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Hyperprolactinemia causes infertility, but the mechanisms
involved are not known. The present study aimed to deter-
mine whether and how prolactin may influence LH secretion
in the adult female mouse. Using ovariectomized, estrogen-
treated (OVX�E) mice, we found that 7 d of intracerebroven-
tricular prolactin potently suppressed serum LH levels (P <
0.05). To examine whether this central action of prolactin may
involve the GnRH neurons, the effects of acute and chronic
prolactin on cAMP response element-binding protein phos-
phorylation (pCREB) in GnRH neurons were examined using
dual-label immunocytochemistry. In diestrous and OVX�E
mice, a single sc injection of ovine prolactin resulted in a
significant (P < 0.05) doubling of the number of GnRH neurons
expressing pCREB. OVX�E mice treated with five injections
of ovine prolactin over 48 h showed a 4-fold increase in the
number of GnRH neurons with pCREB. To determine whether

GnRH neurons might be regulated directly by prolactin, we
examined prolactin receptor (PRL-R) mRNA expression in
green fluorescent protein-tagged GnRH neurons by single-cell
RT-PCR. As a positive control, PRL-R mRNA was measured in
arcuate dopaminergic neurons obtained from green fluores-
cent protein-tagged tyrosine hydroxylase neurons. Three of 23
GnRH neurons (13%) were identified to express PRL-R tran-
scripts, whereas nine of 11 arcuate dopaminergic neurons
(82%) were found to coexpress PRL-R mRNA. These data dem-
onstrate that prolactin suppresses LH levels in the mouse, as
it does in other species, and indicate that it acts centrally to
regulate intracellular signaling within GnRH neurons. This is
likely to occur, at least in part, through the direct regulation
of a subpopulation of GnRH neurons. (Endocrinology 148:
4344–4351, 2007)

HYPERPROLACTINAEMIA IS A WELL-established
cause of infertility in both male and female mammals.

Elevated prolactin may impact reproduction through an ac-
tion on the GnRH neurons of the hypothalamus and/or on
the pituitary gland to affect secretion of the gonadotrophins,
LH, and FSH (1, 2). In humans, hyperprolactinemia is asso-
ciated with a marked reduction in both the frequency and
amplitude of LH pulses (3, 4), indirectly suggesting that both
the brain and pituitary might be targets for prolactin. Im-
portantly, pulsatile GnRH replacement can reverse the in-
fertility induced by hyperprolactinemia (4–6), suggesting
that prolactin-induced suppression of GnRH release is the
proximal cause of infertility. The suppressive effects of pro-
lactin upon reproduction have also been observed in animal
models. Prolactin suppresses both the frequency and ampli-
tude of LH pulses in male and female rats (7–10) and direct
measurements of GnRH secretion into the portal blood have
revealed a prolactin-induced suppression of GnRH release
(11–14). Furthermore, hyperprolactinemia has been shown to

prevent the castration-induced increase in GnRH mRNA
expression in rats (15).

The mechanisms(s) by which prolactin inhibits GnRH neu-
rons remain poorly understood. Whereas we have observed
prolactin receptor (PRL-R) expression in the rat hypothala-
mus (16, 17), expression in GnRH neurons has not been
demonstrated. PRL-R are expressed in GT1 cells, an immor-
talized cell line derived from mouse GnRH neurons, and
prolactin potently suppresses GnRH biosynthesis and secre-
tion in these cells (18). Although GT1 cells are quite different
from adult GnRH neurons (19), these data suggest the pos-
sibility that prolactin may directly regulate GnRH neurons in
vivo. Prolactin has been observed to influence �-aminobu-
tyric acid (20), opioid (21), neuropeptide Y (22), and dopa-
minergic (23) neuronal systems, all of which are implicated
in the regulation of GnRH neurons under certain conditions.
Hence, it seems likely that prolactin could also act to influ-
ence GnRH neurons indirectly through these afferent
pathways.

