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Preface

This digital edition of Pereira and Shieber’s Prolog and Natural-Language Analy-

sis is distributed at no charge by Microtome Publishing under a license described
in the front matter and at the web site. A hardbound edition (ISBN 0-9719777-
0-4), printed on acid-free paper with library binding and including all appen-
dices and two indices (and without these inline interruptions), is available from
www.mtome.com and other booksellers.

Over the last few years, we have led a series of tutorials and classes introducing the program-
ming language Prolog by way of example programs that apply it to the problem of natural-language
analysis and processing. This volume began as the notes for a tutorial taught by one of the authors,
Pereira, at the Twenty-Third Annual Meeting of the Association for Computational Linguistics in
Chicago during July of 1985. During the fall of 1986, we organized a course at Stanford University
on the same subject for which the original notes were extended. The impetus for organizing and
expanding these various lecture notes into a more coherent text came from our colleagues at the
Center for the Study of Language and Information (CSLI), and the project was made possible by a
gift from the System Development Foundation.

Along the way, we were aided by a number of our colleagues. Ray Perrault was kind enough to
allow us to pursue work on this project even when our other responsibilities at SRI International were
now and then overlooked. David Israel was instrumental in procuring the occasional grant under
which the book was written and without which it would not have been; we must also thank other
members of the CSLI administration—in particular, Jon Barwise, John Perry, and Brian Smith—for
their support and facilitation of this project.

The text was improved considerably by the efforts of several colleagues who volunteered to read
drafts of the book. John Bear, Mary Dalrymple, Robert Keller, Peter Ludlow, Richard O’Keefe,
Ray Perrault, and Ivan Sag all provided invaluable comments, corrections and improvements. We
attempted to use as much of their advice as time permitted. We only wish that we had enough time
to accomodate more of the changes that we now realize are needed.

Editorial assistance from Dikran Karagueuzian of CSLI and Valerie Maslak of SRI was also
invaluable. Their efforts are especially appreciated given the stiff time constraints under which they
were forced to work. The project was further expedited by the efforts of Emma Pease, Lynn Ruggles
and Nancy Etchemendy, who aided us in the formatting of the book, especially the figures and index.

Many drafts of the manuscript and the final camera-ready copy were typeset with the help of
Leslie Lamport’s LATEX document preparation system and Donald Knuth’s TEX typesetting system
on which it is based. We thank them for creating and making freely available those fine tools.

Finally, we want to thank Ana Pereira and Linda Sarnoff who bore the brunt of our idiosyncratic
behavior during the genesis of these notes. This book is dedicated to them.
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son, and Wheeler Ruml for pointing out errors in the previous edition. Errors or misfeatures of a
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Chapter 1

Introduction

This digital edition of Pereira and Shieber’s Prolog and Natural-Language Analy-

sis is distributed at no charge by Microtome Publishing under a license described
in the front matter and at the web site. A hardbound edition (ISBN 0-9719777-
0-4), printed on acid-free paper with library binding and including all appen-
dices and two indices (and without these inline interruptions), is available from
www.mtome.com and other booksellers.

1.1 Purpose

This book is an introduction to elementary computational linguistics from the point of view of logic
programming. The connection between computational linguistics and logic programming has both
formal and utilitarian aspects. On the formal side, we shall explore the restricted logical language of
definite clauses as a means of expressing linguistic analyses and representations. On the utilitarian
side, we shall introduce the logic-programming language Prolog, whose backbone is the definite-
clause formalism, as a tool for implementing the basic components of natural-language-processing
systems.

The main goal of the book is to enable the reader to acquire, as quickly as possible, a working
understanding of basic computational linguistic and logic programming concepts. To achieve this
goal, the book is organized around specific concepts and programming techniques, with examples
supported by working programs. Most of the problems involve programming and also supplement
the material in the main text. Although we have emphasized experimental rather than analytic or
comparative questions, all concepts and techniques covered are given rigorous, if informal, theoret-
ical justification.

1.2 Logic Programming and Language

One of the main goals of the development of symbolic logic has been to capture the notion of logical
consequence with formal, mechanical, means. If the conditions for a certain class of problems can
be formalized within a suitable logic as a set of premises, and if a problem to be solved can be
stated as a sentence in the logic, then a solution might be found by constructing a formal proof of
the problem statement from the premises.

1
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For instance, in the linguistic case the premises might provide constraints on the grammaticality
of classes of utterances, and the problems to solve would have the general form “there is some a

such that a is an analysis (or interpretation) of the grammatical utterance u.” A constructive proof
of this statement would not only show that an analysis a exists but also find actual values for a.

A constructive proof procedure that not only creates proofs but also builds values for the un-
knowns in the problem statement can thus be seen as a computational device for determining those
unknowns. From this perspective, the premises can be seen as a program, the problem statement
as an invocation of the program with certain input values and output unknowns, and a proof as a
computation from the program. This is the basic intuition behind logic programming.

However, it is not enough to have some sound and complete set of rules of inference and some
procedure to apply them systematically to have a logic programming system. To be satisfactory
as a computation device, a proof procedure should not leave proof possibilities unchecked (search

completeness), that is the procedure should terminate without a proof only if no proof exists. We do
not want our programs to terminate with no answer if there is one (except possibly for running out
of computational resources such as computer memory). Furthermore, a set of premises has many
consequences that are definitely irrelevant to the proof of a given consequence. The proof procedure
should be goal directed in that derivations of irrelevant consequences are avoided. We do not want
the computations of a program to include subcomputations that do not at least potentially contribute
in some way to the program’s output.

In fact, search completeness and goal directedness are very difficult to achieve in general, but
become more feasible in weaker logical languages. The problem then becomes one of finding a
good compromise between expressiveness of the logical language and the constraints of sound and
efficient computation. The development of logic programming stemmed from the discovery of a
reasonable compromise, definite clauses, and its partial implementation in Prolog, the first practical
logic programming language.

Almost from its origin, the development of logic programming has been closely tied to the search
for computational formalisms for expressing syntactic and semantic analyses of natural-language
sentences. One of the main purposes in developing Prolog was to create a language in which phrase-
structure and semantic-interpretation rules for a natural-language question-answering system could
be easily expressed.

Phrase-structure rules for a language state how phrases of given types combine to form larger
phrases in the language. For example, a (simplistic) phrase-structure rule for declarative sentences in
English might state that a declarative sentence consists of a noun phrase (the subject of the sentence)
followed by a verb phrase (the predicate of the sentence). Such rules have a very simple expression
in first-order logic:

(∀u, v,w)NP(u) ∧ VP(v) ∧ conc(u, v,w)⇒ S(w)

where NP represents the class of noun phrases, VP the class of verb phrases, S the class of sentences,
and conc holds of any strings u, v and w such that w is u followed by v, that is, the concatenation of
u and v. This expression in first-order logic thus states that any noun phrase u and verb phrase v can
be concatenated to form a declarative sentence w = uv. The term logic grammar has come to refer
to such uses of logic to formalize grammatical rules.

The above formula is an example of a definite clause. We shall see that many important classes
of linguistic rules and constraints can be put in this general form, which states that any objects sat-
isfying certain constraints (properties or relationships) also satisfy some other constraint (property
or relationship). The fact that linguistic rules can be put in this format is the basis for the usefulness
of definite clauses in language analysis. This fact has not only theoretical but also practical impor-
tance, in that linguistic rules encoded as definite clauses can be run directly by Prolog, providing an
efficient and direct computational realization of grammars and interpretation rules.
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1.3 Programming In Prolog

Logic programming languages in general, and Prolog in particular, differ from conventional pro-
gramming languages (such as Pascal or Fortran) in several important ways. First of all, Prolog can
be thought of as a largely declarative language; that is, a Prolog program can be viewed as stating
what is computed, independent of a particular method for computation. Pascal, on the other hand,
is procedural, in that what a Pascal program computes is definable only in terms of how it performs
the computation.1 Of course, Prolog also has a procedural interpretation; it uses a particular method
for computing the relations which a program can be viewed as declaratively stating. Furthermore,
certain “impure” portions of the Prolog language defeat its declarative interpretation. But Prolog,
as a first step toward a logic programming language, can to a great extent be seen as a declarative
language.

Second, Prolog programs are structured in terms of relations whereas traditional languages for
the most part are structured in terms of functions. The notions of calling a function, returning
a value, and so forth are foreign to Prolog. Instead, Prolog expresses relations among entities.
Function calls correspond to queries as to whether a particular relation holds or not and under what
conditions. This difference has tremendous ramifications. For instance, it means that variables play
a completely different role in Prolog than they do in conventional languages.

From this relational structure, it follows that Prolog programs are nondeterministic, since several
elements can be in a particular relation to a given element. Because conventional languages are
geared toward functions, that is, relations in which one element is uniquely defined in terms of the
others, computation proceeds deterministically in such languages.

These three properties of Prolog make it quite different from other programming languages.
Consequently, a different way of thinking about programs and programming is necessary in using
Prolog. Learning a new programming language can often be aided by analogy with previously
learned languages. But Prolog might be most easily learned by ignoring previous experience with
other programming languages and trying to absorb the Prolog gestalt from first principles.

Unfortunately, learning a language in this way requires many illustrative examples of the lan-
guage and much detailed explanation about how they work and how they were derived. Since the
goal of this book is to concentrate on natural-language processing applications, we must often forego
such detailed analysis. Therefore, as part of a first course on Prolog, it is probably best to supplement
the material here with one of the texts discussed in the bibliographic notes below.

All the particulars of the interaction with a Prolog system that are used in the present work are
those of the Edinburgh family of Prolog systems, and when used without qualification, the term
“Prolog” means any system of that family.

1.4 Overview

The Prolog language is presented in this book through a graded series of sublanguages. Chapter 2
presents database Prolog, a limited subset of Prolog that can express relationships between named
individuals and constraints between those relationships. We then describe how phrase-structure
rules can be represented in this subset. Database Prolog is extended in Chapter 3 to pure Prolog, the
largest subset of Prolog that can be viewed as a logic programming language. This extension allows
us to represent more complex kinds of linguistic rules and, in particular, the definite-clause grammar

formalism. Techniques for linguistic analysis in definite-clause grammars are developed further in

1This is not to say that Pascal can have no denotational semantics but only an operational semantics. Rather, any denota-
tional semantics must make explicit reference to the state of the computation as encoded, for instance, in an environment.
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Chapter 4, where issues of syntactic coverage and semantic interpretation are discussed. Extralogical
extensions to the pure subset of Prolog lead to the full Prolog language, which is presented in Chapter
5. These facilities are used to develop a simple natural-language question answering system which
demonstrates the application of many of the techniques developed in earlier chapters. Finally, in
Chapter 6 we explore the metalevel programming capabilities of Prolog, showing how to implement
logic-programming language and logic-grammar interpreters exhibiting different control strategies
from that provided directly by Prolog.

Throughout the book we have included exercises and problems. Exercises are interspersed
throughout the text and are intended to help readers verify their understanding of the concepts cov-
ered. Problems, collected into separate problem sections, extend the material in the book and are
appropriate for assignments in a course based on this text. It should be noted that problems vary
widely in difficulty; instructors should take this variation into account.

Given the orientation of the book, we limited the discussion of issues of a more general na-
ture, such as comparisons with other computational linguistic techniques or formal mathematical
results. Three areas stand out among the omissions. First, we do not compare the logic program-
ming approach with other approaches to natural-language processing, in particular the closely re-
lated unification-based grammar formalisms. Second, we do not present or compare the plethora
of grammar formalisms based on logic programming. Finally, we do not address formal-language-
theoretic issues of generative power and computational complexity for the formalisms and analysis
mechanisms we present.

One of the major insufficiencies remaining in the text is a lack of linguistic sophistication and
coverage evinced by the analyses we use. The reader should not think that such naiveté inheres in
Prolog as a tool for natural-language analysis; the bibliographic notes at the end of the chapters often
cite work with more convincing analyses.

1.5 Bibliographic Notes

In these bibliographic notes we give both the original sources for our material and other works that
elaborate or supplement topics discussed in this book. As is often the case, the original source for a
topic may no longer be the best place to learn about it. Unless otherwise specified, the most recent
reference we give for a topic, and in particular a recent textbook, is to be preferred to other sources
in a first approach to a topic.

Prerequisites

This book presupposes some acquaintance with elementary notions from logic, formal-language
theory, computer science and linguistics.

The textbook Mathematical Methods for Linguistics by Partee, ter Meulen and Wall (1987)
covers much of the background material we require in logic, formal-language theory and semantics
(concepts such as first-order logic, quantifier scope, extension and intension).

For a more computation-oriented introduction to logic and deduction, Robinson’s book Logic:

Form and Function (1979) covers in detail all the concepts from logic and automated theorem prov-
ing used in this book. Gallier’s Logic for Computer Science (1986) contains a mathematically more
demanding coverage of the same material. Kowalski’s Logic for Problem Solving (1980) gives an
informal introduction to the use of logic in a logic programming setting for representing compu-
tational problems. The example problems are mostly taken from artificial intelligence applications
including simple examples of syntactic analysis by deduction. Finally, Automated Reasoning: In-

troduction and Applications by Wos, Overbeek, Lusk and Boyle (1984) gives a comprehensive and
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readable discussion of many automated-deduction methods and their applications to knowledge-
representation tasks.

Most of the concepts we use from formal-language theory and theoretical computer science
(automata, context-free grammars, etc.) can be found in Hopcroft and Ullman’s Introduction to

Automata Theory, Languages and Computation (1979) or in Harrison’s Introduction to Formal Lan-

guage Theory (1978). Aho and Ullman’s encyclopedic Theory of Parsing, Translation and Compil-

ing (1972) covers specific parsing algorithms not included in the two preceding references.
Many of the basic concepts and terminology of modern [generative] syntactic theory are used

informally in this book. For an introduction to them, the first two chapters of Baker’s Introduction

to Generative-Transformational Syntax (1978) should be sufficient. For readers interested in further
background in the generative grammar tradition, the terminology of which has now become standard
in modern syntax and has occasionally crept into this text, the remainder of Baker’s book and the
clear and elegant arguments of the volume by Soames and Perlmutter Syntactic Argumentation and

the Structure of English (1979) are good sources.
Winograd’s Language as a Cognitive Process. Volume I: Syntax (1983) gives a computationally

oriented introduction to some of the basic concepts from natural-language syntax (e.g., parse tree,
labeled bracketing, noun phrase, relative clause) used in this book, in addition to much other related
material. Chapter 3 is particularly relevant.

Although this book is intended to be self-contained in its coverage of Prolog and basic logic-
programming concepts, it could be usefully supplemented with a Prolog textbook. Sterling and
Shapiro’s The Art of Prolog (1986) is particularly suitable since it amplifies many of the concepts
used here with further discussion, examples, and exercises. Except for divergences in some minor
typographical conventions, the dialect of Prolog used in that book is compatible with the one used
here.

Historical Material

The basic ideas of logic programming emerged in the late 1960s and early 1970s from work on
automated deduction. Proof procedures based on Robinson’s resolution principle (1965) operate by
building values for unknowns that make a problem statement a consequence of the given premises.
Green (1968) observed that resolution proof procedures could thus in principle be used for com-
putation. Resolution on its own is not a sufficient basis for logic programming, because resolution
proof procedures may not be sufficiently goal-directed. Thus, Green’s observations linking compu-
tation to deduction (1968) had no effective realization until the development of more goal-oriented
linear resolution proof procedures, in particular Kowalski and Kuehner’s SL resolution (1971). This
development allowed Kowalski (1974a) to suggest a general approach to goal-directed deductive
computation based on appropriate control mechanisms for resolution theorem provers and the fur-
ther specialization of SL resolution to Horn clauses, and the corresponding procedural interpretation
of Horn clauses, was first described in principle by Kowalski (1974a; 1974b).

Even the SL resolution procedure and related theorem-proving methods were not efficient
enough for practical computation, mainly because they had to cope with the full generality of first-
order logic, in particular disjunctive conclusions. Further progress required the radical step of delib-
erately weakening the language to one that could be implemented with efficiency comparable to that
of procedural languages. This step was mainly due to Colmerauer and his colleagues at Marseille
in the early 1970s. Their work proceeded in parallel with (and in interaction with) the theoretical
developments from the automated theorem-proving community. Inspired by his earlier Q-systems, a
tree-matching phrase-structure grammar formalism (Colmerauer, 1970), Colmerauer started devel-
oping a language that could at the same time be used for language analysis and for implementing
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deductive question-answering mechanisms. It eventually became clear that a particular kind of lin-
ear resolution restricted to definite clauses had just the right goal-directness and efficiency, and also
enough expressive power for linguistic rules and some important aspects of the question-answering
problem. Their approach was first described as a tool for natural-language processing applications
(Colmerauer et al., 1973). The resulting deductive system, supplemented with a few other com-
putational devices, was the first Prolog system, known as “Marseille Prolog”. The first detailed
description of Prolog was the language manual for the Marseille Prolog interpreter (Roussel, 1975).

As noted above, Prolog was originally developed for natural-language processing. Besides the
original application (Colmerauer et al., 1973), other early influential work includes systems by
Colmerauer (1982; 1978), Pasero (1973) and Dahl (1981). Many other natural-language-processing
systems and techniques based on logic programming have since been developed, which we will refer
to when the relevant topics are discussed.

The collection Readings in Natural Language Processing (Grosz et al., 1986) reprints papers
covering a wide variety of topics in natural-language processing, including some of the papers re-
ferred to in this book. In the bibliography, we use the original publication data, but we also indicate
when the paper has been reprinted in that collection.

Besides natural-language processing, logic programming and Prolog have been used in many
other application areas, particularly in artificial intelligence. For an idea of the current areas of
application, the reader is directed to the collection edited by van Caneghem and Warren (1986) and
the extensive logic-programming bibliography prepared by Balbin and Lecot (1985).

Since the original implementation in Marseille, Prolog implementation techniques, including
compilation and various space-saving devices, have progressed to the point that Prolog is today at
least comparable with other symbolic-processing languages, such as , for a variety of problems
areas, in particular natural-language processing (Warren et al., 1977; Warren, 1979; Warren, 1983).
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Database Prolog: A Prolog Subset
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0-4), printed on acid-free paper with library binding and including all appen-
dices and two indices (and without these inline interruptions), is available from
www.mtome.com and other booksellers.

2.1 Databases and Queries

We will start by seeing how simple tables of information can be expressed in Prolog. This may seem
an odd way to start discussing a programming language (texts on, say, Pascal, start by discussing
numbers and expressions), but it is revealing of the nature of Prolog as a language for declara-

tive information, whether that information be simple relationships between individuals or complex
constraints between types of individuals.

2.1.1 A Simple Database

Recall that Prolog programs are written in a subset of first-order logic (FOL). Like FOL, the lan-
guage includes constant symbols naming entities and predicate symbols naming relations among the
entities. Our first examples will use just this much Prolog notation, which is actually only useful to
encode the type of information one might find in a relational database. For this reason, we call this
subset database Prolog.

In Prolog, both predicate and constant symbols are written as tokens starting with a lower-case
alphabetic character. Predication is notated in the normal way for logical languages using parenthe-
ses surrounding the arguments following the predicate, thereby forming an atomic formula. With
this much notation we can already state some simple information in Prolog. For instance, a simple
database of professors and the books and computer programs they have written might be expressed
by the following Prolog program:

Program 2.1
wrote(terry, shrdlu).

wrote(bill, lunar).

7
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wrote(roger, sam).

wrote(gottlob, begriffsschrift).

wrote(bertrand, principia).

wrote(alfred, principia).

book(begriffsschrift).

book(principia).

program(lunar).

program(sam).

program(shrdlu).

Each line in this program is a clause formed from a single atomic formula and ending with a
period. As the clauses in this program have only a single atomic formula, they are referred to as unit

clauses. Later, we will see that clauses with several atomic formulas are also allowed. In Program
2.1, an atomic formula wrote(X,Y) is intended to mean that person X wrote entity Y, book(X) is
intended to mean that X is a book, and program(X) is intended to mean that X is a program. Thus
the first clause in the program states the fact that Terry wrote , and the last clause, that 
is a program.

2.1.2 Querying the Database

Now that we have given some facts to the Prolog system as a set of axioms expressed as clauses
(which is really all that a Prolog program is) we can answer questions about the information by
having Prolog try to prove theorems from the axioms. We do this by prefixing a goal G with the
Prolog symbol for implication, the “:-” symbol, thereby forming the query :- G. In this way we
are asking Prolog “Does anything in the axioms imply an answer to our question?”

For example, here is how the queries “Did Terry write ?” and “Is Principia a program?”
are written.1

:- wrote(terry, shrdlu).

yes

:- program(principia).

no

It should be observed that the reply to the second query does not indicate that “Principia is not
a program” is true, but rather that Prolog could not prove “Principia is a program” from the axioms
in Program 2.1. This subtle distinction is the basis of much logic programming research on what
assumptions about a database warrant the conclusion that “P is false in the database” from “P is not
provable from the database” and we will have more to say about it in Section 5.1.3.

2.2 Extending the Query Language

Such limited potential for querying a Prolog program would of itself hardly constitute a useful
programming language. Prolog extends this potential through the use of variables, complex queries,
and rules.

1Throughout this text, user’s input is typeset in a typewriter font, the Prolog system’s answer is typeset in a slanted
typewriter font.
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Variables

We can ask open-ended questions of Prolog by using variables in place of constants in a query.
To distinguish variables from constants, Prolog uses tokens that begin with upper-case letters for
variables. We can ask whether anyone wrote  with the following query:

:- wrote(Who,shrdlu).

yes

Since there exists an assignment to the variables in the query that makes it a consequence of the
program axioms (namely, the assignment in which Who = terry,2 Prolog replies “yes”. Such
assignments to variables are also called bindings.

Of course, we are usually interested not only in whether such an assignment exists but also in
what it looks like. To request Prolog to indicate what assignment led to the proof of the goal, we
simply use “?-” instead of “:-” to introduce the goal. For instance,

?- wrote(Who,shrdlu).

Who = terry

yes

The assignment is printed, along with the “yes” that means that a solution was found.
If there are several different ways to assign values to variables that make the goal statement a

consequence of the program, the Prolog execution mechanism will generate alternative bindings
to the goal variables. Prolog prints one such solution at a time and then waits for a one-character
command: a semicolon (“;”) to produce the next solution, or a newline to stop generating solutions
for the query. For example, the query “Who wrote Principia?” has two satisfying assignments:

?- wrote(Who, principia).

Who = bertrand ;

Who = alfred ;

no

Notice that the final Prolog reply is “no” meaning that after this second assignment, no more solu-
tions could be found.

Complex Queries

More complex queries can be constructed from goals consisting of multiple conditions, interpreted
conjunctively, by separating the conditions by commas (“,”). For example, suppose we define an
author as a person who has written a book. Then, if we want to discover who the authors are
according to the database, we might ask the conjunctive query “What person Person is such that
there is a book Book and Person wrote Book?”, which can be phrased as a Prolog query as

?- book(Book), wrote(Person, Book).

Person = gottlob, Book = begriffsschrift ;

Person = bertrand, Book = principia ;

Person = alfred, Book = principia ;

no

2The slanted typewriter font will be used for assignments as well as Prolog output to emphasize the fact that they
are computer-generated structures.
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Rules

The query above demonstrates that the property of being an author is implicit in the given database.
The utility of the database can be increased by making this property explicit through the addition
of a unary predicate author corresponding to this property. But this predicate is best defined not
in terms of an exhaustive list of unit clauses—as previous predicates have been—but rather as a
general rule for determining whether the property of being an author holds. In fact, the conjunctive
query above gives just such a rule. A person Person is an author just in the case that the goal
book(Book), wrote(Person, Book) holds. The Prolog implication symbol “:-” (read “if”)
allows the encoding of this general rule.

author(Person) :-

book(Book),

wrote(Person, Book).

This clause can be read “Person is an author if there is a book Book and Person wrote Book,” or,
more simply, “an author is a writer of a book.” Because clauses such as this one are composed of
several atomic formulas, they are referred to as nonunit clauses. The left-hand side of the clause is
often called the head of the clause, the right-hand side the body. Some people take the anatomical
analogy a step further, referring to the :- operator itself as the neck of the clause.

The author clause defines a simple property. However, multiplace relations can be defined in
this way as well. Consider the relation of a person Person being the author of a book Book. This
author_of relation can be axiomatized similarly.

author_of(Person, Book) :-

book(Book),

wrote(Person, Book).

Exercise 2.1 Write a Prolog clause that defines a programmer as a person who wrote a program.

Exercise 2.2 Consider the following augmentation of the sample database:

professor(terry).

professor(roger).

professor(bertrand).

professor(gottlob).

concerns(shrdlu, blocks).

concerns(lunar, rocks).

concerns(sam, stories).

concerns(principia, logic).

concerns(principia, mathematics).

concerns(begriffsschrift, logic).

Write a Prolog clause that defines a logician as a professor who wrote a book concerning logic.
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2.3 The Logic of Prolog

We have alluded to the relationship between database Prolog and first-order logical languages. In
this section we describe this relationship in more detail, although still at an informal level.

First-order logic (FOL) is a logical language that includes predicate and function symbols and
constants, from which are formed atomic formulas representing primitive propositions. An atomic
formula is an expression of the form p(t1, . . . , tk), where p is a predicate symbol of arity k applied
to terms ti. A term is a constant, a variable, or a compound term f (t1, . . . , tm), where f is a function
symbol of arity m and the ti are terms. Following standard practice, we will use letters p, q, r, etc.
and upper case letters for predicate symbols and letters f, g, h, etc. for function symbols. Variables
will be denoted by (possibly subscripted) x, y, z, etc. A term without variables is called a ground

term. For the nonce, we will ignore the role of function symbols and compound terms in FOL,
returning to them when we discuss the relation between FOL and full Prolog in the next chapter.

The well-formed formulas of FOL are defined inductively, starting with the atomic formulas and
combining simpler formulas into larger formulas with operators from some sufficiently rich set, e.g.,
conjunction (∧), disjunction (∨), negation (¬), implication (⇒), and universal (∀) and existential (∃)
quantification. If φ and ψ are well-formed formulas and x is a variable, φ ∧ ψ (φ and ψ), φ ∨ ψ (φ or
ψ), ¬φ (not φ), φ⇒ ψ (φ implies ψ) (∀x)φ (for every x, φ) and (∃x)φ (there is an x such that φ), with
extra parenthesization to avoid ambiguity if necessary, are well-formed formulas. Both in (∀x)φ and
(∃x)φ, the formula φ is the scope of the quantifier, and x is the variable bound by the quantifier.
Closed well-formed formulas are those in which every variable occurrence is within the scope of a
quantifier binding that variable.

Many important automated deduction methods, and in particular those from which Prolog is
derived, do not operate on general FOL formulas, but only on formulas in clausal form (clauses).
A formula is in clausal form if it is a disjunction of literals, where a literal is an atomic formula
or the negation of an atomic formula. All variables in the disjunction are universally quantified by
quantifiers whose scope includes the whole disjunction. Thus, a clause can be written in the form

P0 ∨ P1 ∨ · · · ∨ ¬N0 ∨ ¬N1 ∨ · · · .

The Pi are positive literals; the ¬Ni are negative literals. Note that we have left off the quantifiers,
under the convention that all variables are quantified universally at the outermost level unless spec-
ified otherwise. The usefulness of clausal form stems from the fact that any closed formula φ can
be mechanically transformed into a conjunction of clauses P such that φ is inconsistent if and only
if P is. Notice that in general φ and P are not equivalent, because the transformation into clausal
form may require the introduction of auxiliary functions to remove existential quantifiers (so-called
Skolem functions).3 However, as we will see below, the intended use of clausal form is in proofs by
contradiction, so preservation of inconsistency is all we need.

Using deMorgan’s law
¬P ∨ ¬Q if and only if ¬(P ∧ Q)

and the definition of implication in terms of negation and disjunction, i.e.,

P⇒ Q if and only if ¬P ∨ Q ,

we can reexpress clauses as a single implication

(N0 ∧ N1 ∧ · · ·)⇒ (P0 ∨ P1 ∨ · · ·) .
3Thus even a formula without function symbols may be transformed into a clause with function symbols, outside the

database subset we have been considering. But since the subset is just a stopping-off point to full Prolog, and the arguments
are meant to be indicative only, we will ignore this subtlety.
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The left-hand side of the implication is its antecedent, the right-hand side its consequent. Hence-
forth, we will refer to the Ni and Pi as the literals composing the clause, although, strictly speaking,
the negative literals in the clause are of the form ¬Ni, rather than Ni.

By expressing a clause as an implication as explained above, we see that a clause states that
at least one of the atomic formulas in the consequent holds whenever all the atomic formulas in
the antecedent hold. In particular, if a clause contains no negative literals, it will have an empty
antecedent when written as an implication. Therefore an empty antecedent should be interpreted as
standing for truth: The clause states that under all conditions at least one of the atomic formulas in
the consequent holds. Conversely, if a clause has no positive literals, it asserts that at least one of the
formulas in its antecedent is false, that is, the conjunction of the atomic formulas in the antecedent
is false. When written as an implication, such a clause has an empty consequent. An implication
is equivalent to the negation of its antecedent provided that its consequent is false. Thus an empty
consequent corresponds to falsity. Finally, the empty clause, with empty antecedent and consequent,
corresponds to the implication true⇒ false, which is equivalent to false.

Theorem-proving in first-order logic—and hence clausal form FOL—is a computationally diffi-
cult task and an area of active research. As we indicated in Section 1.2, for computational feasibility
Prolog is not based on full clausal form, but on a strictly less expressive subset, Horn clauses, which
are clauses with at most one positive literal. Thus there are only three types of Horn clauses:

• Unit clauses: with one positive literal, no negative literals, i.e., of the form P0 (or, equivalently,
⇒ P0).

• Nonunit clauses: with one positive literal, one or more negative literals, i.e., of the form
P0 ∨ ¬N0 ∨ ¬N1 ∨ · · · (or, equivalently, N0 ∧ N1 ∧ · · · ⇒ P0).

• Negative clauses: with no positive literals, one or more negative literals, i.e., of the form
¬N0 ∨ ¬N1 ∨ · · · (or, equivalently, N0 ∧ N1 ∧ · · · ⇒).

The first two types of Horn clauses are collectively referred to as definite clauses because they have
exactly one positive literal—a single definite conclusion to the implication—unlike general clauses
with their potentially disjunctive, indefinite, consequent.

Each type of Horn clause plays a different role in an axiomatization of a particular problem. Unit
clauses, of the form P0, assert the truth of their consequents. We might call such clauses facts.

A nonunit clause states that its consequent is true if its antecedent is true. Such clauses thus
serve as general rules by which the consequent can be determined to hold.

Finally, a negative clause
N0 ∧ N1 ∧ · · · ⇒

has the equivalent form
¬(N0 ∧ N1 ∧ · · ·) .

That is, a negative clause denies the truth of its antecedent. Negative clauses can be seen as queries

as to under what conditions their antecedent is true, by the following reasoning. Suppose we have a
set of facts and rules P (a program) and a conjunction

N0 ∧ N1 ∧ · · · . (2.1)

We want to determine values for the variables in (2.1) that make it a consequence of P. In other
words, we want a constructive proof, from P, of

(∃x0, . . . , xk)(N0 ∧ N1 ∧ · · ·) . (2.2)
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One way of attempting to prove (2.2) is by contradiction, that is, by showing that the conjunction
of the clauses in P and the negation of (2.2) is inconsistent. From the inconsistency of the conjunc-
tion, we can infer that (2.2) follows from P because P itself, being a set of definite clauses, cannot
be inconsistent on its own.

Now, the negation of (2.2) can be put in the form

(∀x0, . . . , xk)¬(N0 ∧ N1 ∧ · · ·) (2.3)

which is just another notation for the negative clause

N0 ∧ N1 ∧ · · · ⇒ . (2.4)

A constructive proof of the inconsistency of (2.3) with P will provide a counterexample for the
universal statement (2.3). It will yield values v0, . . . , vk for the variables x0, . . . , xk such that

P ∧ ¬(N0 ∧ N1 ∧ · · ·) (2.5)

with each vi substituted for xi is false.
The proof of falsity comes about because we are proving inconsistency of (2.3) with P. The

actual values for the variables follows from the fact that the proof is constructive. It is easy to see
from the proof of the falsity of (2.5) that (2.1) under that same substitution of values for variables is
a consequence of P. Assume P is true. Then ¬(N0∧N1∧· · ·) must be false, and therefore (2.1) true,
under the given values for variables. This concludes the constructive proof of the original existential
query (2.2) from the program P. Thus (2.4) can be seen as a query about the truth of its antecedent
(2.1) relative to the program.

This method of proving an existential statement is called refutation, because the proof proceeds
by refuting the negation of the statement.

As we have seen, Prolog programs follow this paradigm exactly. Facts and rules, presented with
the Prolog implication and conjunction operators “:-” and “,” respectively, are queried using a
negative clause. The only difference is that the Prolog :- operator puts its antecedent and consequent
“backwards”, that is, :- corresponds to⇐, so that P⇒ Q is written as Q :- P and P⇒ is written
as :- P. A Prolog proof of a goal includes an assignment of values to variables in the goal which
makes it a consequence of the program. It becomes apparent, then, why the notation “:- G” was
chosen for queries. We are merely presenting the goal statement to Prolog directly in its negated
form.

Exercise 2.3 (For the logically inclined.) Recall that the discussion above assumed that any set of

definite clauses is consistent. Why is this so?

2.4 The Operation of Database Prolog

Intuitively, our definition of, for instance, author_of in terms of subsidiary predicates seems correct
from the logical standpoint just outlined. But how does the Prolog system make use of this predicate?
Suppose we ask Prolog for the writings of Bertrand Russell with the following query:

?- author_of(bertrand, What).

What = principia

yes
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How does Prolog determine that a correct assignment to satisfy the goal (i.e., disprove its negation)
is What = principia? What is the procedural interpretation of Horn clauses that Prolog uses in
actually executing a goal? In this section we describe the execution of a Prolog goal informally,
returning to a more precise discussion of the execution mechanism, and its relation to the logical
basis for Prolog through a technique called resolution, in Section 3.5.

To execute a goal, Prolog searches forward from the beginning of the program for the first
clause whose head matches the goal. We will have more to say about this matching process,
called unification, when we further discuss the theory of Prolog in Section 3.5. For the time be-
ing, think of two literals matching if there exists an assignment to the variables in them under
which they become identical. For instance, the literal author_of(bertrand, What) matches the
literal author_of(Person, Book) under the assignment Person = bertrand, Book = What,
because if the literals are modified by replacing the variables in the assignment with their assigned
value, both literals become author_of(bertrand, What).

If a match is found, the selected clause is activated. The matching assignment is applied to both
the goal and a copy of the clause by replacing variables with their binding value, e.g., replacing
Person with bertrand and Book with What. The literals in the body of the instantiated clause (if
any) are then executed in turn, from left to right. If at any time the system fails to find a match for
a goal, it backtracks, that is, it rejects the most recently activated clause, undoing any substitutions
made by applying the assignment engendered by the match to the head of the clause. Next it recon-
siders the original goal that activated the rejected clause, and tries to find another clause whose head
also matches the goal. When finding alternative clauses, Prolog always works from the top of the
program to the bottom, trying earlier clauses first.

We will trace through the operation of the system for the “writings of Russell” example. We
begin by executing the goal author_of(bertrand, What). Prolog finds a clause in its database
whose head matches the goal. In this case, the only matching clause is

author_of(Person, Book) :-

book(Book),

wrote(Person, Book).

The head of this clause matches the goal under the bindings Person = bertrand, Book =

What as described above. Under these bindings, the body of the rule becomes book(What),
wrote(bertrand, What). Prolog activates the clause taking this conjunction on as its new goal,
executing the conjuncts one by one, working from the left to the right.

Executing book(What) requires finding a clause whose head matches it. But in this case there
are two such clauses, namely the unit clauses book(begriffsschrift) and book(principia).
When faced with several clauses to choose from, Prolog chooses the textually earliest one that
has not been considered in satisfying this goal; in this case, none have been considered, so the
first matching clause book(begriffsschrift) is chosen, which matches the goal book(What)
under the binding What = begriffsschrift. Under this binding, the second conjunct is
wrote(bertrand, begriffsschrift), and this becomes the next goal.

However, no clause head matches this goal, so the goal fails. Prolog backtracks to its last
choice among alternative clauses. In this case, the choice was between the two unit clauses match-
ing book(What). This time, in satisfying the goal, the next matching clause is chosen, namely
book(principia); the second conjunct then becomes wrote(bertrand, principia). This
goal matches the identical unit clause in the database.

Thus we have satisfied all of the conjuncts in the antecedent of the author_of clause, thereby
satisfying the original goal itself. Perusing the bindings that were necessary to satisfy the goal,
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          author_of(bertrand, principia)

 book(principia)           wrote(bertrand, principia)

Figure 2.1: A proof tree

we note that the variable What in the original goal was bound to principia; the binding What =

principia is therefore reported.

2.4.1 Proof Trees and Traces

Often it is useful to have a method for summarizing the execution of a goal. We describe two
such methods here. The first one, the proof tree, describes the literals that were proved in the
course of the proof of the main goal and the dependencies between them. For the “writings of Rus-
sell” example, the main goal proved, under the satisfying assignment, was author_of(bertrand,
principia). It depended on the proofs of two subsidiary literals, namely, book(principia)
and wrote(bertrand, principia). These literals were proved primitively with no dependent
literals. Thus the proof tree for this example is as given in Figure 2.1.

This proof tree makes explicit the steps in the execution of Prolog that led to a successful proof
of the goal under a given assignment. However, it abstracts away from the parts of the execution
that led down blind alleys, not becoming part of the final proof. A second method of summarizing
Prolog executions, the trace, is useful when this higher level of detail is desired.

The particular tracing method we shall use is called the box model (Byrd, 1980), since it models
a predicate as a box with certain ports through which the computation passes. The box model
underlies the tracing and debugging facilities of most Edinburgh Prolog systems.

In a box-model trace, each step the system takes—whether it be the recursive proving of a
literal, the activating of a clause to prove it, or the subsequent success or failure of the subproof—is
sequentially listed using the following general format:

(i) d p: G

Each goal G is given a goal number i which uniquely identifies it throughout the execution. As
the goal progresses through the execution, trace lines with the given goal number show the state
of instantiation of the goal at different points. The recursion depth is given as d. The main goal
has recursion depth 0, its subgoals, recursion depth 1, their subgoals, 2, and so forth.4 Trace lines
correspond to different kinds of steps in the execution of a Prolog query. The port name p specifies
the type of step in the execution that the trace line records. The execution of a literal is started at
a Call port corresponding to the activation of the first matching clause. When the proof using this
clause is successful, a trace line with the port name Exit is listed. If the first clause activated does
not yield a successful proof, a Redo port line is added for each later clause that is invoked. Finally,
if all clauses fail to provide a proof for the given goal, a Fail port trace line is used.

4We will also sometimes use indentation to reflect the depth of recursion of the execution in order to aid readability.
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The following trace of the “writings of Russell” example may elucidate the Prolog trace facility.
Note especially the changing instantiation of the variables during the trace. The Prolog tracing
facility is invoked with the literal “trace”.

?- trace.

Debug mode switched on.

yes

?- author_of(bertrand, What).

(1) 0 Call : author_of(bertrand,What)

(2) 1 Call : book(What)

(2) 1 Exit : book(begriffsschrift)

(3) 1 Call : wrote(bertrand,begriffsschrift)

(3) 1 Fail : wrote(bertrand,begriffsschrift)

(2) 1 Redo : book(begriffsschrift)

(2) 1 Exit : book(principia)

(4) 1 Call : wrote(bertrand,principia)

(4) 1 Exit : wrote(bertrand,principia)

(1) 0 Exit : author_of(bertrand,principia)

What = principia

yes

Note that the exit lines leading to the final proof contain the same information as a proof tree for the
goal.

Not only does the trace make explicit the ordering in which the proof tree was traversed by
Prolog, it also shows all the blind alleys that Prolog tried before finding an actual proof. These
two phenomena are related. For example, if the second branch of the proof tree (corresponding
to the second literal in the clause defining author_of) had been tried first, the only satisfying
assignment for it would have been Book = principia. Under this assignment, the first clause
becomes book(principia), which is immediately proved from the database. Thus no blind alleys
are tried. This behavior would be engendered by the following alternative definition of author_of:

author_of(Person, Book) :-

wrote(Person, Book),

book(Book).

This example shows that although the ordering of literals within a clause does not affect the
logical meaning of the clause as a definition of a relation, it can have far-reaching effects in terms
of the control flow of the program. That is, although Prolog can be viewed as a subset of a logical
language, we cannot forget that it is still a programming language, and issues of control are still
important.

2.5 Recursive Predicate Definitions

The relations discussed above—author, logician, and so forth—are defined directly in terms
of other relations, which ultimately are defined in terms of the original database. However, it is not
possible to give such definitions for relations that involve chains of relationships of arbitrary lengths.
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To define such relations, we need to use recursive definitions in which a predicate is defined (possibly
indirectly) in terms of itself.

