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Abstract 

Interaction fingerprints are vector representations that summarize the three-dimensional nature of interactions 

in molecular complexes, typically formed between a protein and a ligand. This kind of encoding has found many 

applications in drug-discovery projects, from structure-based virtual-screening to machine-learning. Here, we present 

ProLIF, a Python library designed to generate interaction fingerprints for molecular complexes extracted from molecu-

lar dynamics trajectories, experimental structures, and docking simulations. It can handle complexes formed of any 

combination of ligand, protein, DNA, or RNA molecules. The available interaction types can be fully reparametrized or 

extended by user-defined ones. Several tutorials that cover typical use-case scenarios are available, and the documen-

tation is accompanied with code snippets showcasing the integration with other data-analysis libraries for a more 

seamless user-experience. The library can be freely installed from our GitHub repository (https:// github. com/ chemo 

sim- lab/ ProLIF).
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Introduction
Interactions between and within molecular structures 
are the driving force behind biological processes, from 
protein folding to molecular recognition. �e decom-
position of interactions by residues in biomolecular 
complexes can provide insights into structure–function 
relationships, and characterizing the nature of each 
of these interactions can guide medicinal chemists in 
structure-based drug discovery projects [1]. Approaches 
to encode the interactions observed in 3D structural 
data in the form of a binary fingerprint have been devel-
oped in the past [2–6] and applied successfully to a 
variety of projects. For example, de Graaf et al. [7] used 
the Tanimoto similarity between the interaction finger-
print (IFP) of a crystallographic reference and the IFP 
of docking poses to rescore virtual screening results on 
a G protein-coupled receptor (GPCR). Rodríguez-Pérez 

et  al. [8] showed that IFPs can achieve superior predic-
tive performance than ligand fingerprints (ECFP4) for 
the classification of kinase inhibitor binding modes with 
machine-learning models. Finally, Mpamhanga et  al. 
[9] showed that one can use the IFP for clustering, and 
then shortlist a reasonable number of binding modes 
prior to visual inspection. More recently, the approach 
was also implemented for molecular dynamics (MD) 
simulations to study ligand unbinding [10]. While the 
typical IFP usually encodes pre-established interactions 
(hydrogen bond, π-stacking…etc.) on a per-residue basis, 
other implementations exist. Sato et al. [11] developed a 
pharmacophore-based IFP which relies on the pharma-
cophoric features of the ligand atoms in contact with the 
protein and the distance between each of these pharma-
cophores to generate a bitvector. Da et al. [12] developed 
an IFP that relies on the atomic environment of both 
the protein and ligand interacting atoms to set the posi-
tions of a bit in the fingerprint, rather than relying on 
protein residues and predefined interactions, which has 
the advantage of implicitly encoding every possible type 
of interaction. �is protocol was later reimplemented in 
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Python by Wójcikowski et al. [13], but other more clas-
sical Python-based IFP implementations exist [14–19]. 
In this paper, we introduce a new Python library, ProLIF, 
that overcomes several limitations encountered by these 
programs, namely working exclusively with the output 
of specific docking programs, not being compatible with 
the analysis of MD trajectories, being restricted to a spe-
cific kind of complex (usually protein–ligand complexes), 
depending on residue or atom type naming conventions, 
or not being extensible or configurable regarding interac-
tions (Table 1).

Implementation
ProLIF can deal with RDKit [21] molecules or MDAn-
alysis [22] Universe objects as input, which allows sup-
porting most 3D molecular formats, from docking to 
MD simulations. While most MD topology files do not 
keep explicit information about bond orders and formal 
charges, MDAnalysis is able to infer this information if all 
hydrogen atoms are explicit in the structure while convert-
ing the structure to an RDKit molecule. �e RDKit parent 
molecule is then automatically fragmented in child residue 
molecules based on residues name, number, and chain to 
make it easier to work on a per-residue basis when encod-
ing the interactions.

When calculating an interaction fingerprint, each inter-
action is typically defined as two groups of atoms that 
satisfy geometrical constraints based on distances and/or 
angles (Table 2). Here the selection of atoms is made using 
SMARTS queries (Table  3), which is more precise than 
relying on elements or atomic weights and is also more 
universal than relying on force-field-specific atom types.

�e library is designed so that users can easily modify 
existing interactions, as there is usually no consensus on 

the empirical thresholds (distance, angles) that should 
be used. For example, the hydrogen bond DH…A can be 
defined as a distance between H and A lower or equal to 
3.0 Å [9] or as a distance between D and A lower or equal 
to 3.5 [4, 14, 20] or 4.1  Å [15, 23], and the angles con-
straints can also vary. ProLIF is also designed to let users 
define custom interactions.