Much of the difficulty in understanding the functioning of
the GnRH neuronal network has come from an inability to
undertake detailed investigations on native GnRH neurons
in situ. The recent application of transgenic technologies to
this problem has opened the door to the molecular and
cellular investigation of the GnRH neuronal phenotype in the
mouse (24, 25). There has been some controversy in the field,
however, as to whether prolactin actually suppresses fertility
in mice, as it does in other species. Some studies have failed
to observe a prolactin-induced suppression of LH secretion
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in mice (26), whereas others have demonstrated a clear sup-
pression of fertility due to elevated prolactin (27, 28). The aim
of the present study was to evaluate this issue in female
C57BL/6J mice, with the goal of establishing a mouse model
that would allow further investigation of prolactin action on
GnRH neurons in transgenic mice. We report here that pro-
lactin does indeed suppress LH secretion in the mouse and
provide evidence that this occurs at least in part through a
direct action on a subpopulation of GnRH neurons.

Materials and Methods
Animals

Adult female C57BL/6J mice (age 6–8 wk, weighing 24–28 g), were
group housed under conditions of controlled temperature (21 � 1 C) and
lighting (12-h light, 12-h dark cycle). Stages of the estrous cycle were
monitored by daily vaginal smears, and where indicated, animals were
used in the diestrous phase of the estrous cycle. Groups of animals were
ovariectomized and treated with a subcutaneous implant containing
17�-estradiol [silicon tubing, inner diameter 1.0 mm; outer diameter
2.125 mm; 12.5 mm long, containing 50 �g/ml mixed in silicon adhesive
(29)] to maintain low physiological levels of plasma estradiol (OVX�E).
Animals were used 5–7 d after ovariectomy.

Experiment 1: effect of intracerebroventricular (icv)
prolactin infusion on LH secretion in ovariectomized mice

To determine whether chronic prolactin infusion into the brain could
suppress LH secretion in mice, OVX�E mice were anesthetized and icv
cannulae were implanted into the left lateral ventricle using stereotaxic
coordinates (1.3 mm lateral to Bregma, 5 mm below skull) (30). Cannulae
were attached to a sc implanted Alzet minipump (model 1002, 0.25 �l/h)
containing ovine prolactin (oPRL), such that animals were treated with
625 ng/h for 7 d. Animals were then killed by decapitation and trunk
blood collected and allowed to clot at 4 C. Serum LH levels were mea-
sured in 40-�l sample volumes by RIA. Iodinated rat LH (NIDDK-rat
LH-I-10) was used as tracer and primary antisera was National Institute
of Diabetes and Digestive and Kidney Diseases rabbit antirat LH-S11
(final dilution 1:400,000). Values are expressed in terms of mouse LH
Reference Preparation, provided by A. F. Parlow (National Hormone
and Peptide Program, Torrance, CA). All samples were measured in a
single assay, with an intraassay coefficient of variation of 12%.

Experiment 2: prolactin-induced phosphorylation of cAMP
response element-binding protein (CREB), in vivo

The phosphorylation of CREB can be used as a broad spectrum
indicator of altered signaling events within cells (31) including GnRH
neurons (32). As such, we monitored the CREB phosphorylation status
of GnRH neurons to examine whether changes in circulating prolactin
influences signaling in these cells. Groups of diestrous or OVX�E mice
were injected sc with 50 �g oPRL (or saline vehicle as a control) and 60
min later perfused transcardially with 4% paraformaldehyde. To ex-
amine more chronic actions of prolactin, three more groups of OVX�E
animals were treated twice daily for 48 h with either oPRL (50 �g/
injection, sc), bromocriptine (100 �g/injection sc), or saline-vehicle con-
trols. Bromocriptine is a dopamine D2 receptor agonist, known to inhibit
endogenous prolactin secretion from the pituitary gland. It was used to
ensure that multiple handlings for injections did not result in stress-
induced increases in endogenous prolactin levels and hence potentially
affect phosphorylated CREB (pCREB) expression in controls. The final
injections were administered 1 h before perfusion, as described above.
Brains were postfixed in the same fixative for 2 h and then cryoprotected
in 30% sucrose overnight. Four consecutive sets of 30-�m coronal sec-
tions through the preoptic area and rostral hypothalamus were cut using
a sliding microtome. One set of sections was used to evaluate CREB
expression in GnRH neurons and another to examine pCREB expression.