As a simple illustration of the need for recursive definitions, consider the following database,
which encodes a portion of the family tree of Bertrand Russell.

parent(katherine, bertrand). parent(amberley, bertrand).

parent(katherine, frank). parent(amberley, frank).

parent(katherine, rachel). parent(amberley, rachel).

parent(dora, kate). parent(bertrand, kate).

parent(dora, john). parent(bertrand, john).

parent(peter, conrad). parent(bertrand, conrad).

female(katherine). male(amberley).

female(rachel). male(frank).

female(dora). male(bertrand).

female(peter). male(conrad).

female(kate). male(john).

Here a literal parent(X,Y) is intended to mean that X is a parent of Y. The information in this
database is conveniently factored among the parent, male, and female predicates so that there is
no duplication as there would be if the same information were expressed in terms of, for instance,
father, mother, male and female.

Exercise 2.4 Write Prolog clauses defining father, grandmother, uncle, cousin, etc., in terms

of the primitives parent, male, and female.

Suppose we wanted to define a notion of ancestor. Intuitively, a person Old is an ancestor of
a person Young if there is some chain of parent relationships of arbitrary length connecting Old to
Young. We could start by writing clauses like:

ancestor(Old, Young) :-

parent(Old, Young).

ancestor(Old, Young) :-

parent(Old, Middle),

parent(Middle, Young).

ancestor(Old, Young) :-

parent(Old, Middle),

parent(Middle, Middle2),

parent(Middle2, Young).

...

Clearly, no finite axiomatization in this style is possible. Instead, we define ancestor recursively.
At the base, one’s closest ancestors are parents. All other ancestors are parents of closer ancestors.
Stating this in Prolog, we have

Program 2.2
ancestor(Old,Young) :-

parent(Old,Young).

ancestor(Old,Young) :-
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parent(Old,Middle),

ancestor(Middle,Young).

The execution of the query ancestor(katherine, kate), under this definition of ancestor,
proceeds as follows:

?- ancestor(katherine, kate).

(1) 0 Call: ancestor(katherine, kate)

(2) 1 Call: parent(katherine, kate)

(2) 1 Fail: parent(katherine, kate)

(3) 1 Call: parent(katherine, Middle_3)

(3) 1 Exit: parent(katherine, bertrand)

(4) 1 Call: ancestor(bertrand, kate)

(5) 2 Call: parent(bertrand, kate)

(5) 2 Exit: parent(bertrand, kate)

(4) 1 Exit: ancestor(bertrand, kate)

(1) 0 Exit: ancestor(katherine, kate)

yes

The reader should confirm that this definition of ancestor works appropriately by following the trace
and executing similar queries.

Exercise 2.5 What is the proof tree corresponding to this execution?

The reader with some knowledge of model theory for first-order logic might be wondering about
our use of recursive predicate definitions like the one above. In general, the transitive closure of a bi-
nary relation is not first-order definable (Boolos and Jeffrey, 1980). That is, given a binary predicate
p there is no first-order formula T (x, y) with free variables x and y such that for all interpretations
of predicate symbols, constants and free variables, T (x, y) holds in the interpretation if and only if
the values for x and y in the interpretation are in the transitive closure of the relation interpreting the
predicate p. Thus, the above definition, and others like it used in the rest of this book, seem not to
really define what they are supposed to define. The solution of this conundrum is that definite-clause
programs must be interpreted with a specific model in mind, the least Herbrand model (van Emden
and Kowalski, 1976; Lloyd, 1984) for the program, rather than in terms of arbitrary first-order mod-
els. In the intended model, a program like the above indeed defines the transitive closure of the base
relation.

2.5.1 Variable Renaming

In previous examples we have ignored the issue of the scope of variable names. We have been
implicitly assuming that several occurrences of variables with the same spelling all occurring in one
clause are to be considered instances of the same variable. Thus, in the first clause of Program 2.2,
the two occurrences of Young are intended to notate the same variable. When one is bound in an
assignment, they both are. However, these two occurrences and the two in the second clause are
not intended to notate the same variable. For instance, in the trace above, each of these rules is
used once in the proof, the first under the assignment Old = bertrand, Young = kate and the
second under the assignment Old = katherine, Middle = bertrand, Young = kate. These
two assignments are incompatible, assigning different values to Old. Yet their use in the execution
of the query is not inconsistent because they arose from different invocations of clauses. Thus we
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need some way of distinguishing variables in different clauses—or different invocations of the same
clause—that happen to be spelled the same.

One way of doing so would be to require that the programmer always use different variables
in each clause. But not only would this be cumbersome, it would not solve the problem for dif-
ferent invocations for the same clause, which recursive definitions make possible. Therefore, each
invocation of a given clause in a proof conceptually requires the renaming of the variables in the
clause to new variables. In this book, we will represent the variables in a clause invocation resulting
from renaming by x_i where x is the textual name of the original variable and i is the number of the
invocation. For instance, in the execution trace above, the third clause invocation has a variable that
is an instance of the variable Middle from the second clause of Program 2.2. It is therefore listed as
Middle_3 in the trace. Thus variables from different invocations are guaranteed to be unique.

In practice, Prolog systems use less obvious (but more efficient) variable-renaming mechanisms.
Typically, new variables are internally represented as an index into Prolog’s working storage, and
are displayed with the notation “_i” where i encodes the index.

2.5.2 Termination

In ancestor we find our first example of a predicate whose definition has to be carefully designed
to avoid nontermination. The idea of the definition of ancestor given above is that in the recursive
second clause the proof procedure will have to follow a specific parent link in the family tree or
graph before recurring to follow other links. As the family graph is finite and acyclic, at some point
we will run out of parent links to explore and the procedure will terminate.

In contrast, the following definition is possibly more natural but causes nontermination problems
for the Prolog interpreter.

Program 2.3
ancestor(Old,Young) :-

ancestor(Old,Middle),

ancestor(Middle,Young).

ancestor(Old,Young) :-

parent(Old,Young).

The definition can be read “an ancestor is a parent or an ancestor of an ancestor” and includes
directly an instance of the transitivity axiom schema which would be expressed in FOL as

R(x, y) ∧ R(y, z)⇒ R(x, z) .

However, when Prolog tries to prove ancestor(x,z) for any terms x and z, it falls into an infinite
loop, because the first subgoal it attempts to prove is ancestor(x,Y_1), which in turn leads to an
attempt to prove ancestor(x,Y_2) and so on.

If the two clauses are interchanged, we have

ancestor(Old,Young) :-

parent(Old,Young).

ancestor(Old,Young) :-

ancestor(Old,Middle),

ancestor(Middle,Young).

In this case, Prolog will first try to use parent facts and therefore produce a solution in finite
time if one exists. However, if we ask for more solutions by backtracking, there will come a point
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when all the parent facts will have been used in all possible ways, and Prolog will go into a loop
using the recursive clause alone.

The source of the difficulty in these cases is that one of the clauses is left recursive, that is, the
leftmost antecedent literal in a clause defining a predicate is itself a reference to that same predicate.
In general, left recursive predicates cause problems for the left-to-right, depth-first control regime
that Prolog uses. In fact, the left recursion need not even be direct. If by following a chain of leftmost
literals we can cycle back to a predicate previously used, the Prolog proof procedure may follow
this chain depth-first, fruitlessly searching for a way out. It should be noted that there are more
sophisticated Horn-clause proof procedures that will not loop with transitive relation definitions.
Unfortunately, those procedures are in general so expensive that it is infeasible to use them for
general programming tasks. However, some of them are useful for certain parsing problems as we
will see in Chapter 6.

Thus, in the avoidance of termination by clause and literal ordering, just as in the previous
discussion of using such ordering to reduce search, we see that control issues must be carefully
considered in writing Prolog programs, very much as when programming in other languages. In
Prolog we can ignore some low-level details of data representation and execution control, but that
does not mean that we can ignore all issues of data representation and control. Each programming
language places this kind of abstraction barrier in a different place. One of the main difficulties in
learning Prolog after learning other programming languages is Prolog’s particular placement of the
barrier.

2.6 Problem Section: Semantic Networks

Semantic networks are graph structures often used for knowledge representation in artificial intel-
ligence. The simplest form of semantic network consists of nodes representing individuals and
directed arcs representing binary relationships between nodes. For example, the network in Fig-
ure 2.2 contains several types of arcs representing relationships between nodes. For instance, the
isa arcs represent membership relations, e.g., Ole Black is a Mustang (that is, is a member of the
class of Mustangs). Similarly, ako, which stands for a kind of, represents the inclusion relation
between classes. For instance, Mustangs are a kind of automobile.

Problem 2.6 Find a way of representing this simple semantic network in Prolog using unit clauses.

It should be possible with your representation to answer queries paraphrasable as “What class is

Ole Black a member of?” (the answer should be mustang) or “What companies are there?” (the

answers should be gm and ford). Demonstrate that your representation can handle these queries.

We can ask Prolog what individuals satisfy a given relation. However, we cannot ask directly
what relations hold between given individuals. In semantic network representations, we often want
to ask the latter kind of question, for instance, “What relationships hold between Ford and the class
of companies?”

Problem 2.7 Modify your representation of semantic networks to allow both this new kind of ques-

tion and the kind in the previous problem. (HINT: Treat semantic network relations as Prolog

individuals. This is an important Prolog programming technique, sometimes called reification in

philosophical circles.)

Semantic networks are often used to represent taxonomies with property inheritance. A taxon-
omy, like the one in the example above, places individuals in classes, and specifies which classes
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AKO

Figure 2.2: A semantic network

are subclasses of other classes. If all the members of a class necessarily have a certain property, we
say (abusing language slightly) that the class has the property. Further, we say that all individuals in
the class, and all subclasses of the class, inherit the property. The following three conventions are
usually followed for economy of representation:

• Class containment statements are given only between a class and the smallest classes in the
taxonomy that contain it. (For instance, we do not have an explicit representation of the fact
that Mustangs are physical objects.)

• Class membership statements are given between an individual and the smallest classes in the
taxonomy that contain it. (For instance, we do not explicitly represent that Ford is a legal
person.)

• Properties are associated with the largest class in the taxonomy that has them. (For instance,
we explicitly associate the property of being self-propelled with automobiles but not with
Mustangs).

The transitivity of class containment is then used to deduce from the explicit data whether spe-
cific individuals or classes have certain properties or are in certain classes, for example, that Mus-
tangs are physical objects.

Problem 2.8 Use your Prolog encoding of semantic networks for a general encoding of taxonomies

of the kind described. Define the following Prolog predicates in terms of your representation:
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• is_instance(Individual, Class) holds when Individual is an element of Class.

• has_property(Individual,Property) holds when Individual has Property.

• subclass(Class1, Class2) holds when Class1 is a [possibly improper] subclass of

Class2.

Test your program by demonstrating that GM is a legal person, that Ole Black is self-propelled, and

that Mustangs are physical objects.

In Prolog, we can have predicates of any number of arguments. We may, for example, represent
the fact that Ford built Ole Black in 1965 by the clause built(ford,ole_black,1965). However,
in the simple form of semantic network discussed so far, we can only represent directly binary
relations.

Problem 2.9 Find a way of representing n-ary predicates using nodes and labeled arcs in a seman-

tic network. How would you represent “Ole Black was built by Ford in 1965” with this encoding?

How would you ask Prolog to determine which company built Mustangs in 1967?

2.7 Context-Free Grammars

We begin the discussion of natural-language analysis and the role Prolog can play therein with a
discussion of context-free grammars and their axiomatization in the database subset of Prolog.

Context-free grammars (CFG) constitute a system for defining the expressions of a language
in terms of rules, which are recursive equations over expression types, called nonterminals, and
primitive expressions, called terminals. The standard notation for a context-free rule is

N0 → V1 · · ·Vn

where N0 is some nonterminal and the Vi are nonterminals or terminals. Such a rule has the following
informal interpretation: “if expressions w1, . . . ,wn match V1, . . . ,Vn, respectively, then the single
expression w1 · · ·wn (the concatenation of the wi) is itself of expression type N0.” By an expression
wi matching a Vi we mean that either Vi is a terminal (a primitive expression) and identical to wi, or
Vi is a nonterminal (an expression type) and wi is of that type (presumably by virtue of some rule in
the grammar).

Consider, for example, the following context-free grammar for a fragment of English:

S→ NP VP

NP→ Det N OptRel

NP→ PN

OptRel→ ǫ

OptRel→ that VP

VP→ TV NP

VP→ IV

PN→ terry

PN→ shrdlu

Det→ a

N→ program

IV→ halts

TV→ writes
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S

  NP      VP

    PN                   IV  

SHRDLU                     halts 

Figure 2.3: Parse tree for a simple sentence

We have notated nonterminals with upper-case names and terminals with lower-case. The nonter-
minal names we have used here are, for the most part, standard in current linguistics. For reference,
we include below a table of the terms they abbreviate.

symbol abbreviates

S Sentence
NP Noun Phrase
VP Verb Phrase
IV Intransitive Verb
TV Transitive Verb
PN Proper Noun
Det DETerminer5

N Noun
OptRel OPTional RELative clause

The grammar above classifies strings as being of zero or more of these types. For instance, by
virtue of the ninth rule, the expression “” is classified as a PN. An alternate terminology is
often used in which the nonterminal PN is said to cover the string “”. Similarly, the string
“halts” is covered by the nonterminal IV. Furthermore, by the twelfth rule, “halts” is also classified
as a VP. The first and third rules allow the conclusion that the entire phrase “ halts” is an S.

This classification of an expression and its subexpressions according to a context-free grammar
can be summarized in a phrase-structure tree or parse tree. The tree for the sentence “
halts” is given in Figure 2.3. Each local set of nodes, consisting of a parent node and its immediate
children, corresponds to a rule application. For instance, the top set of nodes corresponds to an
application of the rule S→ NP VP. The leaves of the tree, that is, the symbols at the bottom with no
children, correspond to the primitive expressions, the terminals, and the interior nodes correspond to
nonterminals. The expression covered by a given node is just the fringe of the subtree whose root is
that node. Such a phrase-structure tree for a string provides a sort of proof that the string is classified
as the nonterminal at the root.

The symbol “ǫ”, which occurs in the first rule for optional relative clauses, is used to mark a
rule with zero elements on the right-hand side, hence, covering the “empty string”. For example, the
string “a program halts” is classified as an S as illustrated by the parse tree of Figure 2.4. Note that
since the OptRel rule has no elements on the right-hand side, it requires no dependents in the parse
tree and covers no portion of the string.

5Determiners (like the and a) are also sometimes called articles.
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a        program                      

DET           N         OptRel        IV

NP                           VP

S

halts

Figure 2.4: Parse tree including empty constituent

Any procedure for determining the parse tree corresponding to an expression must perform the
rule applications in a given order. Such an ordering of the applications summarized in the tree is
called a derivation of the string. In the particular example “ halts”, we might derive the
string performing lower applications in the tree before those higher up, as we did in the informal
description above. Alternatively, we might start by applying the first rule to the root symbol S , then
expanding the NP and VP and so forth, working down from the top of the tree. Derivations of the
former sort are referred to as bottom-up derivations, those of the latter type as top-down derivations.
On an orthogonal dimension, we can have depth-first or breadth-first derivations, depending on
whether an entire subtree is or is not derived before the derivation of its siblings begins. Many other
possible derivation orderings are possible, combining facets of top-down versus bottom-up, depth-
versus breadth-first, left-to-right versus right-to-left orderings, and so forth. The parse tree abstracts
away from all these ordering issues manifested in particular derivations, just as a proof tree abstracts
away from ordering issues manifested in particular traces.

As a side note, it is traditional to separate a grammar of this sort into two parts, one which
contains the grammar rules proper and one which contains the rules with a single terminal on the
right hand side. The latter part is called the dictionary or lexicon for the grammar. Dictionary
rules correspond to the lines in the parse tree connecting a preterminal—a nonterminal immediately
covering a terminal—and the terminal it covers.

Exercise 2.10 What expression types are the following expressions classified under according to

the context-free grammar just given?

1. halts

2. writes a program

3. a program that Terry writes

4. Terry writes a program that halts

5. a program that halts writes a program that halts

6. Terry halts a program

7. a program that Terry writes halts

Exercise 2.11 For each classification of each expression in the preceding exercise, give the parse

tree for the derivation of that expression under that classification.
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0     1                      2                    3

a        program                      

DET           N         OptRel        IV

NP                           VP

S

halts

Figure 2.5: Parse tree with string positions

2.7.1 Axiomatizing Context-Free Grammars

In parse trees like the one given in Figure 2.4, nonterminals can be interpreted not only as a clas-
sification of expressions (viz., the expressions that are the fringes of trees labeled with the given
nonterminal) but also as binary relations on positions in the expression, where a position divides
an expression into two subexpressions which concatenated together form the original expression.
For example, string positions for the the sample parse tree of Figure 2.4 are shown in Figure 2.5.
Position 2, for example, divides the expression into the two subexpressions “a program” and “halts”.

The nonterminals can now be seen as binary relations on the positions. The pair of positions
〈0, 2〉 is in the NP relation because the nonterminal NP covers the subexpression between positions
0 and 2. Using logical notation for the relation, this fact can be notated as NP(0,2). Similarly,
S(0,3) holds because the nonterminal S covers the expression between positions 0 and 3. The empty
optional relative clause covers the string between position 2 and itself, i.e., OptRel(2,2).

In fact, the general statement made by the context-free rule

S → NP VP

can be summarized using relations on positions with the following logical statement:

NP(p0, p1) ∧ VP(p1, p)⇒ S (p0, p)

that is, if there is an NP between positions p0 and p1 and a VP between positions p1 and p, then
there is an S between positions p0 and p. Indeed, any context-free rule of the form

N0 → V1 · · ·Vn

can be axiomatized as
V1(p0, p1) ∧ · · · ∧ Vn(pn−1, p)⇒ N0(p0, p) .

2.7.2 Context-Free Grammars in Prolog

To express a context-free grammar in Prolog, then, we merely note that this general form for axiom-
atizing rules is itself in definite clause form. Thus, it can be directly stated in Prolog. For instance,
the sentence formation rule is expressed

s(P0, P) :- np(P0, P1), vp(P1, P).
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A full axiomatization of the English fragment would be as follows:

Program 2.4
s(P0, P) :- np(P0, P1), vp(P1, P).

np(P0, P) :- det(P0, P1), n(P1, P2), optrel(P2, P).

np(P0, P) :- pn(P0, P).

vp(P0, P) :- tv(P0, P1), np(P1, P).

vp(P0, P) :- iv(P0, P).

optrel(P, P).

optrel(P0, P) :- connects(that, P0, P1), vp(P1, P).

pn(P0, P) :- connects(terry, P0, P).

pn(P0, P) :- connects(shrdlu, P0, P).

iv(P0, P) :- connects(halts, P0, P).

det(P0, P) :- connects(a, P0, P).

n(P0, P) :- connects(program, P0, P).

tv(P0, P) :- connects(writes, P0, P).

We have used the literal connects(Terminal, Position1, Position2) to mean that the ter-
minal symbol Terminal lies between consecutive positions Position1 and Position2.

This axiomatization of a CFG in Prolog can be seen as the output of a general mapping or
algorithmic translation from CFGs into Prolog. The mapping takes any CF rule and forms a corre-
sponding Prolog clause as follows:

• For each nonterminal, construct a literal applying a binary predicate for that nonterminal to
two position arguments (e.g., the nonterminal NP becomes the literal np(P1, P2)).

• For each terminal, construct a literal applying the predicate connects to three arguments,
viz., the terminal symbol expressed as a Prolog constant and two position arguments (e.g., the
terminal halts becomes the literal connects(halts, P1, P2)).

Furthermore, as exemplified above, the position arguments for each constituent form a sequence
p0, . . . , pn such that the constituent defined by the rule relates p0 to pn and subconstituent i in the
right-hand side of the rule relates pi−1 to pi. The ability to describe this mapping algorithmically is
the basis for interpreters for this and other grammar formalisms. We will investigate such formalisms
and interpreters in Chapter 6.

2.7.3 Prolog as Parser

Given our usage of the connects predicate, an expression can be axiomatized by stating which
terminal symbols in the string connect the string positions. For instance, the string “a program
halts” is represented by the following unit clauses:

connects(a, 0, 1).

connects(program, 1, 2).

connects(halts, 2, 3).
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This axiomatization of expressions and context-free grammars in definite clauses allows any
Horn-clause proof procedure to serve as a parser (or, strictly speaking, a recognizer) for expres-
sions.6 The Prolog proof procedure, in particular, gives us a top-down, depth-first, left-to-right

parsing mechanism because the derivations Prolog assigns to a string by its execution correspond
to top-down, depth-first, left-to-right traversal of the parse tree. A query of the form s(0, 3) will
hold if the string between positions 0 and 3 is a sentence according to the grammar.

?- s(0, 3).

yes

?- s(0, 2).

no

Tracing the execution by Prolog explicitly exhibits the derivation order implicit in using Prolog
as a parser of grammars encoded in this way. The execution trace of the grammar given above with
the input sentence “a program halts” represented by unit clauses clearly shows Prolog’s top-down,
depth-first, left-to-right behavior.

?- s(0,3).

(1) 0 Call : s(0,3)

(2) 1 Call : np(0,P1_2)

(3) 2 Call : det(0,P1_3)

(4) 3 Call : connects(a,0,P1_3)

(4) 3 Exit : connects(a,0,1)

(3) 2 Exit : det(0,1)

(5) 2 Call : n(1,P2_5)

(6) 3 Call : connects(program,1,P2_5)

(6) 3 Exit : connects(program,1,2)

(5) 2 Exit : n(1,2)

(7) 2 Call : optrel(2,P1_2)

(7) 2 Exit : optrel(2,2)

(2) 1 Exit : np(0,2)

(8) 1 Call : vp(2,3)

(9) 2 Call : tv(2,P1_9)

(10) 3 Call : connects(writes,2,P1_9)

(10) 3 Fail : connects(writes,2,P1_9)

(9) 2 Fail : tv(2,P1_9)

(11) 2 Call : iv(2,3)

(12) 3 Call : connects(halts,2,3)

(12) 3 Exit : connects(halts,2,3)

(11) 2 Exit : iv(2,3)

(8) 1 Exit : vp(2,3)

(1) 0 Exit : s(0,3)

yes

The trace shows that Prolog parses by searching for a derivation of the expression starting at the top
node in the parse tree and working its way down, choosing one rule at a time and backtracking when

6A recognizer is a program that determines whether or not an expression is grammatical according to the grammar. A
parser is a recognizer that furthermore determines the structure under which grammatical strings are admitted by the grammar.
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s(0,3)

  np(0,2)              vp(2,3)

det(0,1)           n(1,2)    optrel(2,2)   iv(2,3)  

 connects(a,0,1)  connects(program,1,2)  connnects(halts,2,3) 

Figure 2.6: Proof tree for parse of sentence

dead ends in the search are reached. For pure context-free grammars, many other better parsing
mechanisms are known, so this parsing technique is not very interesting for CFGs. It becomes
more interesting for the more general grammars discussed in Section 3.7. Furthermore, alternative
axiomatizations of CFGs can engender different parsing mechanisms, and Prolog interpreters for
grammars can make use of alternative algorithms for parsing. These possibilities are explored further
in Chapter 6.

The axiomatization of grammars just presented makes more precise the sense in which a parse
tree provides a kind of proof of the grammaticality of an expression, as the parse tree for a sentence
corresponds directly to the proof tree that Prolog develops in recognizing the expression. This can
be readily seen for the sample sentence whose proof tree is given in Figure 2.6 (cf. Figure 2.5). In
fact, this isomorphism is exploited further in Section 3.7.1, in developing a grammar that builds the
parse tree corresponding to a given derivation.

2.8 Problem Section: Grammars

In this problem section, we will develop alternative ways of encoding languages in Prolog. First,
we will consider how to encode the syntax of database Prolog itself using the encoding technique
described in Section 2.7.2 but with a much freer encoding of the primitive expressions. Then we
will look at various other mechanisms for encoding languages based on adding operations like in-
tersection or using different data structures like graphs.

2.8.1 A Syntactic Analyzer for Database Prolog

We will consider here the question of how to build a syntactic analyzer for a programming language,
in this case the database subset of Prolog we have seen so far. This subset has a very simple syntax:

• A clause is a clause term followed by a period.

• A clause term is an atomic formula (a unit clause) or an atomic formula followed by an impli-
cation followed by a sequence of atomic formulas separated by commas (a nonunit clause).

• An atomic formula is a predicate symbol (a constant) optionally followed by a parenthesized
list of comma-separated arguments.
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• An argument is a constant or a variable.

Prolog syntactic analyzers, like those for other programming languages, do not usually analyze
character strings directly but rather strings of lexical tokens produced by a lexical analyzer (Aho and
Ullman, 1977). We will assume in this problem that the results of lexical analysis of a string are
expressed not by connects clauses but rather by Prolog unit clauses of the following forms:

• constant(Constant,From,To), meaning that there is a constant token between points
From and To in the string with spelling Constant.

• variable(Variable,From,To), meaning that there is a variable token between points From
and To in the string with spelling Variable.

• punctuation(Punct,From,To), meaning that there is a punctuation mark between points
From and To in the string with “spelling” Punct.

For example, for the Prolog clause

ancestor(Old,Young) :- parent(Old,Young).

we can assume that the following assertions will be in the Prolog database:

constant(ancestor,1,2).

punctuation(’(’, 2,3).

variable(’Old’,3,4).

punctuation(’,’,4,5).

variable(’Young’,5,6).

punctuation(’)’,6,7).

punctuation((:-),7,8).

· · ·

punctuation(’.’,14,15).

Note that punctuation and capitalized constants (denoting the spelling of variables) must be in
quotes so they are read as constants by Prolog, and not as operators or variables, respectively. Also
note the extra parentheses in the seventh clause. These are required by Edinburgh Prolog syntax
because of the precedences of operators in order to prevent the interpretation of :- as a prefix
operator.

Problem 2.12 Write a context-free grammar for dbProlog. Translate it to Prolog, and test it with

some of its own clauses as data. (We recommend choosing short clauses for the data as the encoding

is tedious. Chapter 3 discusses better string position encodings.)

2.8.2 Extending CFGs with Intersection

Context-free grammars can be generalized by using the intersection operator “&”. A rule of the
form

X → α & β (2.6)

is interpreted as saying that a string is an X if it is simultaneously an α and a β. This extended
notation thus represents intersections of context-free languages, which in general are not context-
free (Hopcroft and Ullman, 1979, pages 134-135).
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Figure 2.7: A graph

Problem 2.13 Extend the standard mapping of context-free rules to Prolog (discussed in Sec-

tion 2.7.2) to allow for rules with the intersection operator. Demonstrate the mapping by writing

and testing a Prolog program defining a grammar for the non-context-free language made of all

strings of the form anbncn for n ≥ 0.

2.8.3 Transition Networks

Transition networks are an alternative to formal grammars for defining formal languages (i.e., sets of
strings). Whereas a formal grammar defines a language in terms of combinations of types of strings,
a transition network for a language is a kind of abstract machine for recognizing whether strings
are in the language. The machine can be in one of a set of states, and the transitions from state to
state correspond to processing successive symbols in the string to be recognized. Certain special
states correspond to acceptance or recognition of the string. If the machine finishes processing when
in such a state, the string is accepted as being in the language recognized by the machine. If the
machine does not end up in such a state, the string is not accepted. The problems in this section
cover the writing of interpreters for transition networks of both nonrecursive and recursive varieties.

Graph Languages

The states and state transitions of a machine like the kind just described form a kind of graph or
network with the states as the nodes and the transitions as the arcs. For this reason, we will start
by looking at a simple way to recognize languages using graphs, and move on to the more complex
networks in later problems.

A finite directed labeled graph is a finite set G of triples (n, l,m), where n and m are elements of
a set of nodes and l is an element of a set of labels. A path through the graph is a string of labels
l1 · · · lk such that there exist graph nodes n0, . . . , nk for which the triples (n0, l1, n1), . . . , (nk−1, lk, nk)
are in the graph. The graph’s path language is the language whose strings are all paths in g.

For example, the graph {(1, a, 2), (2, b, 3), (3, c, 2)} can be depicted as in Figure 2.7. This graph
describes a language containing, among other strings, ǫ, a, ab, bc, cbcbc, and so forth.

Problem 2.14 Write a Prolog program that can be combined with a Prolog representation of an

arbitrary finite directed labeled graph and a Prolog representation of a string to recognize that

string as belonging to the path language of the graph.

Nonrecursive Transition Networks

Transition networks can be seen as a kind of graph where the nodes are called states and the arcs
state transitions. More formally, a nonrecursive transition network is a labeled directed graph N (as
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1 3
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every            professor
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Figure 2.8: A nonrecursive transition network

in the previous problem) together with a distinguished initial state i and a set of final states F. A
string s = l1 . . . lk is accepted by the network (or is in the language of the network) if and only if
there is a path in N given by the triples (n0, l1, n1), . . . , (nk−1, lk, nk) such that n0 is the initial state and
nk is a final state.

For example, Figure 2.8 depicts a transition network with initial state 1 (signified by the arrow
“>”) and final state 5 (signified by the concentric circles). This network will accept strings such as
“every professor’s professor’s program halts”, but not “program halts” (because it does not start at
the start state) or “every professor’s professor” (because it does not end in a final state).

Problem 2.15 Write a Prolog program that will recognize the strings in the language of an arbitrary

transition network described by an appropriate set of unit clauses. Test the program at least on the

example in Figure 2.8. (Your solution of Problem 2.14 might be useful here.)

Recursive Transition Networks

A recursive transition network (RTN) is a transition network with a set of labeled initial states each
labeled by a different label, instead of a single initial state. Initial state labels play the same role as
nonterminals in CFGs. Of all the initial state labels, we distinguish a start label (or start symbol).

A string s is recognized as an X by RTN N if and only if

1. X is the label of an initial state x, and

2. there is a path (string of labels) l1 · · · lk that is accepted by N seen as a nonrecursive transition
network with initial state x, and

3. there are strings s1, . . . , sk such that s = s1 · · · sk, and

4. for each si, either si = li or si is recognized (recursively) as an li by N. (We will extend this
part of the definition shortly.)

A string s is recognized by an RTN N with start label S if and only if s is recognized as an S by
N. The language of an RTN is the set of strings it recognizes.

Consider the sample RTN in Figure 2.9. A labeled initial state n with label l is represented in
the example by l : n. By convention in such drawings of transition networks, terminal symbols are
written in lower case and nonterminal symbols (subnetwork labels) are written in upper case. Of
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Figure 2.9: A recursive transition network

the nonterminal symbols in the example, only S, NP, VP and REL have corresponding subnetworks.
Rather than give subnetworks for the other nonterminals which correspond to preterminal categories
(DET, N and TV), we treat them specially. A preterminal P will match a word w in the string if w is
listed as a p in a dictionary external to the network. That is, we are extending Part 4 of the definition
given above of what it means for a string element to match a label to allow a case where si is listed
in a dictionary under the preterminal category li.

The network of Figure 2.9 would therefore recognize sentences like

every professor’s student wrote a program

assuming that ‘every’ and ‘a’ are listed as DETs; ‘professor’, ‘program’, and ‘student’ are Ns; and
‘wrote’ is a TV in the dictionary.

Problem 2.16 Extend your solution of the previous problem to recognize the strings in the language

of an arbitrary recursive transition network plus dictionary, represented by appropriate unit clauses

for both the network and the dictionary. Test it at least on the example RTN of Figure 2.9.

2.9 Bibliographic Notes

The database subset of Prolog (Section 2.1) is discussed in more detail by Sterling and Shapiro
(1986). The relationship between first-order logic and Prolog is covered to some extent in that book,
and is also addressed in the books by Kowalski (1980), Gallier (1986) and Clocksin and Mellish
(1981). The dual interpretation of logic programs, declarative and procedural, was first discussed
by Kowalski (1974a; 1974b), and related to denotational semantics for programming languages by
van Emden and Kowalski (1976). Lloyd’s book (1984) gives a detailed mathematical account of the
semantics of definite-clause programs.

The family tree of Bertrand Russell (Section 2.5) was derived from Katherine Tait’s biography
of her father (1975).
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The more general question of the relationship between clausal form and full first-order logic
(Section 2.3) is discussed in detail in every book on automated theorem-proving, a few of which
were mentioned in Section 1.5. The concepts underlying clausal form and Skolem functions were
used in logical investigations for several decades, as can be seen in the papers by Skolem (1920) and
Herbrand (1930) in the van Heijenoort collection (1967). Building upon Herbrand’s work, Robinson
(1965) developed the resolution inference procedure for clausal form.

The tracing and debugging of Prolog programs (Section 2.4.1) has unique difficulties that can
be attributed to the nondeterminacy of clause selection. Proof trees are commonly used in logic to
represent the relationship between premises and conclusions in a proof. The space of alternatives in
the search for a proof can also be represented by a tree, and the combination of the two trees forms
an and-or tree. These concepts are discussed by Kowalski (1980).

Tree representations are convenient in proof theory and for heuristic purposes, but are unwieldy
when tracing large Prolog executions. Byrd’s box model (1980), the first practical framework for
debugging Prolog programs, has been implemented in many Prolog systems. More advanced models
have since been proposed, in particular the family of algorithmic debugging methods that started
with Shapiro’s dissertation (1983).

Semantic networks (Section 2.6) were originally proposed by Quillian (1967). They have been
the object of much work in artificial intelligence, including that of Hendrix (1979), from which
we derived our example. The connections between semantic networks and logic are discussed, for
instance, by Woods (1975) and by Deliyanni and Kowalski (1979).

Context-free grammars (Section 2.7) originated in the formalization of the notions of immediate
constituent and phrase structure in structural linguistics, in particular with the work of Chomsky
(1956). A detailed history of the development of these ideas is given by Greibach (1981), who
also supplies a comprehensive bibliography of formal-language theory. A linguistically oriented
overview of context-free grammars can be found in the book by Partee et al. (1987). A full math-
ematical treatment of context-free grammars, their properties, and parsing algorithms is given, for
instance, by Harrison (1978). The representation of context-free grammars in first-order logic has
been in the folklore for a long time, but the first reference to the idea in print that we know of is by
Kowalski (1974a).

The problem in Section 2.8.1 requires the text of Prolog programs to be given in a “predigested”
tokenized form. The techniques of lexical analysis required to produce that form are discussed in
any compiler-design reference, e.g., (Aho and Ullman, 1977).

The problem in Section 2.8.2 introduces intersections of context-free languages, which in gen-
eral are not context free. Classes of languages are partly characterized by how languages in the
class behave under set operations such as intersection. Proofs that a certain language is not in a
certain class (e.g. context free) often depend on the closure properties of language classes under set
operations (Ginsburg, 1966; Harrison, 1978). Such results can be useful in linguistic argumentation
(Shieber, 1985b).

Transition networks (Section 2.8.3) are a common representation of abstract string-recognition
devices. In the nonrecursive case, they are just another notation for nondeterministic finite-state
acceptors, which are discussed in any introductory book on compilers or formal-language theory
(Hopcroft and Ullman, 1979; Aho and Ullman, 1972; Harrison, 1978). Recursive transition net-
works are closely related to the nondeterministic pushdown acceptors, which are the abstract ma-
chine counterparts of context-free grammars (Hopcroft and Ullman, 1979; Aho and Ullman, 1972;
Harrison, 1978). However, the actual notion of recursive transition network used here comes from
Woods’s work on transition networks for natural-language analysis (1970). Woods extends recursive
transition networks with data registers that can be set by actions and tested by conditions on arcs.
The resulting formalism, augmented transition networks (ATNs), is very powerful; in fact, an ATN
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can be written to recognize any recursively enumerable language. Bates (1978) gives a very good
tutorial on ATNs and their application in natural-language processing. Pereira and Warren (1980)
have compared ATNs with logic grammars in detail.
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In the database subset of Prolog we have seen so far, the arguments to predicates have been
constants or variables. Like FOL, however, Prolog allows arbitrary terms to serve as arguments
of predicates, of which constants and variables are but two subclasses. Terms also include recur-
sive structures formed by applying function symbols to other terms, using the parenthesized syntax
familiar from logic.

The extension of database Prolog to include terms of arbitrary complexity is called pure Prolog

because it is a pure subset of FOL, containing no extralogical features (except for those in Section
3.4.1). Full Prolog, discussed in Chapter 6, does have such features; consequently, its declarative
semantics and procedural operation diverge. But pure Prolog is a pure logic programming language.
It has a procedural interpretation that is potentially sound (though not complete) with respect to its
declarative interpretation.1

3.1 Prolog Notation Revisited

At this point, let us review the notation for Prolog that we have been using and augment it to include
compound terms formed with function symbols, as mentioned in Section 2.3. We give a simplified
CFG for the Prolog syntax introduced so far, augmented to include functions and terms formed from
them.

1However, because of the lack of the “occurs check” in Prolog systems (Section 3.5.2), this potential soundness is not
realized in most implementations.

35
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Program→ Clause

Program→ Clause Program

Clause→ AtForm :- Condition .

Clause→ AtForm .

Condition→ AtForm

Condition→ AtForm , Condition

AtForm→ Predsym

AtForm→ Predsym ( TermSeq )

TermSeq→ Term

TermSeq→ Term , TermSeq

Term→ Constant

Term→ Number

Term→ Variable

Term→ Funcsym ( TermSeq )

The primitive types of expressions, then, are constants, function symbols (Funcsym), predicate

symbols (Predsym), and variables. Constants are either numbers (such as 0, 99.99, -129) or atoms.
Atoms are tokens beginning with a lower-case alphabetic or composed of a sequence of special
characters or composed of any characters surrounded by single quotes. For instance, the following
are atoms: a, bertrand, =, :=, ’Bertrand Russell’, [ ].

Function symbols and predicate symbols (often collectively referred to as functors) are also
notated with atoms.

Compound expressions (a functor applied to a sequence of term arguments) are by default repre-
sented in parenthesized prefix notation as in Funcsym ( TermSeq ) or Predsym ( TermSeq ) above.

3.2 Terms and Unification

To illustrate the notation, here is an example program that axiomatizes addition in successor nota-
tion:

Program 3.1
add(0, Y, Y).

add(succ(X), Y, succ(Z)) :- add(X, Y, Z).

In this program, the simple term 0 is intended to represent the number 0, the term succ(0) the
number 1, succ(succ(0)) the number 2, and so forth. (The function symbol succ is so-called
because it corresponds to the integer successor function.) Thus, the first clause states that 0 added
to any number is that number. The second clause states that the successor of any number x added to
y is the successor of the sum z of x and y.

Unlike in imperative languages, the succ function symbol when applied to a term will not “re-
turn a value”; the term succ(0) does not equal (reduce to, return, evaluate to, etc.) the term 1 or
any other structure. The only relationship between the terms and the numbers is the meaning rela-
tionship we, as programmers and users, attribute to the terms. The program respects this attribution
because it holds of three terms just in case the numbers they represent are related by the addition
relation. We can see this in the following queries:

?- add(0, succ(0), Result).
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Result = succ(0)

yes

?- add(succ(succ(0)), succ(succ(0)), Result).

Result = succ(succ(succ(succ(0))))

yes

These queries correspond to computing that 0 + 1 is 1 and 2 + 2 is 4.
Prolog augmented with terms works in exactly the same way as the database subset discussed

in the previous chapter. The only difference is that the matching of a goal literal with the head
of a rule, the process of unification informally defined in Section 2.4 and more fully discussed in
Section 3.5.2, must in general apply to arbitrary compound terms. Recall the informal definition
of unification given previously. Two atomic formulas unify if there exists an assignment to the
variables in them under which the two formulas become identical. Applying this definition to an
example, consider the unification of the two atomic formulas

add(succ(succ(0)), succ(succ(0)), Result)

and

add(succ(X), Y, succ(Z)) .

This unification succeeds because the assignment

X = succ(0), Y = succ(succ(0)), Result = succ(Z)

transforms both formulas into

add(succ(succ(0)), succ(succ(0)), succ(Z)) .

The execution of a goal to add 2 and 2 (encoded in successor notation) would then proceed as
follows: The initial goal is

add(succ(succ(0)), succ(succ(0)), Result) .

This fails to unify with the first clause for add, but unifies with the head of the second clause with
the unifying assignment as above. Under this assignment, the body of the clause becomes

add(succ(0), succ(succ(0)), Z) .

Now this clause also matches the head of the second clause (which we will write with variables
renamed to X_1, Y_1 and Z_1 to avoid confusion as per Section 2.5.1). This time the unifying
assignment is

X_1 = 0, Y_1 = succ(succ(0)), Z = succ(Z_1) .

The body of this second activation of the clause becomes

add(0, succ(succ(0)), Z_1) .

This goal matches the unit clause add(0,Y,Y) under the assignment
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Y_2 = succ(succ(0)), Z_1 = Y_2 ,

and the execution is complete. In looking at the assignments that were involved in the
proof, we note that Result was bound to succ(Z), Z to succ(Z_1), Z_1 to Y_2, and
Y_2 to succ(succ(0)). Thus, aggregating assignments, we have Result = succ(Z) =

succ(succ(Z_1)) = succ(succ(Y_2)) = succ(succ(succ(succ(0)))). The query thus
computes that 2 + 2 = 4.

