVB/N strain
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background as described [14]. Mice were housed and

handled in accordance with the Guide for Care and Use

of Laboratory Animals in AAALAC-accredited facilities.

All procedures were approved by the University of Wis-

consin-Madison Animal Care and Use Committee.

p53+/- heterozygotes [26] that were backcrossed more

than 10 generations into the FVB/N strain [27] were

used to generate p53-/- donors. p53-/- mammary epithe-

lial cells (MECs) were transplanted into FVB/N non-

transgenic female recipients, and the resulting tumors

harvested (manuscript in preparation, O’Leary and

Schuler). Mammary tumors from other genetically mod-

ified murine models (FVB/N) were generously provided

by Drs. Kim and Alexander (University of Wisconsin)

(MMTV-neu [28], and Drs. Green and Zi-Yao Liu

(NIH-NCI) (C3(1)-SV40 Tag tumors [29].

Histological examination of mammary tissue

For some studies, mice were injected with 200 mg/kg

body weight BrdU 1 h prior to sacrifice to label cells

undergoing DNA synthesis. For immunohistochemistry

(IHC), deparaffinized slides were exposed to 0.5% H2O2

in methanol to block endogenous peroxidase activity,

boiled for 15 minutes in 0.1 M citrate (pH = 6.0) or

0.1 M Tris (pH = 9.0) buffer for antigen retrieval, then

blocked, and incubated with the primary antibody over-

night (for individual antibodies, see Table S1 in Addi-

tional File 1). Slides were incubated with the secondary

antibody (BioGenex, San Ramon, CA, USA), followed by

peroxidase strepavidin and 3,3’ diaminobenzidine, and

counterstained with hematoxylin. Cells were labeled for

PCNA using Vector M.O.M. Basic kit (BMK-2202; Vec-

tor Laboratories, Burlingame, CA, USA). pStat 5 was

detected as described [30]. Serial sections of tumors

were examined for the different endpoints. For all IHC,

control sections were stained in parallel (negative con-

trols: omission of primary antibody, irrelevant antibody;

positive controls, appropriate for the antibody) as

described [14]. To determine labeling indices, 1,000

total cells in at least five randomly chosen microscopic

fields in divergent regions of each carcinoma were

counted by an investigator blind to the experimental

status.

Microarray experiments

In a preliminary study to compare the tumors that

develop in NRL-PRL to other mouse models of mam-

mary cancer, cDNA prepared from tumors was hybri-

dized to Agilent Mouse Oligo Microarrays (Agilent

Technologies Inc., Santa Clara, CA, USA) using total

RNA from equal numbers of C57Bl6/J and 129 male

and female pups as the reference sample, as previously

described [31]. Data were processed and hierarchical

clustering performed, as described [31].

To compare NRL-PRL tumors identified as ERa posi-

tive or negative by IHC, total RNA was purified using

RNeasy Midi Kits (Qiagen Inc., Valencia, CA, USA)

according to the manufacturer’s instructions. RNA

integrity was assessed using the RNA 6000 Nano Assay

and Agilent 2100 Bioanalyzer (Agilent Technologies

Inc.). Total RNA (10 μg) was reverse transcribed and

labeled with Cy5 using the Array 50 kit (Genisphere

Inc., Hatfield, PA, USA). MECs were isolated as

described [32] from 12-week-old nontransgenic nonpar-

ous FVB/N females, for common reference RNA. Refer-

ence RNA pooled from 15 mice was reverse transcribed

and labeled with Cy3. Tumor and reference samples

were co-hybridized overnight to Agilent Mouse cDNA

Microarrays (G4104A, 8,614 features), washed, and

scanned using Agilent’s dual-laser Microarray Scanner

(G2565BA) with Feature Extraction Software.

Genes with Cy3 and Cy5 intensity values higher than

100 were considered as expressed genes and were nor-

malized with lowess smoother followed by log base 2

transformation. Values that changed at least 1.5-fold in

either direction from the gene’s median value were

included in the class comparison. Genes differentially

expressed between ERa positive and negative classes

were determined with a significance threshold of uni-

variate tests at P < 0.01. Average linkage hierarchical

clustering on both the genes and samples was per-

formed using the gene list generated by class compari-

son. Analyses were performed using BRB ArrayTools

(version 3.6.0) developed by Dr. Richard Simon and

Amy Peng Lam (Biometric Research Branch, National

Cancer Institute). These data have been deposited in the

public database, ArrayExpress (E-MEXP-3013).