Each interaction is written as a Python class that 
implements a “detect” method which takes two RDKit 
molecules as input, typically a ligand and a protein 
residue, and outputs a Boolean (True if the interaction 
is present, else False) as well as the indices of atoms 
responsible for the interaction. All interaction classes 
are then gathered inside a “Fingerprint” class that can 
generate a bitvector from two RDKit molecules, and 
optionally return the atom indices. By default, the Fin-
gerprint class is configured to generate a bitvector with 
the following interactions: hydrophobic, π-stacking, 
π-cation and cation-π, anionic and cationic, and 
H-bond donor and acceptor, although more specific 
interactions are available (see Table 2). �is Fingerprint 
class is designed with two scenarios in mind, post-
processing MD trajectories or docking results, thus it 
provides user-friendly functions to generate the com-
plete array of interactions for each pair of interacting 
residues.

Finally, the interaction is stored inside the Finger-
print class as a mapping between a pair of “ligand” and 
“protein” residues, and the corresponding interaction 
bitvector. For easier post-processing, the interaction 
fingerprint can then be converted to a pandas Data-
Frame object [24], which facilitates the search for spe-
cific interactions and the aggregation of results.

Table 1 Comparative table of features available in non-commercial IFP software

MD native support of MD trajectories; Web available through a webserver; CLI command-line interface; LP Ligand–Protein; All all combinations between ligand, 

protein, DNA, and RNA molecules

a Relies on residue and atom naming convention to assign charges and/or aromaticity

b Only supports hydrogen-bond, hydrophobic and van der Waals contacts for LP complexes

c Compatible with the input formats supported by the aforementioned libraries

Software Complexes Input format MD Con�gurable Extensible Web CLI Ref.

ProLIF All MDAnalysis and  RDKitc
✓ ✓ ✓

IChem LP MOL2 ✓ ✓ [4]

PLIP Alla PDB ✓ ✓ ✓ [15, 18]

Arpeggio Alla PDB ✓ ✓ ✓ [16]

PyPLIF HIPPOS LPa PDBQT, MOL2 ✓ ✓ [17]

getContacts Alla,b VMDc
✓ ✓ [19]

MD-IFP LPa MDAnalysisc
✓ [10]

ODDT LP OpenBabel and  RDKitc
✓ [20]
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Results and discussion
By relying on the interoperability with popular open-source 
libraries (MDAnalysis and RDKit), it can support a wide 
range of molecular formats typically found in docking 
experiments and MD simulations. Because it directly relies 
on SMARTS patterns to define the chemical moieties that 
partake in interactions, it is also compatible with any kind of 
molecular complex, including complexes made of ligands, 

proteins, DNA or RNA molecules. Interoperability also 
allows for data analysis to be substantially easier: as men-
tioned in the Implementation section the IFP can be directly 
exported to a pandas DataFrame (one of Python’s most pop-
ular data analysis library), and the documentation contains 
tutorials on how to visualize the interactions as graphs or 
how to display them on the 3D structure of the complex.

Analysis of an MD trajectory of a GPCR in complex 
with a ligand
�e code to run ProLIF on an MD trajectory can be as 
simple as follow:

Table 2 Interactions currently available in ProLIF

(−) anion; (+) cation; ctd centroid of the aromatic ring; min minimum value in the distance matrix between both aromatic rings; n normal to the aromatic ring plane; D 

hydrogen/halogen bond donor; A hydrogen/halogen bond acceptor; H hydrogen atom; X halogen atom; R atom linked to a halogen bond acceptor

a Although “ligand” and “protein” are used here, all the listed interactions can be applied to any molecular complex (protein–protein, DNA–protein…etc.)