3.3 Functions in Prolog and Other Languages

In logics that include equality between terms as a primitive notion, the reducibility of one term to
another enables a powerful technique for reasoning about functions. Conventional programming
languages—and even more so, so-called functional programming languages—make use of this by
basing their constructs on equalities (usually in the guise of function definitions). These equalities
are typically interpreted as rewriting rules that can be used to reduce terms to simpler ones, and
eventually to irreducible terms that are identified with “values”. In imperative programming lan-
guages, this notion is implicit in the notion of a function call that returns a value. All of this, of
course, depends on the language in some sense embodying axioms of equality. For instance, reduc-
tion corresponds to the substitutivity of equality. In fact, proof procedures for equality could be used
as the basis for functional computation very much as Horn-clause proof procedures are the basis for
relational computation.

General proof procedures for logics with equality are very difficult to control, and therefore have
to date been too inefficient to use in logic programming. It was observed, however, that much of the
work of equations and function symbols could be done instead by relations. For example, instead of
representing addition as a function + with axioms

succ(x) + y = succ(x + y)

0 + x = x

we can use the ternary predicate add with the Prolog definition given in Program 3.1.
The simple observation that subject-domain functions can be represented as relations was a

crucial step in making logic programming practical. However, this step is not without losses. For
example, the uniqueness of function values, a consequence of the equality axiom schemata in FOL
with equality, is not available for reasoning when the relational encoding of functions is used. It
may be that the Prolog definition of a function gives only one output for each input (as is the case
with add above), but this is a contingent property of a particular predicate definition rather than a
necessary property as it is with functional notation. Another disadvantage is that relational syntax
requires the introduction of intermediate variables for function composition, often impairing the
readability of programs.

Of the standard equality axioms and their consequences, the only one that is left in Prolog,
because it is definable in the language, is the reflexivity axiom x = x, which can be implemented in
Prolog with the unit clause

Program 3.2
X = X.

In fact, the infix = operator is built in to most Prolog systems.
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The lack of more powerful equality axioms in Prolog means that in Prolog it is not possible to
reason about whether two distinct terms denote the same object. In other words, the value of apply-
ing a function to some arguments can only be represented by the term expressing that application
and not by some other (presumably simpler) term representing the “value” of the function on those
arguments. Thus, in Prolog we look at functions as constructors, one-to-one functions with disjoint
ranges. Each ground term is seen as denoting a distinct element in the domain, and function symbols
are means of constructing new elements from old, analogous to constructor functions such as cons
in  or record constructors in Ada. Compound terms in Prolog have the same role as record struc-
tures in other languages, namely, representing structured information. For instance, in the addition
example above, the succ function symbol applied to an argument α does not “return” the successor
of the argument. It merely constructs the larger term succ(α). We may choose to interpret the
terms 0, succ(0), succ(succ(0)), . . . as representing the nonnegative integers (which they are
isomorphic to). We can then compute with these terms in ways consistent with their interpretation
as integers, as we did in the addition example.

To extend our analogy between Prolog terms and data structures, note that unification between
terms plays both a structure selection role, picking up the arguments of functions, and a structure
construction role, instantiating variables to compound terms. For example, recall the query

add(succ(succ(0)), succ(succ(0)), Result) .

This literal matched the head of the second clause for add under the assignment

X = succ(0), Y = succ(succ(0)), Result = succ(Z) .

Note how unification between the first arguments of the goal and head has decomposed the argument,
performing a selection role. The body of the clause, the new goal, was

add(succ(0),succ(succ(0)),Z) ,

which succeeded with the unifying assignment

Z = succ(succ(succ((0))) .

Thus the original goal succeeds with

Result = succ(Z) = succ(succ(succ(succ(0)))) .

The unification between the third arguments of goal and head are this time playing a con-
struction role, building the representation of the result succ(succ(succ(succ(0)))) from
succ(succ(succ(0))), the intermediate result. This simple example of addition demonstrates
that computations that might have been formulated in functional-equational terms in another lan-
guage can be formulated as a relational computation over terms in Prolog.

Compound terms in Prolog thus play the same role as complex data structures such as lists,
trees, or records in other programming languages. But whereas in , for example, every list
(S-expression) is fully specified once it is built, terms with variables in Prolog stand for partially

specified data structures, possibly to be further specified by variable instantiation in the course
of a proof. This role of variables as “stand-ins” for as yet unspecified structures is very different
from the roles of variables as formal parameters or updatable locations in functional and imperative
languages like  and Pascal. To distinguish Prolog variables from variables in other languages,
the Prolog type of variable has often been called a logical variable.
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3.3.1 Alternate Notations for Functors

We digress here briefly to discuss a useful extension to Prolog notation. In addition to the default
parenthesized prefix notation for compound terms, Prolog allows unary functors to be used with a
prefix or postfix notation, and binary functors in infix notation, given appropriate operator declara-

tions. For example, the expressions

succ succ 0 3+4 f * *

are convenient notations for

succ(succ(0)) +(3,4) *(*(f)) .

Prefix, postfix, and infix operators must be declared to Prolog. For Prologs of the Edinburgh fam-
ily, the system can be informed about the operators used in this example by executing the following
queries:

:- op(500, yfx, +).

:- op(300, fy, succ).

:- op(300, yf, *).

The final argument of the op predicate is simply the operator being declared. The first argument
is the relative precedence of the operator, with larger numbers indicating lower precedence, that is,
weaker binding and wider scope. Thus * will have a lower precedence number than +. The second
argument provides its position (prefix, infix, postfix). In addition, it determines the iterability or
associativity of the operator. We call a unary operator iterable if it can apply to an expression whose
main functor has the same precedence. Noniterable can only apply to expressions whose main
functor has lower precedence. Thus, succ above is an iterable operator, whereas the standard prefix
operator ?- is noniterable. Nonassociative operators are defined analogously.

The affixing behavior of operators is determined according to the following table:

symbol position associativity

fx prefix noniterable
fy prefix iterable
xf postfix noniterable
yf postfix iterable
xfx infix nonassociative
yfx infix left associative
xfy infix right associative

The intuition behind these symbols is that in the case of an expression with two operators of
equal precedence, one will be chosen as main functor such that the other occurs to the same side of
the main functor as the y occurs to the side of the f. For example, since the + operator is declared
yfx in Prolog, X+Y+Z will be parsed as (X+Y)+Z. The subordinate + comes on the left side of the
main +. If the symbol associated with an operator has no y in it, expressions where it occurs with
scope immediately over an operator of equal precedence will not be allowed at all.

Clearly, operator declaration queries are being executed for their side effects. As such, op is
extralogical, and hence, not part of pure Prolog. These declarations should therefore be thought of
as imperative commands to the system, not as part of the logical structure of a program. For further
information about such declarations, refer to the manual for your Prolog system.
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3.4 Lists

Returning to the main topic of the use of compound terms in Prolog programming, we consider a
particular kind of data structure, lists, that will be especially useful in later programs.

The abstract notion of a finite sequence is a basic notion in mathematical descriptions of many
concepts. For example, the sentences of a language can be represented as sequences of words.
Formally, a sequence can be seen as a function from an initial segment of the natural numbers to
some set, the elements of the sequence. Another view of sequences, which will be more useful
here, is an inductive one following closely the inductive definition of the natural numbers. Given
some set Σ of sequence elements, the set Σ∗ of finite sequences of elements of Σ can be informally
characterized as the smallest set satisfying the following conditions:

• The empty sequence 〈〉 is a sequence.

• If s is a sequence and e an element of Σ, the pair (e, s) is a sequence with head e and tail s.

Thus (1, (2, (3, 〈〉))) is a sequence of three elements: 1, 2, and 3. Notationally, of course, the more
common expression of this sequence is 〈1, 2, 3〉. In the angle bracket notation, 〈e1, . . . , en〉 expresses
the list whose head is e1 and whose tail is expressed by 〈e2, . . . , en〉.

Sequences are represented in Prolog by lists. In Edinburgh Prolog, the empty sequence is repre-
sented by the empty list constant [ ], and the sequence (e, s) with head e and tail s is represented by
the expression [e|s]. More generally, the sequence (e1, (· · · (en, s) · · ·)) is represented by the term
[e1,. . .,en|s]. This can be abbreviated when s is the empty sequence to [e1,. . .,en].

For example,

[Head|Tail] [a,b|X] [a,b]

are respectively the Prolog representations of a sequence with head Head and tail Tail, a sequence
with head a and tail the sequence with head b and tail X, and the sequence 〈a, b〉. The inductive
conditions defining lists given above can then be represented by the Prolog program

list([]).

list([Head|Tail]) :- element(Head), list(Tail).

where the predicate element tests whether its argument belongs in the element domain. More
generally, lists with any Prolog terms (including lists!) as elements can be characterized by the
following program.

list([]).

list([_Head|Tail]) :- list(Tail).

In this program we used the common Prolog notational convention of giving a name beginning
with an underbar to variables whose role is not to pass a value but merely to be a place holder, as the
variable _Head is in the preceding program. Prolog further allows so-called anonymous variables,
notated by a single underbar. Each occurrence of “_” as a variable name in a clause represents a
distinct place-holder variable. For example, the two anonymous variables in f(_,_) are distinct,
so the unification of that term with f(a,X) does not bind X to a. Anonymous variables are used
for place-holder variables for those rare occasions in which naming the variable would detract from
program readability.

Although we have introduced lists as a special notation for sequences, lists are Prolog terms like
any other. Our inductive conditions for sequences involve two ingredients: the empty sequence and
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the pairing function that puts together an element and a sequence to make a longer sequence. As we
have seen, the empty sequence is represented by the empty list constant [ ], which is just a Prolog
constant. The pairing function is represented by the special notation [e|s], but in fact corresponds
to a binary function symbol which in most Prolog systems is named “.”. Thus, the lists shown
earlier are shorthand notation for the Prolog terms

.(Head,Tail) .(a,.(b,X)) .(a,.(b,[])) .

Exercise 3.1 What terms (expressed using the binary operator “.”) do the following Prolog expres-

sions abbreviate?

1. [a,b,c]

2. [a|[b,c]]

3. [[a,b],c]

4. [[a,b]|c]

5. [[A|B]|C]

3.4.1 List Processing

Lists and the list notations above play an important role in the remainder of these notes. As examples
of the definition of predicates over lists, we will give Prolog programs to concatenate, shuffle, and
sort lists. Along the way, we will introduce some useful Prolog concepts—modes of use of Prolog
predicates and Prolog arithmetic tests.

The basic form of list processing programs has been demonstrated by the list predicate itself,
namely, the separating of two cases, one for the empty list, and one for nonempty lists of the form
.(Head,Tail) or, equivalently, [Head|Tail].

List concatenation

The definition of the concatenation of two lists to form a third divides similarly into two cases. The
base case occurs when concatenating the empty list to any list, which yields the latter unchanged.
For nonempty lists, the concatenation is the head of the first list added to the recursive concatenation
of the tail of the first list and the entire second list. The concatenation relation is implemented in
Prolog by the predicate conc, which holds of three lists l, r, and c if c is the concatenation of l and
r. Using juxtaposition to represent concatenation, the constraint can be stated c = lr.

Program 3.3
conc([], List, List).

conc([Element|Rest], List, [Element|LongRest]) :-

conc(Rest, List, LongRest).

As an example of the operation of conc, consider the following goal:

?- conc([a,b],[c,d],Result).

Result = [a,b,c,d]
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conc([a,b],[c,d],[a,b,c,d])

  conc([b],[c,d],[b,c,d])

    

   conc([],[c,d],[c,d])

Figure 3.1: Proof tree for concatenation query

yes

Its proof tree is given in Figure 3.1. Note that although list concatenation is functional, in the sense
that the third argument is uniquely defined by (hence functionally dependent on) the other two, it is
implemented relationally in Prolog. We will see an advantage of this relational view of concatenation
in the next example.

Shuffling lists

The shuffle of two lists consists of taking a few elements from the first list, the next few from
the second, some more from the first, and so forth until the lists are exhausted. More formally,
the shuffle relation holds between three lists l, r and s (i.e., s is a shuffling of l and r) if and only
if there are (possibly empty) lists l1, . . . , lk and r1, . . . , rk such that l = l1 · · · lk, r = r1 · · · rk and
s = l1r1 · · · lkrk. That is, s contains interspersed all the elements of l and r, but maintains the original
order of elements of l and r.

We can break this definition down recursively by considering the concatenation of l1 and r1

separate from the concatenations for the rest of l and r. In particular, we define s to be the shuffle
of l and r if s = l1r1srest, where l = l1lrest and r = r1rrest and srest is a shuffle of lrest and rrest. To
guarantee that this definition is well-founded, i.e., that the recursive shuffle is a smaller problem than
the original, we require that one of l1 and r1 be nonempty. In fact, without loss of generality, we can
assume that it is r1 that is nonempty. Further, we can assume that r1 contains exactly one element;
call it e.

Exercise 3.2 Why are these assumptions valid?

We still must settle on the base case for the recursion. Because each recursive shuffle decreases
the length of the second list by exactly one element, we can stop when this list is empty. In this case,
the shuffle of l with the empty list is simply l. This definition can be translated directly into Prolog
as follows:

Program 3.4
shuffle(L, [], L).

shuffle(L, [E|Rrest], S) :-

conc(L1, Lrest, L),

shuffle(Lrest, Rrest, Srest),
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conc(L1, [E|Srest], S).

In this program, the last argument is the shuffle of the first two. It is conventional in Prolog pro-
gramming to place the arguments that tend to be thought of as inputs before those that are outputs.

Nondeterminism and modes

The shuffle program exhibits several important facets of Prolog programming. First, the notion
of a shuffle of two lists, unlike the notion of concatenation, is intrinsically nondeterministic. But
this causes no problem for the Prolog definition. Our definition will merely compute all the various
shuffles by backtracking, e.g.,

?- shuffle([a,b], [1,2], Shuffle).

Shuffle = [1,2,a,b] ;

Shuffle = [1,a,2,b] ;

Shuffle = [1,a,b,2] ;

Shuffle = [a,1,2,b] ;

Shuffle = [a,1,b,2] ;

Shuffle = [a,b,1,2] ;

no

Second, shuffle demonstrates the reversibility of Prolog programs. In particular, the predi-
cate conc is used in shuffle not only to concatenate two lists together (i.e., combining L1 and
[R1|Srest]), but also to take a list apart into two sublists (i.e., splitting L into L1 and Lrest).
Because Prolog programs like conc can be used to compute any of their arguments from any others,
they are said to be reversible.

To capture the idea of which arguments are being computed on the basis of which others, the
notion of a mode for a Prolog predicate can be defined. A mode tells which arguments are used as
inputs and which as outputs. That is, it specifies which arguments on execution of the predicate are
nonvariables and which are variables. Modes are typically notated by marking the input arguments
with the symbol + and the outputs with -. Thus, the normal mode for conc in its use as a program for
concatenating lists is conc(+,+,-). But the mode of the first use of conc in the shuffle program
is conc(-,-,+). By reversibility of Prolog programs, we merely mean that the same program can
be used in different modes, whereas in other languages, different programs must be designed for
each mode.

Although the third argument to conc is functionally dependent on the other two, inverses of
functions are not in general themselves functional. Thus using conc in mode conc(-,-,+) is
nondeterministic. Indeed, this is the source of the nondeterminism of the shuffle predicate itself.

There are severe restrictions on the reversibility of Prolog programs. Pure Prolog programs that
terminate when used in one mode may no longer terminate when used in another mode. Full Prolog
programs with their metalogical facilities can exhibit completely different behavior when executed
in different modes. Nonetheless, the use of Prolog programs with different modes is often a useful
technique, and it is important to note that pure Prolog programs will never allow contradictory
solutions just on the basis of being used in different modes. The worst that can happen is that
execution in certain modes will not terminate.
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Arithmetic tests and operations

While on the subject of mode limitations, we will mention some useful built-in predicates that
are restricted to operate only in certain modes. These restrictions arise for reasons of efficiency or
implementation ease but are in no way part of the logic. One may think of the restricted predicates as
approximations to ideal, logically correct predicates, which the Prolog system has not implemented
in their full generality.

The situation that arises when a restricted predicate is called in the wrong mode, that is, with
improperly instantiated arguments, is called an instantiation fault. Different Prolog systems han-
dle instantiation faults differently, but most will at least produce some kind of error message and
stop the execution of the faulting goal. Therefore, when using restricted predicates, it is im-
portant to keep track of calling patterns for predicates to make sure that the restricted ones are
called with the correct modes. This is shown clearly by the mergesort example in the next sec-
tion.

Among the constants that Prolog allows are numbers. Numbers can be compared using a set
of built-in Prolog predicates. For instance, the binary infix operator “<” holds of two numbers if
the first is less than the second. The “<” operator operates only in the mode + < +, that is, neither
argument may be a variable. Other arithmetic tests include “>” (greater than), “=<” (less than or
equal to), and “>=” (greater than or equal to) and have the same mode restrictions. Without these
mode restrictions, Prolog would either have to be able to backtrack through all pairs of numbers
satisfying an arithmetic comparison, leading to combinatorial explosion, or to delay the execution
of the comparisons until both arguments are instantiated. The latter approach has actually been
implemented in a few experimental Prolog systems.

In fact, in Edinburgh Prolog the arithmetic predicates are sensitive not only to the modes of their
arguments but also to their types, since only arithmetic expressions are allowed as the arguments of
comparisons. An arithmetic expression is a term built from numeric constants and variables with
various arithmetic operators such as +, *, -,and /, which is to be evaluated according to the usual
arithmetic evaluation rules to produce a number. When an arithmetic-predicate goal is executed, all
the variables in its expression arguments must be bound to numbers so that the expression may be
evaluated to a number.

The best way to understand arithmetic expressions is to think of them as shorthand for sequences
of calls to arithmetic relations defining the basic arithmetic operations. Thus, the goal

X*X + Y*Y > Z*Z

could be read as an abbreviation of

times(X, X, V1),

times(Y, Y, V2),

plus(V1, V2, V),

times(Z, Z, W),

V > W

where times and plus are hypothetical predicates that compute the obvious functions of their first
two arguments.

For arithmetic calculations, Edinburgh Prolog provides the binary infix predicate is with mode
? is + (where ? in a mode is intended to mean that the input/output distinction is not being deter-
mined for this argument). The second argument of is is some arithmetic expression, and the first
argument (typically a variable) is unified with the result of evaluating the second argument.
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It should be noted that type restrictions on the arguments of a predicate are of a different nature
from mode restrictions. Mode restrictions indicate that the implementation of a predicate is not able
to cope with uninstantiated arguments, usually because the implementation needs to know more
about the arguments to do anything sensible. The appropriate action for Prolog to take is therefore an
instantiation-fault report. In contrast, failure to prove is the conceptually correct action in the face of
arguments of incorrect type (e.g., non-numbers given to an arithmetic comparison predicate), since
these arguments are merely outside the extension of the predicate. However, many Prolog systems
signal an error on type restriction violations as an aid to debugging.

Sorting numbers

The final example is a program to sort lists of numbers. The algorithm we will use is called mergesort

because the basic operation is the merging of two previously sorted lists. The merge of two sorted
lists is a shuffle of the lists in which the output list is sorted.

Program 3.5
merge(A, [], A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [A|Merged]) :-

A < B,

merge(RestAs, [B|RestBs], Merged).

merge([A|RestAs], [B|RestBs], [B|Merged]) :-

B =< A,

merge([A|RestAs], RestBs, Merged).

Note that this merge operation is redundant, in the sense that there are two proofs for the goal
merge([], [ ], Merged). As a result, we get the following behavior.

?- merge([], [], Merged).

Merged = [] ;

Merged = [] ;

no

We will carefully avoid invoking the merge predicate in this way, so that the redundancy will not
affect the behavior of other programs.

Sorting using the merge operation consists of splitting the unsorted list into two smaller lists,
recursively sorting the sublists, and merging the results into the final answer. The recursion bottoms
out when the list to be sorted is too small to be split into smaller lists, that is, it has less than two
elements, in which case the sorted list is identical to the unsorted.

Program 3.6
mergesort([], []).

mergesort([A], [A]).

mergesort([A,B|Rest], Sorted) :-

split([A,B|Rest], L1, L2),

mergesort(L1, SortedL1),

mergesort(L2, SortedL2),

merge(SortedL1, SortedL2, Sorted).
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A simple (though nonoptimal) method for splitting a list into two lists of roughly equal size is to add
alternate elements in the list to the sublists. Again, the base case of the recursion occurs when the
list is too short.

Program 3.7
split([], [], []).

split([A], [A], []).

split([A,B|Rest], [A|RestA], [B|RestB]) :-

split(Rest, RestA, RestB).

We can demonstrate the mergesort program and its various ancillary predicates with the follow-
ing queries.

?- mergesort([3,1,4,2], [1,2,3,4]).

yes

?- mergesort([3,1,4,2], Sorted).

Sorted = [1,2,3,4]

yes

Note that mergesort cannot be used to “unsort” a sorted list (i.e., to generate permutations of
a sorted list); it cannot be used in mode sort(-,+). If it were so used, the execution of merge
inside would be with mode merge(?,?,-). Then the third clause of merge would execute < with
mode ? < -. But < must be executed in mode + < +. Consequently, mergesort will not execute
correctly in an “unsorting” mode. The impurity of < infects all programs that are built using it. Thus,
the merging and sorting programs are not in the pure subset of Prolog.

Exercise 3.3 Rewrite merge so that it does not generate redundant solutions.

Exercise 3.4 Write a definition for the binary predicate member, which determines whether its first

argument is an element in the list that is its second argument. For instance, the following queries

should work:

?- member(a, [a,b,c]).

yes

?- member(d, [a,b,c]).

no

?- member(f(X), [g(a),f(b),h(c)]).

X = b

yes

Exercise 3.5 Write a definition for the binary predicate reverse, which holds of two arguments if

one is a list that is the reverse of the other. For instance, the following queries should work:

?- reverse([a,b,c], [c,b,a]).

yes

?- reverse([a,b,c], [c,b,b,a]).

no
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?- reverse([a,X,c], [Y,b,a]).

X = b, Y = c

yes

Exercise 3.6 Write an alternative definition of split which works by placing the first half of the

elements on one list and the rest on another. (HINT: The difficult part is determining when you have

reached the middle of the list. Use a copy of the list as a counter to help you determine when you

have moved half the elements.)

3.4.2 Representing String Positions with Lists

An application of lists which we will use extensively is their use in representing string positions.
This representation can serve as the basis of an alternative method for axiomatizing phrase-structure
grammars. Instead of a specific set of connects clauses representing an input string as in Section
2.7.3, we have a single general clause:

Program 3.8
connects(Word, [Word|Rest], Rest).

Effectively, this clause induces a representation of each string position by the substring following

the position. In particular, the position after the last word is represented by the empty list [ ]. For
example, to use the grammar of Program 2.4 to parse the sentence

Terry writes a program that halts.

we need not put in unit clauses for the individual words. Instead, we use the list encoding of the
string itself as the initial position and the empty list as the final position:

:- s([terry,writes,a,program,that,halts],[]).

yes

The single connects clause then describes the relation between the words and their surrounding
positions.

3.5 The Logic and Operation of Prolog Revisited

The operation of pure Prolog should by now be relatively familiar. It seems appropriate, then, to
return to the logical foundations of Prolog, the presentation of which was begun in Section 2.3, and
extend it to the operation of Prolog presented informally in Sections 2.4 and 3.2.

For a logical language to be used for logic programming, we must have an effective proof pro-

cedure to test whether a goal statement is a consequence of the program.2 This proof procedure
must be efficient enough to make a proof step analogous in computational cost to, say, a function

2Actually, if the logical language is powerful enough to express all the kinds of relationships normally expressed by
programs (i.e., all recursive relations), then the proof procedure will be only a semidecision procedure: If the goal statement
is a theorem, the procedure will terminate with success, but it may loop for nontheorem goal statements—corresponding to
the fact that the language can express partial recursive functions that are not total.
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call in a traditional programming language; only in this way is the program execution (proof gener-
ation) sufficiently predictable in performance to qualify the proof procedure as a program execution
mechanism.

Because of the strict requirements on the computational behavior of programs in the language,
Prolog programs are restricted to definite clauses and queries to negative clauses. In this section, we
discuss the proof procedure that this restriction makes possible, an instance of a class of Horn-clause
proof procedures known as SLD resolution. First, however, we clarify some terms that have been
used in the informal discussions of Prolog execution, namely substitution and unification.

3.5.1 Substitutions

A substitution is a function from a set of variables x1, . . . , xk to terms t1, . . . , tk. Such a function is
notated {x1 = t1, . . . , xk = tk}. The application of a substitution σ to an expression e, notated [e]σ,
is the expression with all instances of the xi replaced by the corresponding ti. For example,

[ f (x, g(y))]{x = a, y = h(a, z)} = f (a, g(h(a, z))) .

If, for some σ, [e1]σ = e2, then e2 is said to be an instance of e1 and e1 is said to subsume e2. Thus
f (x, g(y)) subsumes f (a, g(h(a, z))). If e1 subsumes e2 but not vice versa, then e1 is more general

than e2. Thus f (x, g(y)) is more general than f (a, g(h(a, z))), but is not more general than f (z, g(w)).

3.5.2 Unification

Given two expressions e1 and e2, some substitutions σ may have the property that [e1]σ = [e2]σ;
the substitution σ serves to transform the expressions into identical instances. Such a substitution is
called a unifying substitution or unifier for e1 and e2. Not all pairs of expressions have unifiers. For
example, there is no unifier for the expressions f (a, x) and f (b, y). However, when two expressions
do have a unifier, they have one that can be considered most general. A most general unifier is a
unifier that, intuitively speaking, makes no commitments that are not called for by the expressions;
no extra variables are instantiated, nor are variables instantiated to more complex terms than is
necessary. More formally, σ is a most general unifier for e1 and e2 if and only if for every unifier
σ′ of e1 and e2, [e1]σ subsumes (is no less general than) [e1]σ′. When two expressions have a most
general unifier, then that unifier applied to either of the two expressions is a unification of the two
expressions.

The effect of most general unifiers is unique up to renaming of variables, in the sense that ifσ and
θ are most general unifiers of e1 and e2, then [e1]σ and [e1]θ either are identical or differ only in the
names of variables. Since the naming of variables in an expression is really an incidental property—
unlike the sharing structure of the occurrences of the variables—we can think of uniqueness up to
renaming as being, for all intents and purposes, actual uniqueness.

An algorithm that computes the most general unifier of two expressions is called a unification

algorithm, and many such have been designed. We will not discuss the details of unification algo-
rithms here, but mention one aspect of their design. A unification algorithm constructs a unifying
substitution by finding “mismatches” between the two expressions and adding appropriate bindings
to alleviate them. But consider the case of two expressions f (x) and f (g(x)). Although there is no
unifying substitution for these terms, a naive unification algorithm might note the mismatch between
the variable x and the term g(x) and construct the substitution {x = g(x)}. But applying this substi-
tution to the two terms, we have f (g(x)) and f (g(g(x))) respectively, which are not identical. Thus,
the substitution is not a unifier for the expressions. This example demonstrates that an algorithm
to compute most general unifiers must be careful not to construct substitutions in which a variable
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is assigned a term in which that variable occurs. For a unification algorithm to be correct, it must
check that such occurrences do not exist; this test is typically referred to as the occurs check.

3.5.3 Resolution

Given the tools of substitutions and unification, we can return to the issue of proof procedures for
Prolog. The use of refutation to construct proofs, as discussed in Section 2.3, is characteristic of
Robinson’s resolution principle. We will not discuss resolution in general here, but merely present
its specialization to Horn clauses, which for historical reasons is called SLD resolution.

SLD Resolution: From a query (a negative Horn clause)

N0 ∧ · · · ∧ Ni ∧ · · · ∧ Nm ⇒

and a definite clause
C0 ∧ · · · ∧ Ck ⇒ P0

where σ is a most general unifier of P0 and Ni, produce the new query

[N0 ∧ · · · ∧ Ni−1 ∧C0 ∧ · · · ∧Ck ∧ Ni+1 ∧ · · · ∧ Nm]σ⇒ .

The new query is called the resolvent of the original query and clause, obtained by resolving P0

and Ni. If the resolvent contradicts the program from which the definite clause was taken, then the
original query does also.

As we have seen in Section 2.3, to find an instance of a goal G of atomic formulas that follows
from a program, we try to show that the query G ⇒ contradicts the program. We show such a
contradiction with SLD resolution by constructing an SLD derivation of G, a sequence R0, . . . ,Rn

of queries such that R0 is G ⇒, Rn is the empty clause and each element of the sequence is obtained
from the preceding one by an SLD resolution step. Since the empty clause indicates contradiction,
we have shown that the original query G ⇒ contradicts the given definite-clause program.

Each step in the derivation, from Ri−1 to Ri, has an associated substitution σi. The goal instance
[G ⇒]σ1 · · ·σn is a counterexample to the query, which as we have seen means that [G]σ1 · · ·σn is
a consequence of the program. Because the substitutions are most general unifiers, this consequence
is the most general instance of the goal that follows by using this particular sequence of program
clauses. The derivation sequence can be seen as a traversal of a proof tree for the goal.

3.5.4 Prolog’s proof procedure

Prolog’s proof procedure, then, amounts to a particular instance of SLD resolution. As described
above, resolution is nondeterministic in that there are many resolvents that follow from a given
query, corresponding to the choice of literal in the query to resolve, and the choice of rule to resolve
the query literal against. The Prolog proof procedure makes these choices as follows: literals in a
query are resolved from left to right, and rules are tried in order from top to bottom in a depth-first,

backtrack search.
The proof procedure is depth-first because all ways of refuting a given resolvent are tried before

backtracking to try a different resolvent (by choosing a different rule to resolve against). As should
be apparent, the discussions of Prolog execution in Sections 2.4 and 3.2 were merely informal de-
scriptions of the Prolog variant of SLD resolution.
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3.5.5 Semantics of Prolog

Because of their relationship to Horn-clause logic, Prolog programs have both a declarative and a
procedural semantics. The declarative semantics of a program plus query is derivative on the seman-
tics of the Horn-clause subset of FOL. A goal follows from a program just in case the conjunction
of its negation and the program is unsatisfiable.

Note that the declarative semantics makes no reference to the sequencing of literals within the
body of a clause, nor to the sequencing of clauses within a program. This sequencing information
is, however, very relevant for the procedural semantics that Prolog gives to Horn clauses.

The procedural semantics reflects SLD resolution. A goal follows from a program just in case
the negated goal and program generate the empty clause by the Prolog proof procedure, that is,
left-to-right, top-to-bottom, depth-first, backtracking SLD resolution.

The Prolog proof procedure gives Horn-clause programs an interpretation in terms of more
usual programming constructs. The set of clauses with a particular predicate in the consequent
is the procedure that defines the predicate. Each clause in a procedure is like a case in a case or
conditional statement. Each literal in the antecedent of a clause is a procedure call.

This analogy with programming concepts for Algol-like languages is the basis of very efficient
implementation techniques for Prolog. However, this efficiency is bought at some cost. The two
semantics for Prolog diverge at certain points. The procedural semantics lacks completeness and
soundness relative to the declarative semantics.

The lack of completeness in the Prolog proof procedure results from the fact that Prolog’s depth-
first search for a proof may not terminate in some cases where in fact there is a proof. We saw this
problem in Program 2.3.

The lack of soundness comes from a property of the Prolog proof procedure that we have hereto-
fore ignored, namely, the lack of an occurs check (Section 3.5.2) in Prolog’s unification algorithm.
The occurs check is too expensive for general use in a basic operation of a computation mechanism
as unification is in Prolog; thus the unification algorithm used by Prolog is not sound. However, this
unsoundness is not a problem for the great majority of practical programs.3

Further divergence of the two semantics results from extralogical mechanisms that have been
introduced into Prolog. Some of these are discussed in Chapter 5.

3.6 Problem Section: Terms and Lists

Tree Manipulation

Suppose we encode trees like the parse trees of Section 2.7 using Prolog terms in the following way.
Internal tree nodes will be encoded with the binary function symbol node whose first argument is
the node label, and whose second is a list of the children of the node. Leaves of the tree will be
encoded with the unary function symbol leaf whose single argument is the label at the leaf. Thus
the tree of Figure 2.4 would be encoded as the Prolog term

node(s, [node(np, [node(det, [leaf(a)]),

node(n, [leaf(program)]),

node(optrel, [])]),

node(vp, [node(iv, [leaf(halts)])])])

3There is also a way to reinterpret the Prolog proof procedure in a domain of [conceptually] infinite terms such that it is
sound with respect to that class of interpretations (Colmerauer, 1986; Jaffar and Stuckey, 1986.)
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Although this method for encoding trees is more complex than the one we will use for parse
trees in Section 3.7.1, this method is preferable for general tree-manipulation programs because it
limits the number of functors introducing tree nodes to two.

The fringe of a tree is just the leaves of the tree in order. Thus, the fringe of the example tree is
the list [a, program, halts]. In formal-language theory, the fringe of a parse tree is called the
yield of the tree.

Problem 3.7 Write a program implementing the relation fringe(Tree, List), which holds just

in case Tree, a tree encoded as above, has fringe List.

Simplifying Arithmetic Expressions

Terms can represent arithmetic expressions. Using function symbols + and * and representing vari-
ables by the term x(V) and constants by c(C), we can represent the expression

x1 + x2 ∗ (0 + 1)

by the term

+(x(1), *(x(2), +(c(0), c(1))))

or, using the fact that + and * are infix operators in most Prologs,

x(1) + x(2) * (c(0) + c(1)) .

However, this arithmetic expression can be simplified using certain identities. Because zero is the
additive identity, 0 + 1 can be simplified to 1. Because one is the multiplicative identity, x2 ∗ 1 can
be simplified to x2. Thus the whole expression can be simplified to x1 + x2.

Problem 3.8 Write a program that implements the binary relation simplifies_to such that the

following behavior is engendered:

?- simplifies_to(x(1) + x(2) * (c(0) + c(1)), S).

S = x(1) + x(2)

yes

You can use simplifications such as the multiplicative and additive identities, distributivity of

multiplication over addition, multiplication by zero, and so forth. (HINT: In general it is preferable

to simplify an expression after simplifying its arguments.)

Tree Grammars4

In the same way as phrase-structure grammars define sets of strings in terms of rules that rewrite
nonterminal symbols, one may define certain classes of trees in terms of rules that rewrite certain
nonterminal tree nodes into other trees. This is best explained in terms of the representation of trees
as logic terms.

Let Σ be a set of function symbols and X a set of variables. Then the set of Σ-terms over X TΣ(X)
is the least set of terms satisfying the following inductive conditions:

4This section and the included problems are intended primarily for the formally inclined reader.
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S

A                    B                   C

 a         1         b          2         c         3

⇒

S

1     2     3

Figure 3.2: A tree rewrite

• If x ∈ X then x ∈ TΣ(X).

• If f ∈ Σ is a n-ary function symbol and t1, . . . , tn are terms inTΣ(X), then f (t1, . . . , tn) ∈ TΣ(X).

That is, TΣ(X) is the set of terms built from the variables in X with the function symbols in Σ. In this
definition and in what follows, constants are identified with nullary function symbols.

Let Σ = N∪T where N (the nonterminals) and T (the terminals) are two disjoint sets of function
symbols. Nonterminals stand for tree nodes that may be rewritten into subtrees, terminals for nodes
of the final trees. A tree all of whose nodes are terminal is called a terminal tree.

Tree rewriting is done by productions that are the tree analog of phrase-structure grammar rules.
A production over Σ is a pair (A(x1, . . . , xn), t) (which is conventionally written A(x1, . . . , xn) → t).
A is an n-ary nonterminal, x1, . . . , xn are variables and t ∈ TΣ({x1, . . . , xn}). This production states
that a term with main function symbol A and subterms t1, . . . , tn may be rewritten into the new term
[t]σ, where σ is the substitution {x1 = t1, . . . , xn = tn}. Notice that by definition every variable that
occurs in t is one of the xi.

For example, consider N = {S 3}, T = A2, B2,C2, a0, b0, c0 and the production S (x1, x2, x3) →
S (A(a, x1), B(b, x2),C(c, x3)). Figure 3.2 shows the application of this rule to a node of a tree to
derive a new tree.

In general, productions can apply to any node of a tree and not only to the root node. To define
this formally, consider a set of productions Π, a ground term t, and one of its subterms s. Clearly,
there is a unique nonground term c ∈ TΣ({x}) such that t = [c]{x = s}. Assume that there is a rule
s′ → u in Π such that s′ and s unify with most general unifier σ. Then we say that t rewrites into
t′ = [c]{x = [u]σ}, in symbols t ⇒ t′. Informally, we have applied the production to the subtree s of

t and replaced s in t by the result [u]σ of the production. As usual, we will use the notation t
∗
⇒ t′

for the reflexive-transitive closure of the rewriting relation.
Formally, a context-free tree grammar is a triple (Σ, S ,Π) of a finite function symbol (tree node)

alphabet divided in terminals and nonterminals as above, a finite set Π of productions over Σ and a
finite set S of start trees, which are ground terms over Σ. A terminal tree (term) t is the tree language

generated by the grammar if there is a start tree s ∈ S such that s
∗
⇒ t. Finally, the string language

yielded by a tree grammar is the set of the yields of the trees generated by the grammar.
Context-free tree grammars are so called because productions apply freely to tree nodes without

regard for the form of the tree above or below the node. One should carefully distinguish this notion
of context-freeness from the one for string grammars. The string languages yielded by context-free
tree grammars are in general in the class of indexed languages, which is a larger class than that of
context-free languages (Aho, 1968; Rounds, 1969).

Problem 3.9 Write a context-free tree grammar whose yield is the set of strings anbncn for n > 0.
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In the problems that follow, you may want to take advantage of the encoding for trees used in
the previous section.

Problem 3.10 Define an encoding of context-free tree grammars in Prolog. You should give encod-

ings for terminals, nonterminals, start trees, and productions.

Problem 3.11 It can be shown (Maibaum, 1974) that when constructing a derivation of a terminal

tree from a start tree of a context-free tree grammar it is only necessary to consider production

applications to outermost nonterminal nodes, that is, nodes whose ancestors are all terminals. This

strategy is called outside-in (O-I) rewriting. Using the encoding from the last problem, write a

program that performs O-I rewriting to nondeterministically generate terminal trees in the tree

language of an arbitrary context-free tree grammar. In this problem, you must use the search order

of Prolog to avoid looping without producing any answers. Use the grammar of Problem 3.9 to test

your program.

3.7 Definite Clause Grammars

In Section 2.7 we saw how to translate CFGs into Horn clauses, in fact into definite clauses. This
translation method can be used as the basis for an extension of CFGs based on definite clauses,
definite-clause grammars (DCGs).

The general form of the definite clause associated with a context-free grammar rule

N0 → V1 · · ·Vn

is (in Prolog notation)

n0(P0, P) :- v1(P0, P1), ..., vn(Pn-1, P).

We can generalize such an axiom by allowing, in addition to the two predicate arguments for the
string positions, additional arguments that further specify the expression type. For instance, suppose
we want to distinguish the number of noun and verb phrases—whether they are singular or plural—
so as to guarantee that sentences are composed of NPs and VPs with the same number. We might
extend the axiomatization of the grammar and dictionary with an additional argument in certain
predicates (e.g., np, vp, pn) encoding number. A fragment of such a grammar would look like this:

Program 3.9
s(P0, P) :-

np(Number, P0, P1),

vp(Number, P1, P).

np(Number, P0, P) :-

pn(Number, P0, P).

vp(Number, P0, P) :-

tv(Number, P0, P1),

np(_, P1, P).

vp(Number, P0, P) :-

iv(Number, P0, P).
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pn(singular, P0, P) :- connects(shrdlu, P0, P).

pn(plural, P0, P) :- connects(they, P0, P).

iv(singular, P0, P) :- connects(halts, P0, P).

iv(plural, P0, P) :- connects(halt, P0, P).

tv(singular, P0, P) :- connects(writes, P0, P).

As an example, the first rule in this grammar encoding states that an s (sentence) may be an np
(noun phrase) with number value Number followed by a vp (verb phrase) with the same number.
Note the use of an anonymous variable (Section 3.4) for the object NP in the transitive verb rule as a
way of ignoring the number of the object. This grammar admits the sentence “ halts” but not
“* halt”5 even though both verbs are intransitive.

:- s([shrdlu,halts], []).

yes

:- s([shrdlu,halt], []).

no

:- s([they,halt], []).

yes

Just as the two-argument-predicate clauses can be seen as encoding context-free grammars, these
multiple-argument-predicate clauses can be seen as encoding a generalization of context-free gram-
mars, called definite-clause grammars (DCG). DCGs differ from CFGs just in the way this extended
encoding of rules in Horn clauses differs from the simple two-argument encoding: A DCG non-
terminal may have arguments just like the arguments of a predicate, and a terminal symbol may
be an arbitrary term. For instance, the extended Prolog encoding above axiomatizes the following
definite-clause grammar. (We here use the FOL conventions for variables and constants discussed
in Section 2.3.)