Real-time PCR

RNA from tumors and MECs was examined using quan-

titative real time PCR (qRT-PCR). cDNA was synthe-

sized from 1 μg RNA using random hexamers

(Amersham Biosciences, Piscataway, NJ, USA) and

MMLV Reverse Transcriptase (Promega, Madison, WI,

USA), and qRT-PCR performed as described [17]. Nega-

tive (no cDNA) and positive controls were included

with each plate. Specific primer sequences are listed in

Table S2 in Additional File 1. Results were calculated

using the comparative CT method and normalized to

18S RNA, and data were analyzed for statistical signifi-

cance as described in the figure legends.

Tumor sensitivity to ovarian steroids

To examine the responsiveness of tumors to circulating

ovarian steroids, tumors were allowed to develop until

they reached 1.5 cm in diameter. About one-third of the

tumor mass was then removed, concomitant with ovx

or sham surgery, or ovx and subcutaneous treatment
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with 0.1 mg pellets of 17b-estradiol (E2; Innovative

Research of America, Sarasota, FL, USA), which result

in plasma levels of 50 to 75 pg/ml [33]. Tumors were

measured twice weekly with calipers, and tumor volume

was calculated (the largest diameter x (the smallest

diameter)2 × 0.4). Mice were humanely euthanized and

tissue collected when the tumors reached 1.5 cm in dia-

meter. Histological comparisons of the tumor biopsies

and end stage tumors were carried out as above.

For some experiments, 1 mm3 NRL-PRL tumor frag-

ments were transplanted bilaterally into fourth inguinal

mammary glands of 12-week-old nontransgenic syn-

geneic FVB/N hosts. After the tumors grew to 0.75 cm

in diameter, recipient females were treated with ovx,

sham surgery, or sham surgery and weekly subcutaneous

injections of 5 mg Faslodex (ICI 182,780; AstraZeneca,

Wilmington, DE, USA). Tumors were measured and

collected as described above.

Statistical analyses

Statistical analyses were performed using Prism v.4.03

(GraphPad Software, Inc., San Diego, CA, USA). Differ-

ences were considered significant at P < 0.05.

Results and discussion
Locally elevated PRL leads to histologically diverse ERa

positive and ERa negative carcinomas

NRL-PRL nonparous females develop diverse invasive

mammary carcinomas with a long latency [14]. In order

to examine the breadth of tumor phenotypes promoted

by this prolonged PRL exposure, we examined a panel

of 39 of these tumors (mean latency +/- standard devia-

tion (S.D.), 18.2+/-3.6 months). The majority were ade-

nocarcinomas of several histotypes; carcinosarcomas

constituted a minor population (Figure 1, Table 1).

These carcinomas varied widely in the proportion of

cells that expressed detectable ERa (0 to 79%). Nineteen

of the 39 tumors examined exhibited greater than 10%

ERa+ cells, a common clinically used threshold. The

majority did not express detectable progesterone recep-

tor (PR); only four tumors demonstrated PR immunos-

taining in more than 5% of the tumor cells. The

morphological heterogeneity suggests cooperation

between PRL and other oncogenic factors during the

long period of development of these tumors, similar to

that which may occur in women.

PRL-induced tumors display inverse Stat5 and AP-1

activation and elevated epithelial pAKT

PRL can activate multiple signaling cascades, which may

play distinct roles in its physiologic and pathogenic

actions in the mammary gland. In order to determine

the relationship of these signals to tumor characteristics,

we examined the activation of these pathways in the

panel of PRL-induced tumors by IHC. Signal transducer

and activator of transcription 5 (Stat5) is one of the best

characterized mediators of PRL activity, and is critical

for PRL-induced alveolar development during pregnancy

(for review, [1,34]). The tumors that developed in NRL-

PRL females contained variable proportions of cells with

nuclear pStat5 (range: 4.2 to 93.3%), which was not

related to ERa levels (Figure 2a, d, P > 0.05). Although

many glandular and solid tumors exhibited relatively

high proportions of cells containing nuclear pStat5, evi-

dence for activation of this pathway varied substantially

even among these histotypes. Many adenocarcinomas

demonstrated low nuclear pStat5, as did all of the poorly

differentiated carcinosarcomas (Table 1).