Free-floating, dual-labeling, peroxidase immunocytochemistry was
undertaken in the same manner as reported previously (32). In brief,
after a 0.1% H2O2/40% methanol/Tris-buffered saline wash, all sections

from one set of sections were incubated in one of the primary antibodies
(pCREB, 1:100 or CREB, 1:100; Cell Signaling Technology, Inc., Beverly,
MA) for 48 h at 4 C. This was followed by biotinylated goat antirabbit
IgGs (1:200 for 2 h; Vector Labs, Peterborough, UK) and the Vector Elite
avidin-biotin-horseradish peroxidase complex (1:200 for 2 h). Peroxidase
labeling was then visualized with nickel-diaminobenzidine tetrahydro-
chloride using glucose oxidase. Sections were then treated with 0.1%
H2O2/40% methanol/Tris-buffered saline to quench any remaining per-
oxidase activity and processed further for GnRH immunoreactivity with
the LR1 antibody (1:20,000) followed by peroxidase-labeled antirabbit
IgGs and revealed using diaminobenzidine tetrahydrochloride only.
The specificities of the CREB antibodies have been reported previously
in multiple rodent species (33) including the mouse (34). The omission
of primary antibodies in these studies resulted in a complete absence of
immunoreactivity. All GnRH neurons observed in the set of sections
(eight to 12 sections per brain) were counted and scored for the presence
or absence of CREB or pCREB. Because intensity of pCREB staining
varied in different cells, only cells expressing a dark, black nuclear
staining were recorded as positive.

Experiment 3: single cell RT-PCR analysis of PRL-R mRNA
in GnRH neurons

Diestrous female mice expressing green fluorescent protein (GFP)
under the control of the GnRH promoter (GnRH-GFP) (35) were killed
between 0900 and 1200 h by cervical dislocation. As a positive control
for PRL-R expression (36), dopamine neurons from the arcuate nucleus
were also collected from mice expressing GFP under the control of the
tyrosine hydroxylase (TH) promotor (TH-GFP) (37). The brains were
rapidly removed and placed in ice-cold cutting Krebs solution [118 mm
NaCl, 3 mm KCl, 0.5 mm CaCl2, 6 mm MgCl2, 5 mm HEPES, 25 mm
NaHCO3, 11 mm d-glucose (pH 7.3) when gassed with 95% O2-5% CO2].
Serial coronal slices (200 �m thick) were prepared using a vibratome. For
GnRH neurons, sections containing the diagonal band of Broca and
rostral preoptic area (rPOA) were selected, whereas for TH neurons,
sections containing the arcuate nucleus of the hypothalamus were cho-
sen. The slices were maintained in a holding chamber containing oxy-
genated standard Krebs solution [118 mm NaCl, 3 mm KCl, 2.5 mm
CaCl2, 1.2 mm MgCl2, 5 mm HEPES, 25 mm NaHCO3, 11 mm d-glucose
(pH 7.3) as above] at 30 C for at least 30 min before cell harvesting at room
temperature (22 C).