S→ NP(xnum) VP(xnum)

NP(xnum)→ PN(xnum)

VP(xnum)→ TV(xnum) NP(ynum)

VP(xnum)→ IV(xnum)

PN(s)→ shrdlu

PN(p)→ they

IV(s)→ halts

IV(p)→ halt

TV(s)→ writes

The meaning of a DCG rule is given by translating the rule into a definite clause using the same
mapping as for context-free rules except that now an n-argument nonterminal is translated into an
n + 2-argument literal in which the final two arguments represent string positions.

Definite-clause grammars are so useful that Prolog systems often include a special notation for
encoding them directly, rather than having to go through the clumsy translation described above. In
particular, the notation used within Prolog to notate a DCG rule is the following:

• Predicate and function symbols, variables, and constants obey normal Prolog syntax.

5We are here using the convention from the linguistics literature that in discussions of grammaticality, ungrammatical
strings are prefixed with asterisks to highlight the fact that they are not expressions of English. Of course, this is just an
expository device; the asterisks themselves have no place in grammars that people write.
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• Adjacent symbols in the right-hand side of a DCG rule are separated by the “,” operator, just
like literals in a clause.

• The arrow in a DCG rule is “-->”.

• Terminal symbols are written inside Prolog list brackets “[” and “]”.

• The empty string is represented by the empty list constant “[ ]”.

For example, the DCG grammar painstakingly encoded in Program 3.9 could be directly stated
in Prolog using the Prolog DCG notation as:

s --> np(Number), vp(Number).

np(Number) --> pn(Number).

vp(Number) --> tv(Number), np(_).

vp(Number) --> iv(Number).

pn(singular) --> [shrdlu].

pn(plural) --> [they].

iv(singular) --> [halts].

iv(plural) --> [halt].

tv(singular) --> [writes].

The Prolog DCG notation allows context-free grammars to be stated directly in Prolog as well,
since CFGs are a special case of DCGs. In so doing, the Prolog statements of the grammars are
considerably more succinct. For instance, the English fragment of Program 2.4 could be directly
stated in Prolog as:

Program 3.10
s --> np, vp.

np --> det, n, optrel.

np --> pn.

vp --> tv, np.

vp --> iv.

optrel --> [].

optrel --> [that], vp.

pn --> [terry].

pn --> [shrdlu].

iv --> [halts].

det --> [a].

n --> [program].

tv --> [writes].

In fact, Prolog systems typically perform the appropriate translation from DCG rules like these to
Prolog clauses immediately upon reading the program, and the clauses are stored internally in the
fully expanded form. Consequently, queries will receive the same replies as the expanded version,
e.g.,

:- s([terry,writes,a,program,that,halts],[]).
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s

np           vp

Nom    VerbDet NP

Figure 3.3: A partially specified tree

yes

The connection between definite-clause grammars and Prolog is a close one. But it is important
to keep in mind that DCGs are a formal language independent of their Prolog encoding just as Horn
clauses are of their instantiation in Prolog programs. For instance, just as Prolog is an incomplete
implementation of Horn-clause theorem-proving, the DCG notation as interpreted by Prolog is in-
complete for DCGs in the abstract. We have tried to emphasize the difference by using a different
notation (akin to that of CFGs) for DCGs in the abstract, before presenting the Prolog notation. The
distinction between DCGs in the abstract and their statement in Prolog using the special notation is
important to keep straight as it has, in the past, been the source of considerable confusion.

3.7.1 Trees for Simple Sentences

The DCG ability to add arguments to the nonterminals in a grammar is useful in a variety of ways.
The addition of more detailed syntactic information such as agreement features, which we saw in
the previous section and which will be explored in more detail in later problems, is just one of these.
Indeed, much of the remainder of these notes is merely elaboration on this basic capability.

As a simple example of the utility of argument-passing in DCGs we will develop a grammar
which not only recognizes the strings in the fragment of English of Program 3.10, but also builds a
representation of the parse tree for the sentence, encoded as a Prolog term.

Terms can be seen as partially specified trees in which variables correspond to as yet unspecified
subtrees. For example, the term

s(np(Det,Nom),vp(Verb,NP))

corresponds to the (partial) tree of Figure 3.3 in which the variables may be replaced by any trees.
It is therefore only natural to use terms to represent parse trees in definite clause grammars. To do

this, every nonterminal predicate will have an argument representing the parse tree for that portion
of the string covered by the nonterminal. For each nonterminal there will be a homonymous function
symbol to represent a node of that type. Finally, we will use a constant, epsilon, to represent an
empty subtree.

The following DCG covers the same fragment of English as the CFG axiomatized in Program
3.10, but it adds an argument to each nonterminal predicate to carry the parse tree. Once the DCG
is translated into a Prolog program, the execution of the resulting program is very similar to that of
the earlier one, except that unification incrementally builds the tree for the sentence being analyzed.

Program 3.11
s(s(NP,VP)) --> np(NP), vp(VP).
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np(np(Det,N,Rel)) --> det(Det), n(N), optrel(Rel).

np(np(PN)) --> pn(PN).

vp(vp(TV,NP)) --> tv(TV), np(NP).

vp(vp(IV)) --> iv(IV).

optrel(rel(epsilon)) --> [].

optrel(rel(that,VP)) --> [that], vp(VP).

pn(pn(terry)) --> [terry].

pn(pn(shrdlu)) --> [shrdlu].

iv(iv(halts)) --> [halts].

det(det(a)) --> [a].

n(n(program)) --> [program].

tv(tv(writes)) --> [writes].

For example, the analysis of “Terry writes a program that halts” would be as follows:

?- s(Tree, [terry,writes,a,program,that,halts],[]).

Tree = s(np(pn(terry)),

vp(tv(writes),

np(det(a),

n(program),

rel(that,

vp(iv(halts))))))

yes

Notice that the parse tree for a noun phrase without a relative clause still includes a relative
clause node covering the symbol epsilon representing the empty string.

?- np(Tree, [a, program], []).

Tree = np(det(a),

n(program),

rel(epsilon))

yes

3.7.2 Embedding Prolog Calls in DCGs

The abstract DCG formalism augments CFGs by allowing nonterminals to take extra arguments
which, through the sharing of logical variables, allow passing of information among subphrases.
However, no other form of computation other than this sharing of information is allowed. The
Prolog notation for DCGs goes beyond this limited form of computation in DCGs by providing a
mechanism for specifying arbitrary computations over the logical variables through direct execution
of Prolog goals. Prolog goals can be interspersed with the terminals and nonterminals on the right-
hand side of a DCG rule. They are distinguished from the grammatical elements notationally by
being embedded under the bracketing operator “{· · ·}”.
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Removing extraneous tree nodes

As a simple example, we will modify the parse-tree-building grammar in such a way that noun-
phrase parse trees do not include nodes for empty relative clauses. There are several methods for
achieving this behavior. We take the simple expedient of building the parse tree for the NP us-
ing a separate Prolog program for this purpose. Thus, the only change to the grammar involves a
modification of the NP formation rule.

np(NP) --> det(Det), n(N), optrel(Rel),

{build_np(Det,N,Rel,NP)}.

The build_np predicate operates in mode build_np(+,+,+,-), building the parse tree for an NP
from the trees for the subconstituents. In the case where the relative-clause tree is empty, no node is
included in the output parse tree.

build_np(Det, N, rel(epsilon),

np(Det,N)).

build_np(Det, N, rel(that,VP),

np(Det,N,rel(that,VP))).

Using this modified grammar, the behavior of the grammar on simple noun phrases becomes:

?- np(Tree, [a, program], []).

Tree = np(det(a),

n(program))

yes

Simplifying the lexicon

One of the most common uses for adding Prolog goals to a DCG is the simplification of the encoding
of the lexicon. Imagine a DCG with a large lexicon. Rather than encoding the lexicon with separate
DCG rules for each lexical item, e.g.,

...

n --> [problem].

n --> [professor].

n --> [program].

...

it is much simpler and less redundant to have a single DCG rule:

n --> [Word], {n(Word)}.

that says that the nonterminal n can cover any terminal symbol that is an n. Along with this single
rule, we need a dictionary like this:

...

n(problem).

n(professor).

n(program)
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...

The utility of this technique is magnified in the context of lexical items associated with extra
arguments. If an argument is directly computable from the word itself, the lexical entry can perform
the computation and the dictionary entry need not give a value for the argument. Such is the case
for the parse trees associated with terminal symbols. Thus, for the parse-tree-building grammar, the
lexical entries might look like

n(n(Word)) --> [Word], {n(Word)}.

And for arguments that are idiosyncratically related to the word, for example, grammatical number,
the dictionary entry will contain this information in tabular form.

n(Number) --> [Word], {n(Word, Number)}.

...

n(professors, plural).

n(program, singular).

n(programs, plural).

...

In fact, a more succinct encoding of grammatical paradigms uses unit clauses to list the entries in
the paradigm as a table and uses the lexicon rules to decode the table. For instance, for nouns we
might have

n(singular) --> [Word], {n(Word, _)}.

n(plural ) --> [Word], {n(_, Word)}.

...

n(professor, professors).

n(project, projects).

n(program, programs).

...

For verbs, the table might include entries for each form of the verb, as is done in Appendix A.
Using this technique in the English fragment we have been developing, we have the follow-

ing grammar, with dictionary augmented to include some lexical items we will find useful in later
examples.

Program 3.12
s --> np, vp.

np --> det, n, optrel.

np --> pn.

vp --> tv, np.

vp --> iv.

optrel --> [].

optrel --> [that], vp.
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det --> [Det], {det(Det)}.

det(a). det(every).

det(some). det(the).

n --> [N], {n(N)}.

n(author). n(book).

n(professor). n(program).

n(programmer). n(student).

pn --> [PN], {pn(PN)}.

pn(begriffsschrift). pn(bertrand).

pn(bill). pn(gottlob).

pn(lunar). pn(principia).

pn(shrdlu). pn(terry).

tv --> [TV], {tv(TV)}.

tv(concerns). tv(met).

tv(ran). tv(wrote).

iv --> [IV], {iv(IV)}.

iv(halted).

3.8 Problem Section: DCGs

3.8.1 The Syntax of First-Order Logic

First-order formulas are built from the following vocabulary:

• A countable set of variables V ,

• Countable sets Fn of n-ary function symbols for each n ≥ 0 (the elements of F0 are also called
constants),

• Countable sets Pn of n-ary predicate symbols for each n ≥ 0,

• The connectives ∀, ∃, ∨, ∧, ¬, and

• The punctuation marks (, ), and ,.

The set of first-order terms is the smallest set satisfying the following conditions:

• Each variable is a term.

• If f is an n-ary function symbol (an element of Fn) and t1, . . . , tn are terms, then f (t1, . . . , tn)
is a term. As a special case, if n = 0, f as a term can be written without parentheses. In such
a case, f is referred to as a nullary function or, more simply, a constant.

The set of well-formed formulas (wffs) is the smallest set satisfying the following conditions:

• If p is an n-ary predicate symbol (an element of Pn) and t1, . . . , tn are terms, p(t1, . . . , tn) is a
wff.
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• If p is a wff and x is a variable, (∀x)p and (∃x)p are wffs.

• If p1 and p2 are wffs, (p1 ∨ p2) and (p1 ∧ p2) are wffs.

• If p is a wff, ¬p is a wff.

For example

(∀x)(= (x, 0) ∨ (∃y) = (s(y), x))

is a wff assuming that x and y are in V , 0 is in F0, s is in F1 and = is in P2.

Problem 3.12 Define an encoding of the vocabulary of first-order logic as Prolog terms. Your en-

coding should represent each vocabulary item as a distinct Prolog term in such a way that the repre-

sentation of each type of item (variable, function symbol, predicate symbol, etc.) is distinguishable

from all the others. Using this representation, write a DCG defining the set of wffs. (HINTS: Make

sure you can distinguish function and predicate symbols of different arities; if for your solution you

need an encoding of numbers, you can either use the successor notation for numbers or the built-in

arithmetic facilities of Prolog discussed in Section 3.4.1).

A term or wff occurs in a wff iff the term was used in constructing the wff according to the
inductive definition of wffs given above. A string of one of the forms ‘(∀x)’ or ‘(∃x)’ is a binder for
x. In a wff of the form B p where B is a binder and p is a wff, p is the scope of B. An occurrence of a
variable x is bound in a wff if and only if the variable occurrence occurs within the scope of a binder
for x. A wff is closed if and only if every one of its variable occurrences is bound. For example,

(∀x)p(x, x)

is closed but

(∀x)p(x, y)

is not.

Problem 3.13 Modify your wff analyzer to accept only closed wffs.

A binder for x in a wff is vacuous if there is no occurrence of x in the scope of the binder. For
example, the binder (∃x) is vacuous in

(∃x)p(a) .

Problem 3.14 Modify your wff analyzer to accept only closed wffs without vacuous binders.

3.8.2 Extending Syntactic Coverage

The following problems deal with extending the sophistication of the syntactic treatments in the
grammars we are developing.
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NP            's          professor                                             DET             N        OPTREL        

every        student

DET            N         OPTREL                                                               some    programmer

DET                        OPTREL                                              NP               's        program

NP              's             book                           concerns      DET            N         OPTREL

DET             N         OPTREL         TV                              NP

NP                                                 VP

S

N

Figure 3.4: Parse tree with possessives
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Possessives

The grammar of Program 3.12 does not accept sentences using the English possessive construction,
such as “Every student’s professor’s book concerns some programmer’s program”. In general, a
noun phrase followed by the possessive suffix ’s plays the same syntactic role as a determiner. Thus,
an appropriate parse tree for the sentence above would be Figure 3.4.

Problem 3.15 Extend the DCG above to accept the English possessive construction according to

the analysis exemplified in this analysis tree. Assume that the possessive suffix is represented by the

constant s in the input string. Testing the DCG will probably be unsuccessful as the analysis will

undoubtedly be left-recursive.

The analysis of possessives illustrated in the tree of Figure 3.4 is left-recursive, that is, a phrase
type X has a possible analysis as Xα. (In this particular case, the noun phrases may be analyzed as
a noun phrase followed by an ’s and a noun.)

As the discussion in the previous problem and Section 2.5.2 show, left-recursive analyses cause
problems with the use of Prolog as a DCG parser. A possible technique to avoid this problem is to
transform (by hand, or, in some cases, automatically) a left-recursive grammar into one without left-
recursion that is weakly equivalent to the original one, that is, that accepts exactly the same strings
even though it assigns them different structures.

Problem 3.16 Develop a non-left-recursive grammar for the English sentences covered by the

grammar in the last problem. To what extent are systematic methods for converting left-recursive

CFGs to weakly equivalent non-left-recursive ones (such as are discussed by Hopcroft and Ullman

(1979, pages 94–99)) applicable to definite-clause grammars?

Problem 3.17 (Easy) Modify your solution of the previous problem to produce a parse tree, as was

done in the previous section.

Problem 3.18 (More difficult) Modify your solution of Problem 3.16 to produce left-recursive parse

trees like the one given above. How general is your method?

Problem 3.19 Modify your solution so that so-called heavy NPs, e.g., noun phrases with relative

clauses, are disallowed in possessives. For instance, the following NP should be ungrammatical

according to the grammar: “* a program that halts’s programmer”.

Prepositional Phrases

Prepositional phrases (PP) are used in English in a variety of ways. They can play the role of an
adverbial phrase modifying the entire action described by a verb and its complements, as in

Terry wrote a program with a computer.
Every professor wrote a book for a dollar.

And like relative clauses, they can modify a class of objects given by a noun, e.g.,

Every program in Bill’s book halts.
Alfred met a student with a problem.
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In Problem 4.6, we will see yet another role for PPs.
Typical analyses of the structure of English sentences containing PPs place them as siblings to

the constituent they modify. Thus, adverbial PPs are siblings of VPs (or, under certain conditions,
Ss), and noun-modifying PPs are siblings of N (like relative clauses). There are two ways that such
a configuration could come about. Consider the VP-modifying adverbial PPs. The PP could occur
under the S node, just as the VP does. Alternatively, a new node under the S could cover both the VP
and the PP. Usually, this node is considered to be a VP itself, thus allowing for a left-recursive VP
structure. Linguistically, this analysis may be preferred because it allows for several adverbials to
follow a VP. The left recursion, however, presents a problem for Prolog; therefore, we will assume
the former analysis. Indeed, the positioning of relative clauses directly under NP as a sibling of
the noun was chosen for the same reason, to avoid the left recursion implicit in the more traditional
analysis.

Note that the first and last example sentences include the same categories of lexical items, i.e.,

PN TV Det N P Det N

Yet intuitively the first PP modifies the verb phrase—it is the writing of the program that is performed
with a computer—while the second does not modify the VP—it is not the meeting of the student
that is performed with a problem. These two sentences are thus syntactically ambiguous, though
semantically only one of the two readings seems plausible. This phenomenon of ambiguity in the
structural placement of PPs is often called the PP attachment problem.

Problem 3.20 Write DCG rules to allow adverbial and NP-modifier PPs such as those above. You

will need rules not only for the prepositional phrases themselves but also for their use in modifying

VPs and NPs. Is your grammar ambiguous, that is, does it display the PP attachment ambiguities

discussed above? How might you augment the grammar (presumably with semantic information) so

that spurious readings are filtered out?

Subject-Verb Agreement

In Section 3.7 we alluded to the phenomenon of subject-verb agreement in English. This problem
explores the phenomenon in greater detail.

In English, subjects agree with the verb they are the subject of both in person (first, second or
third) and in number (singular or plural). For instance, the string “*I writes programs” is not a
grammatical English sentence because the word “I” is a first-person, singular noun phrase, whereas
the verb “writes” is third-person, singular. On the other hand, “I write programs” is grammatical
because “write” is a first-person singular verb. Of course, it is also second-person singular as in
“you write programs” and any-person plural as in “they write programs”, “we write programs”, etc.

The problem is compounded in that in complex noun phrases, such as “a programmer” or “all
programmers”, both the determiner and the noun carry agreement information. So we have “all
programmers write programs” but not “* all programmers writes programs” or “* a programmers
write programs” or “* a programmers writes programs”. A final complication is the fact that certain
determiners, nouns, and verbs are unmarked for person or number or both. For instance, as we
have seen above, the word “write” viewed as a plural verb is unmarked for person. The determiner
“the” is unmarked for number, as seen in “the programmer” and “the programmers”. Rarer are
nouns that are unmarked for number. Examples include so-called summation plurals (e.g., scissors,
binoculars, jeans), certain foreign words (e.g., corps, chamois, although there is a difference in
pronounciation despite identical spelling in the singular and plural), certain other words ending in
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-s (e.g., crossroads, species, series), some nationality terms (e.g., Chinese, Eskimo) and some other
idiosyncratic nouns (e.g., offspring, aircraft), and certain zoological terms (e.g., fish, sheep, salmon,
etc.

Thus, we have “a fish swims” and “all fish swim”. We could handle this phenomenon by having
separate lexical entries for the singular noun fish and the plural noun fish just as we would have
separate entries for the noun fish and the verb fish, but a nicer solution is to allow entries to be
unmarked for person and/or number. Nonetheless, the less elegant solution is still needed for the
first/second-person singular verb write, since leaving it unmarked for person would allow the string
“* he write a program” as a sentence.

Problem 3.21 Extend the grammar so that it requires that subjects agree with verbs in sentences

and that determiners and nouns agree as well. You should do this by adding a single extra argument

to appropriate nonterminals to hold agreement information. Discuss the following facets of the

solution:

1. How the various strings are or are not admitted (parsed) by the grammar.

2. How certain lexical entries can be underspecified for certain agreement information. Demon-

strate at least the full paradigm of agreement of the verb halt and the verb be, that is, make

sure you have sufficient lexical entries for all the forms of the verb.

3. What you do for proper nouns and pronouns.

4. Why it is preferable to use only one argument position for agreement.

(For the purposes of these problems you can think of pronouns like I, we, he, etc. as merely a

type of proper noun.)

Relative Clause Agreement

Agreement in English does not stop at the subject and the verb of the whole sentence. Even sub-
clauses like relative clauses display this phenomenon. Thus the string

A program that concerns Bertrand halted.

is a grammatical sentence whereas

*A program that concern Bertrand halted.

is not, even though in both cases the subject “a program...” agrees with the verb halted. The problem,
of course, is that the implicit subject of the verb phrase in the relative clause “concern Bertrand” is
that same phrase “a program” (often called the head of the relative clause), but the verb concern is
either plural or first- or second-person singular, whereas “a program” shows third-person singular
agreement.

Problem 3.22 Extend your grammar so that it captures the phenomenon of agreement between

heads of relative clauses and the verbs in the relative clause. Again demonstrate that your solution

interacts appropriately with normal subject-verb agreement, underspecified lexical entries, etc.
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Subcategorization

We have seen in previous grammars that different verbs require different complements, that is,
phrases following them in the verb phrase. So, for instance, the verb wrote requires a single noun
phrase following it as in the VP “met Bertrand”. Thus the string “*met Bertrand a book” is not
a grammatical VP (or anything else for that matter), nor is “*met”. On the other hand, the verb
gave requires (or, in the linguistics jargon, subcategorizes for) two NPs, not one, as in the VP
“gave Bertrand a book”, but not “*gave Bertrand”. This phenomenon of subcategorization has been
primitively encoded in previous grammars in the distinction between TVs (transitive verbs) and IVs
(intransitive verbs). In this problem we will investigate subcategorization in more detail.

One possible solution to the subcategorization problem is to associate another argument to each
verb, its subcategorization type. Then for each type, we would have a rule that admitted only verbs
of the appropriate type. Here is a piece of a grammar using this method of subcategorization (but
ignoring agreement, verb form, etc.):

Program 3.13
vp --> v(intransitive).

vp --> v(transitive), np.

vp --> v(ditransitive), np, np.

vp --> v(dative), np, pp.

...

v(intransitive) --> [halted].

v(transitive) --> [met].

v(ditransitive) --> [gave].

v(dative) --> [gave].

...

(By dative here we mean that the verb requires a noun phrase and a prepositional phrase with the
preposition to as in “gave the book to Bertrand”. Thus the verb gave has two subcategorization
frames: ditransitive and dative.)

The phenomenon has been called subcategorization because the extra argument puts verbs into
subclasses, or subcategories, of the main category verb. Estimates by linguists as to the number of
different subcategorization frames, i.e., types of subcategorization, vary, but at least 30 such rules
are postulated for English by Gazdar et al. (1985) and probably many more would be required.
Estimates run as high as the tens of thousands (Gross, 1975). For this reason (and the fact that we
have already given this solution), we will not use this sort of attack on the problem.

Instead, we will use a different technique for handling subcategorization. We will have a single
rule allowing a verb phrase to be formed from a verb followed by a sequence of zero or more
complements where a complement is either a noun phrase or a prepositional phrase. The verb will
have a list of complement types in its lexical entry. For instance, the verb gave might have the
list [np,np], the verb halted might have the empty list [ ]. While building up the sequence of
complements, the grammar will keep track of the types of the complements and make sure they
match the list in the lexical entry for the verb. The sequence of complements “Bertrand a book”
would have the associated list of types [np,np]. Since this matches the lexical entry for the verb
gave, the grammar would allow “gave Bertrand a book” but since it doesn’t match the empty list,
the grammar would disallow “*halted Bertrand a book”.

Problem 3.23 Extend your grammar so that it handles subcategorization requirements of verbs

in the way just described. Demonstrate that it allows appropriate verb phrases and sentences and
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conversely for non-sentences. Then extend the solution to capture the fact that the verb gave requires

a prepositional phrase with the preposition to whereas bought requires a PP with the preposition

from, e.g., “bought a book from Bertrand”.

Notice that in either of the subcategorization methods mentioned here a PP complement is (a
subconstituent of) a sibling of the verb, rather than a sibling of the VP as adverbial PPs are. This
can be a further source of the kind of grammatical ambiguity discussed in Problem 3.20.

3.9 Bibliographic Notes

Edinburgh Prolog syntax is so simple that a detailed account of the syntax is rarely required when
programming. The manual for each particular Prolog implementation usually contains a full de-
scription of the syntax for reference purposes. Appendix I of the DEC-10 Prolog manual contains
such a description for the Edinburgh family of Prologs (Bowen, 1982).

Functional programming (Section 3.3) has been developed for many of the same reasons as logic
programming has been (Backus, 1978). Efforts to introduce functional and equational notions into
logic programming languages have been numerous. A good cross-section can be found in the book
by DeGroot and Lindstrom (1986). Equality (i.e., equational logic) as a sufficient basis for logic
programming is developed by O’Donnell (1985).

The term “logical variable” (Section 3.3) was introduced by D. H. D. Warren (1977) to distin-
guish the specific procedural properties given to the variables in definite clauses by Prolog, or more
generally by SLD proof procedures, from both the variables of imperative languages (names for
assignable locations) and the variables of functional languages (names for values). The distinguish-
ing characteristics of logical variables include their role in standing for as yet unfilled parts of a term
and their ability to become coreferential through variable-to-variable bindings.

Lists as a data structure (Section 3.4) are heavily used in languages other than Prolog. In par-
ticular, the programming language  (which stands for t rocessing) makes heavy use of lists.
Many introductory  books are available, but few introduce the subject as simply and clearly as
the original  1.5 Programmers’ Manual (McCarthy, et al., 1965). The modern  dialect 
is thoroughly discussed in an excellent textbook by Abelson and Sussman (1985).

The notion of modes (Section 3.4.1) for predicates in logic programs appeared first in the DEC-
10 Prolog. Mode declarations allowed the DEC-10 Prolog compiler to generate better code for
predicates known to be used only in certain modes (Warren, 1977; Warren, 1979). The concept has
since then been explored as an additional control mechanism for logic programs (Clark and McCabe,
1981; Naish, 1986) and in global program-optimization techniques (Mellish, 1985).

Mode assignments depend on the particular order of calls in a program. Thus correct mode
assignments are program properties tied to the program’s procedural interpretation. Other properties,
such as what types of arguments predicates accept, depend only on the declarative interpretation of
programs (Mycroft and O’Keefe, 1984; Mishra, 1984). Type assignments to predicates can be
useful both for program verification and for compilation. Methods to compute both declarative
and procedural properties of Prolog programs, among them mode and type assignments, often rely
on the techniques of abstract interpretation, a means of analyzing the properties of programs by
interpreting them over simplified data domains in which the properties of interest are computable
(Mellish, 1986; Jones and Søndergaard, 1987).

As we noted before, the resolution method (Section 3.5) is due to Robinson (1965). Resolution,
substitutions, and unification are covered in any of the automated deduction books mentioned on
Section 1.5; Robinson’s treatment (1979) is particularly clear. The special case of SLD resolution is
discussed by Lloyd (1984), who gives a detailed mathematical account of the semantics of Prolog.
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Definite-clause programs define relations over the Herbrand universe, the set of all ground terms
built from the constants and function symbols in the program. It is possible to represent the tape
of a Turing machine as a term, and it is then not difficult to show that the relation betweeen initial
and final configurations for any Turing machine can be represented by a definite-clause program
(Tärnlund, 1977). Furthermore, it is possible to show that any computable function on terms, for a
suitable definition of computation on terms, can be represented without encoding of the data by a
definite-clause program (Andreka and Nemeti, 1976). The overall computation model given by SLD
resolution is rather similar to the alternating Turing machine model (Shapiro, 1982). Background
material on notions of computability and decidability from computer science and logical perspec-
tives can be found in the books by Hopcroft and Ullman (1979) and Boolos and Jeffrey (1980)
respectively.

The concept of definite-clause grammar (Section 3.7) was introduced by Pereira and Warren
(1980). DCGs are a simplification of Colmerauer’s metamorphosis grammars (1978), which were
the first grammar formalism based on Horn clauses. Metamorphosis grammars and definite-clause
grammars are two instances of logic grammars, grammar formalisms whose meaning is given in
terms on an underlying logic. Even from a fixed logic such as definite clauses, one can construct
distinct formalisms depending on what grammatical notions one chooses to make part of the for-
malism instead of representing explicitly by grammar rules. Examples of such formalisms include
extraposition grammars (Pereira, 1981), definite-clause translation grammars (Abramson, 1984) and
gapping grammars (Dahl and Abramson, 1984). The basic notion of logic grammar has also been
instantiated within other logics, in particular Rounds’s logics for linguistic descriptions, which for-
malize certain aspects of DCGs to give logical definitions for natural recognition-complexity classes
of formal languages (Rounds, 1987).

The construction of efficient sorting algorithms (Section 3.4.1) is of course a very important
problem in computer science. The most thorough design and analyses of sorting algorithms (Knuth,
1973) have usually been done for random-access memory machine models. It is possible to rewrite
many of those algorithms (eg. bubblesort, quicksort) for Prolog’s declarative model, but in general
the computational cost of the algorithm will change, because the sequences to be sorted are encoded
as lists rather than as arrays with direct access to all elements. Algorithms specifically designed to
sort lists, such as mergesort, are more suitable for implementation in Prolog, which is the reason for
our choice of example.

Tree grammars (Section 3.6) were introduced as the grammatical counterparts of generalized
automata that operate on trees (Rounds, 1969). The yields of regular tree grammars (finite-state-tree
automata) are exactly the context-free languages, and the yields of context-free tree grammars are
exactly the indexed languages (Rounds, 1970). Indexed languages have another characterization, the
indexed grammars introduced by Aho (1968; Hopcroft and Ullman, 1979), which are much closer
in form to definite-clause grammars.

Arithmetic expression simplification is a particular case of the general problem of rewriting an
expression according to a set of equations giving the algebraic laws of the operators in the expres-
sions, e.g., associativity or commutativity. The rewriting method we suggest in Section 3.6 is rather
simple-minded. More sophisticated approaches involve methods to determine an orientation for
equations so that the result of applying an equation is in some appropriate sense simpler than the
starting expression, and methods for completing a set of equations so that the order of application of
oriented equalities does not matter. These techniques are surveyed by Huet and Oppen (1980) and
Buchberger (1985).

Subcategorization has been a primary phenomenon of interest in modern linguistics, and there
are as many analyses of the phenomenon as there are linguistic theories, if not more. We start by
using a subcategorization method (Program 3.12) loosely based on the terminology of Montague
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grammar. The first augmentation (Program 3.13) is inspired by Gazdar et al. (1985). Section 3.8.2
works toward an analysis common in the logic programming field; it was first published by Dahl
(1981) and extended by several authors such as McCord (1982). Similar analyses employing lists,
but in slightly different ways, can be found in HPSG (Sag and Pollard, 1986) and PATR-II (Shieber,
1985a).

The PP attachment problem (Section 3.8.2) has received much attention in the computational
linguistics literature. A particularly detailed discussion is that of Church (1980; Church and Patil,
1982). Pereira (1982) discusses the problem from a logic grammar perspective.
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In this chapter, we will be concerned with extending the capabilities and coverage of grammars
in two ways. First, we will explore grammars that express not only syntactic but also semantic
relationships among constituents. These grammars incorporate constraints on how the meaning of
a phrase is related to the meanings of its subphrases. Second, we will extend the range of syntactic
constructions covered by previous grammars. Both of these kinds of extensions will prove useful in
the next chapter in the development of a simple natural-language question-answering system.

4.1 Semantic Interpretation

First, we turn to the incorporation of semantic information into a DCG. A common way to model the
semantics of a natural language is to associate with each phrase a logical form, that is, an expression
from some logical language that has the same truth conditions as the phrase. A simple recursive
method for maintaining such an association is possible if the logical form associated with a phrase
can be composed out of the logical forms associated with its subparts. This compositional method
for modeling the semantics of a natural language is the hallmark of the highly influential work by
the logician Richard Montague and his students and followers.

Montague used a higher-order logic based on the typed lambda calculus, intensional logic, as the
language for logical forms. We will describe a vastly simplified form of compositional semantics
inspired by Montagovian techniques but using first-order logic extended with an untyped lambda
calculus as the logical form language. Then we will show how such a semantics can be encoded in
a DCG which builds logical forms in the course of parsing. A technique of general utility, partial

execution, will be introduced as a method with which we can simplify the DCG. We will then

71



72

A hardbound edition of Prolog and Natural-Language Analysis is available from

www.mtome.com and other booksellers.

Chapter 4. Further Topics in Natural-Language Analysis

proceed to discuss several topics in the encoding of semantics, namely, quantifiers, quantifier scope,
and (after the appropriate syntactic background in Section 4.2) filler-gap dependencies.

4.1.1 The Lambda Calculus

In the semantics we will develop, logical forms for sentences will be expressions in first-order logic
that encode propositions. For instance, the sentences “ halts” and “Every student wrote a pro-
gram” will be associated with the first-order logic expressions halts(shrdlu) and (∀s)student(s) ⇒
(∃p)(program(p)&wrote(s, p)), respectively.

We again emphasize the differences between the FOL notation we use here (see Section 2.3) and
the notation for Prolog. The differences help to carefully distinguish the abstract notion of logical
forms from the particular encoding of them in Prolog. FOL formulas will later be encoded in Prolog
not as Prolog formulas, but as terms, because our programs are treating the formulas as data.

Most intermediate (i.e., nonsentential) logical forms in the grammar do not encode whole propo-
sitions, but rather, propositions with certain parts missing. For instance, a verb phrase logical form
will typically be a proposition parameterized by one of the entities in the situation described by the
proposition. That is, the VP logical form can be seen as a function from entities to propositions,
what is often called a property of entities. In first-order logic, functions can only be specified with
function symbols. We must have one such symbol for each function that will ever be used. Because
arbitrary numbers of functions might be needed as intermediate logical forms for phrases, we will
relax the “one symbol per function” constraint by extending the language of FOL with a special
function-forming operator.

The lambda calculus allows us to specify functions by describing them in terms of combinations
of other functions. For instance, consider the function from an integer, call it x, to the integer x + 1.
We would like to specify this function without having to give it a name (like succ as we have done
previously). The expression x+1 seems to have all the information needed to pick out which function
we want, except that it does not specify what in the expression marks the argument of the function.
This problem may not seem especially commanding in the case of the function x + 1, but when we
consider the function specified by the expression x + y, it becomes clear that we must be able to
distinguish the function that takes an integer x onto the sum of that integer and y from the function
that takes an integer y onto the sum of it and x.

Therefore, to pick out which variable is marking the argument of the function, we introduce
a new symbol “λ” into the logical language (hence the name “lambda calculus”). To specify a
function, we will use the notation

λx.φ ,

where x is the variable marking the argument of the function and φ is the expression defining the
value of the function at that argument. Thus we can specify the successor function as λx.x + 1
and the two incrementing functions can be distinguished as λx.x + y and λy.x + y. We will allow
these lambda expressions anywhere a functor would be allowed. For instance, the following is a
well-formed lambda calculus term:

(λx.x + 1)(3) .

Intuitively, such a function application expression should be semantically identical to the expression
3 + 1. The formal operation called (for historical reasons) β-reduction codifies this intuition. The
rule of β-reduction says that any expression of the form

(λx.φ)a
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can be reduced to the (semantically equivalent) expression

[φ]{x = a} ,

that is, the expression φ with all occurrences of x replaced with a. We ignore here and in the sequel
the problem of renaming of variables, so-called α-conversion, to avoid capture of free variables.
In the examples to follow, we will always make sure that variables in the various lambda-calculus
expressions being applied are distinct. The scoping rules of Prolog (Section 2.5.1), being geared
toward logical languages in the first place, guarantee the appropriate scoping of variables in the
case of the encoded logical language as well. In fact, this is one of the advantages of using Prolog
variables to encode variables in the logical form language, as we will do in Section 4.1.3 below.

We will see in the next section how the lambda calculus and β-reduction can be used to provide
a simple compositional semantics for a fragment of English.

4.1.2 A Simple Compositional Semantics

We will now consider how to specify a semantics for the fragment of English given as the context-
free grammar in Section 2.7 and axiomatized in Programs 2.4 and 3.10. We will associate with each
context-free rule a corresponding rule for composing the logical forms of the subconstituents into
the logical form for the parent constituent. For instance, associated with the rule

S→ NP VP

we will have the rule1

Semantic Rule 1: If the logical form of the NP is NP′ and the logical form for the VP is VP′

then the logical form for the S is VP′(NP′).

and with the rule

VP→ TV NP

we will associate

Semantic Rule 2: If the logical form of the TV is TV ′ and the logical form of the NP is NP′

then the logical form for the VP is TV ′(NP′).

For instance, the sentence “ halts” can be decomposed into an NP and a VP. Suppose the
logical form for the NP “” is shrdlu and that for the VP “halts” is halts. Then by Semantic
Rule 1 above, the logical form for the whole sentence will be halts(shrdlu), an expression which,
under the natural interpretation and idealizations, has the same truth conditions as the sentence
“ halts”. So far, no use of the lambda calculus extension to first-order logic has been needed.

Now consider the sentence “Bertrand wrote Principia”. Again, we will have the log-
ical forms for the proper nouns “Bertrand” and “Principia” be bertrand and principia re-
spectively. The logical form for the transitive verb “wrote” will be the lambda expres-
sion λx.λy.wrote(y, x). By the second rule above, the VP “wrote Principia” will be associ-
ated with the expression (λx.λy.wrote(y, x))(principia), which by β-reduction is equivalent to
λy.wrote(y, principia). Now by the first rule above, the sentence “Bertrand wrote Principia” is

1By convention, we will notate variables representing the logical form associated with a nonterminal by adding a prime
suffix.
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      NP                 VP

wrote                            principia

λx.λy.wrote(y,x)                 principia
bertrand                            V                                  NP 

 bertrand                       λy.wrote(y, principia)

wrote(bertrand, principia) 
S

Figure 4.1: Parse tree with logical forms

associated with the logical form (λy.wrote(y, principia))(bertrand), which, β-reducing again, is
equivalent to wrote(bertrand, principia). The derivation can be summarized in the parse tree of
Figure 4.1, which has been annotated with appropriate logical forms. Similar semantic rules could
be given to the other context-free rules in the grammar to allow the building of logical forms for a
larger class of phrases.

Exercise 4.1 What do the following lambda-calculus expressions reduce to?

1. (λx.halts(x))(shrdlu)

2. ((λy.λx.halts(x))(shrdlu))(lunar)

3. (λy.λp.λx.wants(x, p(y)))(shrdlu)(λz.halts(z))(terry)

4. (λy.yy)(λy.yy)

4.1.3 Encoding the Semantic System in Prolog

We now turn to the issue of encoding such a grammar with compositional semantics in Prolog.
Several problems face us. First, we must be able to encode logical forms in Prolog. Second, we
must be able to associate with each constituent an encoded lambda expression. Finally, we must be
able to encode the process of β-reduction.

As mentioned before, we will encode all FOL expressions—both formulas and terms—as Pro-
log terms, since we will be manipulating them as data within the DCGs. As it turns out, we will
encode FOL variables in Prolog as Prolog variables, and FOL function symbols as Prolog function
symbols, but this is where the isomorphism stops, for FOL quantifiers, predicate symbols, and con-
nectives will also receive encodings as Prolog function symbols. In particular, we will encode the
universal quantification (∀x)φ with the Prolog term all(X, φ′), where φ′ is the Prolog encoding of
φ. Similarly, (∃x)φ is encoded as exists(X, φ′).2 The implication and conjunction connectives

2From a strict logical point of view, the use of Prolog variables to encode FOL variables is incorrect, being a case of
confusion between object variables (those in the logical form) and metalanguage variables (those in Prolog, the metalanguage
used here to describe the relation between strings and logical forms). It would be possible to avoid this confusion between
object and metalanguage variables with a somewhat more complicated description. However, this particular abuse of notation,
if properly understood, is unlikely to cause problems and brings substantial benefits in program simplicity.
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are encoded with the binary infix functor symbols “=>” and “&” respectively. All FOL predicate and
function symbols are encoded by their homonymous Prolog function symbols.

Lambda expressions consist of a variable and a logical expression which uses that variable.
We will encode the pairing of the variable with the expression with a new infix binary Prolog
operator, the caret “ˆ”. Thus the lambda expression λx.x + 1 would be encoded in Prolog as
Xˆ(X+1). Similarly, the lambda expression λx.λy.wrote(y, x) would be encoded as the Prolog term
XˆYˆwrote(Y,X), assuming right associativity of “ˆ”.3

We solve the second problem—associating an encoded lambda expression with each
constituent—using the by now familiar technique of adding an argument position to each nonter-
minal to hold the logical form encoding. So a skeletal DCG rule for combining an NP and VP to
form an S (ignoring for the moment the constraints on the logical forms expressed in Semantic Rule
1) will be:4

s(S) --> np(NP), vp(VP).

which can be read as “a sentence with logical form S can be formed by concatenating a noun phrase
with logical form NP and a verb phrase with logical form VP”.

Finally, we model the application of a lambda expression and subsequent β-reduction with the
predicate reduce. The intended interpretation of a literal reduce(Function, Arg, Result) is
that Result is the β-reduced form of the application of the lambda expression Function to the
argument Arg. We implement the predicate with the following single unit clause.

Program 4.1
reduce(ArgˆExpr, Arg, Expr).