Interaction Liganda Proteina Distance (Å) Angle (deg)

Anionic Anion Cation ≤ 4.5

Cationic Cation Anion

CationPi Cation Aromatic (+)-ctd  ≤  4.5
�
−→
n ,

−−−−−−→
ctd · · · (+)� ∈ [0, 30]

PiCation Aromatic Cation

PiStacking Aromatic Aromatic ctd–ctd  ≤  6.0 �
−→
n ,

−→
n � ∈ [0, 90]

min  ≤  3.8

EdgeToFace Aromatic Aromatic ctd–ctd  ≤  6.0 �
−→
n ,

−→
n � ∈ [50, 90]

Min  ≤  3.8

FaceToFace Aromatic Aromatic ctd–ctd  ≤  4.5 �
−→
n ,

−→
n � ∈ [0, 40]

min  ≤  3.8

HBAcceptor HBAcceptor HBDonor D–A  ≤  3.5 �
−→
HD,

−→
HA� ∈ [130, 180]

HBDonor HBDonor HBAcceptor

XBAcceptor XBAcceptor XBDonor X–A  ≤  3.5 �
−→
XD,

−→
XA� ∈ [130, 180]

XBDonor XBDonor XBAcceptor �
−→
AX ,

−→
AR� ∈ [80, 140]

MetalAcceptor Ligand Metal ≤ 2.8

MetalDonor Metal Ligand

Hydrophobic Hydrophobic Hydrophobic ≤ 4.5

Table 3 SMARTS patterns used in the definition of interactions

Name SMARTS pattern(s)

Anion [−{1−}]

Cation [+{1−}]

Aromatic a1:a:a:a:a:a:1

a1:a:a:a:a:1

HBAcceptor [N,O,F,−{1−};! + {1−}]

HBDonor [#7,#8,#16][H]

XBAcceptor [#7,#8,P,S,Se,Te,a;! + {1−}][*]

XBDonor [#6,#7,Si,F,Cl,Br,I]-[Cl,Br,I,At]

Metal [Ca,Cd,Co,Cu,Fe,Mg,Mn,Ni,Zn]

Ligand [O,N,−{1−};! + {1−}]

Hydrophobic [#6,#16,F,Cl,Br,I,At; + 0]
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Here, we showcase an analysis based on the fingerprint 
obtained from a 500  ns MD simulation of the 5-HT1B 
receptor (class A aminergic GPCR) in complex with 
ergotamine retrieved from the GPCRmd webserver (id 
90) [25]. In class A GPCRs, each position is annotated in 
superscript notation according to the Ballesteros-Wein-
stein numbering scheme [26], a generic residue number-
ing denoting both the helix and position relative to the 
most conserved residue labelled as number 50.

Exporting the fingerprint to a DataFrame allows to eas-
ily address common questions like which residues are 
involved in a specific type of interaction, which interac-
tions does a specific residue do, which are the most fre-
quent types of interactions, or which are the residues 
most frequently interacting with the ligand. In this MD 
trajectory, there is constantly at least one hydrophobic, 
H-bond donor and cationic interaction, while H-bond 
acceptor and π-stacking interactions occur respectively 
in 92% and 85% of the analyzed frames (see analysis note-
book in supplementary data).  F3316.52 is responsible for 
half of the π-stacking interactions occurring during the 
simulation, and the ten residues that interact with the 
ligand the most frequently are (in descending order): 
 D1293.32,  I1303.33,  F3306.51,  V201ECL2.52,  F3316.52,  S2125.42, 
 W3276.48,  V200ECL2.51,  C1333.36 and  F3517.35 which are all 
in contact with the ligand in at least 97% of frames. �is 
is in agreement with the known interactions available 
from experimental structures as listed on the GPCRdb 
webpage [27] for the human 5-HT1B receptor, except 
for  S2125.42 which isn’t reported to make H-bond inter-
actions with ligands. �e difference is likely due to the 
fact that this analysis is based on an MD trajectory while 
GPCRdb gathers interactions from experimental struc-
tures. However, GPCRdb also lists mutational data for 
 S2125.42, and mutating this position to an alanine does 
not affect the binding affinity to ergotamine [28] which 
could coincide with the MD simulation since the ligand 
makes a hydrogen bond with the backbone and not the 
sidechain. Mutating  S2125.43 to a bulkier residue could 
potentially affect this interaction and decrease the bind-
ing affinity.

Because ProLIF keeps track of the atom indices respon-
sible for interactions, it is possible to display detailed 2D 
or 3D interaction plots. Examples of scripts to generate 
such plots are given in the documentation. An exception 
is made for the ligand interaction network diagram which 
has been directly included in the source code of ProLIF 
under the LigNetwork class. �is LigNetwork diagram 
(Fig.  1) is interactive and allows repositioning the resi-
dues but also hiding specific residue types or interactions 
by clicking the legend. It can show the interaction dia-
gram at a precise frame or aggregate the results and only 
display interactions that appear frequently, controlled by 

a frequency threshold. In the latter case, to keep the plot 
readable for each ligand–protein-interaction group only 
the most frequent ligand atom is shown, as it might differ 
between frames.