To harvest identified neurons, slices were placed in a recording cham-
ber and mounted onto the stage of an upright microscope (BX51; Olym-
pus, Tokyo, Japan) fitted with differential interference contrast optics.
Slices were held submerged with weighted nylon mesh and continu-
ously superfused with oxygenated standard Krebs at 22 C. GnRH neu-
rons were identified as vertically oriented GFP-expressing bipolar cells
located in the diagonal band of Broca and rPOA adjacent to the organum
vasculosum of the lamina terminalis. GFP-labeled TH neurons were
identified predominantly within the dorsomedial aspect of the arcuate
nucleus, using the third ventricle and median eminence as landmarks.
Patch electrodes used to harvest cell cytoplasm were fabricated from
thin-walled borosilicate glass tubing (1.5 mm outer diameter; GC150TF-
7.5; Harvard Apparatus, Edenbridge, UK). Electrode tubing was first
baked at 250 C for 6 h before being pulled on a Flaming-Brown P-97
puller (Sutter Instruments, Novato, CA) to a tip resistance of 4–5 M�.
Patch electrodes had resistances of 8 M� when filled with 8 �l of
autoclaved internal solution [140 mm KCl, 10 mm EGTA, 1 mm MgCl2,
1 mm CaCl2, 10 mm HEPES (pH to 7.3) with KOH]. The GnRH or TH
neurons were located with fluorescence illumination to detect GFP (re-
flected light fluorescence illuminator BX-RFA and filter U-MWIBA2,
BA510–550; Olympus) using a �40 water immersion objective lens
(LUMPlandFl, �40, 0.80 W; Olympus). Using differential interference
contrast optics, fluorescent neurons were approached with a patch pi-
pette under positive pressure to keep slice debris from entering the
pipette. After contact with the cell body, steady negative pressure was
applied to the electrode to form a high resistance seal (1 G�), and the
cytoplasm was harvested under visual control. In most cases fluorescent
cytoplasm could be seen within the tip of the pipette. As a control for
debris that may enter the pipette and be amplified, we conducted mock
harvests in which the patch electrode was lowered into the slice, but no
cellular contents were removed. All cells were harvested within 2 h of
decapitation of the mouse.
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Immediately after harvesting, the contents of the individual cells were
expelled from the patch electrode into 8.5 �l of reverse transcriptase (RT)
mixture [containing 50 mm Tris-HCl (pH 8.3), 75 mm KCl, 3 mm MgCl2,
20 mm dithiothreitol, 0.5 mm deoxynucleotide triphosphates (dNTPs),
100 ng random hexamer primers, and 200 ng oligo(dT) 12–15] and
incubated at 65 C for 5 min to allow RNA denaturation and primer
binding. After brief cooling, 20 U RNase inhibitor (RNaseOUT; Invitro-
gen, Carlsbad, CA) and 200 U Superscript III reverse transcriptase (In-
vitrogen) were added, and the reactions were incubated first at room
temperature for 5 min and then at 50 C for 1 h for cDNA synthesis. After
cDNA synthesis, enzymes were heat inactivated by incubation at 70 C
for 15 min and the reactions were stored at �80 C until use (within 2 wk).