The earlier examples of β-reduction can now be handled by this Prolog encoding. For in-
stance, corresponding to the reduction of the application (λx.halts(x))(shrdlu) to the logical form
halts(shrdlu) we have the following Prolog dialogue:

?- reduce(Xˆhalts(X), shrdlu, LF).

LF = halts(shrdlu)

The other examples are handled similarly.
The reduce predicate performs a single outermost reduction. It does not reduce a lambda ex-

pression until no further reductions can be performed. That is, it does not reduce to canonical form.
For instance, consider an expression that has a variable bound by a λ used as a function in the body of
the lambda expression, e.g., λp.p(a). When this lambda expression is itself applied to, say, λy. f (y),
the result can be reduced to f (a). The Prolog encoding of the former expression, PˆP(a), is not
even well-formed. Even if it were, the reduce predicate does not perform internal reductions, but
only the reduction associated with the outermost expression. When expressions with internal appli-
cations like this are needed, we will be forced to implement the internal applications with explicit
reduce literals. For instance, the troublesome lambda expression λp.p(a) could be implemented as
PˆQ where reduce(P,a,Q) holds.

Using the reduce predicate, we can now directly encode the compositional semantic rules de-
scribed above. For the first semantic rule applying the VP logical form to that of the NP, we add to
the DCG an appropriate extra condition.

3There is precedent for the use of the caret to form lambda expressions. The notation that Montague himself used for the
lambda expression λx.φ was (ignoring details of intensionality operators) x̂φ, which we have merely linearized.

4For ease of expression within the Prolog syntax, we drop the priming convention when writing Prolog clauses.
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s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.

Similarly, for the verb-phrase rules, we have,

vp(VP) --> tv(TV), np(NP), {reduce(TV, NP, VP)}.

vp(VP) --> iv(VP).

Lexical entries must now include semantic information.

tv(XˆYˆwrote(Y,X)) --> [wrote].

iv(Xˆhalts(X)) --> [halts].

np(shrdlu) --> [shrdlu].

np(terry) --> [terry].

Given this augmented grammar and lexicon, which is merely the direct encoding of the type
of compositional semantic rules presented at the beginning of this section, we can parse simple
sentences while building encodings of their logical forms in the process.

?- s(LF, [shrdlu, halts], []).

LF = halts(shrdlu)

yes

?- s(LF, [terry, wrote, shrdlu], []).

LF = wrote(terry, shrdlu)

yes

and so forth.

4.1.4 Partial Execution

In this section, we will introduce a technique called partial execution which is a device of general
utility for the manipulation of Prolog (and other logic and functional) programs. Partial execution
of a program involves the replacing of certain computations that would normally be performed at
execution time by changes to the program itself.

Pure Prolog programs are particularly well suited for partial execution because this technique is
just a different way of applying the basic Horn-clause computation rule, resolution, that is used for
normal execution.

For instance, consider the DCG rule

s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.

The computation of the reduce condition is deterministic and involves only the mutual binding of
several variables. If we change the clause by performing these bindings in the clause itself, we can
actually remove the reduce literal, since its purpose has been fulfilled. In the case at hand, reduce
merely requires that VP be of the form NPˆS. If we guarantee this in the clause, i.e.,

s(S) --> np(NP), vp(NPˆS).
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we can leave off the application, as it is already implicit in the clause. The clause is said to have
been partially executed with respect to the reduce predicate.

Similarly, we can partially execute the transitive VP clause to get

vp(VP) --> tv(NPˆVP), np(NP).

Partial execution becomes more complex in the face of nondeterminism. If the literal we are
removing from a clause by partial execution has several solutions, we must replace the original
clause by all of the possible partial executions of the original. Clearly, partial execution of a clause
with respect to a literal is useful only if there are a finite number of solutions to the literal in the
context of the clause. If there are potentially an infinite number, then we must in general wait
until run time to execute the literal, in the hope that the previous computation will provide enough
restrictions on the goal literal to limit the search space.

From now on, we will often eschew explicit reduce literals by implicitly partially executing the
clauses so as to remove them. We will discuss partial execution in more detail in Section 6.4.

4.1.5 Quantified Noun Phrases

In attempting to extend the technique of compositional semantics to the rest of the context-free
grammar in Program 3.12, we immediately run into problems with the rule for quantified noun
phrases. Consider a sentence such as “every program halts”. The natural first-order logical form for
this sentence is

(∀x)program(x)⇒ halts(x) .

Using the encoding of FOL as Prolog terms, this would be

all(X, program(X) => halts(X)) .

Notice that the main functor of the expression is the universal quantifier, whereas the application
of the logical form for “halts” will always result in the main functor of the output being the predicate
halts. This problem in term manipulation is actually the formal reflex of a much deeper problem
noticed by Montague, which led to a drastic reorganization of his compositional semantics. Unlike
the simple two-rule grammar above, in which verb-phrase logical forms apply to noun phrases,
Montague required noun phrases (which are, of course, the source of the quantifier functors) to apply
to verb phrase arguments. For instance, for the sentence “every program halts”, the verb “halts” will
retain its logical form λx.halts(x), but the noun phrase will have the LF λq.(∀p)program(p)⇒ q(p).
Applying the noun phrase LF to that of the verb phrase, we have

(λq.(∀p)program(p)⇒ q(p))(λx.halts(x)) =
(∀p)program(p)⇒ (λx.halts(x))(p) =
(∀p)program(p)⇒ halts(p) .

The DCG rule encoding this revised application direction is

s(S) --> np(VPˆS), vp(VP).

The verb phrase logical forms will be encoded as before. Noun phrases, on the other hand will
now be of the form

Qˆall(M, (program(M) => R)) ,
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where R is the application of Q to M, that is, reduce(Q,M,R) holds. (Recall that such internal
applications would not be performed automatically by the reduce predicate, so we must list them
explicitly.) In fact, we can remove this extra condition by partial execution with respect to the
reduce predicate, yielding the rather more cumbersome

(MˆR)ˆall(M, (program(M) => R)) .

The LF associated with the noun “program” we will take to be the simple property of being a
program, that is, λx.program(x) encoded in Prolog as Xˆprogram(X). Determiners will be functors
from noun logical forms (simple properties) to the complex NP logical forms like that above. Thus,
the determiner “every” will have the logical form

λp.λq.(∀x)p(x)⇒ q(x)

encoded in Prolog (with applications removed by partial execution) as

(XˆP)ˆ(XˆQ)ˆall(X,(P => Q)) .

The lexical entry for “every” is therefore

det( (XˆP)ˆ(XˆQ)ˆall(X,(P => Q)) ) --> [every].

As implied above, determiners will be functions on their noun arguments, so the DCG rule for NP
formation (ignoring relative clauses for the moment) is:

np(NP) --> det(NˆNP), n(N).

Exercise 4.2 Check that these rules and lexical entries allow for the following parse, and give its

proof tree.

?- s(LF, [every, program, halts], []).

LF = all(X, (program(X) => halts(X)))

yes

Given the reorientation of application, we have developed an appropriate LF for determined
noun phrases, but we must rework the encoding of proper noun meanings we were using before.
Clearly, their LFs must be modified to respect the new application direction. In particular a proper
noun like “” must, like all NPs, be a function from VP-type LFs to full sentence LFs; that is,
it must be of the form

VPˆS ,

where reduce(VP, shrdlu, S) holds. By partial execution, we have the relatively unintuitive
logical form

(shrdluˆS)ˆS .

In any case, the lexical entry

np( (shrdluˆS)ˆS ) --> [shrdlu].
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allows the parse

?- s(LF, [shrdlu, halts], []).

LF = halts(shrdlu)

yes

as before.
The logical form for “” seems unintuitive because it is not the encoding of any lambda

expression. The position that should be occupied by a variable is occupied by a constant shrdlu.
Actually, we have seen a similar phenomenon before in LFs for determiners and noun phrases, in
which the same position is occupied by a full lambda expression. Partial execution of applications
can yield bizarre expressions, exactly because the execution is partial. Only part of the work of
β-reduction is done, the remainder being performed at run time when the appropriate variables are
instantiated. Thus, we should not worry too much that the encoding of the lambda expressions we
are using has certain properties that the calculus in the abstract does not have.

Finally, modifying the transitive verb phrase rule, again changing the direction of
application, consider the verb phrase “wrote a program”, which should have the LF
λz.(∃p)program(p)&wrote(z, p). Recall that the LFs for “wrote” and for “a program” are, respec-
tively, λx.λy.wrote(y, x) and λq.(∃p)program(p)&q(p). To simplify the derivation, we vary the
treatment of transitive verbs slightly, taking the LF for “wrote” to be λx.λy.wrote(x, y). Thus we
want the VP’s LF to be λz.NP′(TV ′(z)).

Exercise 4.3 Check that this lambda expression is the appropriate one for NP′ and TV ′ as in the

example above.

In Prolog, we have:

vp(ZˆS) -->

tv(TV), np(NP),

{reduce(TV,Z,IV),

reduce(NP,IV,S)}.

which through partial execution is equivalent to

vp(ZˆS) --> tv(ZˆIV), np(IVˆS).

The full fragment of Program 3.12, augmented so as to produce logical forms, is given below.

Program 4.2
:- op(500,xfy,&).

:- op(510,xfy,=>).

s(S) --> np(VPˆS), vp(VP).

np(NP) -->

det(N2ˆNP), n(N1), optrel(N1ˆN2).

np((EˆS)ˆS) --> pn(E).

vp(XˆS) --> tv(XˆIV), np(IVˆS).

vp(IV) --> iv(IV).
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optrel((XˆS1)ˆ(Xˆ(S1 & S2))) --> [that], vp(XˆS2).

optrel(NˆN) --> [].

det(LF) --> [D], {det(D, LF)}.

det( every, (XˆS1)ˆ(XˆS2)ˆall(X,(S1=>S2)) ).

det( a, (XˆS1)ˆ(XˆS2)ˆexists(X,S1&S2) ).

n(LF) --> [N], {n(N, LF)}.

n( program, Xˆprogram(X) ).

n( student, Xˆstudent(X) ).

pn(E) --> [PN], {pn(PN, E)}.

pn( terry, terry ).

pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.

tv( wrote, XˆYˆwrote(X,Y) ).

iv(LF) --> [IV], {iv(IV, LF)}.

iv( halts, Xˆhalts(X) ).

Exercise 4.4 Check that the grammar as augmented now allows the following parses, and give their

proof trees:

?- s(LF, [terry, wrote, shrdlu], []).

LF = wrote(terry, shrdlu)

yes

?- s(LF, [every, program, halts], []).

LF = all(P,program(P)=>halts(P))

yes

?- s(LF, [every, student, wrote, a, program], []).

LF = all(S,student(S)=>

exists(P,program(P)&

wrote(S,P)))

yes

Exercise 4.5 How does this grammar handle the semantics of relative clauses?

The role of unification and the logical variable in incrementally building complex representations
is clearly evident in DCGs that describe the relation between natural-language sentences and their
logical meaning representations.

We can illustrate the order in which a logical form is built during parsing by the analysis trace of
the sentence “Every program halts”. The trace has been simplified by replacing variables referring
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to string positions with ? and by omitting uninteresting subgoals. String positions were changed
from lists to integers for readability.

?- s(LF, 0, 3).

(1) 0 Call: s(S_1,0,3)

(2) 1 Call: np(VP_2^S_1,0,?)

(3) 2 Call: det(N2_3^VP_2^S_1,0,?)

(5) 3 Call: det(every,N2_3^VP_2^S_1)

(5) 3 Exit: det(every,(X_5^S1_5)^

(X_5^S2_5)^

all(X_5,S1_5=>S2_5))

(3) 2 Exit: det((X_5^S1_5)^

(X_5^S2_5)^

all(X_5,S1_5=>S2_5),0,1)

(6) 2 Call: n(N1_6,1,?)

(8) 3 Call: n(program,N1_6)

(8) 3 Exit: n(program,X_8^program(X_8))

(6) 2 Exit: n(X_8^program(X_8),1,2)

(9) 2 Call: optrel((X_8^program(X_8))^

X_5^S1_5,2,?)

(9) 2 Exit: optrel((X_5^program(X_5))^

X_5^program(X_5),2,2)

(2) 1 Exit: np((X_5^S2_5)^

all(X_5,program(X_5)=>S2_5),0,2)

(11) 1 Call: vp(X_5^S2_5,2,3)

(12) 2 Call: tv(X_5^IV_12,2,?)

(14) 3 Call: tv(halts,X_5^IV_12)

(14) 3 Fail: tv(halts,X_5^IV_12)

(12) 2 Fail: tv(X_5^IV_12,2,?)

(15) 2 Call: iv(X_5^S2_5,2,3)

(17) 3 Call: iv(halts,X_5^S2_5)

(17) 3 Exit: iv(halts,X_5^halts(X_5))

(15) 2 Exit: iv(X_5^halts(X_5),2,3)

(11) 1 Exit: vp(X_5^halts(X_5),2,3)

(1) 0 Exit: s(all(X_5,program(X_5)=>

halts(X_5)),0,3)

LF = all(X_5,program(X_5)=>halts(X_5))

yes

During the DCG execution by Prolog, the np in the s rule is executed first, even though part
of its argument VP will be fully determined only when the vp literal is executed. This pattern of
operation pervades the grammar, and shows how the logical variable helps put together a complex
expression without having to know beforehand the full specification of its parts.

4.1.6 Quantifier Scope

The DCG of Program 4.2 and those of Problems 4.6 and 4.7 have a serious deficiency in their
handling of quantifier scope. For a sentence like
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Every professor wrote a book.

the grammar assigns the single interpretation

all(P, professor(P) =>

exists(B, book(B) & wrote(P, B))) ;

that is, for every professor there is a book that he or she wrote. Now, this wide scope interpretation
of “every” might agree with our common sense, but it is not the only combinatorially possible one.
In the other, less intuitive interpretation, there is a single book that every professor wrote:

exists(B, book(B) &

all(P, professor(P) => wrote(P,B)))

This narrow scope interpretation for “every” is in fact the more intuitive one in sentences like

Every student ran a program that the professor wrote for his dissertation.

It is clear that decisions on the likelihood of differently scoped logical forms for a sentence
depend on many sources of information, such as empirical knowledge about the kind of situation
being described and the actual order of words in the sentence. In any case, scope decisions are too
subtle to be determined purely by the syntactic structure of sentences, as they are in the grammar of
Program 4.2.

The overall issue of scope determination is therefore a very difficult open research question
(Woods, 1977; Vanlehn, 1978; F. C. N. Pereira, 1982). Here, we will address the simpler question
of scope generation: how to generate logical forms for a sentence with all combinatorially possible
quantifier scopings. Such a generator could then be used to propose alternative scopings to scope

critics that would use syntactic and empirical information to choose likely scopings.
A scope generator has to satisfy two major constraints:

• Soundness: Every formula generated must be a closed well-formed formula (that is, without
free variables) corresponding to a correct scoping of the sentence.

• Completeness: Every combinatorially possible scoping will be generated.

A basic observation we need is that the meaning of a determiner is a function of a noun meaning
and an intransitive verb phrase meaning, the range and scope respectively. Alternative quantifier
scopings in the logical form correspond to alternative choices of range and scope for the quantifiers
in the sentence meaning. The job of the scope generator is thus to consider the determiners in a
sentence and generate all possible choices of range and scope for the corresponding quantifiers.

The method we will use here for scope generation relies on building an intermediate represen-
tation, a quantifier tree, whose nonleaf nodes correspond to determiner meanings (quantifier nodes)
or logical connectives (connective nodes) and whose leaf or predication nodes correspond to the
translations of nouns, verbs and other content words in the input sentence. The daughters of a quan-
tifier node include a determiner meaning and two subtrees from which the determiner meaning at
the node will get its range and scope. The quantifier nodes thus represent delayed decisions as to the
range and scope of their quantifiers. For example, the quantifier tree for

Every professor that wrote a book ran a program.
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                        q

     P^Q^all(X,P  Q)  &                       q
 

   professor(X)      q  T^U^exists(Z, T & U)

R^S^exists(Y, R & S)                  program(Z)

                 book(y)                        ran(X,Z)

wrote(X,Y)

Figure 4.2: Quantifier tree

is shown in Figure 4.2.
In practice, we will represent a quantifier node by a term of the form q(D, R, S ), where D

is the expression representing the determiner meaning and R and S are the subtrees from which
Ds range and scope will be obtained. A connective node is represented by the connective itself
applied to its arguments, and a predication node with contents P will be represented by ‘P. The
backquote (“ ‘ ”) is used as a prefix operator to syntactically distinguish predications that have not
been scoped both from predications that have been scoped and from the quantifier and connective
nodes. The use of the operator allows a simple check of the main functor to distinguish among the
various cases.

The following grammar is a simple modification of that of Program 4.2 that builds a quantifier
tree rather than a logical form directly.

Program 4.3
:- op(500,xfy,&).

:- op(510,xfy,=>).

:- op(100,fx,‘).

s(T) --> np(VPˆS), vp(VP), {pull(S, T)}.

np(NP) -->

det(N2ˆNP), n(N1), optrel(N1ˆN2).

np((EˆS)ˆS) --> pn(E).

vp(XˆS) --> tv(XˆIV), np(IVˆS).

vp(IV) --> iv(IV).



84

A hardbound edition of Prolog and Natural-Language Analysis is available from

www.mtome.com and other booksellers.

Chapter 4. Further Topics in Natural-Language Analysis

optrel((XˆS1)ˆ(Xˆ(S1 & S2))) --> [that], vp(XˆS2).

optrel(NˆN) --> [].

det(LF) --> [D], {det(D, LF)}.

det( every, (XˆS1)ˆ(XˆS2)ˆ

q(PˆQˆall(X,P=>Q),S1,S2) ).

det( a, (XˆS1)ˆ(XˆS2)ˆ

q(PˆQˆexists(X,P&Q),S1,S2) ).

n(LF) --> [N], {n(N, LF)}.

n( book, Xˆ(‘book(X)) ).

n( professor, Xˆ(‘professor(X)) ).

n( program, Xˆ(‘program(X)) ).

n( student, Xˆ(‘student(X)) ).

pn(E) --> [PN], {pn(PN, E)}.

pn( terry, terry ).

pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.

tv( ran, XˆYˆ(‘ran(X,Y)) ).

tv( wrote, XˆYˆ(‘wrote(X,Y)) ).

iv(LF) --> [IV], {iv(IV, LF)}.

iv( halts, Xˆ(‘halts(X)) ).

This grammar generates the following quantifier tree for the sample sentence above.

q(PˆQˆall(X,P=>Q),

‘professor(X)&q(RˆSˆexists(Y,R&S),

‘book(Y),

‘wrote(X,Y)),

q(TˆUˆexists(Z,T&U),

‘program(Z),

‘ran(X,Z)))

This is just the term encoding of the tree of Figure 4.2.
In the first sentence rule, the extra condition pull(S, T) invokes the pull predicate that defines

the translation relation between quantifier trees and first-order formulas. Thus the quantifier tree is
translated into FOL to provide a logical form for the whole sentence.

The binary predicate pull is itself defined in terms of a ternary predicate, also called pull,
which defines the relation between a quantifier tree, a matrix, and a store of quantifiers. The matrix is
a formula with free variables, and the store is a list of quantifiers whose ranges have been determined,
but not their scopes. The name “pull” suggests the idea of “pulling” quantifiers out of storage and
applying them to a matrix to produce a closed formula. The quantifiers in storage are represented
by λ-expression encodings. For example, the stored element for the noun phrase “every student” is
the term Pˆall(S, student(S) => P). Applying a quantifier to a matrix is thus simple function
application with reduction.
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The order of quantifiers in a store list indicates their relative scopes in the final result. The
quantifiers that appear earlier in the list, i.e., farther towards the front, have been chosen to have
wide scope over those at the back of the list.

The nondeterminism in the definition which produces alternative scopings comes from the uses
of the predicates shuffle and conc to operate on storage lists. These predicates were defined previ-
ously as Programs 3.3 and 3.4 in Section 3.4.1, where we noted that shufflewas nondeterministic,
as was conc when used in its “reverse” mode.

The ternary pull predicate turns a simple predication node into a matrix with empty store.

pull(‘Predication, Predication, []).

A node with the conjunction connective & is treated as follows. Each conjunct is separately
pulled, thereby obtaining a matrix and store for both the left and the right conjunct. Now, we want
to apply some of the remaining quantifiers in each of the stores, passing some on for application at
a higher level. The conc predicate is used “backwards” to break each store list into a front and a
back, the back to be applied to the corresponding conjunct matrix and the front to be passed as part
of the store of the whole conjunction. Note that since we apply the back part only, we maintain the
condition that things earlier in the store have wider scope. After applying quantifiers to each of the
conjuncts, we shuffle the remaining quantifiers (the fronts of the lists for both conjuncts) to form the
store list for the whole conjunction.

pull(QuantTree1 & QuantTree2,

Formula1 & Formula2, Store) :-

pull(QuantTree1, Matrix1, Store1),

pull(QuantTree2, Matrix2, Store2),

conc(Pass1, Apply1, Store1),

conc(Pass2, Apply2, Store2),

apply_quants(Apply1, Matrix1, Formula1),

apply_quants(Apply2, Matrix2, Formula2),

shuffle(Pass1, Pass2, Store).

Finally, a quantifier node with quantifier Q is similar in its handling to a connective node except
that instead of two conjuncts, we have the range and scope of the quantifier to scope recursively.
Recursive calls to pull deliver a matrix and a store for both the range and the scope trees of the
quantifier. The range store list is split by conc into a front and a back, the front quantifiers outscoping
Q and the back quantifiers to be applied to the range matrix to form the range of Q. Then, the front
quantifiers are concatenated with the singleton list [Q], because they have been chosen to have
wider scope than Q. Finally, the result is shuffled with the scope store to make the store for the
whole node. Note that it is not necessary to split the store associated with the scope subtree, because
the shuffle determines the position of Q in the overall store.

pull(q(Quantifier, RangeTree, ScopeTree),

Matrix, Store) :-

pull(RangeTree, RangeMatrix, RangeStore),

pull(ScopeTree, Matrix, ScopeStore),

conc(RangePass, RangeApply, RangeStore),

apply_quants(RangeApply, RangeMatrix, Range),

reduce(Quantifier, Range, StoreElement),

conc(RangePass, [StoreElement], Pass),
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shuffle(Pass, ScopeStore, Store).

The predicate apply_quants takes a store list and applies all its quantifiers in order to a matrix
to produce a new matrix.

apply_quants([], Formula, Formula).

apply_quants([StoreElement|Elements],

Matrix, Formula) :-

apply_quants(Elements, Matrix, SubFormula),

reduce(StoreElement, SubFormula, Formula).

The binary pull predicate itself merely scopes its quantifier-tree argument, yielding a matrix
and a store, and then uses apply_quants to apply all the outstanding quantifiers to the matrix,
resulting in a closed formula.

pull(QuantTree, Formula) :-

pull(QuantTree, Matrix, Store),

apply_quants(Store, Matrix, Formula).

As an example of the operation of pull, we will consider the possible scopings of the quantifier
tree for the sample sentence

Every professor that wrote a book ran a program.

The binary predicate pull first generates a matrix and a store from the tree by applying some quan-
tifiers in the tree and storing the rest. The outermost quantifier corresponding to “every professor. . .”
is dealt with by recursively pulling its range and scope. We consider each of these recursive calls in
order.

The range

‘professor(X)&q(RˆSˆexists(Y,R&S),

‘book(Y),

‘wrote(X,Y))

might be decomposed into matrix and store by placing the single quantifier into storage, yielding the
matrix

professor(X) & wrote(X,Y)

with store

[Sˆexists(Y, book(Y) & S)] ,

thereby leading to the wide-scope reading for the existential. Alternatively, the quantifier might be
applied directly, rather than stored, leading to the matrix

professor(X) & exists(Y, book(Y) & wrote(X,Y))

with empty store. We will pursue the former possibility here to demonstrate how the wide-scope
reading is achieved.
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Once the range is pulled, the scope must be as well. Again, let us suppose that the quantifier in
the scope is placed in storage, so that the matrix

ran(X,Z)

is associated with the store

[Uˆexists(Z, program(Z) & U)] .

Now, to form the matrix for the whole tree (recall that the main quantifier we are trying to scope
is the universal for “every professor”), we take the store of the range and decide which quantifiers
should be applied to the range matrix (thereby taking narrow scope relative to the universal) and
which should take wide scope. Again, let us suppose the single element in the range store is to take
wide scope. Then the formula that serves as the range of the main quantifier is

professor(X) & wrote(X,Y)

and, applying the quantifer to the range, the appropriate store element corresponding to the quantifier
is

Qˆall(X, (professor(X) & wrote(X,Y)) => Q) .

We now place this element in the store after the range quantifier we are passing on, yielding the
Pass store

[Sˆexists(Y, book(Y) & S),

Qˆall(X, (professor(X) & wrote(X,Y)) => Q)] .

This is shuffled with the store from the scope. The one element in the scope store can be placed in
any of three places in the combined store corresponding to its possible scopings relative to the other
two quantifiers in the sentence. We will choose the placement of the scope store at the front of the
list giving it widest scope. The full store is then

[Uˆexists(Z, program(Z) & U),

Sˆexists(Y, book(Y) & S),

Qˆall(X, (professor(X) & wrote(X,Y)) => Q)]

and the matrix, recall, is

ran(X, Z) .

This decomposition of the quantifier tree into range and scope is only one of seven nondeterministic
possibilities. The binary pull predicate successively applies the three quantifiers remaining in store
to the matrix, the last getting narrowest scope as it is applied first. This first application yields the
formula

all(X, (professor(X) & wrote(X,Y)) =>

ran(X,Z)) .

The next derives
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exists(Y, book(Y) &

all(X, (professor(X) & wrote(X,Y)) =>

ran(X,Z))) .

Finally, the last quantifier is applied, giving the fully scoped form

exists(Z, program(Z) &

exists(Y, book(Y) &

all(X, (professor(X) &

wrote(X,Y)) =>

ran(X,Z)))) .

In all, seven fully scoped forms can be generated for this sentence—corresponding to the seven
decompositions of the quantifier tree into matrix and store—as can be seen by backtracking through
the solutions.

?- s(LF, [every,professor,that,wrote,a,book,

ran,a,program], []).

LF = exists(Z,program(Z)&

all(X,professor(X)&

exists(Y,book(Y)&

wrote(X,Y))=>

ran(X,Z))) ;

LF = all(X,professor(X)&

exists(Y,book(Y)&

wrote(X,Y))=>

exists(Z,program(Z)&

ran(X,Z))) ;

LF = exists(Z,program(Z)&

all(X,exists(Y,book(Y)&

professor(X)&

wrote(X,Y))=>

ran(X,Z))) ;

LF = all(X,exists(Y,book(Y)&

professor(X)&

wrote(X,Y))=>

exists(Z,program(Z)&

ran(X,Z))) ;

LF = exists(Z,program(Z)&

exists(Y,book(Y)&

all(X,professor(X)&

wrote(X,Y)=>

ran(X,Z)))) ;
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LF = exists(Y,book(Y)&

exists(Z,program(Z)&

all(X,professor(X)&

wrote(X,Y)=>

ran(X,Z)))) ;

LF = exists(Y,book(Y)&

all(X,professor(X)&

wrote(X,Y)=>

exists(Z,program(Z)&

ran(X,Z)))) ;

no

The solution illustrated above is the fifth of the seven as listed in this query.
The quantifier scoping method outlined here is sound with respect to the quantifier trees that are

the output of the presented grammar. However, certain quantifier trees involving nested quantifiers
are not correctly handled by the algorithm; ill-formed scopings are generated in which quantifiers do
not outscope all variable occurrences they were intended to bind. Such quantifier trees do not arise
with the particular grammar given here, although more complete grammars including both relative
clause and PP modifiers for nouns would exhibit the problem. Thus, the presented algorithm is only
an approximation to a fully general sound scoping mechanism. For a full discussion of this issue
and a particular solution (including a Prolog implementation), see (Hobbs and Shieber, 1987).

4.2 Extending the Syntactic Coverage

In this section, we discuss several changes to the grammar we have been developing that expand its
coverage to include auxiliary verbs, full relative clauses, and various types of questions.

4.2.1 Auxiliary Verbs

None of the grammars dealt with so far allow for auxiliary verbs like could, have, and been in the
sentence “Bill could have been writing a program”. In this problem we extend the grammar to
allow for this subclass of verbs. The simple analysis of English auxiliaries which we will use is
the following: a verb phrase can always have an auxiliary prefixed to it if a certain condition holds,
namely, that the form of the verb phrase that follows the auxiliary is the form that the auxiliary
requires.

This analysis depends on the fact that verbs come in different forms: finite, nonfinite,5 infinitival,
and so forth. Every main verb (i.e., nonauxiliary) is of one of these forms, as is every auxiliary verb.
Furthermore, each auxiliary verb specifies a form for the verb phrase it is attached to. Below are
listed some examples of the forms of verb phrases.

5The class of verbs we call “nonfinite” is not the class of all verbs except for the finite ones. Rather it consists of the base
or stem forms of verbs only.
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form examples

finite halts, halted, writes a program,
is halting, has been halting

present participle halting, writing a program
past participle halted, written a program, been halting
nonfinite halt, write a program, be halting
infinitival to halt, to write a program,

to have been halting

Now the auxiliary verb be requires that the verb phrase following it be of present participle form.
Thus “be halting” is a grammatical verb phrase, but “*be halts” and “*be halt” are not. The auxiliary
verb have requires that the verb phrase following it be of past participle form, as in “have been
halting” or “have halted” but not “*have halting”.

We can even treat the word “to” (when used to introduce a verb phrase) as an auxiliary verb,
rather than a preposition. As an auxiliary verb, “to” requires a nonfinite verb phrase, and is itself
infinitival.

We will encode verb form information as an argument to the nonterminal in a DCG grammar.
For main verbs, this argument will contain one of the constants nonfinite, infinitival, etc. For
auxiliary verbs, the argument will contain a term of the form Form/Requires, where Form is the
form of the auxiliary and Requires is the form that the auxiliary requires the following verb phrase
to be.6 We can think of the auxiliary as converting a Requires type of verb phrase into a Form type.
Thus we will have main verb entries like

iv(Form) --> [IV], {iv(IV, Form)}.

iv( halts, finite ).

iv( halt, nonfinite ).

iv( halting, present_participle ).

iv( halted, past_participle ).

...

and auxiliary verb entries such as

aux(Form) --> [Aux], {aux(Aux, Form)}.

aux( could, finite / nonfinite ).

aux( have, nonfinite / past_participle ).

aux( has, finite / past_participle ).

aux( been, past_participle / present_participle ).

aux( be, nonfinite / present_participle ).

...

The form of a simple verb phrase composed of a main verb and its various complements is the
form of the main verb itself. We can modify the VP rules to reflect this as follows:

vp(Form) --> iv(Form).

vp(Form) --> tv(Form), np.

6The use of “/” in this context is inspired by categorial grammar (Section 4.3.4).
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To combine an auxiliary verb with a verb phrase, it is only necessary that the verb phrase be of
the required form. The combined phrase will be of the form that the auxiliary is.

vp(Form) --> aux(Form/Require), vp(Require).

This augmented grammar will allow “could have been halting” as a VP because “halting” is a
present participle intransitive verb, hence a present participle VP which satisfies the requirement of
the verb “been”. Thus “been halting” is a well-formed VP whose form is the form of “been”, namely
past participle. “Have” requires a past participle VP forming the nonfinite VP “have been halting”,
which combines with “could” to form the finite VP “could have been halting”.

The rule for forming sentences

s --> np, vp.

must be modified to account for the fact that VPs now have verb form information. In deciding on the
form of the VP in sentences, we note that the following NP-VP combinations are not grammatical
English:

* Bertrand write a book.
* The program been halting.
* Bill writing every program.

The pertinent restriction is that full-fledged sentences always incorporate a finite VP. Thus the
sentence formation rule should be

s --> np, vp(finite).

4.2.2 Yes-No Questions

Yes-no questions are formed in English exactly like declarative sentences, except for two differences.

• Yes-no questions always have at least one auxiliary verb.

• The leftmost auxiliary verb occurs before, rather than after, the subject NP.

This switching of the placement of the leftmost auxiliary verb and the subject is called subject-

aux inversion. We will allow such inverted sentences with the following rule for the new nonterminal
sinv:

sinv --> aux(finite/Required), np, vp(Required).

This rule allows finite subject-aux-inverted sentences like

Could Bertrand write a book?
Has the program been halting?
Is Bill writing every program?

all of which are typical examples of English yes-no questions. We can state this in a rule for forming
questions from inverted sentences:
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q --> sinv.

But, as we will see in Section 4.2.5, inverted sentences play a role in the formation of WH-questions
as well as yes-no questions.

4.2.3 Filler-Gap Dependencies

The grammars that have been presented heretofore have included a very simple analysis of relative
clauses as verb phrases preceded by the word that. This analysis vastly oversimplifies the variety of
relative clauses possible in English. For instance, relative clauses such as “that Bertrand wrote” (as
in the NP “every book that Bertrand wrote”) are not the concatenation of “that” and a VP; instead
of a VP, a sentence missing its object is substituted. Intuitively, the head of the noun phrase, i.e.,
“every book” fills the role of the missing object, the thing(s) that Bertrand wrote. For this reason,
the phenomenon has been called a filler-gap dependency.

In general, a filler-gap dependency occurs in a natural-language sentence when a subpart of some
phrase (the gap or trace) is missing from its normal location and another phrase (sometimes called
the filler), outside of the incomplete one, stands for the missing phrase. The occurrence of a gap is
said to be licensed by the previous occurrence of the filler, and we have a dependency between the
gap and the filler because the gap can only occur (i.e., the corresponding phrase be missing) when
the appropriate filler occurs.

The canonical instances of filler-gap dependency constructions in English are relative clauses
and WH-questions. For example, in the sentence

Terry read every book that Bertrand wrote.

we have seen that there is a filler-gap dependency between the relative pronoun “that” (the filler)7

and the missing direct object (the gap). The parse tree for the sentence, given in Figure 4.3, indicates
the trace by the pseudo-terminal ti. The subscript i on the trace and filler is intended to indicate the
dependency between the two.

Filler-gap dependencies are a subclass of long-distance or unbounded dependencies, so-called
because the amount of material between the dependent phrases—the gap and the filler in this case—
can be arbitrarily large, and the path in the analysis tree from the filler to the gap can in principle
cross an arbitrary number of phrase boundaries (but only for some kinds of phrases). The long-
distance behavior of filler-gap dependencies is exemplified in such sentences as

Terry read every book that Bertrand told a student to write.
Terry read every book that Bertrand told a student to ask a professor to write.

and so forth.
The obvious way of representing long-distance dependencies in a DCG is to use a nonterminal

argument to indicate the presence or absence of a gap within the phrase covered by the nonterminal.
If there is a gap, we must also indicate the syntactic category (nonterminal) of the gap. Although the
grammar we develop below does not require this information (as only noun phrase gaps are allowed),
the ability to extend the coverage by including, for instance, prepositional phrase gaps, motivates
this requirement. We will use the constant nogap as the value for the gap information argument to
indicate the absence of a gap, and the term gap(T) to indicate the presence of a gap with category T .
For instance, the sentence “Bertrand wrote a book” would be covered by the nonterminal s(nogap),

7Analyses differ as to whether the filler is the relative pronoun or the head of the NP as first mentioned. Although the
latter may be more intuitive, other factors lead us to the former, not the least of which is ease of semantic interpretation.
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 i

 iwrote      t

bertrand      V       NP

that           NP               VP

every   book         RELPRON                 S

read     DET      N                            OPTREL

terry     V                    NP

NP                 VP

S

Figure 4.3: Parse tree including filler-gap dependency

whereas the incomplete sentence “Bertrand wrote” (as in “the book that Bertrand wrote”) would be
covered by the nonterminal s(gap(np)).

To allow noun phrase gaps in the grammar, we add a special rule which introduces an NP cover-
ing no string.

np(gap(np)) --> [].

This rule states that a noun phrase containing a noun phrase gap can cover the empty string; that is,
a noun phrase gap can be realized by omitting a noun phrase.

Now the information about the presence of a gap must be appropriately distributed throughout
the grammar so that “Bertrand wrote”, but not “Bertrand wrote a book”, is associated with gap(np).
For instance, the transitive VP rule must be modified so that the VP is associated with the same gap
information as its object. (We ignore verb form information in this section and the next. The
grammar in Appendix A contains both verb form and filler-gap information in the nonterminals.)

vp(GapInfo) --> tv, np(GapInfo).

Similarly, the S rule must force the S and VP to share gap information.

s(GapInfo) --> np(nogap), vp(GapInfo).

In addition, the rule disallows subject NPs that contain gaps bound outside of them, thereby embody-
ing a so-called island constraint that linguists have proposed as accounting for the ungrammaticality
of noun phrases like

* the book that the author of wrote Principia
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as compared with

the book that the author of Principia wrote .

Island constraints are so-called because they constrain certain constituents, e.g., subject noun
phrases, to act as if surrounded by a boundary which allows no filler-gap dependencies to cross.

There is considerable debate in the linguistics literature of the status of island constraints such
as these. Certainly, some phrases with gaps within subjects seem quite grammatical, e.g.,

the professor who a picture of has appeared in every newspaper in the country .

Furthermore, certain constructions can license the existence of a gap within an island. For instance,
the parasitic gap construction allows sentences with multiple gaps bound by the same filler, even
when one of the gaps is within an island.

the book that the author of wrote a letter about

We have merely represented here one traditional analysis of the phenomenon. Other analyses,
including ones in which filler-gap dependencies which cross a subject NP boundary were allowed,
could easily be designed.

4.2.4 Relative Clauses

Relative clauses can be formed by concatenating a relative pronoun filler with a sentence that con-
tains the corresponding gap.

rel --> relpron, s(gap(np)).

This rule then embodies the actual filler-gap dependency and allows relative clauses such as
“the book that Bertrand wrote”. Unfortunately, because of the island constraint disallowing gaps in
subjects of sentences, this rule will admit only complement relatives, i.e., relative clauses in which a
complement of a verb is gapped. Subject relatives, in which the entire subject is gapped, as in “the
professor who wrote Principia” are not allowed by this rule. To remedy this problem, we introduce
a special rule for subject relatives, akin to the relative clause rule of Program 3.12.

rel --> relpron, vp(nogap).

In summary, here is the grammar of Program 3.12 augmented to handle both subject- and
complement- relative clauses.

Program 4.4
s --> s(nogap).

s(Gap) --> np(nogap), vp(Gap).

np(nogap) --> det, n, optrel.

np(nogap) --> pn.

np(gap(np)) --> [].

vp(Gap) --> tv, np(Gap).

vp(nogap) --> iv.
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optrel --> [].

optrel --> relpron, vp(nogap).

optrel --> relpron, s(gap(np)).

det --> [Det], {det(Det)}.

det(a). det(every).

det(some). det(the).

n --> [N], {n(N)}.

n(author). n(book).

n(professor). n(program).

n(programmer). n(student).

pn --> [PN], {pn(PN)}.

pn(begriffsschrift). pn(bertrand).

pn(bill). pn(gottlob).

pn(lunar). pn(principia).

pn(shrdlu). pn(terry).

tv --> [TV], {tv(TV)}.

tv(concerns). tv(met).

tv(ran). tv(wrote).

iv --> [IV], {iv(IV)}.

iv(halted).

relpron --> [RelPron], {relpron(Relpron)}.

relpron(that). relpron(who).

relpron(whom).

4.2.5 WH-Questions

WH-questions, that is, questions introduced by a word starting with “wh”, as in

Who wrote Principia?
What did Bertrand write?
Who did Alfred tell Bertrand to write a book about?

and so forth, also exhibit a filler-gap dependency. The filler this time is the WH word; the gap, as
usual, can be arbitrarily deep in the adjacent sentence. We will use a technique similar to that for
relative clauses to handle WH-questions. Just as subject relatives and complement relatives must be
distinguished, we will distinguish subject and complement questions.

Subject questions, such as

Who loves Mary?
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are constructed from a WH pronoun and a finite VP.

q --> whpron, vp(nogap).

Complement questions, for instance,

Who does Mary love?

are formed from a WH pronoun acting as a filler for a gap in a subject-aux-inverted sentence.

q --> whpron, sinv(gap(np)).

Of course, the sinv rule must be modified to allow gaps.

sinv(GapInfo) --> aux, np(nogap), vp(GapInfo).

4.2.6 Semantics of Filler-Gap Dependencies

A treatment of semantics of relative clauses is possible by combining the syntactic analysis of Pro-
gram 4.4 with the semantic analysis of Program 4.2. The basic idea is that a gap is analyzed very
much like a proper noun, except that instead of supplying a constant term to the logical form it
supplies a variable which is carried as the second argument of the gap information term gap(T,v).

np((XˆS)ˆS, gap(np, X)) --> [].

A relative clause meaning is like an intransitive verb meaning, namely, a property. However,
relative clause meanings will be conjoined with a noun meaning to make a complex property such
as

Mˆ(professor(M) & wrote(M, principia))

for “professor who wrote Principia”. In the case of a subject relative the meaning comes directly,
because the clause is itself a verb phrase.