PRL can also initiate other signals, including several

MAP kinases, which are elevated in mammary lysates of

NRL-PRL females [17], and are particularly strongly

activated in some breast cancer cells lines [35]. PRL-

activated MAP kinases can increase synthesis and phos-

phorylation of multiple Activating Protein-1 (AP-1)

components, activating the AP-1 transcriptional enhan-

cer [36]. AP-1 target genes have been shown to enhance

cellular proliferation, survival, and invasion (for review,

[37-39]). Both c-Fos and c-Jun were variably expressed

in PRL-induced tumors (Figure 2b, c, e). Their expres-

sion was directly related to each other (data not shown,

P = 0.005, R = 0.83). Although adenosquamous carcino-

mas and carcinosarcomas had the highest levels of c-Fos

expression, a large subset of other histotypes also dis-

played significant staining (Table 1). Interestingly,

nuclear pStat 5 levels were negatively correlated with

both c-Fos (Figure 2e; P < 0.0001, R = -0.63) and c-Jun

(data not shown; P = 0.0058, R = -0.82). The inverse
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Figure 1 Mammary carcinomas that develop in NRL-PRL

females exhibit diverse histotypes, and express varying levels

of ERa. The proportion of cells containing immuno-detectable ERa
was quantitated as described in Materials and methods, and shown
related to tumor histotype. Each box represents a single tumor that
arose in a different NRL-PRL nonparous female. The dashed line
marks 10% ERa+ cells, a common clinically used threshold. (Tumor
histotypes: GL, glandular; Pap, papillar; Adsq, adenosquamous; C-S,
carcinosarcoma).
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relationship of these signals in primary NRL-PRL

tumors is consistent with our previous observation of

PRL signals to Stat5 and AP-1 in several breast cancer

cell lines [35].

The higher level of nuclear pStat5 in well-differen-

tiated PRL-induced carcinoma histotypes resembles the

association of pStat5 with features of more differentiated

clinical breast tumors (for review, [34]). In order to

examine the association of this pathway with molecular

phenotype in adenocarcinomas, we examined levels of

two transcripts associated with distinct mammary beha-

viors. The 5 PRL-induced adenocarcinomas with highest

nuclear pStat5 (70 to 93%) and low c-Fos had signifi-

cantly elevated transcripts for the proteinase inhibitor,

Expi, compared to those adenocarcinomas with lowest

pStat5 (4 to 10%, Figure 2f, P = 0.003). Expi expression

increases in early pregnancy [40], and is reduced in

PRLR-/- mammary glands [41]. In contrast, the adeno-

carcinomas with lowest nuclear pStat5 contained

elevated mRNA for the metalloproteinase, Mmp9

(Figure 2g; P = 0.03), which in women is associated with

high tumor grade, metastasis, and reduced survival [42],

consistent with a more aggressive phenotype.

Elevation of phosphorylated extracellular signal regu-

lated kinases 1/2 (pERK1/2) is found in some clinical

tumors in women [43], and is increased in lysates of

NRL-PRL mammary glands [17]. The location of

pERK1/2 varied substantially among PRL-induced

tumors. The majority of the adenocarcinomas (68%)

demonstrated strong stromal staining with rare nuclear

staining in epithelial cells (Table 1, Figure 3a). In con-

trast, all of the carcinosarcomas in the panel displayed

both strong epithelial nuclear and cytoplasmic labeling

(Figure 3b, c). This histotype had significantly higher

levels of Vim (Figure 3h), but similar levels of Krt8 tran-

scripts compared to the adenocarcinomas (Figure 3i).

The spindle shaped cell morphology, loss of cell polarity,

and expression of Vim mRNA within these tumors sug-

gest the epithelial to mesenchymal transition (EMT, for

review, [44,45]). Significantly enhanced levels of Mmp9

transcripts were also detected in these tumors (Figure 3j).

The PI3K/AKT pathway also has been associated with

proliferation, survival, and EMT in human breast

tumors, as well as resistance to endocrine therapy

[46-48]. pAKT is also elevated in mammary glands of

NRL-PRL females [17]. The majority of the carcinomas

in this panel displayed strong pAKT labeling in both the

nuclei and cytoplasm of tumor epithelium (Table 1,

Figure 3d). Other tumors exhibited pAKT labeled cells

in both the stroma and epithelium, and a minority in

the stromal compartment alone (Figure 3e). Unlike

pERK1/2, pAKT expression was not correlated with a

specific histotype; carcinosarcomas demonstrated vari-

able expression levels of nuclear and cytoplasmic pAKT

(Figure 3f, g).