Multiplex PCR was undertaken in a manner similar to that described
previously (38, 39). Gene-specific oligonucleotide primers for PCR were
designed using Primer3 software (http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3_www.cgi) on cDNA or genomic DNA sequences rep-
resenting each gene of interest (see Table 1 for GenBank accession
numbers). First-round PCR was performed on 5 �l of RT product from
each cell using two sets of primer pairs pooled in a 100-�l reaction
containing 50 mm KCl, 10 mm Tris-HCl (pH 9.0), 1.5 mm MgCl2, 0.2 mm
dNTPs, 10 pmol of each primer (GnRH F1 and R1 or TH F1 and R1,
depending on the cell type collected, and PRL-R F1 and R1; see Table 1
for sequences) and 2.5 U Taq polymerase (Roche Diagnostics, Auckland,
New Zealand). Cell contents processed in parallel, but without RT,
pipette solution from mock harvests, or water in place of template were
used as negative controls. One nanogram of cDNA from whole hypo-
thalamus was used as a positive control for all transcripts. Primers for
GnRH and PRL-R were intron spanning and could be used to detect the
presence of contaminating genomic DNA. Thirty-six cycles of first-
round amplification were performed using a PTC-200 (MJ Research,
Waltham, MA) in thin-walled, 0.2-ml PCR tubes according to the fol-
lowing protocol: first cycle of 95 C (3 min), 59 C (2 min), and 72 C (3 min)
followed by 35 cycles of 95 C (40 sec), 59 C (1 min), and 72 C (1 min).
A final 5-min incubation at 72 C was used to polish the DNA termini.
Examination of first-round products was not performed on a regular
basis, but in preliminary experiments developing the methodology, we
could usually detect the presence of GnRH product. Second-round
nested PCR was performed using 1.25-�l aliquots of the first-round
amplicon pool. PCR for GnRH or TH (depending on the cell type) and
PRL-R was then performed in separate 25-�l reactions containing 50 mm
KCl, 10 mm Tris-HCl (pH 9.0), 1.5 mm MgCl2, 0.2 mm dNTPs, 1 �m of
the appropriate nested oligonucleotide primer pair (GnRH F2 and R2,
TH F2 and R2, or PRL-R F2 and R2), and 0.6 U Taq polymerase (Roche).
Thirty-six cycles of amplification were undertaken using the same pro-
tocol described for the first-round PCR except that annealing was carried
out at 58 C. The resulting amplicons (GnRH 213 bp, TH 285 bp, PRL-R
305 bp) were resolved on ethidium bromide-stained 2% agarose gels in
Tris-acetic acid-EDTA and photographed using a gel documentation
system (GeneSnap; Syngene, Cambridge, UK).

Statistical analysis

Data are presented as mean � sem. LH data were analyzed using
one-way ANOVA. Where the F ratio was significant, this was followed
by post hoc analysis with Fisher’s protected least significant difference

test using GraphPad software (GraphPad, San Diego, CA). Percentages
of GnRH neurons expressing CREB or pCREB were compared using the
Kruskal-Wallis nonparametric ANOVA. If a significant H-statistic was
detected, the Mann-Whitney U test was used to compare between
groups. In all analyses, differences were considered statistically signif-
icant at P � 0.05.

Results
Experiment 1: effect of icv prolactin infusion on LH
secretion in vivo

The OVX�E model used in these experiments resulted in
basal serum LH levels of 4.9 � 1.2 ng/ml (n � 8). Seven days
infusion of oPRL into the lateral ventricle (n � 8) resulted in a
significant (P � 0.05) suppression of serum LH levels (Fig. 1).

Experiment 2: prolactin-induced phosphorylation of CREB
in GnRH neurons

Immunoreactivity for CREB and pCREB was restricted to
cell nuclei and detected with a heterogeneous distribution
throughout the brain. Figure 2 shows representative images
of the dual-label immunohistochemistry of pCREB in GnRH
neurons. Data were quantified by counting the total number
of GnRH neurons expressing pCREB and expressing this as
a percentage of the total number of GnRH neurons counted.
The total numbers of GnRH neurons detected varied accord-
ing to anatomical location, with peak numbers of 18.3 � 1.8
GnRH cells per coronal section detected at the level of the
rPOA. Neither the distribution nor total number of GnRH
neurons counted was changed in any of the treatment groups
(data not shown). Three independent experiments were un-
dertaken. For the first experiment, intact diestrous mice were
used. In control animals given an acute saline injection, levels
of pCREB in GnRH neurons was low (5.0 � 1.8% of GnRH
neurons positive for pCREB, n � 5). Acute administration of
oPRL (n � 6) resulted in an approximately 2-fold increase in
the number of GnRH neurons expressing pCREB (Fig. 3A).
The GnRH neurons expressing pCREB were detected
throughout the continuum of GnRH neurons in the basal
forebrain. In the second experiment, the same procedure was
undertaken in OVX�E mice. Basal expression of pCREB was
slightly higher (11.3 � 6.3%, n � 5), and acute administration
of oPRL (n � 4) resulted in a significant 2-fold increase in the
number of GnRH neurons expressing pCREB (Fig. 3B). In the
final experiment, a more chronic mode of prolactin admin-
istration was used, with five injections over the course of 48 h