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, vp(XˆS2, nogap).

For complement relative clauses, the meaning representation is of the form XˆS where X is the
variable associated to the argument position filled by the gap, and S is the encoding of the meaning
of the sentence in the relative clause, in which X is a free variable.

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, s(S2, gap(np, X)).

Thus, for the relative clause “that Bertrand wrote” we will have S = wrote(bertrand,B), X = B,
and the gap argument will have the form gap(np,B).

We interpret a question as a property which is to be true of the answers to the question. For
subject WH-questions, the property is that given by the VP. For complement questions, it is the
property that the S predicates of the gap.
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q(VP) --> whpron, vp(VP, nogap).

q(XˆS) --> whpron, sinv(S, gap(np, X)).

For yes-no questions, the property we want of the answers to the question is that the answer be
“yes” if the condition given by the inverted sentence holds.

q(yesˆS) --> sinv(S, nogap).

For the time being, we ignore the contribution of the auxiliary to the meaning of the inverted sen-
tence.8 Thus the rule for sinv, including semantics, is

sinv(S, GapInfo) -->

aux, np(VPˆS, nogap), vp(VP, GapInfo).

A slightly different approach to the semantics of questions will be used in the talk program
developed in Chapter 5, in which the meaning of a question is an implication of the form: If some
condition holds of x then x is an answer.

Summarizing, the grammar for relative clauses and questions we have developed in this chapter
is the following:

Program 4.5
q(VP) --> whpron, vp(VP, nogap).

q(XˆS) --> whpron, sinv(S, gap(np, X)).

q(yesˆS) --> sinv(S, nogap).

s(S) --> s(S, nogap).

s(S, Gap) --> np(VPˆS, nogap), vp(VP, Gap).

sinv(S, GapInfo) -->

aux, np(VPˆS, nogap), vp(VP, GapInfo).

np(NP, nogap) --> det(N2ˆNP), n(N1), optrel(N1ˆN2).

np((EˆS)ˆS, nogap) --> pn(E).

np((XˆS)ˆS, gap(np, X)) --> [].

vp(XˆS, Gap) --> tv(XˆVP), np(VPˆS, Gap).

vp(VP, nogap) --> iv(VP).

optrel(NˆN) --> [].

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, vp(XˆS2, nogap).

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, s(S2, gap(np, X)).

det(LF) --> [D], {det(D, LF)}.

det( every, (XˆS1)ˆ(XˆS2)ˆall(X,(S1=>S2)) ).

det( a, (XˆS1)ˆ(XˆS2)ˆexists(X,S1&S2) ).

8The talk program described in Chapter 5 can handle the semantics of simple auxiliaries, although the logical forms
provided lexically for auxiliaries do not happen to modify their VP arguments.
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n(LF) --> [N], {n(N, LF)}.

n( program, Xˆprogram(X) ).

n( student, Xˆstudent(X) ).

pn(E) --> [PN], {pn(PN, E)}.

pn( terry, terry ).

pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.

tv( wrote, XˆYˆwrote(X,Y) ).

iv(LF) --> [IV], {iv(IV, LF)}.

iv( halts, Xˆhalts(X) ).

relpron --> [RelPron], {relpron(Relpron)}.

relpron(that). relpron(who).

relpron(whom).

4.2.7 Gap Threading

The technique used for passing gap information among the nonterminals in grammar rules outlined
in the previous section has two problems:

1. Several versions of each rule, differing only in which constituent(s) the gap information is
passed to, may be needed. For instance, a rule for building dative verb phrases

vp --> datv, np, pp.

would need two versions

vp(GapInfo) -->

datv, np(GapInfo), pp(nogap).

vp(GapInfo) -->

datv, np(nogap), pp(GapInfo).

so as to allow a gap to occur in either the NP or PP, as in the sentences

What did Alfred give to Bertrand?
Who did Alfred give a book to?

2. Because of the multiple versions of rules, sentences with no gaps will receive multiple parses.
For instance, the sentence

Alfred gave a book to Bertrand.

would receive one parse using the first dative VP rule (with GapInfo bound to nogap) and
another with the second dative VP rule.

An alternative method for passing gap information, sometimes referred to as gap threading,
has been used extensively in the logic programming literature. It is based on data structures called
difference lists.
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Difference Lists

The encoding of sequences of terms as lists using the . operator and [ ] is so natural that it seems
unlikely that alternatives would be useful. However, in certain cases, sequences may be better
encoded with a data structure known as a difference list. A difference list is constructed from a pair
of list structures one of which is a suffix of the other. Every list is a suffix of itself. Also, if the
list is of the form [Head|Tail] then every suffix of Tail is a suffix of the whole list. Thus the
relation between lists and their suffixes is the reflexive transitive closure of the relation between list
and their tails. We will use the binary infix operator “-” to construct a difference list from the two
component lists. A difference list List-Suffix encodes the sequence of elements in List up to
but not including those in Suffix. Thus the elements in List-Suffix are the list difference of the
elements in List and the elements in Suffix. For instance, the sequence of elements 〈1, 2, 3〉might
be encoded as the list [1,2,3] or as any of the difference lists [1,2,3,4]-[4], [1,2,3]-[],
[1,2,3|X]-X.

We will be especially concerned with the most general difference-list encoding of a sequence,
that is, the encoding in which the suffix is a variable. The final example of a difference-list encoding
of the sequence 〈1, 2, 3〉 is of this form. Any other difference-list encoding of the sequence is an
instance of [1,2,3|X]-X. Henceforth, the term “difference list” will mean a most general difference
list. We will also use the terms front and back for the two components of a difference list. Note that
the empty difference list is X-X.

The difference-list encoding of sequences has one key advantage over the standard list encoding.
Concatenation of difference lists is far simpler, requiring only a single unit clause.

Program 4.6
conc_dl(Front-Back1, Back1-Back2, Front-Back2).

The predicate conc_dl performs concatenation of difference lists by simply unifying the back of
the first list with the front of the second. This engenders the following behavior:

?- conc_dl([1,2,3|X]-X, [4,5|Y]-Y, Result).

Result = [1,2,3,4,5|Y]-Y

yes

Actually, we have seen difference lists before. The use of pairs of string positions encoded as
lists to encode the list between the positions is an instance of a difference list encoding. We can see
this more clearly by taking the encoding of grammar rules using explicit concatenation, as briefly
mentioned in Chapter 1, and substituting difference-list concatenation. Using explicit concatenation,
the rule

S → NP VP

would be axiomatized (as in Chapter 1) as

(∀u, v,w)NP(u) ∧ VP(v) ∧ conc(u, v,w)⇒ S(w)

or in Prolog,

s(W) :- np(U), vp(V), conc(U, V, W).

Substituting difference-list concatenation, we have

s(W) :- np(U), vp(V), conc_dl(U, V, W).
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and partially executing this clause with respect to the conc_dl predicate in order to remove the final
literal, we get the following clause (with variable names chosen for obvious reasons):

s(P0-P) :- np(P0-P1), vp(P1-P).

Thus, we have been using a difference list encoding for sequences of words implicitly throughout
our discussion of DCGs.

Difference Lists for Filler-Gap Processing

We now turn to the use of difference lists in filler-gap processing. First, think of the gap information
associated with each node as providing the list of gaps covered by the node whose corresponding
fillers are not covered by it. Alternatively, this cn be viewed as the list of gaps whose filler-gap
dependency passes through the given node. We will call this list the filler list of the node. For the
most part the filler list of each constituent is the concatenation of the filler lists of its subconstituents.
For instance, for the dative VP rule, we have

vp(FL) --> datv, np(FL1), pp(FL2),

{conc_dl(FL1, FL2, FL)}.

We include only those constituents which might potentially include a gap in the concatenation.
Again, we remove the explicit concatenations by partial execution yielding

vp(F0-F) --> datv, np(F0-F1), pp(F1-F).

Similarly, other rules will display this same pattern.

s(F0-F) --> np(F0-F1), vp(F1-F).

vp(F0-F) --> tv, np(F0-F).

vp(F0-F0) --> iv.

...

We turn now to constituents in which a new filler or a new gap is introduced. For instance, the
complement relative clause rule requires that a gap be contained in the S which is a sibling of the
filler. It therefore states that the filler list of the S contains a single NP.

optrel(F-F) --> relpron, s([gap(np)|F]-F).

The rule introducing NP gaps includes a single NP filler marker on the S, thereby declaring that
the S covers a single NP gap.

np([gap(np)|F]-F) --> [].

Island constraints can be added to a grammar using this encoding of filler-gap dependencies in
two ways. First, we can leave out filler information for certain constituents, as we did for verbs and
relative pronouns. More generally, however, we can mandate that a constituent not contain any gaps
bound outside the constituent by making its filler list the empty list (i.e., F-F). For instance, the
sentence formation rule above can be modified to make the subject of the sentence an island merely
by unifying the two parts of its filler list.
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s(F0-F) --> np(F0-F0), vp(F0-F).

The gap-threading technique for encoding filler-gap dependencies solves many of the problems
of the more redundant gap-passing method described earlier. Each unthreaded rule generates only
one rule with appropriate gap information. The filler-list information is added in a quite regular
pattern. Fillers, islands, and gaps are all given a simple treatment. All of these properties make the
gap-threading technique conducive to automatic interpretation as we will do in Section 6.3.3.

However, several problems with the gap-threading technique are known, most showing up only
in rather esoteric constructions such as parasitic gap constructions, multiple gaps, crossing filler-gap
dependencies, and so forth. Many of these problems can be handled by using more complex com-
binations of filler lists rather than simple concatenation. For instance, crossing dependencies can be
handled by shuffling the filler lists of subconstituents to yield the filler list of the full constituent. Of
course, this defeats the simple elegant pattern of variable sharing that difference-list concatenation
engenders.

4.3 Problem Section: Grammar Extensions

These problems concern the extension of Program 4.2 to accept a few other English constructions,
namely some simple cases of noun complements and postmodifiers and the corresponding gapped
constructions. Since these examples require prepositional phrases in the grammar, you may want
to refer to Problem 3.20 for background. In addition, we will discuss a system of grammar writing
used by Montague himself for his semantic work. This system, categorial grammar, is quite different
from the phrase-structure-based methods we have been using previously.

4.3.1 Noun Complements

A noun phrase complement plays a similar role to that of an argument of a predicate. For example, in
the noun phrase “an author of every book” the noun author has as its complement the prepositional
phrase “of every book”. For the purposes of this section, we will assume that nouns that take a
complement are interpreted as binary predicates. For example, the sentence

An author of every book wrote a program.

might have the logical form

all(B, book(B) =>

exists(A, author_of(A,B) &

exists(P, program(P) &

wrote(A,P))))

Notice that author is here translated by the binary predicate author_of. Note also that the quantifier
all that translates the determiner every in the complement of author is given a wider scope than the
quantifier exists that translates the determiner an of the phrase “an author . . .”. This is not the only
possible reading for the English sentence, but for the time being we will assume that the quantifiers
from noun complements always outscope the quantifier for the determiner preceding the noun that
has the complement. To achieve this effect in a DCG, the translation of “an author” must somewhow
be given as an argument to the translation of the complement “of every book”, in a way similar to
the passing of an intransitive verb phrase meaning into a noun phrase meaning to make a sentence
meaning in the first rule in the DCG of Program 4.2.
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Problem 4.6 Add one or more DCG rules to the grammar in Program 4.2 to analyze and translate

noun complements. We will assume that there is a separate lexical category n2 for nouns that

take a prepositional phrase as a complement. To simplify the problem, we will also assume that

all complements are prepositional phrases (see Problem 3.20) introduced by the preposition of.
Your DCG should be able to analyze the sample sentence above and assign to it the given logical

form. You need not handle noun phrases with both a relative clause and a complement prepositional

phrase.

4.3.2 Noun Postmodifiers

A prepositional phrase can also appear as a noun postmodifier, where it does not supply an argument
to the noun but instead it further restricts the range of objects described by the noun. In this case,
such a postmodifier operates like a restrictive relative clause. For example, the prepositional phrase
“about Gottlob” in the sentence

Bertrand wrote a book about Gottlob.

is a postmodifier of book that further restricts the book in question to be about Gottlob. We may in
this case interpret the preposition about very much like a transitive verb, and give the sentence the
translation

exists(B, (book(B) & about(B,gottlob)) &

wrote(bertrand,B)) .

We will assume that the quantifiers in the translation of the postmodifier have smaller scope than
that of the quantifier for the determiner preceding the modified noun. As mentioned in the previous
problem, such assumptions are overly restrictive, and we will discuss how to do better in Section
4.1.6.

Problem 4.7 By adding appropriate lexical items and rules (or modifying existing ones), change

the DCG of Program 4.2 to handle prepositional phrases as noun postmodifiers. The new rules

for postmodifiers may be modeled closely on those for optional relative clauses, and the resulting

grammar should be tested on sentences like the one above. Make sure that quantifiers from the

postmodifier are properly scoped.

4.3.3 More Filler-Gap Constructions

Many other filler-gap constructions occur in English. In the next two problems we will discuss gaps
in the constructions introduced in the previous two problems. Later, in Problem 6.15, we will see
two more English filler-gap constructions.

Problem 4.8 Extend your solution to Problems 4.6 and 4.7 so that gaps are allowed in preposi-

tional phrases used as NP modifiers and complements and as adverbials. The solution should allow

sentences like

What did Bertrand write a book about?

Who did Terry meet a student of?

What did Terry write a program with?

The professor that Terry met a student of wrote a program.
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Problem 4.9 Extend the solution to Problem 4.8 so that it can handle questions where the filler is a

prepositional phrase and the PP gap is playing an adverbial role, e.g., questions like

With what did Terry write a program?

Note that the grammaticality status of PP gaps used as NP modifiers or complements in English
is unclear. Sentences containing such constructions often seem ungrammatical.

*? About what did Terry write a program?
*? Of whom did Terry meet a student?

However, the data are unclear, and the correct analysis is certainly not a foregone conclusion.

4.3.4 Categorial Grammars

A categorial grammar (CG) specifies a language by describing the combinatorial possibilities of
its lexical items directly, without the mediation of phrase-structure rules (like CFG or DCG rules).
Consequently, two grammars in the same categorial grammar system differ only in the lexicon.

The ways in which a phrase can combine with other phrases are encoded in a category associated
with the phrase. The set of categories is defined inductively as follows:

• A primitive category is a category. For the purposes of this problem, the primitive categories
are S and NP.

• If A and B are categories then A/B and A\B are categories. These are called compound or
functor categories.

• Nothing else is a category.

Combination of phrases is sanctioned by their categories according to two rules:

• Forward application (FA): A phrase p f of category A/B can be combined with a phrase pa

of category B to form a phrase p f pa of category A.

• Backward application (BA): A phrase p f of category A\B can be combined with a phrase
pa of category B to form a phrase pa p f of category A.

Notice that the direction of the slash (“/” or “\”) determines which side of the functor phrase its
argument will be found on (right or left, respectively).

As an example of a categorial grammar, we might associate lexical items with categories as
follows:

type of word examples category

proper nouns Terry NP

Bertrand
Principia

intransitive verbs halts S\NP

transitive verbs wrote (S\NP)/NP

met
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wrote                          Principia

Bertrand         (S\NP)/NP                           NP

NP                                         S\NP

S

Figure 4.4: Parse tree for categorial grammar derivation

Then combining “wrote” and “Principia” by FA, we conclude that “wrote Principia” is of category
S \NP. Combining this with “Bertrand”, we have that “Bertrand wrote Principia” is an S . As usual,
we can summarize the derivation in a parse tree as in Figure 4.4

Problem 4.10 Write a Prolog program (including DCG rules) to implement a categorial grammar

system. Lexical entries can be encoded as unit clauses of the form

lex( bertrand, NP ).

lex( halts, S\NP ).

lex( wrote, (S\NP)/NP ).

...

Given a lexicon encoded as above, the program should be able to parse sentences containing

those lexical items.

Categorial grammars have been widely used in linguistic research concerning semantics of natu-
ral language. The close relation between CG and semantic interpretation follows from the observa-
tion that forward or backward syntactic application of a functor category to its argument corresponds
to the semantic applications of the corresponding logical forms. Thus, the application rules can be
used to control semantic application as well as syntactic combinatorics. We merely make sure that
lexical items are associated with semantic functions which correspond to the syntactic functions im-
plicit in their categories. For instance, a phrase of category S/NP must semantically be a function
from NP-type items to S-type items. In terms of logical forms, it must be associated with a lambda
expression of the form λx.φ for φ a formula. (This relationship can be made more rigorous by defin-
ing a notion of type and using a typed lambda-calculus for the logical forms, as Montague in fact
did.)

The logical forms of Section 4.1.2 are appropriate for the category assignments above. Given
these logical forms, we can determine the logical form for the entire sentence by performing the
applications according to the syntactic structure of the sentence. For instance, since “wrote” is
associated with a functor category applying (by FA) to “Principia”, we apply its logical form
λx.λy.wrote(y, x) to that of its argument principia yielding λy.wrote(y, principia). Similarly, by BA,
we will associate the whole sentence with the logical form wrote(bertrand, principia). The beauty
of this system is that the semantic constraints are universal, as opposed to the types of grammars seen
previously in which semantic constraints are stated on a rule-by-rule basis. Merely augmenting the
lexicon with primitive LFs determines LFs for all the possible sentences admitted by the grammar.
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Problem 4.11 Augment your solution to the previous problem so that logical forms are built during

parsing.

Problem 4.12 Using the solution to Problem 4.11 write a categorial grammar which handles quan-

tified NPs as in Section 4.1.5 and builds logical forms. You should need to change only the lexicon.

Take IV, N, and S to be the primitive categories.

As a side note to the discussion of categorial grammar, note that since the matching of the
argument category to the requirement of the functor category proceeds by unification, we can use
full terms instead of atoms as the primitive categories and thereby pass information among the
categories in ways reminiscent of DCGs. In fact, this extension to categorial grammar which we get
“for free” is the correlate of the DCG extension to CFGs. Systems that use unification for matching
in categorial grammars have come to be known as categorial unification grammars and are the
subject of active research.

4.4 Bibliographic Notes

Our discussion of semantic interpretation (Section 4.1) is loosely based on some of the ideas of
Montague grammar, although our goals are radically more modest than Montague’s. Basically, we
take from Montague the idea of using some form of the lambda calculus to represent the meanings
of phrases and function application as the means of combining the meanings of subphrases into the
meaning of a phrase. The simplifications in our presentation are made clear by observing that the
fully reduced form for the meaning of a sentence is given by a first-order sentence. In contrast,
sentence meanings in Montague have to be represented by sentences in the much richer system of
intensional logic (IL), because the English fragment under consideration includes semantic phenom-
ena such as intensional contexts (as in “John seeks a unicorn”).

Montague introduced his approach to the relation between syntax and semantics of natural lan-
guage in the articles “English as a Formal Language,” “Universal Grammar,” and “The Proper Treat-
ment of Quantification in Ordinary English” which have been reprinted in the volume of his selected
works edited by Thomason (1974). The textbook by Dowty, Wall, and Peters (1981) gives a full
account of Montague’s theory and of all the required background material, which is omitted in
Montague’s extremely concise papers. For further details on the lambda calculus (Section 4.1.1),
and in particular its logical and computational properties, we refer the reader to the book by Hindley
and Seldin (1986) for the untyped lambda calculus, and the book by Andrews (1986) for the typed
lambda calculus (Church’s simple theory of types).

Our Prolog encoding of semantic interpretation rules, and in particular the encoding of β-
reduction as unification, was implicit in the early work on logic grammars (Colmerauer, 1982;
Dahl, 1981; Pereira and Warren, 1980). Our presentation tries to make clear the connection be-
tween the logic grammar techniques and the techniques of compositional semantics. Some of our
semantic rules are clearly too simplistic, and were shown mainly to illustrate the power of the log-
ical variable for incrementally building complex descriptions. More sophisticated examples can be
found in the Prolog natural-language analysis literature (McCord, 1982; F. C. N. Pereira, 1982; Dahl
and McCord, 1983). Compositional semantics based on Montague grammar has also been used in
natural-language processing systems not based on logic programming (Rosenschein and Shieber,
1982; Warren and Friedman, 1982; Schubert and Pelletier, 1982). Moore (1981) surveys some of
the main difficulties involved in constructing logical representations for the meanings of a wider
class of natural-language constructions. Last but not least, it should be noted that the above work
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on computing logical forms for natural-language derives many of its analyses and techniques from
Woods’s early and influential research (1977).

As we noted, the encoding of β-reduction in unification has to be used very carefully because of
the lack of a full reduction mechanism for λ-terms within Prolog. This question has been discussed
in detail by D. S. Warren (1983), and a general solution in the framework of a Prolog extension
based on Church’s simple theory of types was given by Miller and Nadathur (1986).

Partial execution has long been in the folklore of logic programming. The notion is implicit in
Kowalski’s connection-graph resolution proof procedure (1975; Eisinger, 1986). A related notion
in functional programming is Burstall and Darlington’s unfolding rule for program transformation
(1977). Their techniques were extended to logic programs by Clark and Sickel (1977) and Tamaki
and Sato (1984), among others. Further techniques involving deductive derivations of programs are
discussed by Clark and Tärnlund (1977) and Hogger (1981).

The discussion of quantifier scope in Section 4.1.6 presents a simplified version of some of the
concepts developed independently by Woods in a computational framework (1977) and by Cooper
in a compositional semantics setting (1983). In particular, the explicit notion of quantifier storage
is due to Cooper. Hobbs and Shieber (1987) give a precise account of an algorithm for generating
scope alternatives and prove some important properties relative to its soundness and completeness.
Reliable criteria for choosing among scoping alternatives are notoriously hard to come by. Vanlehn
(1978) gives a comprehensive account of the difficulties. Various partial engineering solutions for
the problem have nevertheless been proposed (Woods, 1977; F. C. N. Pereira, 1982; Grosz et al.,
1987).

Our treatment of the English auxiliary system in Section 4.2.1 is based on that by Gazdar et al.
(1982).

The treatment of long-distance dependencies and, in particular, filler-gap dependencies given
in Section 4.2.3 is rather idealized, its goal being just to outline a few basic techniques. For a
linguistically sophisticated treatment of the problem covering a much broader subset of English, see
for example the book by Gazdar et al. (1985). The analysis of subject relatives as being composed
from VPs and not Ss follows Gazdar (1981). Island constraints were originally proposed by Ross
(1974).

As far as we know, the idea of gap threading appeared first, in form somewhat different from
the one used in Section 4.2.7, as part of the extraposition grammar formalism (Pereira, 1981). It has
been reinvented numerous times.

Categorial grammars as formal systems originated with the work of the Polish logicians
Leśniewski and Adjukiewicz in the 1930s, but it was Bar-Hillel (1964) who considered their ap-
plication to natural-language syntax. With Gaifman and Shamir, Bar-Hillel proved that the basic
categorial grammars have the same weak generative capacity as context-free grammars. Lambek
(1961) provided important early research in the area. Since this work, many different categorial
accounts of the syntax and semantics of natural languages have been developed, including those
by Lewis (1972) and by Cresswell (1973) from a philosophical perspective and that of Ades and
Steedman (1982) from a linguistic one. Van Benthem (1986) provides a recent survey of logical and
semantic issues in categorial grammar. For discussion of categorial unification grammars, see the
papers by Karttunen (1986) and Uszkoreit (1986) and works cited therein.
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The subset of Prolog used up to this point has been pure in the sense that a Prolog system can
be viewed as a sound (though incomplete) inference engine for a particular logic. However, the
Prolog language includes several extralogical facilities which have been found to be of considerable
utility in writing large programs. Some of these facilities are referred to as “metalogical” because
their semantic domain is the domain of logical expressions and proofs. This section introduces
some of the most important extralogical mechanisms in Prolog by means of an example of a simple
natural-language dialogue program, talk.

5.1 Metalogical Facilities

5.1.1 The call predicate

The first metalogical predicate exemplifies the level-crossing involved in interpreting Prolog terms
as encoding Prolog clauses and goals. The call predicate takes a single term argument which
encodes a Prolog goal. The argument of call is executed by reinterpreting it as the goal which
the term encodes. Thus, execution of call(conc([a,b],[c,d],A)) is equivalent to execution of
the goal conc([a,b],[c,d],A) directly. The utility of call comes about because the goal to be
executed can be a variable in the program, as long as it is instantiated to an appropriate term by

execution time. Since call depends on the instantiation of its arguments and reinterprets terms as
literals, it is clearly a metalogical predicate. Note that the argument to call can represent not only
single literal goals but any clause body, including conjunctions, disjunctions and so forth.

The call predicate can be used to implement a simple Prolog interpreter, a unary predicate
which holds of its argument if Prolog would prove the argument when interpreted as a goal. The
definition is trivial.
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Program 5.1
prove(G) :- call(G).

We will see other more interesting examples of predicates that act like interpreters in Chapter 6.

5.1.2 The cut command

The behavior of a Prolog program is based on the depth-first, backtracking control regime that
the Prolog system follows. The Prolog interpreter will explore the entire space of backtracking
alternatives in search of a solution to a goal. This behavior, although simple and (in the limit)
complete, sometimes has undesirable consequences. In this section we present a metalogical facility
that changes the control regime of a Prolog program and that can be used for several purposes
including increasing efficiency, eliminating redundancy, and encoding conditionals.

The cut command, notated by an exclamation mark “!”, is used to eliminate branches of the
search space. We refer to cut as a command, rather than a predicate or operator, to emphasize that
it does not fit smoothly into the logical view of Prolog, and cannot be felicitously thought of as a
predicate which holds or does not hold of arguments.

The clauses for a predicate give alternative ways of proving instances of that predicate. In
proving a goal, Prolog chooses each alternative in turn until one leads to a proof of the goal. The
cut command always succeeds, but as a side effect it makes some of the current clause choices
permanent for the duration of the proof. Specifically, if a clause

p :- g1,. . .,gi,!,. . .,gn.

is being used to prove an instance of p and the cut is reached, then the choice of this clause to prove
that instance of p, as well as all choices of clauses in proving g1 through gi, are made permanent for
the duration of the overall proof of which the proof of p is a part.

Another way of looking at the action of the cut command is as the converse of the previous
statements, that is, by examining which proofs the cut eliminates. When Prolog backtracks to find
an alternative proof of an occurrence of cut, not only is no other proof found for the cut instance but
also the whole goal that invoked the clause with this cut instance is taken to have no proof (even if
other clause alternatives might lead to such proof in the absence of the cut).

The cut command can be used in several ways. If we have a series of clauses for a particular
predicate which we happen to know are all mutually exclusive, then once one of the clauses has
succeeded, there is no use in attempting to find other solutions; all other branches in the search
space will ultimately fail. We can eliminate the inefficiency engendered by searching these blind
alleys by using cut to force the clause choice.

For instance, consider the definition of a max_valued predicate which holds of a nonempty list
of terms and the term in the list with highest valuation according to a binary comparison predicate
higher_valued. (We assume that all objects in the list have distinct valuations; there must be
no “ties”.) Such a predicate might be used, for instance, in implementing a priority system on
terms. In the case where higher_valued is simple arithmetic comparison of numbers, max_valued
computes the maximum number in a list.

The maximum-valued term of a nonempty list is the higher valued of the head of the list and the
maximum valued term of the tail of the list. We will use a ternary max_valued predicate to capture
this latter relationship between a list, a term, and the maximum-valued element in the entire bunch.

max_valued([Head|Tail], Max) :-

max_valued(Tail, Head, Max).
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The ternary predicate is easily implemented. If the list is empty, then the lone term is the highest
valued. Otherwise, we pick the highest valued of the head of the list, the lone term, and the tail of
the list, by using the ternary max_valued predicate recursively.

max_valued([], Term, Term).

max_valued([Head|Tail], Term, Max) :-

higher_valued(Head, Term),

max_valued(Tail, Head, Max).

max_valued([Head|Tail], Term, Max) :-

higher_valued(Term, Head),

max_valued(Tail, Term, Max).

The clauses in the definition of ternary max_valued are mutually exclusive. In particular, the last
two require different relative magnitudes of Head and Term. However, if the second clause is used
and later failure causes backtracking, the third clause will then be tried. The complete recom-
putation of higher_valued(Term, Head) will be performed which, by virtue of the asymme-
try of the notion “higher valued”, will fail. However, arbitrary computation may have to be per-
formed before this mutual exclusivity of the two clauses is manifested, because the computation of
higher_valued(Term, Head)may be arbitrarily complex.

We can increase the efficiency of max_valued by making this exclusivity explicit so that if the
second clause is chosen, the third clause will never be backtracked into. The following redefinition
suffices:

max_valued([Head|Tail], Max) :-

max_valued(Tail, Head, Max).

max_valued([], Term, Term).

max_valued([Head|Tail], Term, Max) :-

higher_valued(Head, Term),

!,

max_valued(Tail, Head, Max).

max_valued([Head|Tail], Term, Max) :-

higher_valued(Term, Head),

max_valued(Tail, Term, Max).

In this version of the program, as soon as we have ascertained that Head is higher than Term in
value, we will eliminate the possibility of using the third clause, since we know that its first literal is
doomed to failure anyway.

This cut maintains the semantics of the program only for certain modes of execution of the
program. In particular, if the mode is max_valued(-,?), then the cut version may return fewer
solutions than the uncut. However, use of max_valued in this way will in any case generate instan-
tiation errors if the arithmetic operators are used within higher_valued.

In summary, using cuts in this way without changing the meaning of the program can in some
cases improve performance significantly. Nonetheless, this trick (and trick it is) should only be used
when necessary, not when possible.

A second use of cuts is for eliminating redundancy in a program. Consider the alternate shuffle
predicate defined by the following clauses:

shuffle(A, [], A).
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shuffle([], B, B).

shuffle([A|RestA], B, [A|Shuffled]) :-

shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-

shuffle(A, RestB, Shuffled).

This shuffle program correctly implements the shuffle relation. However, the predicate allows
redundant solutions; we can see this by backtracking through the solutions it allows.

?- shuffle([a,b],[1],Shuffled).

Shuffled = [a,b,1] ;

Shuffled = [a,b,1] ;

Shuffled = [a,b,1] ;

Shuffled = [a,1,b] ;

Shuffled = [a,1,b] ;

Shuffled = [a,1,b] ;

Shuffled = [1,a,b] ;

Shuffled = [1,a,b] ;

Shuffled = [1,a,b] ;

Shuffled = [1,a,b] ;

no

The problem is that if one of the lists is empty, the program has the choice either of using one of the
first two clauses to immediately determine the answer, or of traversing the nonempty list using one
of the last two clauses. In either case, the solution is the same. One way to fix the predicate is to
guarantee that the clauses are mutually exclusive.

shuffle([], [], []).

shuffle([A|RestA], B, [A|Shuffled]) :-

shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-

shuffle(A, RestB, Shuffled).

However, this solution might be seen as inefficient, since in the case that one of the lists is empty,
the other list is still entirely traversed. An alternative is to place cuts after the first two clauses so
that if one of the lists is empty, the use of one of the first two clauses will cut away the possibility of
using the later clauses to traverse the nonempty list.

shuffle(A, [], A) :- !.

shuffle([], B, B) :- !.

shuffle([A|RestA], B, [A|Shuffled]) :-

shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-

shuffle(A, RestB, Shuffled).

As a matter of style, we prefer the nonredundant solution with no cuts to this final one. The example
was introduced merely as an illustration of the general technique of removing redundancy.

The third use of cut we will discuss here is a technique for implementing conditionals. Unlike
the previous two uses, in which the declarative interpretation of the programs was the same whether
or not the cuts were inserted, this use of cut actually changes both the procedural and the declarative
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interpretations. Such uses of cut are often referred to as “red” cuts, to distinguish them from the less
dangerous “green” cuts we first discussed.

A conditional definition of a predicate p of the form “if condition then truecase else falsecase”
can be represented in Prolog using cuts as follows:

p :- condition, !, truecase.

p :- falsecase.

If the condition holds, the cut will prevent backtracking into the falsecase. On the other hand,
if the condition fails, the truecase will, of course, not be executed. Thus the cases are executed just
according to the normal notion of the conditional.

As an application of such a conditional, consider the merge function introduced in Section 3.4.1.

merge(A, [], A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [A|Merged]) :-

A < B,

merge(RestAs, [B|RestBs], Merged).

merge([A|RestAs], [B|RestBs], [B|Merged]) :-

B =< A,

merge([A|RestAs], RestBs, Merged).

The last two clauses can be thought of as saying: “if A < B then pick A else pick B.” The predicate
can be reimplemented using cut to reflect this conditional:

merge(A, [], A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [A|Merged]) :-

A < B,

!,

merge(RestAs, [B|RestBs], Merged).

merge([A|RestAs], [B|RestBs], [B|Merged]) :-

merge([A|RestAs], RestBs, Merged).

Certain versions of Prolog include a notation for conditionals which generalizes those built with
cuts in this way. The goal

condition -> truecase ; falsecase

is used for this purpose. Use of the explicit conditional is preferred to implicit conditionals built
with cut. With this notation, the merge example can be rewritten as

merge(A, [], A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [C|Merged]) :-

A < B

-> (merge(RestAs, [B|RestBs], Merged),

C = A)

; (merge([A|RestAs], RestBs, Merged),

C = B).
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Note the use of the = operator defined in Program 3.2.

5.1.3 The Negation-as-Failure Operator

In pure Horn clauses, it is possible to prove only positive conclusions; Prolog can prove that some-
thing is the case, but never that something is not. However, some situations intuitively have the same
character as reaching a negative conclusion, namely those in which Prolog fails to prove a goal. We
might assume that if Prolog cannot prove something true, then it must be false. Implicit in this
assumption is the idea that the Prolog program from which Prolog could not prove the given goal
has complete information about its intended domain of interpretation. This “complete information”
interpretation (or closed world assumption as it is called) is so natural that we use it all the time
without noticing. For example, if a string cannot be analyzed as a sentence for some grammar, we
may conclude that the string is not grammatical. If two people are not related by the ancestor
relation in our family database, we may conclude that neither is an ancestor of the other. Conclud-
ing the negation of a statement from failure to prove it has become known in logic programming as
negation as failure (Clark, 1978).

Negation as failure is a reasonable interpretation of proof failure under the closed world assump-
tion because Prolog provides a complete proof procedure; that is, Prolog will not conclude there is
no proof of a goal when there is one. However, things are more subtle than the foregoing discussion
implies. Since any Turing machine can be represented by a pure Prolog program (Tärnlund, 1977),
the recursive unsolvability of the Turing-machine halting problem implies that the determination of
whether a goal is provable is in general an undecidable question. If a goal is unprovable, Prolog may
terminate with a failure answer, or it may loop forever (ignoring resource limitations!). Because of
its leftmost-literal selection rule, Prolog might in fact loop even for goals for which a proof proce-
dure with a different selection rule would terminate with failure. In general, a goal is finitely failed

(with respect to a program) if the proof procedure terminates with failure for the goal.
All versions of Prolog provide some form of negation-as-failure operator. We will here assume

the Edinburgh \+ operator. A goal \+G succeeds if and only if Prolog (finitely) fails to prove G. It
turns out that \+ behaves exactly as if defined by the program

\+ Goal :- call(Goal) -> fail ; true.

This program has no reasonable declarative interpretation. Procedurally, \+ tries to execute its
argument Goal in the first clause. If Goal succeeds, the fail causes the whole call to \+ to fail.
Otherwise, \+ Goal succeeds trivially in the second branch of the conditional.

An important limitation of the above operator is that it does not achieve its intended interpretation
if its argument contains unbound variables. This is shown by the different behaviors of the queries

?- \+ p(X), X = a.

and

?- X = a, \+ p(X).

with the program

p(b).

Tracing the execution of \+ in both queries, we see that the first query fails while the second one
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succeeds, even though the two queries have the same logical interpretation.
The problem here is that the implementation of \+G behaves as if any unbound variables in G

were existentially quantified inside the operator, whereas, to be consistent with the variable scoping
conventions Prolog uses (as discussed in Section 2.3), the variables should be treated as quantified
at the outermost level in the enclosing query or clause. In other words, a goal such as

:- \+ p(X).

is executed as if it meant :- \+((∃X)p(X)), while in fact it should mean (∀X):- \+p(X). As a
consequence, \+ can be interpreted declaratively as negation-as-failure only if its argument has no
unbound variables. Some versions of Prolog, for instance MU-Prolog (Naish, 1986), have a sound
negation-as-failure operator, which basically delays the execution of the negated goal until all of its
variables have been sufficiently instantiated. (What “sufficiently” means here is beyond the scope of
this book.)

5.1.4 The setof predicate

The control regime of Prolog generates alternative solutions for a goal only through backtracking.
Unless some literal fails, an alternate solution to an earlier goal will never be generated. On occasion,
however, we may be interested not in some solution to a goal, but in all solutions. The setof
predicate allows execution of a goal—like call—but in such a way that a list of all solutions is
generated.

A literal of the form setof(T, G, S ), where T is some term (usually a variable) and G is a
goal (usually containing the variable), will hold just in case S is a list representing the instantiations
of T under all assignments generated as solutions to the goal G. This goal can be read “the set of T s
such that G holds of each one is S ”. For instance, the query

?- setof(T, shuffle([a,b],[1],T), S).

S = [[1,a,b],[a,1,b],[a,b,1]],

T = _ ;

no

computes the set of shuffles of [a,b] and [1], encoded as a list.
An important issue concerns variables in the goal G other than those in T . For instance, consider

the goal setof(T, conc(T, U, [1,2,3]), S). We must distinguish between variables that are
interpreted as bound by an existential quantifier within the scope of a setof literal and variables
that are bound outside the scope of the setof, or, in other words, to distinguish between “the set of
T s such that there is a U . . .” and “for some U, the set of T s such that. . .”. As seen in the following
query, variables occurring in G that are not in T are in general treated as being outside of the scope
of the setof.

?- setof(T, conc(T, U, [1,2,3]), S).

T = _,

U = [],

S = [[1,2,3]] ;

T = _,

U = [1,2,3],
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S = [[]] ;

T = _,

U = [2,3],

S = [[1]] ;

T = _,

U = [3],

S = [[1,2]] ;

no

To obtain behavior reflecting the narrow scope for binding of such variables, the setof predicate
allows “existentially quantified” variables to be prefixed to the goal G with the infix operator “ˆ”.1

?- setof(T, Uˆconc(T, U, [1,2,3]), S).

T = _,

U = _,

S = [[],[1],[1,2],[1,2,3]] ;

no

Note that a setof literal fails (rather than succeeding with S the empty list) if the goal G has no
solutions.

A related predicate, bagof, differs from setof only in that redundant solutions are not removed.

?- setof(T, member(T, [1,1,2]), S).

T = _,

S = [1,2]

yes

?- bagof(T, member(T, [1,1,2]), S).

T = _,

S = [1,1,2]

yes

5.1.5 The assert command

Interaction with Prolog as discussed so far consists of presenting queries to be executed against a
static database of Horn clauses. The assert command (and related commands like retract) allow
a program to alter the clause database dynamically; the program can “rewrite itself” as execution
progresses. The idea of a program changing itself while executing is both powerful and dangerous.
The use of facilities to perform such actions is therefore tendentious. Overuse of these facilities is
one of the most common errors of beginning Prolog programming.

A clause can be added to the database by calling assert with the clause as argument. For
example, the clause

1This use of ˆ is unrelated to and should not be confused with its use in lambda-expression encodings.
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remembered([shrdlu, halts],

s(np(shrdlu),vp(iv(halts)))).

can be added to the database by execution of the following goal:

assert(remembered([shrdlu, halts],

s(np(shrdlu),vp(iv(halts)))))

Here again Prolog relies on the trick of representing object-level variables by metalevel variables.
The following program, for instance, will compute the parse tree for a sentence (assuming a DCG

like that in Program 3.11). Furthermore, once the parse tree has been computed, it is “remembered”
by asserting a unit clause into the database. If the parse tree for the sentence is ever again requested,
the computation using the grammar will not be done; instead, the appropriate unit clause will be
used. The cut in the program guarantees that even on backtracking, no recomputation of the parse
tree is performed.

remember(Sentence, Parse) :-

remembered(Sentence, Parse), !.

remember(Sentence, Parse) :-

s(Parse, Sentence, []),

assert(remembered(Sentence, Parse)).

This program can be understood only procedurally. It makes sense only under certain execu-
tion modes and calling conventions. In particular, if the grammar was ambiguous for a particular
sentence, this ambiguity will never be manifested, since on backtracking after the first call the cut
eliminates further possibilities. We will see a more coherent, useful application for assert as a tool
for remembering lemmas (that is, previously proven results) in Section 6.6.3.

5.1.6 Other Extralogical Predicates

We conclude our discussion of extralogical features of Prolog with a grab bag of built-in Prolog
predicates that we will find useful in later examples. Of course, since these predicates fall outside
the pure subset of Prolog they should be used sparingly and with appropriate trepidation.

Perhaps the canonical metalogical predicate is var, which holds if its single argument is a vari-
able at the time the literal is executed. Similarly, atomic holds of a term if it is a constant (i.e., a
number or atom) at execution time. Note that procedural issues like literal ordering are crucial in
determining the behavior of these predicates. For instance, compare the two queries

?- var(X), X = a.