Together, these observations suggest that a broad

spectrum of signals may contribute to progression of

these carcinomas. Nuclear pStat5 is elevated in hyper-

plastic lesions in NRL-PRL glands [17], and early abla-

tion of Jak2 protects against PRL-induced tumors [49],

consistent with an important role for the Jak2-Stat5

pathway in their genesis. However, the data presented

here indicate that high pStat5 persists in only a minor

subset of established PRL-induced carcinomas, suggest-

ing that other signals drive progression of most of these

tumors. Elevated activities of AP-1 [50,51], AKT [52]

and MAP kinases, including ERK1/2 [43], have been

implicated in resistance to conventional chemotherapies

and anti-estrogens. PRL can activate these signals alone,

as well as potently cooperate with growth factors to

enhance ERK1/2 and AKT activation in vitro and

in vivo [53-55]. In light of the variable levels of Prlr

Table 1 Characteristics of PRL-induced carcinomas by histotype

Glandular Solid Papillary Adenosquamous Carcinosarcoma

N 10 3 10 3 4

ERa1 10.0 ± 3.6 a 4.4 ± 2.9 b 21.1 ± 8.1 32.2 ± 10.2 a,b 8.2 ± 3.0

PR1 1.5 ± 1.0 0.3 ± 0.2 13.8 ± 6.3 2.4 ± 1.4 0

pStat51 49.0 ± 8.13a,b 66.6 ± 12.2 c,d,e 29.4 ± 18.7 c 23.9 ± 5.25 a,d 5.7 ± 1.9 b,e

c-Fos1 18.3 ± 2.8 a 15.0 ± 2.5b,c 17.6 ± 3.7 d 30.5 ± 4.4 a,b 25.2 ± 3.2 c,d

S phase1 15.6 ± 1.7 15.0 ± 2.5 18.0 ± 2.0 14.7 ± 1.3 15.5 ± 2.2

Apoptotic1 2.1 ± 0.3 3.6 ± 1.1 2.2 ± 0.3 1.9 ± 0.4 1.1 ± 0.2

pERK1/22 70% strong, 10% weak stromal;
30% epithelial

100% strong
stromal

90% strong stromal; 10%
epithelial

100% strong stromal 100% strong stromal
& epithelial

pAKT2 50% epithelial; 20% stromal;
30% negative

67% epithelial; 33%
negative

70% epithelial; 10% stromal;
20% negative

33% epithelial & stromal;
67% negative

75% epithelial; 25%
negative

1% tumor epithelial cells that are positive, mean ± s.e.m (see Materials and methods). Same lower case letters indicate significant differences between histotypes

(P < 0.05; Students t-test).
2% of tumors of each histotype that displayed strong staining in different locations (stroma, epithelium, or both) as indicated.

ERa, estrogen receptor alpha; ERK, extracellular signal regulated kinase; PR, progesterone receptor; PRL, prolactin; Stat5, signal transducer and activator of

transcription 5.
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Figure 2 PRL-induced carcinomas demonstrate an inverse relationship between nuclear phosphorylated Stat 5 (pStat 5) and AP-1

proteins. (a) Nuclear pStat 5 staining in a glandular adenocarcinoma. (b) c-Fos expression in a glandular adenocarcinoma. (c) c-Jun staining in a
glandular adenocarcinoma. (d) The proportion of tumor cells that express ERa and nuclear pStat5 is not correlated. (e) Carcinomas exhibit a
significantly negative correlation between the proportion of cells that contain nuclear pStat 5 and c-Fos (P < 0.0001, R = -0.63). ERa, pStat 5, c-
Fos and c-Jun expression were evaluated and quantitated as described in Materials and Methods. Each box represents a single carcinoma that
arose in a different NRL-PRL nonparous female. Correlations were determined using Spearman’s non-parametric test. (f)Expi mRNA is significantly
increased in the adenocarcinomas expressing highest pStat5, compared to the lowest 5 (mean ± s.e.m., N = 5; *, P = 0.003). (g)Mmp9 mRNA is
significantly decreased in the adenocarcinomas expressing highest pStat5, compared to the lowest 5 (mean ± s.e.m., N = 5; *, P = 0.03). (f, g)
Transcript levels were measured using qRT-PCR as described in Materials and Methods. Original magnification: a, b, c, 400x.
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Figure 3 Adenocarcinomas exhibit activated ERK1/2 in stroma and AKT in epithelia; carcinosarcomas display strong epithelial pERK1/