�e fingerprint can also be converted to an RDKit 
bitvector to make use of the similarity/distance metric 
functions implemented. �is allows to investigate the 
presence of different binding modes in the simulation. In 
Fig. 2, we show the Tanimoto similarity matrix between 
each interaction fingerprint during the MD simulation. 
Two clusters are visible (from frame 400 to 1400, and 
from frame 1400 to 2100) which reveals changes in the 
interactions between ergotamine and 5-HT1B. Indeed, 
in the second cluster the phenyl ring of ergotamine gets 
closer to the indole moiety, which disrupts hydrophobic 
contacts with  W1253.28, H-bonding with  S2125.42 and 
π-stacking with  F3517.35 to create new hydrophobic inter-
actions with  T203ECL2,  T2095.39,  S3346.55 and  D3527.36.

Analyzing protein–protein interactions (PPI)
�e analysis of intra- and inter-molecular interactions 
can also be applied to investigate protein dynamics and 
function with ProLIF. Because ProLIF requires explicit 
hydrogen atoms, we preprocess PDB files of X-ray struc-
tures in the current section with the PDB2PQR [29] 
webserver as follows: AMBER force-field and naming 
scheme, protonation states assignments with PROPKA 
at pH 7.0, H-bond network optimization and removal of 
water molecules.

In this first example, we focus on the activation mecha-
nism of a class A GPCR and show how ProLIF can help 
pinpoint intramolecular structural modifications upon 
receptor activation. GPCRs are membrane-embedded 
receptors arranged in seven helical transmembrane 
domains (labelled TM1 to TM7) followed by a shorter 
helix (H8) that lies at the interface between the mem-
brane and the cytosol. �is family shares conserved key 
motifs in each TM domain, and some of the motifs are 
part of molecular switches that mediate ligand binding 
or receptor activation. Among them, the DRY motif in 
TM3 and the NPxxY motif in TM7 have been reported 
to be part of the allosteric mechanism [30]. Briefly, upon 
ligand binding, the signal propagates from the binding 
pocket to the ionic lock (comprised of the DRY motif ) 
through a network of hydrophobic residues. �e ionic 
lock maintaining the receptor in its inactive form is dis-
rupted, leading to an increase of the inter-helix distances 
(notably TM3-TM6). At the same time, the hydrophobic 
barrier cannot prevent anymore the flooding of the intra-
cellular part of the receptor thereby creating an intra-
cellular crevice required for G protein coupling.  R3.50 of 
the DRY motif is known to stabilize the inactive form of 
the rhodopsin receptor through a salt-bridge with  D6.30 
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known as the “ionic-lock” [30]. �is position can also 
interact with  Y5.58 through an H-bond, and is reported 
to be critical for the formation of the active state in the 
β2 adrenergic receptor [31]. For the NPxxY motif, the 
mutation of  Y7.53 disrupts interactions with  N2.40 in the 
β2 adrenergic receptor [32], and  Y7.53 is also reported to 
have an aromatic interaction with  F8.50 which stabilizes 
the inactive conformation of the rhodopsin receptor [33]. 
As an example, the residue interaction network of the 
bovine rhodopsin in both active (PDB 6FK6) and inac-
tive (PDB 1U19) states is studied to reveal the structural 
changes involving these two motifs. As seen in Fig. 3, the 
ionic lock between  R1353.50 and  E2476.30 is only visible in 
the inactive form of the receptor, while the interaction 
between  R1353.50 and  Y2235.58 was only detected in the 
active form.  Y3067.53, which is part of the NPxxY motif 
in TM7, takes part in both key interactions that stabilize 
the inactive form of the receptor previously described: an 

Fig. 1 Ligand interaction network for the ergotamine agonist bound to the 5-HT1B receptor. Each interaction is shown as a dashed line between 

the residue and the ligand, and the width of the line is linked to the frequency of the interaction in the simulation. Only interactions occurring in at 

least 30% of frames are shown here

Fig. 2 Tanimoto similarity matrix of ligand–protein interactions 

between each frame of the MD trajectory
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H-bond interaction with  N732.40 and a π-stacking inter-
action with  F3138.50. Finally, in rhodopsin, the salt-bridge 
between  K2967.43 and  E1133.28 is known to be crucial in 
the activation cycle of the receptor and is only disrupted 
when  K2967.43 transiently bounds to retinal [34], which is 
in agreement with the interactions reported here.