X = a

yes

?- atomic(X), X = a.

no

to the queries with literals reversed.

?- X = a, var(X).

no
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?- X = a, atomic(X).

X = a

yes

A useful device for composing and decomposing terms is the binary infix operator =.., which
holds of two arguments Term and List if Term is a term with functor of arity k and List is a list
of length k + 1 whose first element is the functor name of Term and whose last k elements are the k

arguments of Term. For example, we have

?- T =.. [f, a, X, g(X)].

T = f(a,X,g(X))

yes

?- f(a,X,g(X)) =.. L.

L = [f, a, X, g(X)]

yes

This predicate, like the arithmetic predicates of Section 3.4.1, is not so much extralogical as incom-
pletely implemented, in that execution of the predicate with improper instantiation of its arguments
results in an instantiation error rather than a failure of the call. In particular, it must be called with
either one or the other of its arguments instantiated. Furthermore, if the first argument is uninstanti-
ated, the second must be a list whose first element is a constant. These restrictions follow from the
requirement that appropriate solutions for variables must be determinable at the execution time of
the predicate.2

5.2 A Simple Dialogue Program

We now turn to the design of the talk program, a simple natural-language question-answering sys-
tem which demonstrates some of the metalogical facilities just described. Here is a typical dialogue
that could be handled by talk.

?- main_loop.

>> principia is a book

Asserted "book(principia)."

>> bertrand wrote every book

Asserted "wrote(bertrand,B) :- book(B)."

>> which of the books did bertrand write

Error: too difficult.

>> what did bertrand write

principia.

>> every professor that wrote a program met bertrand

Asserted "met(P,bertrand) :-

professor(P), program(R), wrote(P,R)."

2Often the use of =.. can be replaced by the more efficient built-in predicates functor(Term, Name, Arity), which
holds when Term has main functor with name Name and arity Arity, and arg(Number, Term, Arg), which holds when
the argument of Term in position Number is Arg. In the cases we will consider, the =.. operator is more readable.
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Notice that talk can give only extensional answers to questions; for example, to the question
“What did Bertrand write?” it can answer only with specific entities that it can prove Bertrand
wrote, and not with general answers such as “every book.” In fact, the best way of understanding
talk input is as convenient notation for Prolog clauses to be added to the knowledge base and for
Prolog goals to be proved.
talk is also limited in that it works with a predefined vocabulary, specified in the grammar. It

would not be difficult to add a simple mechanism to allow the user to define new words, but such
a mechanism would be usable only because of the small grammatical and semantic capabilities of
talk. The more general problem of vocabulary acquisition for large natural-language processing
systems is a separate research topic (Grosz et al., 1987).

The talk program works by

1. Parsing a sentence, simultaneously building a representation of its logical form.

2. Converting the logical form to a Horn clause (if possible).

3. Either adding the clause to the Prolog database (if the sentence was declarative) or interpreting
the clause as a query and retrieving the answers to the query.

To perform these tasks, the program makes use of the metalogical facilities just described. The
cut command is used to encode conditionals. The assert command is used to modify the Prolog
database incrementally while the program is running. The setof predicate is used to find all answers
to a query.

5.2.1 Overall Operation

The main predicate is talk which when executed performs the three phases of computation just
described.

talk(Sentence, Reply) :-

parse(Sentence, LF, Type),

clausify(LF, Clause, FreeVars), !,

reply(Type, FreeVars, Clause, Reply).

talk(Sentence, error(’too difficult’)).

Note the use of cut. If the sentence cannot be parsed or if its logical form cannot be converted to a
Horn clause, the reply will be error(’too difficult’). The cut encodes the conditional “if the
sentence can be parsed and clausified then reply appropriately else the sentence is too difficult”.

5.2.2 Parsing

The sentence is parsed by the parse predicate instantiating LF to the logical form for the sentence (as
in Section 4.1), and instantiating Type to query or assertion depending on whether the sentence
was interrogative or declarative.

parse(Sentence, LF, assertion) :-

s(finite, LF, nogap, Sentence, []).

parse(Sentence, LF, query) :-

q(LF, Sentence, []).
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The grammar used in the talk program is based on that developed in previous chapters, in
particular Program 4.5, but modified to allow questions and declarative sentences with the copular
verb “be”. The analysis of the copula which we use here is sorely inadequate. It serves merely as
an expedient to allow certain sentences needed for nontrivial dialogues. More sophisticated anal-
yses of auxiliaries that mesh more nicely with the copula could be inserted. Semantically, the
verb “be” requires a complement noun phrase which is existentially quantified, i.e., of the form
(XˆQ)ˆexists(X,P&Q). The logical form of a sentence containing “be” is constructed by applying
the subject LF to the property P, ignoring Q altogether.

As in Program 4.3, the terms that give the meanings of content words such as book are now
marked with the prefix operator “‘”, as in ‘book(X). This makes the translation from logical form
to Prolog easier, because it clearly distinguishes logical connectives from subject domain operators.

The logical forms for questions are implications C => answer(a), meaning that a is an answer
for the question if condition C representing the text of the question holds. For yes-no questions, the
answer is yes if the text of the question holds. For WH-questions, the answers are the instantiations
of a that satisfy the goal. Note that this differs from the semantics given by Program 4.5.

5.2.3 LF Conversion

Logical forms are converted to Horn clauses by the predicate clausify. A literal
clausify(Formula, Clause, Vars) holds if Clause is the clausal form of the FOL formula
Formula and Vars is a list of the variables free in the antecedent of the clause. (The need for Vars
will be explained later.)

The main point to note about clausify is that it is a partial function. Although all logical forms
generated by the grammar are closed first-order formulas, some of them are not Horn clauses. For
example, the question “Who wrote every book?” has the logical form

all(B,book(B) => wrote(X,B)) => answer(X). ,

which is not a Horn clause. We leave as an exercise for the reader to determine what sentence types
may or may not be represented by Horn clauses. As we have seen, Horn clauses must obey several
restrictions. Outermost quantifiers must be universally quantified. Thus, to clausify a universally
quantified expression, we merely strip off the quantifier and clausify the rest.

clausify(all(X,F0),F,[X|V]) :- clausify(F0,F,V).

If a clause has an implication symbol, the consequent must be a single literal, and the antecedent
must have variables existentially quantified with no other implication symbols.

clausify(A0=>C0,(C:-A),V) :-

clausify_literal(C0,C),

clausify_antecedent(A0,A,V).

Otherwise, if the clause has no implication symbol it must be a unit clause, a single literal.

clausify(C0,C,[]) :-

clausify_literal(C0,C).

As mentioned above, antecedents must have variables quantified existentially, but may consist
of several literals, not just the one allowed in the consequent.
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clausify_antecedent(L0,L,[]) :-

clausify_literal(L0,L).

clausify_antecedent(E0&F0,(E,F),V) :-

clausify_antecedent(E0,E,V0),

clausify_antecedent(F0,F,V1),

conc(V0,V1,V).

clausify_antecedent(exists(X,F0),F,[X|V]) :-

clausify_antecedent(F0,F,V).

Finally, literals are clausified merely by removing the backquote marker.

clausify_literal(‘L,L).

Note that each clause for clausify and clausify_antecedent includes a third argument that
keeps track of the variables free in the antecedent of the clause.

In the translation from logical form to Prolog we can also see how Prolog clauses are represented
as Prolog terms with the binary functors “:-” and “,” used for implication and conjunction, respec-
tively. On the second clause of clausify we have the term (C:-A)3 used to construct a clause
representation, and in the second clause of clausify_antecedentwe have the term (E,F) being
used to build a conjunction in the antecedent of a clause.

Here also we see another instance of the previously discussed “confusion” between object level
and metalevel. In the clauses for clausify and clausify_antecedent, variables are used to
stand for fragments of logical forms and Prolog clauses. At the same time, quantified variables in
the logical form are also represented by Prolog variables, and end up as the variables of the resulting
Prolog clause.

5.2.4 Constructing A Reply

Finally, once the sentence has been parsed and its logical form converted to a clause, a reply is
constructed. If the sentence is declarative, the clause is merely asserted into the Prolog database so
that future queries will use it.

reply(assertion, _FreeVars, Assertion,

asserted(Assertion)) :-

assert(Assertion), !.

Clauses associated with queries are always of the form answer(Answer) :- Condition, by virtue
of the semantics given to questions in the grammar. The Answers associated with all solutions of
Condition are generated using setof and this set forms the reply. If no answers are generated, the
simple reply “no” is used.

reply(query, FreeVars,

(answer(Answer):-Condition), Reply) :-

(setof(Answer, FreeVarsˆCondition, Answers)

-> Reply = Answers

; Reply = [no]), !.

For example, the question “Who wrote a book?” would be translated into the Prolog clause

3The parentheses are required as usual for reasons of operator precedence.
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answer(X) :- book(B), wrote(X,B).

This is then evaluated by the goal

setof(X,[B]ˆ(book(B),wrote(X,B)),S) ;

that is, S is the set of Xs such that there is a book B that X wrote. Note the use of the set of free
clause variables that we took pains to recover in the LF conversion predicates. By existentially
quantifying them inside the setof predicate, we guarantee that all solutions for any assignment to
the free variables are recovered, not just for one assignment to them.

Finally, any other type of sentence generates an error message. The cuts in previous clauses
prevent backtracking into this clause once another clause has matched.

reply(_Type, _FreeVars, _Clause,

error(’unknown type’)).

5.3 User Interaction

The mode of interaction of the talk program as it stands requires putting to the Prolog interpreter
goals encoding the sentence as a list. For instance, we might have the following dialog.

?- talk([principia, is, a, book], Reply).

Reply = asserted(book(principia))

yes

?- talk([bertrand, wrote, every, book], Reply).

Reply = asserted((wrote(bertrand,B):-book(B)))

yes

?- talk([what, did, bertrand, write], Reply).

Reply = answer([principia])

yes

A more natural mode of interaction would enable the user to type sentences directly, and receive
replies from the system not as variable assignments, but as an appropriate response to the input. To
enable such interfaces to be written, Prolog systems include built-in commands for performing input
to and output from a terminal or other device.

Input/output specification is typically the most idiosyncratic and variable part of any program-
ming language, and Prolog is no exception. We will therefore present just a few very primitive
commands—sufficient to write a user interface for talk—which tend to be supported by most
Prolog systems. Readers will undoubtedly want to refer to the manuals for their own systems to
determine the range of input/output commands that are available.

Note that all of these commands work through side effects such as changing the state of the
terminal screen or input buffer. Since side effects have no place in the declarative semantics of
Prolog, these are all members of the strictly extralogical part of Prolog. Retrying such commands
or backtracking through them does not cause their side effects to be undone, and they work only in
certain modes.
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5.3.1 Simple Input/Output Commands

The unary write command prints its term argument to the standard output (usually the terminal).
Its inverse, read, reads a term delimited by a period and newline from the standard input (usually
the terminal as well) and unifies its argument with the term that is read. Typically, it is called in
mode read(-), so that its argument is a variable that is bound to the term read.

Input/output behavior at the character rather than term level is possible with commands get
and put. The get command reads a single printing character from the input stream, unifying its
argument with the integer that is the  code for the character read. Nonprinting characters (like
spaces, tabs, newlines and control characters) are skipped. Its companion command get0 works
the same, except that nonprinting characters are not skipped. To print a character to the standard
output, the put command is called with the integer corresponding to the character to be printed as
its argument. The zero-ary predicate nl puts a newline character to the standard output.

5.3.2 A Simple User Interface

Using these commands, we can develop a simple user interface for the talk program. First, we
need a program to read sentences from the terminal. The predicate read_sent will return a list of
words which were typed separated by spaces and ended by a newline character.

read_sent(Words) :-

get0(Char),

read_sent(Char, Words).

It gets the next character from the input stream as a lookahead and, depending on the lookahead
character, either continues reading or stops. If the lookahead is a newline, input is ended.

read_sent(C, []) :- newline(C), !.

If the lookahead is a space, it is ignored, as spaces are not part of the next word.

read_sent(C, Words) :- space(C), !,

get0(Char),

read_sent(Char, Words).

Any other character is assumed to start a word. The auxiliary predicate read_word is called to
retrieve the characters that constitute the next word from the input. Then the built-in predicate name
packs this list of characters into an atom. Finally, more words are read from the input.

read_sent(Char, [Word|Words]) :-

read_word(Char, Chars, Next),

name(Word, Chars),

read_sent(Next, Words).

Reading a word from the input stream proceeds similarly. The predicate read_word takes the
lookahead character and builds a list of characters starting with the lookahead that comprise the
word. The new lookahead, the delimiter following the word, is matched with the third argument to
read_word. Newlines and spaces delimit the words.

read_word(C, [], C) :- space(C), !.
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read_word(C, [], C) :- newline(C), !.

All other characters are added to the list of characters to be formed into a word.

read_word(Char, [Char|Chars], New) :-

get0(Next),

read_word(Next, Chars, New).

Using read_sent, we can write a top-level loop that reads sentences, computes the appropriate
reply with talk, and prints that reply.

main_loop :-

write(’>> ’),

read_sent(Words),

talk(Words, Reply),

print_reply(Reply),

main_loop.

The final recursive call of main_loop starts the read-compute-print loop over again.
Finally, a program to print the replies in a more satisfactory fashion was assumed in the definition

of main_loop. This predicate, print_reply, is listed in the Appendix A code. As it presents no
interesting problems, its definition is not repeated here.

Interacting with the talk program through this interface, although not ideal, is considerably
more natural as evidenced by the dialogue presented at the beginning of Section 5.2. The full
commented listing for the talk program is given in Appendix A.

5.4 Bibliographic Notes

Most of the extralogical facilities of Prolog discussed in this chapter go back to the original Marseille
Prolog (Roussel, 1975). In that system, !, assert and =.. were called respectively / (the slash,
suggesting the cutting of alternative branches of the search space), AJOUT, and UNIV.

The general question of extralogical facilities has led to much discussion in the logic program-
ming community. At their best, those facilities can be seen as operators on axiom sets and deriva-
tions, for which a reasonable semantics might be forthcoming (Bowen and Kowalski, 1981; Bowen
and Weinberg, 1985). At their worst, extralogical facilites are just means of simulating imperative
language features within Prolog. Often, these simulations not only detract from the logical seman-
tics of Prolog but also incur considerable performance penalties, since the most efficient aspects of
Prolog are generally those with a clean semantics (Warren, 1977).

Of all extralogical operations in Prolog, the cut seems to be the most often used and the source
of most controversy. The primitive storage management techniques of early Prolog systems meant
that nondeterminate computations used very large amounts of space. Since the cut operator makes a
subcomputation determinate, “green” cuts were used in early Prolog programs as the main method
of storage conservation. More recently, improved storage management techniques and better de-
terminacy detection in Prolog compilers (Warren, 1977; Tick and Warren, 1984; Pittomvils et al.,
1985; Bowen et al., 1986) have made that use of cut less important, at least for those with access to
state-of-the-art Prolog systems.

The use of cut to implement a limited form of negation as nonprovability also goes back to
Marseille, although it is difficult to give a precise reference to the first appearance of the technique.
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The overall question of the meaning of negation-as-nonprovability has been extensively researched.
Lloyd’s book (1984) presents some of the main theoretical concepts and results on the subject, orig-
inally discovered by Clark (1978), Apt and van Emden (1982) and Jaffar, Lassez, and Lloyd (1983).
These results include denotational characterizations of the meaning of different possible notions of
negation, and proofs of the soundness and completeness of negation-as-failure with respect to the
completions of definite-clause programs. A more recent survey of results and open problems was
given by Jaffar, Lassez and Maher (1986). These theoretical developments proceeded in parallel with
the discovery of computational mechanisms allowing sound implementations of negation-as-failure,
embodied in Colmerauer’s Prolog-II (1986) and Naish’s MU-Prolog (1986). These mechanisms in-
volve delaying negations (or, as a special case, inequalities) until variables become “sufficiently”
bound.

The set construction operator setof we use here is due to D. H. D. Warren (1982) and was first
implemented in DEC-10 Prolog (Bowen, 1982). From a practical point of view, the requirement that
all narrow-scope existentially quantified variables be explicitly marked with the ˆ operator is some-
times burdensome. Other proposed set operators (Morris et al., 1986) adopt the opposite convention.

Our talk program is a rather simplistic example of a natural-language interface to a knowledge
base. A comparable example program was given as an example of application of Colmerauer’s
metamorphosis grammars (1978). The program’s structure and operation are closely modeled on
those of more comprehensive Prolog natural-language database interfaces such as those by Dahl
(1981), F. C. N. Pereira (1982), Pereira and Warren (1982), and McCord (1982), even though those
systems dealt only with questions and not with assertions. The limitation of allowable assertions to
those whose meaning can be expressed by definite clauses circumvents the difficult question of what
to do with assertions that contradict existing system knowledge (Haas and Hendrix, 1981). More
generally, natural-language interface systems should be able to deal with unmet presuppositions in
questions and commands as well as with assertions that contradict existing information (Winograd,
1972).

As we pointed out, our example program cannot acquire new words not in its initial vocabulary.
In general, this is a difficult question. Besides the determination of syntactic category and fea-
tures, word acquisition should be able to determine use and meaning constraints for the word, either
from other information supplied in natural language (Haas and Hendrix, 1981) or from specialized
acquisition-dialogue mechanisms (Grosz et al., 1987; Ballard and Stumberger, 1986).
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In previous chapters we have seen that a very powerful grammar formalism, definite-clause
grammars, can be used to describe a variety of NL-related phenomena and can be directly embedded
in Prolog. In so doing, the grammar engenders a top-down, recursive-descent, backtrack parser for
the language of the grammar. For applications where such a parser is sufficient, this technique can
be quite useful. We have, however, already seen evidence of frailties of Prolog and DCGs. For
instance,

• Since Prolog programs with left-recursion have termination problems, so will direct Prolog
execution of DCGs with left-recursive rules.

• Arguments in DCG rules having a regular, predictable structure—e.g., those which enforce
filler-gap dependencies, build parse trees, or construct logical forms—tend to proliferate and
complicate grammars.

These and similar problems have been addressed in logic-programming research. Some of the
tools for solving them—by extending or modifying Prolog or the grammar formalism—exist within
Prolog itself, but rely on using the language in different ways. Rather than embedding programs or
grammars directly in Prolog, we can define an interpreter for the extended language in Prolog itself.
An interpreter is a meta-program in that it uses other programs as data.1 By writing specialized in-
terpreters, it is possible not only to cover new language constructs, but also to try out new evaluation
strategies for a language.

1For this reason, what we call interpreters are sometimes referred to somewhat confusingly as meta-interpreters, even
though they do not in general interpret interpreters.
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6.1 Prolog in Prolog

We will begin our discussion of interpreters with the basis for extensions to Prolog, namely, an
interpreter for pure Prolog, written in pure Prolog itself. Such interpreters written in their own
object language are often called meta-circular interpreters. In fact, we have seen one meta-circular
Prolog interpreter already, the predicate prove in Program 5.1. In this less trivial example, we
assume that the object-level Prolog program to be interpreted is encoded with the unary predicate
clause. For instance, the conc predicate, defined as Program 3.3, would be encoded as data for

the interpreter by the clauses2

clause(( conc([], L, L) :- true )).

clause(( conc([E|R], L, [E|RL]) :-

conc(R, L, RL) )).

Notice that the clauses are encoded by Prolog terms and the object-level variables by meta-
level variables. We have seen this kind of “level-shifting” between object- and meta-level before,
for instance, in the use of Prolog (meta-level) variables to encode lambda-calculus (object-level)
variables (see Section 4.1.3). In the writing of interpreters, such level-crossing is ubiquitous.

The interpreter is implemented by the predicate prove, which takes an object level goal (encoded
as a term) and follows the Prolog proof procedure using the program axiomatized by clause clauses.
The intention is that the goal prove(Goal) be provable by Prolog if the goal Goal is as well.
Clearly, the trivial goal true is always provable.

prove(true).

Any other goal is provable only if there is some clause which matches it and whose body is provable.

prove(Goal) :-

clause((Goal :- Body)),

prove(Body).

Finally, if the body consists of the conjunction of two subgoals, they must be proved independently.
prove((Body1, Body2)) :-

prove(Body1),

prove(Body2).

These three clauses, summarized as Program 6.1, constitute a full interpreter for pure Prolog written
in Prolog.

Program 6.1
prove(true).

prove(Goal) :-

clause((Goal :- Body)),

prove(Body).

prove((Body1, Body2)) :-

prove(Body1),

2The extra parentheses around each clause are required by Edinburgh Prolog syntax to inhibit Prolog from interpreting
the :- with its normal precedence, which would cause it to be taken as binding weaker than the clause predicate itself. The
parentheses force it to be interpreted in the natural way as taking just the material inside the parentheses as arguments. The
same trick was used in Section 2.8.1.
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prove(Body2).

By tracing the execution of the program proving a goal and comparing it to the trace of Prolog ex-
ecuting the same goal directly, as in Figure 6.1, we can see the parallelism between the interpreter’s
axiomatization of the object-level Prolog interpreter and the object-level interpreter itself.

6.1.1 Absorption

The difference between the three-clause interpreter and the trivial one-clause interpreter using call
(Program 5.1) resides in the amount of work of the interpreter that is done by the Prolog execution
mechanism the interpreter is being executed by. In the case of the trivial interpreter, all of the
interpretation process is absorbed by the Prolog that is executing the interpreter. In the three-clause
interpreter, much, but not all, of the work is being absorbed. For example, the unification of goal
literals and clause heads is absorbed into the unification of terms in the executing Prolog. The order
of clause choice is also absorbed. In fact, the only part that is not absorbed is the selection of literals
in a conjunctive goal.

Interpreters are written so that portions of the interpretation process can be manipulated,
changed, and otherwise investigated. The part of the interpretation process absorbed by the pro-
gram executing the interpreter is not subject to such manipulation. Thus, if we are interested in
experimenting with alternate literal selection rules, the one-clause interpreter will be insufficient
for our purposes (since it absorbs literal selection), whereas the three-clause interpreter does allow
changes in that area (since it makes literal selection explicit). However, if we wish to experiment
with alternate unification methods (as is commonly done), neither of these interpreters suffices; they
both absorb unification into the underlying execution. Note that the interpreters presented so far all
absorb the various facets of the control structure of Prolog by implementing them with the same

facets in the underlying execution. This circularity is not necessary, but is often the simplest method
of absorption.

6.1.2 Keeping Proof Trees

As an example of one sort of extension to the language that interpreters make possible, we consider a
version of Prolog that automatically generates proof trees for goals that it proves. An extra argument
in the interpreter keeps track of the proof tree of the goal being proved. The proof tree encoding is
as follows: If a literal L is proved by virtue of subproofs P1, . . . , Pn, then the proof tree for L

L

1              n
P  .  .  .   P

is encoded as the Prolog term

L :- P1, ..., Pn .

The following interpreter accomplishes this task:

Program 6.2
prove(true, true).

prove(Goal, (Goal :- BodyProof)) :-

clause((Goal :- Body)),
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?- conc([a,b],[c,d],A). ?- prove( conc([a,b],[c,d],A) ).

(1) 0 Call : conc([a,b],[c,d],L_1) (1) 0 Call : prove(conc([a,b],[c,d],L_1))

(2) 1 Call : clause((conc([a,b],[c,d],L_1):-Body_2))

(2) 1 Exit : clause((conc([a,b],[c,d],[a|RL_2]):-

conc([b],[c,d],RL_2)))

(2) 1 Call : conc([b],[c,d],RL_2) (3) 1 Call : prove(conc([b],[c,d],RL_2))

(4) 2 Call : clause((conc([b],[c,d],RL_2):-Body_4))

(4) 2 Exit : clause((conc([b],[c,d],[b|RL_3]):-

conc([],[c,d],RL_3)))

(3) 2 Call : conc([],[c,d],RL_3) (5) 2 Call : prove(conc([],[c,d],RL_3))

(6) 3 Call : clause((conc([],[c,d],RL_3):-Body_6))

(6) 3 Exit : clause((conc([],[c,d],[c,d]):-true))

(7) 3 Call : prove(true)

(7) 3 Exit : prove(true)

(3) 2 Exit : conc([],[c,d],[c,d]) (5) 2 Exit : prove(conc([],[c,d],[c,d]))

(2) 1 Exit : conc([b],[c,d],[b,c,d]) (3) 1 Exit : prove(conc([b],[c,d],[b,c,d]))

(1) 0 Exit : conc([a,b],[c,d],[a,b,c,d]) (1) 0 Exit : prove(conc([a,b],[c,d],[a,b,c,d]))

A = [a,b,c,d] A = [a,b,c,d]

yes yes

Figure 6.1: Comparison of Direct Execution and Indirect Interpretation.
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prove(Body, BodyProof).

prove((Body1, Body2), (Body1Proof, Body2Proof)) :-

prove(Body1, Body1Proof),

prove(Body2, Body2Proof).

As an example, the interpreter generates the following proofs (manually indented for readability)
for queries concerning the shuffle predicate defined as Program 3.4.

?- prove(shuffle([a,b],[1,2],S), Proof).

S = [1,2,a,b],

Proof = shuffle([a,b],[1,2],[1,2,a,b]):-

(conc([],[a,b],[a,b]):-

true),

(shuffle([a,b],[2],[2,a,b]):-

(conc([],[a,b],[a,b]):-

true),

(shuffle([a,b],[],[a,b]):-

true),

(conc([],[2,a,b],[2,a,b]):-

true)),

(conc([],[1,2,a,b],[1,2,a,b]):-

true) ;

S = [1,a,2,b],

Proof = shuffle([a,b],[1,2],[1,a,2,b]):-

(conc([],[a,b],[a,b]):-

true),

(shuffle([a,b],[2],[a,2,b]):-

(conc([a],[b],[a,b]):-

(conc([],[b],[b]):-

true)),

(shuffle([b],[],[b]):-

true),

(conc([a],[2,b],[a,2,b]):-

(conc([],[2,b],[2,b]):-

true))),

(conc([],[1,a,2,b],[1,a,2,b]):-

true)

yes

Using techniques of this sort, one can imagine writing interpreters that trace the execution of a
program, detect looping in a program’s execution, or allow interactive single-stepping of a program.

6.1.3 Unit Clauses

The three-clause Prolog interpreter does not allow unit clauses, e.g.,
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conc([], L, L).

to be stated directly, say as

clause(conc([], L, L)).

Instead, they are encoded as

clause((conc([], L, L) :- true)).

Extending the interpreter to handle unit clauses correctly has one subtlety, in that the straightforward
“solution” of adding a new clause to the interpreter

prove(Goal) :-

clause(Goal).

does not accurately reflect the top-to-bottom clause ordering that Prolog uses. Instead, we could
introduce a new predicate aclause, which picks up clauses from the database and in the case of
unit clauses, instantiates the body of the clause as true.

Program 6.3
aclause((Head :- Body)) :-

clause(Clause),

(Clause = (Head :- Body)

-> true

; (Clause = Head, Body = true)).

Because the clause goal does not distinguish unit from nonunit clauses, the top-to-bottom clause
ordering will be respected in backtracking through aclause.

6.2 Problem Section: Prolog Interpreters

6.2.1 Consecutively Bounded Depth-First Search

Because of its depth-first control regime, Prolog may fail to find a solution to a query even when one
exists. One solution to this problem is to substitute for depth-first execution an alternative regime
called consecutively bounded depth-first execution, which we will define in terms of a simpler, but
highly incomplete, control regime called depth-bounded execution.

In depth-bounded execution of a goal, the goal is proved in a depth-first manner until a given
depth of recursion is reached. At that point, if no solution has been found, that branch of computation
is considered to have failed, and the system backtracks. For a given depth bound n, we will refer to
n-depth-bounded execution.

A depth-bounded Prolog interpreter will never loop infinitely. However, it will fail to find solu-
tions that involve proofs that are deeper than the depth bound. A compromise control regime that,
unlike depth-bounded execution, can find arbitrarily complex proofs, yet that will not loop infinitely
in a depth-first manner, is consecutively bounded depth-first execution. In this regime, a goal is
executed by executing it under a 1-depth-bounded regime. If no solutions are found, the system
uses 2-depth-bounded execution, then 3-depth-bounded, and so on. If a proof exists, the system will
eventually attempt to execute the goal with a large enough depth bound, and the proof will be found.
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Since each depth-bounded execution terminates, the consecutively bounded regime has the benefit
that if a proof exists, it will eventually be found—a property that Prolog’s depth-first regime does
not share.

Of course, consecutively bounded execution involves a redundancy in computation, since later
depth-bounded executions reiterate all the computation of earlier ones. The cost may not be as much
as it appears at first blush, however, as the cost of executing the first n − 1 levels is only a constant
factor of the cost of executing level n. Further analysis of the cost of this method is well beyond the
scope of this problem.

Problem 6.1 Write an interpreter for Prolog that uses a consecutively bounded depth-first control

regime. Try it on a left-recursive program like Program 2.3 to demonstrate that it finds proofs where

Prolog’s control regime would not.

6.2.2 An Interpreter For Cut

The interpreters devised so far have been concerned only with pure Prolog. In this section we
consider the problem of writing an interpreter for pure Prolog augmented with the impure cut op-
erator. For the purposes of this problem, we will assume that clauses have at most one cut in them.
There are two cases we must consider. If there is no cut in the clause, we can interpret it as be-
fore. If there is a cut in the clause, we must interpret the part before the cut, then cut away further
choices of clause clauses, and then interpret the part after the cut. (Notice the nice symmetry here:
The pure Prolog meta-circular interpreter was written in pure Prolog. Augmenting the object lan-
guage with cut requires the same augmentation to the meta-language. In essence, we will absorb
the execution of cut using the cut of the underlying execution.) We will need a predicate, call it
cut_split(Body, Before, After) which takes a Body of a clause and finds the part Before
and After the cut (if there is one). The predicate fails if there is no cut.

Problem 6.2 Write cut_split and use it to augment the interpreter to handle clauses with at most

one cut per clause. Make sure the top-to-bottom clause ordering is respected.

Problem 6.3 (More difficult.) Write an interpreter that can correctly interpret Prolog programs

with more than one cut per clause.

6.3 Interpreters for DCGs

Extensions to the DCG formalism can be implemented just as extensions to Prolog, by extending
an interpreter for DCGs. The DCG interpreter will use definite-clause grammars encoded in Prolog
using the same encoding as in Section 3.7, except that the main functor will be ---> rather than
-->, as declared by the following operator declaration:

:- op(1200,xfx,--->).

We use a different arrow for the same reason we used the clause predicate in the Prolog
interpreters—to prevent the DCG from being automatically interpreted by the normal Prolog mech-
anism, since it is merely data for the interpreter.
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6.3.1 DCG in Prolog

We turn now to the design of a DCG interpreter in Prolog. The structure of the interpreter—its use
of pairs of string positions to keep track of the portion of string parsed—should by now be familiar.

The interpreter is implemented by the predicate parse corresponding to the predicate prove in
the Prolog interpreter. The literal parse(NT, P0, P) holds if the string between positions P0 and
P can be parsed as (i.e., is covered by) the nonterminal NT according to the definite-clause grammar.
A nonterminal covers a string between two positions if the body of a matching rule does also.

parse(NT, P_0, P) :-

(NT ---> Body),

parse(Body, P_0, P).

If the body has several parts, all must be matched, in order.

parse((Body1, Body2), P_0, P) :-

parse(Body1, P_0, P_1),

parse(Body2, P_1, P).

The empty string, encoded with [ ], covers no string.

parse([], P, P).

A list of terms is treated as a list of terminal symbols to be found directly connecting the positions
in the string.

parse([Word|Rest], P_0, P) :-

connects(Word, P_0, P_1),

parse(Rest, P_1, P).

Finally, recall that the Prolog/DCG brace notation allows a kind of level-crossing between DCGs
and Prolog—an “escape” to Prolog. To implement this level-crossing, we need a way of interpreting
terms as literals and executing them. The call predicate serves this purpose; its use in implementing
the DCG escape to Prolog is as follows:

parse({Goals}, P, P) :- call(Goals).

For completeness, we repeat the definition of the connects predicate, originally defined by Program
3.8 in Section 3.4.2.

connects(Word, [Word|Rest], Rest).

Exercise 6.4 Test the DCG interpreter just defined with a small DCG on a few sentences to convince

yourself that it actually implements the DCG correctly.

6.3.2 DCG in DCG

The astute reader may have noticed that the DCG interpreter presented above is in just the form of a
DCG translated into Prolog. Thus, the interpreter could have been more succinctly stated by writing
it as a DCG itself! In particular, the following DCG implements a meta-circular DCG interpreter.
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Program 6.4
:- op(1200,xfx,--->).

parse(NT) -->

{NT ---> Body},

parse(Body).

parse((Body1,Body2)) -->

parse(Body1),

parse(Body2).

parse([]) --> [].

parse([Word|Rest]) -->

[Word],

parse(Rest).

parse({Goals}) --> {call(Goals)}.

Exercise 6.5 Extend the DCG interpreter in Program 6.4 so that it automatically builds a parse tree

representation of the parsed expression. This corresponds exactly to the problem of automatically

generating a proof tree in the Prolog interpreter. You may want to refer to the discussion preceding

Problem 3.7 for an applicable tree encoding method or use the =.. operator of Section 5.1.6 to

build more standard tree encodings.

6.3.3 An Interpreter for Filler-Gap DCGs

Filler-gap dependencies constitute a set of linguistic phenomena with a quite cumbersome encoding
in DCGs, as we have seen in Sections 4.2.3 and 4.2.7. This problem has been noted by many people
working on the design of logic grammars, and has been the inspiration for a large number of the
logic grammar formalisms extending DCGs. As noted in Section 4.2.7, the gap-threading encoding
of filler-gap dependencies lends itself to use in implementing an extension of DCGs to handle filler-
gap dependencies because of the simple, regular structure of the extra filler-list argument it requires.

In this section we will develop a formalism, FG-DCG, that allows a simpler statement of filler-
gap constraints and construct an interpreter for it. FG-DCG rules appear, for the most part, identical
to DCG rules (except using the operator ---> as usual for interpretation). However, to directly state
filler-gap constraints we must add to DCGs the ability to declare which constituents are fillers, which
are islands, and what nonterminals can be realized as gaps. Various extensions to DCGs to handle
filler-gap phenomena have taken different approaches to this notational problem. We will use the
following notations.

• A filler of type φ requiring a gap of type γ will be notated as a term of the form φ fills γ,
where fills is an infix Prolog operator.

• An island of type φ will be notated as a term of the form φ island, where island is a postfix
Prolog operator.

• The fact that a gap of type γ can be realized as α (usually, the empty string), is notated by the
FG-DCG rule:
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gap(γ) ---> α.

The interpretation of the special filler and island specifications in an FG-DCG rule is as follows:
A term φ fills γ matches a constituent of type φ, but requires that a gap of type γ be found within

some sibling to the right of φ. A phrase covered by the term φ island can never have a gap within
it that is filled outside it. A use of a rule of the form gap(γ) ---> α. must always fill a gap.

As a simple example of an FG-DCG grammar, we rewrite the grammar of Program 4.4 in the
new notation. For brevity, we leave out the lexicon, which is unchanged from the earlier grammar.
We also add a new rule for ditransitive verb phrases to highlight the fact that this grammar does not
fall prey to the difficulties mentioned in Section 4.2.7.

Program 6.5
s ---> np island, vp.

np ---> det, n, optrel.

np ---> pn.

vp ---> dv, np, np.

vp ---> tv, np.

vp ---> iv.

optrel ---> [].

optrel ---> [that] fills np, s.

optrel ---> [that], vp.

gap(np) ---> [].

Note that the grammar encodes the filler-gap dependencies that were implicit in the earlier grammar
far more simply and directly.

An interpreter for FG-DCGs is a straightforward extension to the DCG meta-circular interpreter
of Program 6.4. First, we declare the necessary operators.

:- op(1200,xfx,--->).

:- op(300, xfx, fills).

:- op(300, xf, island).

Next, we augment the parse predicate with an argument for the filler list. Thus the clauses of
the interpreter become

parse(NT, F0-F) -->

{NT ---> Body},

parse(Body, F0-F).

parse((Body1,Body2),F0-F) -->

parse(Body1,F0-F1),

parse(Body2,F1-F).

parse([], F0-F0) --> [].

parse([Word|Rest], F0-F) -->

[Word],

parse(Rest, F0-F).



6.4. Partial Execution and Compilers

This digital edition of Prolog and Natural-Language Analysis is distributed at no charge

for noncommercial use by Microtome Publishing.

135

parse({Goals}, F0-F0) --> {call(Goals)}.

Finally, we require special rules for islands, fillers, and gaps. An island is parsed as a constituent
with empty filler list.

parse(NT island, F0-F0) -->

parse(NT, F0-F0).

A list of nonterminals the first of which is a filler is parsed by parsing the filler, then parsing the rest
of the list but with an additional element on the filler list—the type of gap that this filler corresponds
to.

parse((NT fills GapType,Body2), F0-F) -->

parse(NT,F0-F0),

parse(Body2,[GapType|F0]-F).

Finally, a nonterminal NT can be realized as a gap corresponding to a filler in the filler list if there is
a rule

gap(NT) ---> Body.

and the Body can itself be parsed. Of course, in most cases, Body will encode the empty string, but
this additional ability to specify nonempty bodies of “gap” constituents allows us to use FG-DCGs
for other long-distance dependencies such as resumptive pronouns in which the filler is associated
with a pronoun embedded in the sentence.

parse(GapType, [GapType|F0]-F0) -->

{gap(GapType) ---> Body},

parse(Body, F0-F0).

Exercise 6.6 Modify the grammar of Program 4.5 to use the FG-DCG notation.

6.4 Partial Execution and Compilers

Using an interpreter to interpret a Prolog program is in general much less efficient than executing the
program directly. Thus interpreters are of little use unless the language they interpret is an extension

of Prolog; otherwise, using Prolog itself is an equivalent and more efficient method. We can recoup
some of the efficiency lost in using an interpreter by translating or compiling the extended language
into Prolog rather than interpreting it with an interpreter. For just this reason, DCGs are compiled
into equivalent Prolog programs upon their being read into the Prolog system.

From an intuitive standpoint, the difference between a compilation and subsequent execution
of a program and interpretation of the program is that the former moves some of the predictable
proof steps to an earlier phase of processing. The idea of performing proof steps at an earlier stage
is reminiscent of the notion of partial execution introduced in Section 4.1.4. In this section, we
ground this intuition by developing a program to partially execute clauses and using it to build a
compiler for definite-clause grammars.
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6.4.1 Partial Execution Revisited

Recall the basic Prolog proof step of SLD resolution (Section 3.5.3). Resolution proceeds by picking
a literal in a clause and replacing it with the body of a matching clause under the unifying substitution
of the literal and the head of the clause. Partial execution of a clause merely performs certain of
these resolution steps at an earlier stage of computation, called compile time. Since the order of
resolutions is thereby changed, partial execution is only sound in the subset of Prolog in which the
order of selection of literals is not critical to the correctness of execution of the program, that is, in
pure Prolog. A clause (which we will call the program clause) is thus partially executed with respect
to a set of predicates (called auxiliary predicates) by resolving the clause on literals containing these
predicates and recursively partially executing the resolvent, until no more such resolutions can be
performed.

Executing a goal involving the program predicate (the predicate defined by the program clause
or clauses) using all possible partial executions of the program clauses is equivalent to executing
it using the original program clauses plus all the auxiliary clauses as well. Consequently, we can
replace the program and auxiliary clauses by the clauses resulting from partial execution. It is not
necessary to resolve literals in the program clauses against the program clauses themselves, as their
equivalents will be available at run time anyway. Furthermore, it is fortunate that such recursive
resolutions are not needed, as they might lead to nontermination of the partial execution facility.

Partial execution thus requires a recursive traversal of a clause and its literals just as an interpreter
does. But instead of proving each subgoal, we replace it with its definition. Thus the definition of
a predicate to compute the relation between a program clause and its partial executions follows the
form of an interpreter relatively closely. To partially execute a clause, we merely partially execute
its body.

partially_execute((Head:-Body),

(Head:-ExpandedBody)) :- !,

partially_execute(Body, ExpandedBody).

To partially execute a conjunction of goals, we partially execute the first literal and the rest of the
literals and conjoin their expansions.

partially_execute((Literal, Rest), Expansion) :- !,

partially_execute(Literal, ExpandedLiteral),

partially_execute(Rest, ExpandedRest),

conjoin(ExpandedLiteral, ExpandedRest,

Expansion).

We will replace literals with their definitions only if they are specified as auxiliary literals. The pred-
icate aux_literal specifies which literals are subject to partial execution. Furthermore, we require
that there exist at least one clause matching the literal. Otherwise, the literal is left unchanged.

partially_execute(Literal, Expansion) :-

( aux_literal(Literal),

match_exists(Literal) )

-> ( clause((Literal :- Body)),

partially_execute(Body, Expansion) )

; Expansion = Literal.
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Testing Existence and Double Negation

To determine whether a match exists, we can check that the set of clauses with the literal as head
contains at least one element.

match_exists(Literal) :-

setof(Body, Literalˆclause((Literal:-Body)),

[_Clause|_Others]).