2. (a) pERK1/2 localized in stromal cells of differentiated glandular adenocarcinomas. (b) Mammary carcinosarcomas demonstrated nuclear and
cytoplasmic staining for pERK1/2. (c) Carcinosarcoma from gland of NRL-PRL female (hematoxylin and eosin stain). (d) Glandular adenocarcinoma
from NRL-PRL female demonstrating nuclear and cytoplasmic staining for pAKT. (e) pAKT localized primarily in the stroma of a squamous
adenocarcinoma. (f, g) Carcinosarcomas demonstrated variable levels of pAKT expression. (h) Carcinosarcomas demonstrated significantly higher
levels of vimentin mRNA compared to either morphologically normal MECs or more differentiated adenocarcinomas from NRL-PRL females. (i)
Carcinosarcomas had similar levels of keratin 8 transcripts compared to adenocarcinomas. (j)Mmp9 mRNA was significantly increased in
carcinosarcomas. Transcript levels were measured using qRT-PCR as described in Materials and Methods and represented as mean ± s.e.m.
(MECs, N = 3 samples, each containing RNA pooled from 5 mice; carcinosarcomas, N = 4; adenocarcinomas with high pStat5, N = 5). Letters
denote significant differences using ANOVA, followed by Newman-Keuls post test (P < 0.05). Original magnification: a, c, 200x; b, d, e, f, g, 400x.
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transcripts in these tumors (see below), it is clear that

PRL itself may play different roles in ongoing activation

of these pathways as they influence lesion progression,

tumor phenotype, and treatment sensitivity.

PRL-induced carcinomas share molecular features of

luminal tumors in women

To evaluate shared characteristics of PRL-induced carci-

nomas, in a preliminary study we examined the tran-

script profiles of six NRL-PRL carcinomas, including

three each of the most prevalent histotypes (glandular

and papillary), expressing variable levels of ERa (three

positive, three negative by IHC, not associated with his-

totype). Unsupervised hierarchical clustering based on

an intrinsic gene list developed for murine models [31]

showed that the NRL-PRL tumors formed a distinct

subgroup neighboring MMTV-neu tumors.

To compare the phenotype of NRL-PRL tumors more

closely to other well-studied genetically modified murine

models of breast cancer subtypes in the FVB/N strain

background, we compared levels of transcripts for ERa-

associated genes in the “luminal” signature [20] and

those enriched in various mammary epithelial lineages.

MMTV-neu tumors model clinical HER2+ tumors. Like

both human HER2+ tumors [25] and other murine

tumors that develop in response to MMTV-driven

oncogenes [31], MMTV-neu tumors display some char-

acteristics of the “luminal” tumor subtype in women.

Tumors in this extensively studied mouse model do not

express ERa or FoxA1, a transcription factor which co-

regulates many targets [56,57]. However, they do express

other ERa-associated genes, including Xbp1 and Gata 3

[58-60]. In contrast, tumors that develop in both C3(1)-

SV40 Tag females and transplanted p53-/- models have

many features of “basal” tumors in women ([31,61],

O’Leary and Schuler, in prep).

Unlike the morphologically homogeneous MMTV-neu

tumors, levels of transcripts that mark luminal breast

cancers varied in NRL-PRL carcinomas, consistent with

the diverse tumors in this model (Figure 4, Figure S1 in

Additional File 1). In contrast to the majority of murine

models, PRL-induced adenocarcinomas expressed rela-

tively high levels of Esr1 mRNA, although as predicted

from the IHC, levels varied considerably (Figure 4a).

PRL-induced papillary carcinomas also contained com-

paratively high levels of the ERa-associated transcripts

in the luminal signature, including FoxA1 and Xbp1

(Figure 4b, c). Gata3 mRNA was readily detectably in

NRL-PRL tumors, but levels were lower than in

MMTV-neu tumors (Figure 4d). Although Gata3 speci-

fies ductal/alveolar cell fate and is markedly reduced in

Prlr-/- glands [1], this transcription factor also maintains

luminal differentiation and is reduced in invasive breast

cancer [62], consistent with the less differentiated phe-

notype of the PRL-induced carcinomas.