TABLE 1. Gene names, accession numbers, primer names, and sequences

Gene name Accession no. Primer name Sequence

GnRH M14872 GnRH-F1 TGCTCCAGCCAGCACTGGTCC
GnRH-R1 CAATGTTATACTAGGGTGTTGTGG
GnRH-F2 CACTGGTCCTATGGGTTGCGC
GnRH-R2 AGTGCATCTACATCTTCTTCTGCC

PRL-Ra NM_011169.3 PRLR-F1 TCACTCCTCTCCTGCGTTCT
PRLR-R1 GAAGCAGTACCTCGGATCCA
PRLR-F2 GCCATCTGCACTTGCTTACA
PRLR-R2 CACAGTAAATGCCACGAACG

TH NM_009377 TH-F1 GCCGTCTCAGAGCAGGATAC
TH-R1 GGGTAGCATAGAGGCCCTTC
TH-F2 AGGAGAGGGATGGAAATGCT
TH-R2 ACCAGGGAACCTTGTCCTCT

a Primers designed to detect both long and short forms of the receptor mRNA.
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in OVX�E mice. Again, control animals had very low levels
of pCREB expression (2.2 � 0.3%, n � 6), whereas chronic
prolactin treatment (n � 6) induced approximately 4-fold
increase in the number of GnRH neurons expressing pCREB
(Fig. 3C). Levels of pCREB in GnRH neurons in bromocrip-
tine-treated animals were not significantly different from
controls. In all experiments, the expression of CREB by
GnRH neurons was not changed (Fig. 3, D–F).

Experiment 3: expression of PRL-R mRNA by individual
GnRH neurons

We used the same single-cell RNA extraction technique
used previously by our laboratory (38, 40) followed by a
two-step nested PCR amplification for detection of tran-
scripts. Representative gels are depicted in Fig. 4. A total of
40 GnRH-GFP neurons were harvested from the rPOA of
four adult female mice; 25 such cells were examined for
expression of GnRH and PRL-R, and 15 were used as no-RT
controls. Other controls included using water in place of
template or mock harvest in which the patch pipette was
lowered into the slice and withdrawn. None of the controls
yielded a PCR product. The majority of harvested GnRH-
GFP neurons (23 of 25 cells) were shown by RT-PCR to
contain transcripts for GnRH. Three of these 23 GnRH neu-
rons (13% of the population) were found to coexpress PRL-R
mRNA. As a positive control and to validate the efficiency of
the PRL-R primers in this single-cell RT-PCR paradigm, we
performed the analysis in parallel on TH-expressing cells
from the arcuate nucleus of TH-GFP mice. A total of 14
arcuate nucleus TH-GFP neurons were harvested from one
adult female mouse; 12 of these cells were examined for the
expression of TH and PRL-R, and two were processed in
parallel as no-RT controls. Eleven of 12 TH-GFP cells were
shown by RT-PCR to contain transcripts for TH. Nine of these
11 TH cells (82%) also showed coexpression of PRL-R mRNA,
whereas the controls were negative. The two cells that did not
show expression of PRL-R mRNA were located in more
ventrolateral regions of the arcuate nucleus.

Discussion

These data provide evidence that hyperprolactinemia sup-
presses LH secretion in female mice through a central ner-
vous system site of action. Chronic prolactin administration
was found to suppress LH secretion and both acute and
chronic prolactin treatments were observed to alter CREB
phosphorylation in a small subpopulation of GnRH neurons.
Furthermore, we found evidence for the expression of PRL-R
mRNA in a similarly small subpopulation of GnRH neurons.
These observations are consistent with the hypothesis that
prolactin inhibits LH secretion through an action mediated
at least in part through the direct suppression of GnRH
neurons.