�e final step in GPCR signal transduction being an 
intermolecular process between the GPCR and a G-pro-
tein, ProLIF can also be used in this case to highlight 
positions that dictate the coupling specificity in a series 
of GPCR-G-protein complexes. Here, we reproduce the 
analysis of interactions between the β2 adrenoceptor 
and the Gαs/Gβ1 complex by Flock et al. [35] where the 

Fig. 3 Residue interaction network for the bovine rhodopsin. Residues are colored by transmembrane domain (TM). Interactions that only appear 

in the active (PDB 6FK6) or inactive (PDB 1U19) state of the receptor are respectively shown in green or orange, and the ones that appear in both 

are in grey. Each residue node is scaled based on its number of interactions. For clarity, interactions that occur within the same TM (as labelled by 

GPCRdb) and interactions between residues that are less than 3 residues apart are not shown, as well as hydrophobic interactions (as defined in the 

implementation) and residues that did not participate in any interaction
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authors used a “van der Waals contact” interaction based 
on Venkatakrishnan et al. [36] which considers two resi-
dues as interacting if any interatomic distance is below 
or equal to their van der Waals interaction distance (the 
sum of their van der Waals radii plus a tolerance factor 
of 0.6  Å). We reimplemented this in ProLIF (see analy-
sis notebook in supplementary data) and applied it to the 
same structure (PDB 3SN6) to obtain the PPI network 
shown in Fig. 4.

�e interaction network remains mostly the same as 
with Figure S6 of the original study [35] and highlights 
the importance of positions  I1353.54,  P13834.50,  F13934.51, 
 Q2295.68,  R239ICL3 and  T2746.36 for GPCR-G protein 
coupling. Using the default ProLIF implementation 
would help clarifying the types of interactions involved 
(H-bond, ionic…etc.) for a better understanding of cou-
pling specificity when several GPCR-G protein com-
plexes are investigated.

Conclusions
ProLIF is a new Python library that overcomes limita-
tions encountered by other freely available IFP programs. 
One of the main differences is the support of MD trajec-
tories, while still being compatible with other molecular 
structure files like docking and experimental structures. 
By design, it is also not restricted to a particular kind of 
molecular complex but supports any combination of 
ligand, protein, DNA, or RNA molecules, thanks to its 
absence of dependency to force-field specificities such 
as atom types or residue naming convention. It also has 
a user-friendly API, comes with several tutorials, and 
allows creating custom interactions or reconfiguring 
existing ones. Finally, it focuses on the integration with 
typical data-analysis packages and visualization tools 
for a seamless user experience within the Python eco-
system. Possible improvements include the addition of 
more interactions types, but also more types of finger-
prints such as the pharmacophoric [11] or circular [12, 

Fig. 4 Interaction network between the β2 adrenoceptor (ADRB2) and G protein complex (Gαs and Gβ1). ADRB2 residues are shown as rectangles 

in shades of green, and G protein residues are shown as ellipses in shades of blue for Gαs and in yellow for Gβ1. For ADRB2, ICL denotes the 

intracellular loops while TM corresponds to the transmembrane domains. For Gαs, the common Gα numbering (CGN) system is used [37]. Each 

node is scaled by its number of interactions. Inter and intra protein interactions are respectively shown as plain and dashed lines. Residues that do 

not participate in GPCR-G protein interactions are not shown, and interactions between covalently bonded residues or residues of the same helix 

(as labelled by GPCRdb) are hidden
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13] fingerprints. Adding a command-line interface would 
also extend the userbase to researchers inexperienced in 
Python. Another point of interest could be the extension 
to other popular visualization libraries for a more stream-
lined data analysis experience for users.

Availability and requirements
Project name: ProLIF.

Project home page: https:// github. com/ chemo sim- lab/ 
ProLIF

Operating system(s): platform independent.
Programming language: Python.
Other requirements: Python 3.6 or higher, and sev-

eral open-source Python packages listed in the project’s 
documentation.

License: Apache License 2.0
Any restrictions to use by non-academics: none.

Supplementary Information
The online version contains supplementary material available at https:// doi. 

org/ 10. 1186/ s13321- 021- 00548-6.

Additional �le 1. Jupyter notebook (html export) containing the analysis 

detailed in the manuscript. The code and the dataset are also available in 

the in the GitHub repository, https:// github. com/ chemo sim- lab/ ProLIF- 

paper, or through the Zenodo archive, https:// doi. org/ 10. 5281/ zenodo. 

49458 69.
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