In light of the luminal phenotype of many tumors

promoted by PRL, we examined levels of transcripts

associated with distinct mammary subpopulations and

differentiation processes [24,63]. PRL-induced tumors

displayed relatively high levels of Itga6 (encoding integ-

rin a6, CD49f) mRNA, a marker for stem cell and pro-

genitor populations (Figure 5a). They expressed

relatively low levels of transcripts for both Itgb1 (encod-

ing integrin b1, CD29), which marks stem cell and basal

but not luminal subpopulations (Figure 5b), and also

Itgb3 (encoding integrin b3, CD61), a marker for lumi-

nal progenitors (Figure 5c). In contrast, three of the four

NRL-PRL adenocarcinomas displayed relatively high

levels of CD44 (Figure 5d), an adhesion molecule asso-

ciated with stem cells and metastasis [64,65]. NRL-PRL

adenocarcinomas also contained elevated mRNA for

several transcription factors, which direct luminal/alveo-

lar cell expansion and differentiation, are co-expressed

with PRLR in many normal MECs, and are linked to

PRL in genetic models [1,66]. PRL-induced adenocarci-

nomas contained relatively high levels of mRNA for

Elf5, a PRL-induced factor that directs the alveolar line-

age [67], as well as CEBPb, a transcriptional regulator

which has been implicated in stem cell and luminal pro-

genitor repopulation [68] (Figure 5e, f). Consistent with

their roles in luminal cell commitment, individual

genetic ablations of Gata3, Elf5, C/EBPb and also Stat5

have been shown to alter the size of the MEC subpopu-

lation expressing integrin b3 (CD61+), which is enriched

in luminal precursors. However, the variable direction

and timing of the observed changes reflect their com-

plex actions at more than one stage of this process

[24,68,69]. Future studies will elucidate the effect of PRL

on mammary epithelial subpopulations and roles of

these transcriptional regulators in its actions, and illumi-

nate differences in cellular origin and/or pathways of

progression from MMTV-neu tumors and among the

different histotypes of PRL-induced carcinomas.

Transcripts for the cdk4/6 inhibitor, Cdkn2c

(p18INK4c), were very low (Figure 5g). Genetic ablation

of this tumor suppressor induces well-differentiated

non-invasive luminal tumors in mouse models [70].

Similar results were observed for Cdkn2a (p16INK4a, data

not shown). These results are consistent with the similar

mammary phenotypes of Prlr-/- and Ccnd1-/- mice [1],

and ability of PRL to increase cyclin D1 transcription

[71], and support a key role for cdk4/6 in PRL-induced

tumorigenesis.

PRL also may contribute to the tumor phenotype of

other models; some C3(1)-SV40 Tag as well as MMTV-

neu tumors contained appreciable Prlr mRNA (Figure 5h).
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The CD61+ progenitor population has recently been

shown to be the origin of basal tumors [72]; the size of

this MEC subpopulation is strongly modulated by Stat5.

These observations invite speculation on potential thera-

peutic or preventative approaches directed at PRL action

in multiple tumor types.

These marked differences in the molecular phenotype

of PRL-induced tumors compared to other genetically

modified mouse models of breast cancer suggest that

PRL acts on its physiological target cells to promote

diverse luminal-type tumors, but raises questions about

the identity of these cells, the role of mediators asso-

ciated with “normal” function in tumor progression, and

factors contributing to tumor heterogeneity. Develop-

ment of additional markers for the various mammary

epithelial subpopulations, and antibodies that recognize

the native conformation of the murine PRLR will assist

in determining the characteristics of the precursors of

luminal tumors, and identifying the target cells of PRL

in this process.

ERa expression is associated with distinct molecular

features, but does not confer estrogen responsiveness

In our preliminary studies comparing PRL-induced

tumors to other murine models of breast cancer, PRL-

induced ERa- and ERa+ tumors clustered together,

indicating shared features suggesting a common origin.

In order to determine characteristics of PRL-induced

tumors that are associated with differences in ERa pro-

tein expression, we compared transcript profiles from

four ERa+ and four ERa- adenocarcinomas (determined

by IHC) of divergent histotypes that did not segregate
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Figure 4 PRL-induced adenocarcinomas display molecular features of luminal clinical breast tumors. (a-d) RNA from mammary
carcinomas that developed in NRL-PRL, MMTV-neu [28], C3(1)-SV40 Tag [29], and transplanted p53-/- (O’Leary and Schuler, manuscript in
preparation) models was examined for levels of transcripts comprising the luminal signature [31] by qRT-PCR as described in the Materials and
Methods. PRL-induced papillary adenocarcinomas were of diverse ERa status by IHC. Each symbol denotes a distinct tumor. The horizontal bar
indicates the mean level for each model.
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Figure 5 NRL-PRL adenocarcinomas express markers distinct from other well-characterized models of breast cancer. RNA from the set
of mammary carcinomas in Figure 4 that developed in NRL-PRL, MMTV-neu [28], C3(1)-SV40 Tag [29], and transplanted p53-/- (O’Leary and
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with ERa status (three papillary, two glandular, one ade-