Previous studies provided inconsistent data regarding the
ability of prolactin to suppress of fertility in mice (26–28).
Although it is well established that hyperprolactinemia
causes infertility in many mammalian species, including hu-
mans, one study (26) found that high prolactin did not inhibit
LH secretion in mice. This is in contrast to our present result
and may result from the use of different mouse models in the
studies. Although it has not been examined in mice, the
PRL-R is positively regulated by estrogen in rats (41, 42), so
we used an OVX mouse model in which low levels of es-
trogen were present, but in which LH levels were not com-
pletely suppressed. In this model, chronic icv prolactin
clearly suppressed LH secretion, suggesting a central site of
action for prolactin and demonstrating that the mouse is
indeed like other mammals in this respect. There is consid-
erable evidence in rats, sheep, and humans that prolactin can

FIG. 2. Representative images of dual-label immunohistochemistry
showing GnRH neurons (brown cytoplasmic stain) and pCREB (black
nuclei). A, Low-power image showing typical distribution of GnRH
neurons in the rostral hypothalamus at the level of the organum
vasculosum of the lamina terminalis. Most GnRH neurons were neg-
ative for pCREB (B), with a small proportion showing distinct black
staining of the nucleus identifying the presence of pCREB (C). Scale
bars, 100 �m (A) or 10 �m (B and C).

FIG. 1. Serum LH levels (mean � SEM) in OVX�E mice, either
treated with icv infusion (625 ng/h for 7 d) of oPRL or vehicle control.
*, Significantly different from control (P � 0.05).
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also act in the pituitary gland to inhibit LH secretion (43–49),
and this is likely to also contribute to the infertility caused by
elevated prolactin. However, the fact that hyperprolactine-
mia-induced infertility can be reversed by exogenous GnRH
(4–6) suggests that lack of GnRH might be the primary cause
of prolactin-induced infertility. At present, the effects of pro-
lactin on mouse gonadotrophs are unknown.

Prolactin receptors are members of the cytokine receptor
superfamily (50) and activate multiple signal transduction
pathways. There are several isoforms of the prolactin recep-
tor in mice: a long form and at least three short forms with
truncated cytoplasmic domains (51), although only the long
form is able to initiate full signaling. Prolactin binding to the
long form of the receptor induces activation of the janus
kinase-signal transducer and activator of transcription
(STAT) pathway, in particular inducing phosphorylation of
STAT5a and 5b. Phosphorylated STAT proteins translocate
to the nucleus and bind to specific sequences in the promot-
ers of target genes, regulating transcription. We have shown
in both rats and mice that STAT5b is specifically required for
prolactin action in hypothalamic dopamine neurons (52, 53).
Prolactin can also act through either the long or short forms
of the receptor to influence a range of other pathways, which
may mediate rapid actions of prolactin in other neurons (50,
54). We have demonstrated that prolactin activation of ty-
rosine hydroxylase activity in cultured rat hypothalamic
neurons involves activation of MAPK (ERK1 and ERK2),
protein kinase A, protein kinase C, and calcium/calmodulin-
dependent protein kinase II (54). Finally, prolactin has also
been demonstrated to exert membrane effects resulting in a

rapid increase in intracellular Ca2� in a range of cells (20,
55–58), probably through modulation of influx of extracel-
lular Ca2� through voltage-gated calcium channels. The ac-
tivation of any of these pathways would be expected to result
in elevated levels of CREB phosphorylation (31). As such, we
chose to examine the phosphorylation status of CREB to
evaluate whether prolactin may impact intracellular signal-
ing within GnRH neurons. Although overall levels of CREB
phosphorylation were quite low under the conditions used
in this study, administration of either acute or chronic pro-
lactin to intact or OVX�E mice was found to induce CREB
phosphorylation in a subpopulation (5–10%) of GnRH neu-
rons. This result indicates that changes in circulating pro-
lactin levels result in altered intracellular signaling within
GnRH neurons. Although the effects of altered CREB phos-
phorylation in GnRH neurons are unknown, it is interesting
to note that both prolactin (present data) and estrogen (32)
enhance CREB phosphorylation in these cells and that this is
associated in both cases with a reduction in plasma LH levels.
There is limited direct evidence for specific effects of pCREB
in the activity of GnRH neurons, although mice with neuron-
specific CREB deletion are subfertile (59). Whereas it is
known that pCREB can suppress gene expression (60, 61),
this has not been specifically studied in adult GnRH neurons.
In GT1–7 cells, activation of CREB has been associated with
a suppression of GnRH mRNA expression (62), consistent
with the concept that activation of CREB could inhibit ac-
tivity of GnRH neurons.