nosquamous, two solid). Genes that were differentially

expressed among the classes were determined, and hier-

archical clustering analyses were performed by compar-

ing expression profiles both across the set of samples

and across the set of genes. As shown in Figure 6a,

ERa+ and ERa- tumors clustered separately. Consistent

with the reports of ERa+ tumors in women, NRL-PRL

ERa+ tumors expressed higher levels of Gata-3 than

ERa- tumors, and markers of differentiation, such as the

milk proteins, b-casein and whey acidic protein, and

CD24a [20,73-75]. Levels of mRNA for the PRL trans-

gene and PRLR varied markedly among both ERa+ and

ERa- carcinomas, suggesting that PRL activity itself was

not responsible for the differences observed (Figure S2

in Additional File 1).

Activity of the NRL-PRL promoter is not altered by

estrogen [15], enabling us to examine the role of this

steroid in the disease process. Proliferation of both mor-

phologically normal MECs and preneoplastic epithelial

hyperplasias in NRL-PRL females is very sensitive to

ovariectomy (ovx) and supplemental estrogen [17,54]. In

order to examine estrogen responsiveness in established

carcinomas, NRL-PRL females bearing primary mam-

mary adenocarcinomas were subjected to sham surgery

or ovx. At the time of surgery, a biopsy was removed

for examination of tumor histology, rate of proliferation,

and steroid hormone receptor expression. The growth

of the remaining tumors was monitored until they

reached 1.5 cm in diameter (15.3 ± 8.5 days; mean ±

s.d.), as described in the Materials and methods. Like

the tumors in Figure 1, histotypes in this experimental

panel were diverse, and ERa/PR expression varied

widely. They exhibited highly variable rates of growth

(Figure 6b); rates of proliferation of ERa- tumors prior

to the surgery tended to be higher than ERa+ tumors

(P = 0.07). However, ovx did not alter rates of prolifera-

tion of either ERa+ or ERa- tumor cells. Consistently,

ovx followed by administration of E2 failed to alter pro-

liferation of an independent set of primary tumors

(PCNA staining: 30.1% ± 12 vs 31.19% ± 7.9, mean ±

s.d., P > 0.05, N = 5).

Since primary PRL-induced tumors exhibit highly vari-

able histotype and ERa expression, and ovarian function

is likely to be faltering in the aged females, we employed

tumor transplantation to further investigate the role of

ERa-dependent signals in established tumors. We seri-

ally passaged NRL-PRL glandular adenocarcinoma frag-

ments that demonstrated high expression of both ERa

and PR (48% and 25% labeled cells, respectively) to

bilateral inguinal mammary glands of nonparous 12-

week-old syngeneic nontransgenic recipients. Although

the tumors that grew from these fragments (about eight

weeks per passage) retained the morphology and high

ERa expression of the original tumors, PR was no

longer detectable after passage (not shown), suggesting

that this process selects for more aggressive tumor cells.

After three passages, recipient females were treated with

ovx, sham surgery, or sham surgery and the ERa-selec-

tive antagonist, Faslodex. None of these treatments

altered rates of proliferation of the tumors, as measured

by BrdU incorporation (Figure 6c), indicating that rela-

tively well-differentiated ERa+ tumors display the estro-

gen independence observed in the more diverse group

of primary tumors.

These findings raise interesting questions regarding

the mechanism(s) whereby PRL interacts with ERa-

mediated signals in the development and progression of

ERa+ tumors. The striking estrogen independence of

established PRL-induced tumors shown herein contrasts

with the cooperation between PRL and estrogen in pro-

liferation of morphologically normal MECs and early

lesions [17,54], suggesting acquisition of estrogen insen-

sitivity. Many primary clinical ERa+ tumors acquire

resistance to estrogen-directed therapies and most dis-

play marked therapeutic insensitivity after metastasis. A

vast literature implicates many mechanisms, including

aberrations not only of ERa itself, but alterations in

other molecules and signaling pathways consistent with

heightened growth factor activity [76-78]. The ability of

PRL to potentiate growth factor signals [53-55,79] and

high activation of AKT in the tumors shown here are

consistent with a role in the latter mechanism. Clini-

cally, high circulating PRL has been associated with fail-

ure of ERa+ tumors to respond to tamoxifen and

aromatase inhibitors [80-82], and PRLR transcripts were

elevated with recurrence after tamoxifen treatment in

some studies [13,83]. The histological heterogeneity and

variable activation of signaling pathways of PRL-induced

tumors observed here suggest that multiple mechanisms

may lead to loss of estrogen sensitivity. Together, these

features suggest that the NRL-PRL model may provide

insight into the origin of the diversity of clinical ERa

tumors, and the characteristics of the tumor subpopula-

tion that resists therapy.

Conclusions
Despite the prevalence of ERa+ tumors clinically, very

few mouse models resemble this breast cancer subtype.

Our studies demonstrate that elevated local PRL can

promote diverse carcinomas, which display varying

levels of ERa/PR, nuclear pStat5, pERK1/2 and pAKT,

and AP-1 components. Transcript analysis demonstrates

that many of these carcinomas express the ERa-asso-

ciated transcript signature that defines this clinical

tumor subtype, and suggests that they arise from the

physiologic target cells of PRL. In contrast to morpholo-

gically normal structures and hyperplastic lesions,
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Figure 6 ERa+ and ERa- carcinomas demonstrate distinct transcript profiles, and are insensitive to ovarian steroids. (a) Hierarchical
clustering of genes and tumor samples demonstrates differential expression between ERa+ (yellow) and ERa- (blue) adenocarcinomas at the
P < 0.01 significance level (N = 4 each). ERa+ was defined as ≥10% of the cells contained detectable ERa by IHC; ERa- contained <10%. Red
indicates high relative expression in ERa positive adenocarcinomas; green, low relative expression; black, no difference. Each column represents
an independent tumor, and each row is a gene. (b) Growth of PRL-induced tumors is not diminished by ovariectomy, regardless of ERa status.
Mammary carcinomas of distributed histotypes in NRL-PRL nonparous females were biopsied, and the mice subjected to sham surgery or
ovariectomy. Subsequent tumor growth was monitored until tumors reached 1.5 cm in diameter (15.3 ± 8.5 days; mean ± s.d.), and proliferation
determined by PCNA IHC as described in the Materials and Methods. Sham, N = 12; ovx ERa+, N = 10; ovx ERa-, N = 9. Treatment did not alter
the rate of growth (Student’s paired t-test, P > 0.05). (c) Treatment with the ER inhibitor and downregulator, Faslodex (ICI 182,780), does not
inhibit growth of ERa positive tumor fragments. Fragments of well-differentiated ERa+ tumors were transplanted into fat pads of nontransgenic
recipients and treated with ovariectomy, sham surgery, or Faslodex as described in Materials and Methods. Ovariectomized and Faslodex-treated
females had significantly reduced uterine weights (27 ± 5 mg, 30 ± 8 mg, mean ± s.d., respectively), compared to sham-treated females (83 ± 5
mg). Treatment did not alter the rate of proliferation (P > 0.05).
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established carcinomas are strikingly insensitive to estro-

gen, suggesting acquisition of independence. The role of

ongoing PRL signals in established tumors will require

additional investigation. Recent studies suggest that PRL

also can antagonize traditional chemotherapeutics in

breast cancer cells in vitro [84,85], which is supported

by small studies of PRL on therapeutic resistance in vivo

[86]. Together, our findings suggest that the NRL-PRL

mammary tumor model will be helpful to understand

the pathogenesis and heterogeneity of luminal tumors

and identify factors determining susceptibility to anti-

estrogen and traditional chemotherapies, to examine the

role of PRL in these responses, and to test novel thera-

peutic strategies, including combinatorial regimens

including therapies directed at PRL.

Additional material

Additional file 1: Supplementary tables and figures. Table S1:
Immunohistochemistry conditions. Description of retrieval methods,
blocking conditions and antibody dilutions used for each antigen
examined. Table S2: Primers employed for RT-PCR analyses. Sequences of
the primers used to quantify transcripts of interest. Figure S1: PRL-
induced carcinomas of different histotypes display variable levels of
transcripts for ERa-associated genes. Levels of mRNA for various
transcripts of interest in individual PRL-induced tumors of different
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cytokeratin 8 (Krt8), and PRL receptor in individual tumors, determined
by qRT-PCR.
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