The effects of prolactin on LH levels and CREB phosphor-
ylation indicated that GnRH neurons were regulated by this

FIG. 3. Quantification of pCREB (A–C)
and CREB (D–F) staining, with the per-
centage of pCREB- or CREB-labeled
GnRH neurons in each animal depicted
relative to that observed in controls
(mean � SEM). A and D, Intact,
diestrous mice given acute injection of
ovine prolactin (oPRL, 50 �g sc). B and
E, OVX�E mice given acute injection of
oPRL (50 �g sc). C and F, OVX�E mice
treated twice daily for 48 h with oPRL
(50 �g/injection, sc); bromocriptine (100
�g per injection, sc); or saline-vehicle
controls. *, Significantly different from
control (P � 0.05).
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hormone. To evaluate whether these regulatory actions may
occur directly or indirectly on GnRH neurons, we used a now
well-established and sensitive single cell RT-PCR approach
(38, 40, 63) to examine for the presence of PRL-R mRNA in
GnRH neurons of the adult female. The present data show
that PRL-R mRNA can be detected in a small subpopulation
(13%) of GnRH neurons in the mouse. At this stage, we
cannot distinguish whether GnRH neurons contain the long
or short forms of the PRL-R. To assess the efficiency of our
single-cell RT-PCR approach for evaluating PRL-R mRNA
expression, we examined expression in dopamine neurons of
the arcuate nucleus, a very high proportion of which are
known to express PRL-R mRNA in rats (36). We found that
82% of these dopamine neurons were positive for PRL-R
mRNA, suggesting that there was no technical problem in
detecting the mRNA when present. Thus, it appears that the
GnRH neurons are heterogeneous with respect to PRL-R
mRNA expression, and only a small subpopulation express
PRL-R. This finding is similar to our preliminary work in the
rat, in which we found that PRL-R mRNA (long form) could
be detected in only approximately 5% of adult GnRH neu-
rons using dual-label in situ hybridization (64). Such heter-
ogeneity is common in adult GnRH neurons (65), although
the functional consequences are not clear. It is tempting on
the basis of the similar percentages to speculate that the

subpopulation of GnRH neurons expressing PRL-R mRNA
are also the ones showing pCREB expression in response to
prolactin.

Although the present results provide evidence for a direct
action of prolactin on GnRH neurons, it is important to rec-
ognize that indirect mechanisms may also exist. The network
of neuronal inputs to GnRH neurons in the mouse has started
to be unraveled (66), and prolactin receptors are known to be
expressed in several areas, such as the anteroventral periven-
tricular and arcuate nuclei (16, 67), that contain neurons
directly innervating rPOA GnRH neurons. In addition, there
is evidence that prolactin can regulate the activity and bio-
synthesis of �-aminobutyric acid (20), opioid (21), neuropep-
tide Y (22), and dopaminergic (23) neuronal populations in
the hypothalamus. Thus, as is apparent for the many effects
of estrogen on GnRH neurons (65), the final actions of any
one hormone may result from a combination of direct and
indirect actions.

In conclusion, we report here that hyperprolactinemia re-
sults in the suppression of LH secretion and that this action
is likely to be mediated at least in part through direct actions
of prolactin on GnRH neurons. We also show that estrogen-
treated ovariectomized female mice provide a suitable model
for investigating the mechanisms of hyperprolactinemia-in-
duced infertility, providing an opportunity to use transgenic
models to investigate further prolactin actions on GnRH
neurons in the adult brain.
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