This definition, though correct, is quite inefficient. A naive implementation of match_exists
merely looks for a matching clause.

match_exists(Literal) :-

clause((Literal :- Body)).

However, this definition has the unwanted side effect of actually binding variables in Literal de-
pending on what clause was found. Furthermore, if there are several matching clauses, this definition
will allow backtracking.

A common trick for solving problems of unwanted bindings is the double use of the negation-
as-failure operator \+. In the case at hand, we can change the definition as follows:

Program 6.6
match_exists(Literal) :-

\+ \+ clause((Literal :- Body)).

Looking just at the logic, p and ¬¬p are equivalent. However, the implementation of nega-
tion as failure makes sure that in executing a goal \+ G all bindings to G will be undone; thus
match_existswill leave Literal unchanged.

This double use of negation is a very common device in Prolog metaprogramming. It must be
stressed that nothing in the device has a direct logical interpretation. In particular, \+ is being used
to undo bindings of variables, but as we have seen \+ cannot be interpreted as “failure to prove” if
called with a nonground argument!

A Sample Partial Execution

Using this definition of partial execution we can check the earlier claims made about it in Chapter
4. For instance, we can partially execute the clause at the end of Section 4.1.5

vp(ZˆS) -->

tv(TV), np(NP),

{reduce(TV,Z,IV),

reduce(NP,IV,S)}.

with respect to reduce literals

aux_literal( reduce(_,_,_) ).

under the definition of reduce given in Program 4.1

clause(( reduce(ArgˆExpr, Arg, Expr) :- true )).
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with the query

?- partially_execute( (vp(ZˆS, P0, P) :-

tv(TV, P0, P1),

np(NP, P1, P),

reduce(TV,Z,IV),

reduce(NP,IV,S) ),

Expansion ).

Expansion = vp(Z^S, P0, P) :-

tv(Z^IV, P0, P1),

np(IV^S, P1, P)

yes

Notice that this is just the Prolog encoding of the partial execution result given in Section 4.1.5.

6.4.2 Compiling by Partial Execution

A simple compiler for an object language can be written using partial execution of its interpreter. We
divide the clauses of the interpreter (metaclauses) into program and auxiliary clauses; the clauses
that actually interpret the object clauses of the object language are the program clauses, the rest
auxiliary. We will distinguish the two clauses by using the predicate clause for the auxiliary clauses
(as above) and program_clause for program clauses.

The compiler generates all possible partial executions of the program clauses with respect to
predicates defined in the auxiliary clauses and asserts the resolvents generated. The driver for the
compiler is, then, quite simple.

compile :-

program_clause(Clause),

partially_execute(Clause, CompiledClause),

assert(CompiledClause),

fail.

This clause backtracks repeatedly (because of the fail) until no more partial executions of program
clauses are possible. This method for cycling through solutions is known as a failure-driven loop. As
a side effect, it asserts all of the partial executions into the Prolog database. The Prolog interpreter,
processing queries using these asserted clauses, is executing a compiled form of the object language.

As an example, we build a compiler for DCGs. We merely separate the DCG interpreter into a
single program clause

program_clause(( parse(NT, P_0, P) :-

(NT ---> Body),

parse(Body, P_0, P) )).

and several auxiliary clauses, treating parse and ---> as auxiliary predicates.
Suppose the DCG of Program 3.11 is compiled using this compiler, that is, the compiler and

the DCG (encoded using the operator --->) are loaded into Prolog, and the compile predicate
is invoked. One possible partial execution of the program clause involves resolving the literal
NT ---> Body against the first rule of the grammar. This resolution requires the unifying sub-
stitution NT = s(s(NP,VP)), Body = (np(NP),vp(VP)). The body of the unit clause is just
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true. The partial execution of parse((np(NP), vp(VP)), P0, P) results in the conjunction
parse(np(NP), P0, P1), parse(vp(VP), P1, P). Conjoining this with the body of the unit
clause expanding the first literal leaves the former unchanged. Thus the full partial execution of the
program clause is, in this instance,

parse(s(s(NP,VP)), P0, P) :-

parse(np(NP), P0, P1),

parse(vp(VP), P1, P).

Clearly, this is a compilation of the DCG rule into Prolog, albeit slightly more complex than the
standard compilation, namely

s(s(NP,VP), P0, P) :-

np(NP, P0, P1),

vp(VP, P1, P).

The full text of the compiler, including the program for partial execution and the encoding of the
interpreter is given in Appendix A. This version adds a rewriting step to convert literals of the form

parse(nt(...), Pi, Pj)

to literals of the more familiar form

nt(..., Pi, Pj) .

A sample run of the compiler using the grammar of Program 3.11 is as follows:

?- compile.

Asserting "s(s(NP,VP),P0,P):-

np(NP,P0,P1),vp(VP,P1,P)."

Asserting "np(np(Det,N,Rel),P0,P):-

det(Det,P0,P1),

n(N,P1,P2),

optrel(Rel,P2,P)."

Asserting "np(np(PN),P0,P):-pn(PN,P0,P)."

Asserting "vp(vp(TV,NP),P0,P):-

tv(TV,P0,P1),np(NP,P1,P)."

Asserting "vp(vp(IV),P0,P):-iv(IV,P0,P)."

Asserting "optrel(rel(epsilon),P0,P):-true."

Asserting "optrel(rel(that,VP),P0,P):-

connects(that,P0,P1),

vp(VP,P1,P)."

Asserting "pn(pn(terry),P0,P):-

connects(terry,P0,P)."

Asserting "pn(pn(shrdlu),P0,P):-

connects(shrdlu,P0,P)."

Asserting "iv(iv(halts),P0,P):-

connects(halts,P0,P)."

Asserting "det(det(a),P0,P):-

connects(a,P0,P)."
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Asserting "n(n(program),P0,P):-

connects(program,P0,P)."

Asserting "tv(tv(writes),P0,P):-

connects(writes,P0,P)."

Asserting "connects(Word,[Word|Rest],Rest):-true."

no

?- s(Tree, [terry,writes,a,program,that,halts], []).

Tree = s(np(pn(terry)),

vp(tv(writes),

np(det(a),

n(program),

rel(that,

vp(iv(halts))))))

yes

Compare this behavior with that of the original DCG as described in Section 3.7.1.

6.4.3 Generality of the Method

The technique used here to build the DCG compiler is quite general. The compile and
partially_execute predicates can be thought of together as a metacompiler, in that they will
convert any interpreter for a language written in pure Prolog into a compiler for the same language.
Since the only operations performed on the interpreter are resolutions, the compiler thereby derived
is guaranteed to be sound with respect to the interpreter. And since all possible resolutions are
done, the compiler is complete as well. Thus partial execution provides a way of generating correct
compilers for a language given an interpreter for the language.

Furthermore, by adjusting which clauses are program clauses whose partial executions will re-
main in the compiled version and which are auxiliary clauses that are to be “compiled away”, the
degree of compilation can be tuned. By increasing the number of auxiliary clauses, more of the work
is done at compile time and faster compiled grammars are derived. However, there are limits to this
process. If too much work is attempted at compile time, the compile-time step may not terminate, or
the compiled grammar may grow explosively in size. The generality of this method allows solutions
to such trade-offs to be developed experimentally.

Another method for even more finely tuning the partial executor, beyond the ability to make
clauses program or auxiliary clauses, is to predicate partial execution on various conditions specified
in the antecedent of auxiliary literals. For instance, we could require that literals of a given
auxiliary predicate be partially executed only when the literal is of a certain mode or its arguments
are of a certain form. An especially interesting condition on partial execution is that the literal match
exactly one clause in the database. Under this requirement, partial execution will only remove literals
that can be resolved deterministically. Many other possibilities for controlling the partial executor
could be easily implemented in this way.

Exercise 6.7 Write a compiler which compiles DCGs into Prolog programs that parse sentences

while building parse trees for them simultaneously and automatically. You may want to use the

solution to Exercise 6.5.
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Exercise 6.8 Suppose we compile the pure Prolog program for conc given in Program 3.3 into

Prolog using a compiler generated from the Prolog interpreter of Program 6.1. What does Program

3.3 compile to?

6.5 Bottom-Up Parsing

Prolog supplies by default a top-down, left-to-right, backtrack parsing algorithm for DCGs. It is
well known that top-down parsing algorithms of this kind will loop on left-recursive rules (cf. the
example of Program 2.3). Although techniques are available to remove left recursion from context-
free grammars, these techniques are not readily generalizable to DCGs, and furthermore they can
increase grammar size by large factors.

As an alternative, we may consider implementing a bottom-up parsing method directly in Prolog.
Of the various possibilities, we will consider here the left-corner method in one of its adaptations to
DCGs.

For programming convenience, the input grammar for the left-corner DCG interpreter is repre-
sented in a slight variation of the DCG notation. The right-hand sides of rules are given as lists
rather than conjunctions of literals. Thus rules are unit clauses of the form, e.g.,

s ---> [np, vp].

or

optrel ---> [].

Terminals are introduced by dictionary unit clauses of the form

word(w,PT).

in which PT is the preterminal category of terminal w. As an example, the grammar of Program 3.11
would be encoded in this format as

s(s(NP,VP)) ---> [np(NP), vp(VP)].

np(np(Det,N,Rel)) --->

[det(Det), n(N), optrel(Rel)].

np(np(PN)) ---> [pn(PN)].

vp(vp(TV,NP)) ---> [tv(TV), np(NP)].

vp(vp(IV)) ---> [iv(IV)].

optrel(rel(epsilon)) ---> [].

optrel(rel(that,VP)) ---> [relpro, vp(VP)].

word(that, relpro).

word(terry, pn(pn(terry))).

word(shrdlu, pn(pn(shrdlu))).

word(halts, iv(iv(halts))).

word(a, det(det(a))).

word(program, n(n(program))).

word(writes, tv(tv(writes))).
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Before we discuss left-corner parsing, we need to introduce some terminology. The left-corner

of a phrase is the leftmost subconstituent of that phrase. Similarly, the left corner of a rule is the
first element on the right-hand-side of the rule. Often we will refer to the transitive closure of the
left-corner relation using the term left corner as well, letting context determine the particular sense
we mean. Thus, in the parse tree of Figure 2.4, NP is the left corner of S , but Det and S are left
corners of S as well.

The basic idea of left-corner parsing is to key each rule off of its left corner. When a phrase is
found, rules that have that phrase type as their left corner are tried in turn by looking for phrases
that span the rest of the right-hand-side of the rule. If the rest of a rule is satisfied, the left-hand
side is used to iterate the process by picking rules with that phrase type as left corner. Parsing thus
proceeds bottom-up by looking for phrases whose left-most subphrase has already been found. The
entire process begins with a subphrase that is guaranteed to be a left corner of the whole expression,
namely, the leftmost leaf of the parse tree. To parse an expression as being of type Phrase, we take
the next potential leaf in the expression and prove that it is a left corner of the phrase.

parse(Phrase) -->

leaf(SubPhrase),

lc(SubPhrase, Phrase).

Terminal symbols are obviously candidate leaves of the parse tree. We use the binary predicate
word(Word, Cat) to encode the lexicon.

leaf(Cat) --> [Word], {word(Word,Cat)}.

In addition, a category can be considered a leaf if there is a rule admitting it with an empty right-hand
side.

leaf(Phrase) --> {Phrase ---> []}.

The proof that some subconstituent of type SubPhrase is a left corner of a SuperPhrase
involves parsing the part of SuperPhrase to the right of the left corner. The
lc(SubPhrase, SuperPhrase) literal thus covers all of the SuperPhrase except for its left cor-
ner SubPhrase. The base case for proving the left corner relationship follows from any phrase being
a left corner of itself.

lc(Phrase, Phrase) --> [].

Otherwise, we can infer that SubPhrase is a left corner of SuperPhrase if we can find a rule that
SubPhrase is a left corner of and parse the remainder of the rule, finally proving that the left-hand
side of the rule is itself a left corner of SuperPhrase.

lc(SubPhrase, SuperPhrase) -->

{Phrase ---> [SubPhrase|Rest]},

parse_rest(Rest),

lc(Phrase, SuperPhrase).

Parsing the rest of the right-hand side involves a standard list recursion.

parse_rest([]) --> [].

parse_rest([Phrase|Phrases]) -->
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parse(Phrase),

parse_rest(Phrases).

As an example of the operation of the left-corner parser interpreting a grammar, we will consider
the sentence “a program halts” parsed with the grammar above. The initial query is

?- parse(s(Tree), [a, program, halts], []).

To prove this is a grammatical S , we find a leaf and prove it is the left-corner of the S . There are
two possible leaves at the beginning of the string, namely, the leaf(det(det(a))) derived from
the lexical entry for the word a, and the leaf(optrel(rel(epsilon))) derived from the rule for
empty relative clauses. Choosing the former, we must prove lc(det(det(a)), s(Tree)). Since
the two arguments are not unifiable, the first lc rule is not appropriate. Instead, the second rule is
invoked. We must find a rule with a determiner as its left corner, namely

np(np(Det,N,Rel)) --->

[det(Det), n(N), optrel(Rel)].

Using this rule, we must parse the rest of the right-hand side to prove that the Det is the
immediate left corner of an NP. We will omit details of this subproof, which proceeds by
left-corner parsing itself. The proof does succeed, covering the string “program” and in-
stantiating N to n(program) and Rel to rel(epsilon). Finally, we must prove that the
np(np(det(a), n(program), rel(epsilon)) is the left corner of the entire S . Notice that
we have made some progress. We started out attempting to prove that the Det is the left corner of
the S and have generated the smaller task of proving that the NP is.

The NP is the left corner of S by virtue of the rule

s(s(NP,VP)) ---> [np(NP), vp(VP)].

But two subgoals are required to be proved. First, we must parse the rest of the right-hand side, the
VP. Again, we will omit details, but note that the goal succeeds binding VP to vp(iv(halts)).
Then we must prove that s(...) is a left corner of s(s(Tree)). This succeeds by the first lc
clause, binding Tree to the parse tree for the entire sentence, namely

s(np(det(a),

n(program),

rel(epsilon))

vp(iv(halts)))

This completes the proofs of the various pending lc goals and the original query itself.

6.5.1 Linking

In the previous discussion, we glossed over a problem in the directedness of the left-corner parser.
The parser, in choosing among possible grammar rules or leaves makes no use of information con-
cerning what type of expression it is attempting to parse. For instance, in the discussion of the choice
between leaf(det(det(a))) and leaf(optrel(rel(epsilon))) at the start of the parse, we
merely noted that the former was correct. Of course, if the parser had chosen to pursue the latter, it
would eventually discover that it had followed a blind alley and backtrack to the correct choice. But
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a considerably more efficient way of eliminating the latter possibility is to notice (by inspection of
the grammar) that an optrel of any sort can never be a left corner of an s.

Suppose we tabulate some very general constraints of this sort concerning possible left corners,
using (for historical reasons) the predicate link.

link( np(_), s(_) ).

link( det(_), np(_) ).

link( det(_), s(_) ).

link( pn(_), np(_) ).

link( pn(_), s(_) ).

link( tv(_), vp(_) ).

link( iv(_), vp(_) ).

link( relpro, optrel(_) ).

link( NT, NT ).

(The last clause says that any nonterminal is a left corner of itself.) We can use the information as
an inexpensive test of whether a branch in the parsing search space can at least potentially yield a
solution. For example, the parse clause could be changed to make use of the link table as follows:

parse(Phrase) -->

leaf(SubPhrase),

{link(SubPhrase, Phrase)},

lc(SubPhrase, Phrase).

With this modified definition, the leaf(optrel(rel(epsilon)))would fail the linking test; con-
sequently no further computation would be expended on that possibility.

Similarly the second rule for lc could be changed to

lc(SubPhrase,SuperPhrase) -->

{Phrase ---> [SubPhrase|Rest],

link(Phrase, SuperPhrase)},

right(Rest),

lc(Phrase, SuperPhrase).

to limit rule choice to those which could at least potentially be left corners of the SuperPhrase
being looked for.

The modification of the left-corner parser using linking information provides an element of top-

down filtering into the parsing process. Such a parser does not follow a purely bottom-up or a purely
top-down regimen, but uses both kinds of information in finding a parse.

We will not pursue further here the question of finding good link definitions. Clearly, however,
we would want to use automatic methods for developing the link tables, rather than the hand coding
used in this section.

6.5.2 Compiling DCGs into Left-Corner Parsers

Using the techniques of Section 6.4.2, we can write a DCG compiler that converts DCG grammars
encoded as for the left-corner interpreter into left-corner Prolog parsers. The program clauses are
those that actually interpret the parts of the encoded grammar: the two leaf clauses and the two lc
clauses. In addition, the single clauses defining connects and parse are added as program clauses
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so that they will be passed through unchanged into the compiled state, just as the connects clause
was in the previous compiler.

The rest of the clauses (including those embodying the DCG itself) are auxiliary clauses defining
the auxiliary predicates --->, word, and parse_rest.

Exercise 6.9 Modify the DCG compiler given in Appendix A as described above so that it constitutes

a program to compile DCGs into left-corner parsers. The final rewriting step should be removed.

Executing the compiler on the encoded grammar of Program 3.11 yields the following behavior.

?- compile.

Asserting "connect(Word,[Word|Rest],Rest) :- true."

Asserting "parse(Phrase,P0,P) :-

leaf(SubPhrase,P0,P1),

lc(SubPhrase,Phrase,P1,P)."

Asserting "leaf(pn(pn(terry)),P0,P) :-

connect(terry,P0,P)."

Asserting "leaf(pn(pn(shrdlu)),P0,P) :-

connect(shrdlu,P0,P)."

Asserting "leaf(iv(iv(halts)),P0,P) :-

connect(halts,P0,P)."

Asserting "leaf(det(det(a)),P0,P) :-

connect(a,P0,P)."

Asserting "leaf(n(n(program)),P0,P) :-

connect(program,P0,P)."

Asserting "leaf(tv(tv(writes)),P0,P) :-

connect(writes,P0,P)."

Asserting "leaf(relpro,P0,P) :-

connect(that,P0,P)."

Asserting "leaf(optrel(rel(epsilon)),P0,P0):-true."

Asserting "lc(Phrase,Phrase,P0,P0) :- true."

Asserting "lc(np(NP),SuperPhrase,P0,P) :-

parse(vp(VP),P0,P1),

lc(s(s(NP,VP)),SuperPhrase,P1,P)."

Asserting "lc(det(Det),SuperPhrase,P0,P) :-

parse(n(N),P0,P1),

parse(optrel(Rel),P1,P2),

lc(np(np(Det,N,Rel)),

SuperPhrase,P2,P)."

Asserting "lc(pn(PN),SuperPhrase,P0,P) :-

lc(np(np(PN)),SuperPhrase,P0,P)."

Asserting "lc(tv(TV),SuperPhrase,P0,P) :-

parse(np(NP),P0,P1),

lc(vp(vp(TV,NP)),SuperPhrase,P1,P)."

Asserting "lc(iv(IV),SuperPhrase,P0,P) :-

lc(vp(vp(IV)),SuperPhrase,P0,P)."

Asserting "lc(relpro,SuperPhrase,P0,P) :-

parse(vp(VP),P0,P1),

lc(optrel(rel(that,VP)),
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SuperPhrase,P1,P)."

no

?- parse(s(Tree),

[terry, writes, a, program, that, halts],

[]).

Tree = s(np(pn(terry)),

vp(tv(writes),

np(det(a),

n(program),

rel(that,

vp(iv(halts))))))

yes

The first two rules are copies of the definitions for parse and connects. The next six are the
compiled version of the lexicon; these are followed by the single compiled epsilon rule. Finally,
the compiled versions of the other grammar rules are generated. Again, the compiled grammar
computes the same language and trees as if directly interpreted by Prolog. However, Prolog’s
top-down control strategy in executing the compiled grammar produces the same behavior as that
of the left-corner control strategy in executing the original DCG. Furthermore, because the general
left-corner interpreter has been replaced by specialized rules, the resulting program will run much
faster than the interpreter operating over the original grammar.

6.6 Tabular Parsing

6.6.1 Inefficiencies of Backtracking

As we have seen, Prolog uses strict chronological backtracking to search for a proof of a goal.
If a particular subgoal cannot be resolved, all the work since the most recent resolved goal for
which there are still alternative clauses will be undone. Intuitively, this is the reason for the worst-
case exponential cost of backtrack search (Aho and Ullman, 1972). In practical applications this
theoretical worst case may not matter, because there may be practical bounds on input length (e.g.,
typical English sentences are short) and the efficiency of Prolog may offset the potential gains of
more sophisticated search procedures for practically occurring inputs. Nevertheless, it is worthwhile
to look at the issue in more detail to get a good understanding of the tradeoffs involved.

We will start with a very simple example. A ditransitive verb like give can be used in two ways.

Alfred gave a book to every student
Alfred gave every student a book

An obvious way of covering these two constructions is to use the two rules

vp --> dv, np, pp(to).

vp --> dv, np, np.

Now suppose that we are using these DCG rules to analyze the verb phrase in the second sentence
above, and that we have appropriate rules for the noun phrase, prepositional phrase, and ditransitive
verb. Prolog will first try the earlier vp rule. The word gave will be assigned to the category dv
and the phrase every student to the category np. The parser will look next for a prepositional phrase
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beginning with the preposition to. However, the next word is a, so Prolog backtracks. Assuming
no more choices in the analysis of “every student” as a noun phrase or in the assignment of the
ditransitive verb category to gave, Prolog will have to undo these intermediate analyses and try the
next alternative rule for verb phrase, the second rule above. This rule will immediately go on to
reassign the category dv to gave and reanalyze “every student” as np, even though this analysis had
already been done when attempting the first rule.

The redundancy just described is not restricted to top-down parsing methods. The same argu-
ment would show similar redundancies in using the left-corner algorithm discussed earlier. In fact,
the situation here is even worse because the left-corner algorithm has less top-down guidance.

6.6.2 Tabular Parsing in the Abstract

In tabular parsers for context-free grammars, the redundancy just described is avoided by storing
phrases just recognized in a phrase table (also called a chart or well-formed-substring table) indexed
by the start and end positions of the phrases in the input string.

In general, at any point in its execution a parser will be looking for phrases of some type N

starting in a certain range of positions S and finishing in a certain range of positions E in the input
string. In the discussion that follows, we will represent these constraints on what the parser is looking
for by the expression N(S , E). The connection of this notation with the mapping from nonterminals
to predicates in a DCG is no coincidence, as we shall see. For the moment, we will take a phrase
type as representing some set of acceptable nonterminals and a position range as denoting some set
of string positions.

Thus, when looking for some type of phrase N(S , E), the phrase table is consulted for phrases
p(i, j) satisfying N(S , E), that is, with p ∈ N, i ∈ S and j ∈ E. There is a crucial subtlety here. If
the table does not already contain all possible phrases satisfying N(S , E), the parser will not know
whether to use some phrase from the table or to try and recognize alternative phrases satisfying
N(S , E) using the rules in the grammar. But the latter option is just as costly as looking for phrases
afresh without the phrase table. Thus the phrase table is usable only if all phrases of a given type
are stored in the table before any attempt is made to use the table to look for phrases of that type.
Consequently, there must be a way of recognizing whether the table is complete for a certain type.
We call this constraint on table entries the completeness condition.3 In tabular context-free parsers,
completeness is achieved by looking only for certain specific phrase types and building the table in
a certain order that guarantees a phrase type will be consulted only after it is completed.

For instance, the generalized Cocke-Kasami-Younger (CKY) bottom-up context-free parser can
be thought of in this way. In the CKY algorithm, smaller phrases are always added to the table
before larger phrases. The phrase types under consideration by the algorithm are of the form V(i, j)
where V stands for the set of all grammar symbols (terminals and nonterminals) and i and j are
specific string positions. Since the table is complete for all substrings of the string between i and j,
we merely need to check each rule, say, A→ B1 · · · Bn in G, and look for n + 1 positions k0 through
kn such that i = k0 and kn = j and each ki is greater than ki−1, and such that the Bm are in the table
under V(km−1, km). If such a set of positions exists, then A can be added to the table under V(i, j).
By performing the search for rules and positions in all possible ways, we can complete the table for
V(i, j), in which case larger strings can then be analyzed.

Thus the CKY parsing algorithm builds the table by looking for phrases of type V(i, j) for larger
and larger j − i.

3Not to be confused with the logical notion of completeness.
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6.6.3 Top-Down Tabular Parsing

In top-down parsing, on the other hand, the algorithm will in general be looking for phrases of a
given type t starting at a given position i but with unknown end position (symbolically t(i, { j| j ≥ i})).
Thus the algorithm will have to produce and store in the table all possible t phrases starting at i

before moving on. If the analysis later fails and the same phrase type is looked for at the same
position, there will be no need to use the grammar, all possible relevant phrases will already be in
the table. In terms of the previous example, all noun phrases starting with the word every will have
been stored when the first verb phrase rule looks for a noun phrase after the verb, so when the second
rule looks for a noun phrase at the same position the analyzed np will be immediately found.

With the definite-clause encoding of grammars, a phrase table is just a store of lemmas, that is,
consequences of the grammar axioms that have been recorded for future use. The existence of a
noun phrase between positions 2 and 4 of an input string can be represented by the lemma expressed
as a unit clause

np(2, 4).

Actually, for ease of access by an interpreter, we will use the ternary predicate known_phrase.

known_phrase(np, 2, 4).

Thus, in general a phrase table may be built by asserting appropriate facts as they are proved.
We can change the Prolog top-down parser to keep such a table by modifying the DCG interpreter of
Program 6.4. We will assume at first that grammars are context-free, that is, that all nonterminals are
atomic, and also that the initial string position for the analysis is given. As the analysis proceeds from
left to right, the initial position of any phrase being sought will thus be known. These restrictions
will be lifted later.

The interpreter uses the predicate known_phrase(Type, P0, P) to store previously proved
lemmas that a phrase of type Type exists between positions P0 and P and the predicate
complete(Type, P0) to indicate that the known_phrase table is complete for the phrase type
Type starting at the string position P0. The predicate nonterminal identifies the nonterminals in
the specific grammar being interpreted.4

Much of the interpreter is identical to the meta-circular DCG interpreter it is modeled on. In
fact, the interpreter differs only on the first clause for parse. This clause checks that its argument
NT is a nonterminal and then calls find_phrase to find phrases of type NT.

parse(NT, P0, P) :-

nonterminal(NT),

find_phrase(NT, P0, P).

The remaining clauses for the parse predicate are repeated here merely for completeness.

parse((Body1, Body2), P0, P) :-

parse(Body1, P0, P1),

parse(Body2, P1, P).

parse([], P, P).

parse([Word|Rest], P0, P) :-

4This could be avoided at the cost of making the code somewhat more convoluted.
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connects(Word, P0, P1),

parse(Rest, P1, P).

parse({Goals}, P, P) :- call(Goals).

The predicate find_phrase first checks to see if the table is complete for phrases of type NT
starting at P0, and if so, uses it to pick up appropriate phrases that have been previously computed
and stored in the known_phrase table. The cut guarantees that only the table is used and no recom-
putation of phrases is performed if the table is complete.

find_phrase(NT, P0, P) :-

complete(NT, P0), !,

known_phrase(NT, P0, P).

Otherwise, if the table has not been completed for that phrase type, grammar rules are used to find
remaining phrases of type NT, and each such phrase is asserted as a known phrase. As we are trying
to construct the table of all phrases of type NT starting at P0, we do not restrict rule expansion to
phrases terminating with P, but rather leave the check for a phrase’s final position until after asserting
that a phrase has been found.

find_phrase(NT, P0, P) :-

(NT ---> Body),

parse(Body, P0, P1),

assert(known_phrase(NT, P0, P1)),

P1 = P.

Finally, when no remaining alternative ways of finding a phrase of type NT starting at P0 exist,
the table is marked as complete for that phrase type at that starting position, and the branch of
computation that required more alternatives is failed. If some other branch of the computation
later requires that same type of constituent starting at the same position, only the first clause of
find_phrasewill be used.

find_phrase(NT, P0, _) :-

assert(complete(NT, P0)),

fail.

We have used here the nullary predicate fail, which is always false, that is, always fails.
It is clear that find_phrase above has been designed for its side-effects rather than its logical

content. This is common practice in building interpreters: To achieve the appropriate behavior in an
interpreter for a declarative language, one has to deal with procedural issues such as the sequencing
of operations.

Checking Nonterminal Status

The definition of the nonterminal predicate can proceed in several ways. First of all, extensional
definition is possible by merely listing all the possible nonterminal terms, e.g.,

nonterminal(s(_)).

nonterminal(np(_)).

nonterminal(det(_)).
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...

Alternatively, the definition can be made intensionally. We can define nonterminals as those
terms which occur on the left-hand side of some rule.

nonterminal(LHS) :-

\+ \+ (LHS ---> _Body).

The double negation is used as usual to prevent bindings from the particular rule that licenses the
terminal from affecting the term. This definition thus works in the same way as the match_exists
predicate of Program 6.6.

Henceforth, we will assume the former method.

6.6.4 Subsumption

The interpreter in the previous section works correctly only for atomic nonterminals and an instanti-
ated initial string position for any phrase being sought. These restrictions were needed to ensure that
the completeness constraint is obeyed. To see why this is so, consider the following trivial grammar:

s ---> t.

t ---> x(a, X).

t ---> x(Y, b).

x(W, W) ---> [W].

nonterminal(s).

nonterminal(t).

nonterminal(x(_, _)).

as used to parse (as an s) the input b encoded as

connects(b, 0, 1).

(From a practical point of view, when building tabular parsers it is more convenient to have input
strings represented by facts and string positions by constants. In this way, the new facts asserted
by the parser will not have to include the possibly long lists that encode string positions in the list
representation of input strings.)

At some point in executing the query parse(s, 0, 1), find_phrase will be called to find
phrases x(a, X) starting at 0. Clearly there are no such phrases, so a single clause will be added to
the database.

complete(x(a, X), 0).

Later in the execution, find_phrase will be called for phrases of type x(Y, b) starting at
0. As this matches the complete fact in the database, find_phrase will go on to call
known_phrase(x(a, b), 0, P) which will immediately fail. Thus, the overall analysis will fail,
even though the given string is in the language accepted by the grammar.

The problem here is that the interpreter is not careful enough in implementing the notion of
“being complete for a given phrase type”. With atomic nonterminals and ground first argument,
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there is no problem because unification in the first clause of find_phrase is just doing an identity
check. But in the general case, unification is the wrong operation to use. The presence of the fact
complete(x(a, X), 0) indicates that the parser has found all phrases x(a, t) starting at position
0 for some term t. The phrases that can satisfy x(Y, b) at position 0 may include some that satisfy
x(a, X), namely any phrases that satisfy the unification x(a, b) of the two phrase types, but will
in general also contain others, such as the solution x(b, b), that do not satisfy x(a, X).

The correct check for completeness of a phrase type is thus not unification, which corresponds
to intersection of the corresponding solution sets, but subsumption or instantiation (Section 3.5.1),
which corresponds to containment of solution sets. More specifically, we can consider the phrase
table complete for a certain phrase type t only if it contains all phrases satisfying t or any other type
t′ that subsumes t. Thus we should modify the first clause of find_phrases to be

find_phrase(NT, P0, P) :-

complete(GeneralNT, GeneralP0),

subsumes((GeneralNT,GeneralP0), (NT, P0)), !,

known_phrase(NT, P0, P).

The subsumption test subsumes((GeneralNT, GeneralP0), (NT, P0)) checks whether the
nonterminal-position pair (NT, P0) is a special case of an already completed phrase type
(GeneralNT, GeneralP0).

In general, the subsumption check subsumes(t,t′) should test whether there is a substitution
σ for variables in t such that [t]σ = t′. This is clearly a meta-level facility, as it is sensitive to the
particular state of instantiation of terms. Thus the implementation of subsumes in Prolog requires
the use of other meta-level facilities. One of the easiest methods of implementation is based on the
observation that t subsumes t′ if and only if t is unifiable with t′′, where t′′ is obtained from t′ by
replacing each distinct variable in t′ with a distinct constant term not occurring in t. Equivalently, t

subsumes t′ if and only if the most general unifier of t and t′ does not bind any variable in t′.

Exercise 6.10 Prove the above assertions.

Suppose we have an extralogical predicate make_ground which instantiates all the variables
in its argument to distinct new constants. It would then seem that the following is a reasonable
implementation of subsumes:

subsumes(General, Specific) :-

make_ground(Specific),

General = Specific.

However, this program has the unwanted side-effect of binding the variables in Specific to con-
stants and also possibly instantiating General. This observation leads to a revision of the imple-
mentation of the subsumption test making use of the properties of double negation discussed in
Section 6.4.1.5

subsumes(General, Specific) :-

\+ \+ ( make_ground(Specific),

General = Specific ).

5However, this version of subsumes is only correct if the variables in General and Specific are disjoint. Otherwise,
the execution of make_ground will inapproriately bind variables in General.
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Finally, it remains to see how the predicate make_ground is implemented. The predicate
numbervars(t, m, n), available in many Prolog systems, instantiates each of the n − m dis-
tinct variables of term t to a distinct term of the form f (i) where m ≤ i < n. (The functor f is
implementation-dependent chosen so as not normally to occur in user programs.) We could thus
implement make_ground as follows:

make_ground(Term) :-

numbervars(Term, 0, _).

Alternatively, we could implement the variable numbering scheme directly.

make_ground(Term) :-

make_ground(Term,0, _).

make_ground(Term, M, N) :- var(Term), !,

Term = ’A-Var’(M), N is M + 1.

make_ground(Term, M, M) :- atomic(Term), !.

make_ground(’A-Var’(_), M, M) :- !.

make_ground(Term, M, N) :-

Term =.. [_Functor|Args],

make_ground_list(Args, M, N).

make_ground_list([], M, M).

make_ground_list([Term|Terms], M, N) :-

make_ground(Term, M, K),

make_ground_list(Terms, K, N).

Here, we assume that no term of the form ’A-Var’(i) appears in the rest of the program. (See
Section 5.1.6 for descriptions of the various built-in predicates used in make_ground.)

6.6.5 The Top-Down Tabular Parser in Action

We now show how the top-down tabular parser avoids the redundancies of backtracking in the ex-
ample of Section 6.6.1. To avoid cluttering the example, we will use the following simple grammar
fragment:

vp ---> dv, np, pp(to).

vp ---> dv, np, np.

np ---> det, n.

pp(P) ---> p(P), np.

dv ---> [gave].

det ---> [every].

det ---> [a].

n ---> [student].

n ---> [book].

p(P) ---> [P], {p(P)}.

p(to).
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The example verb phrase is

0 gave 1 every 2 student 3 a 4 book 5

We will examine a trace of the execution of the goal

?- parse(vp, 0, 5).

which asks whether the given string is a verb phrase.
The main predicates of interest in understanding the parser’s execution are find_phrase,

complete and known_phrase. The first attempt to prove the goal above involves the first vp rule.
This leads to the following sequence of calls to find_phrase and assertions,6 where the assertions
are indicated by messages of the form “Asserted f ” for some fact f :

?- parse(vp, 0, 5).

(6) 1 Call: find_phrase(vp,0,5)

(20) 4 Call: find_phrase(dv,0,P_1)

Asserted known_phrase(dv,0,1)

(20) 4 Exit: find_phrase(dv,0,1)

(49) 5 Call: find_phrase(np,1,P_2)

(63) 8 Call: find_phrase(det,1,P_3)

Asserted known_phrase(det,1,2)

(63) 8 Exit: find_phrase(det,1,2)

(87) 8 Call: find_phrase(n,2,P_4)

Asserted known_phrase(n,2,3)

(87) 8 Exit: find_phrase(n,2,3)

Asserted known_phrase(np,1,3)

(49) 5 Exit: find_phrase(np,1,3)

(115) 5 Call: find_phrase(pp(to),3,P_5)

(129) 8 Call: find_phrase(p(to),3,P_6)

Asserted complete(p(to),3)

(129) 8 Fail: find_phrase(p(to),3,P_6)

Asserted complete(pp(to),3)

(115) 5 Fail: find_phrase(pp(to),3,_5)

At this point, the parser has recognized the verb and the noun phrase that follows it, and has just
failed to find a prepositional phrase as the second complement of the verb. The recognized verb,
determiner, noun and noun phrase have been asserted as known_phrase lemmas. The failed search
for a prepositional phrase at position 3 led to the assertion of complete facts for the prepositional
phrase and its starting preposition, meaning that no phrases of those types are available at position
3. Notice that no complete facts have been asserted yet for the phrases recognized so far, since the
parser has not yet tried other alternatives for those phrases.

The execution continues by failing back into the already recognized phrases and trying to find
them in alternative ways. When these attempts fail, complete assertions are made for the failed
phrases.

Asserted complete(n,2)

6The invocation numbers are not consecutive because we are omitting the trace messages for other calls. Also, Redo ports
(Section 2.4.1) are not shown.
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(87) 8 Fail: find_phrase(n,2,P_4)

Asserted complete(det,1)

(63) 8 Fail: find_phrase(det,1,P_3)

Asserted complete(np,1)

(49) 5 Fail: find_phrase(np,1,P_2)

Asserted complete(dv,0)

(20) 4 Fail: find_phrase(dv,0,P_1)

Now the first vp rule has failed and we have complete information for all the phrases the parser
attempted to find during that rule’s execution. The execution now moves to the second vp rule.

(184) 4 Call: find_phrase(dv,0,P_1)

(223) 5 Call: known_phrase(dv,0,P_1)

(223) 5 Exit: known_phrase(dv,0,1)

(184) 4 Exit: find_phrase(dv,0,1)

The table for phrases of type dv is complete at position 0, so the lemmas stored in known_phrase
can be used instead of the rules for dv. The situation is similar for the first np complement of the
vp, thereby saving a reparse of that noun phrase.

(234) 5 Call: find_phrase(np,1,P_2)

(267) 6 Call: known_phrase(np,1,P_2)

(267) 6 Exit: known_phrase(np,1,3)

(234) 5 Exit: find_phrase(np,1,3)

The analysis then proceeds as normal until the original goal is proved.

(273) 5 Call: find_phrase(np,3,P_3)

(323) 8 Call: find_phrase(det,3,P_4)

Assert known_phrase(det,3,4)

(323) 8 Exit: find_phrase(det,3,4)

(389) 8 Call: find_phrase(n,4,P_5)

Assert known_phrase(n,4,5)

(389) 8 Exit: find_phrase(n,4,5)

Assert known_phrase(np,3,5)

(273) 5 Exit: find_phrase(np,3,5)

Assert known_phrase(vp,0,5)

(6) 1 Exit: find_phrase(vp,0,5)

6.6.6 General Tabular Parsing

The phrase table for top-down parsing that we have just discussed improves the performance of
top-down parsing by stopping redundant reanalyses, but it does not do anything to alleviate a much
more serious redundancy, the redundancy of top-down computation that leads to nontermination in
grammars with left-recursive rules.

As we have seen, a top-down parser may fail to terminate when given left-recursive rules because
it works by guessing (or predicting) that a phrase of some type X occurs and then trying all ways of
building an X. If one of those ways involves looking for an X to start with, the procedure gets into a
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prediction loop and never terminates. One way of dealing with this problem is to avoid it totally by
using a bottom-up algorithm, as described in Section 6.5. Unfortunately, this is achieved by losing
the accurate top-down predictions available in a top-down parser. Techniques such as the use of
linking information discussed in Section 6.5.1 can alleviate this problem, but in the worst case even
a left-corner parser with linking information will generate many unextensible partial analyses that a
top-down parser would never attempt.

At first sight, it might appear as if the left-recursion problem for top-down parsers has a solution
analogous to that for the redundancy problem which we have just discussed. What would be needed
is to record the fact that the parser has predicted a phrase of type X starting at some position i so that
the parser can recognize when it is about to get into a prediction loop. However, it is not immediately
clear what should occur when a prediction loop is recognized. Clearly, for the prediction to be
fulfilled there should be some phrase of type X at i, so we cannot just give up looking for an X

at i. Furthermore, we cannot decide in advance how many X phrases start at i, as can be seen by
considering the rules

X→ X a

X→ b

applied to strings ban for different values of n. Finally, a prediction loop may occur with rules with
apparently non-left-recursive rules such as

X→ Y X b

Y→ ǫ

because a prefix of the body of a rule may cover the empty string, as with Y in the rules above. Thus,
in general loop detection is needed when forming predictions on the basis of any symbol in a rule
body.

The above problems can be solved by splitting the operation of the parser into two alternating
phases, prediction and resolution, dealing respectively with top-down predictions and bottom-up
rule applications.7

To explain the process in more detail, we will not work in terms of DCG rules but rather in terms
of the corresponding definite clauses. From a deductive point of view, prediction selects instances
of rules that may apply to resolve against a particular literal (nonterminal). For instance, suppose
we are parsing an expression according to the DCG encoded in Program 2.4 and repeated here for
reference.

s(P0, P) :- np(P0, P1), vp(P1, P).

np(P0, P) :- det(P0, P1), n(P1, P2), optrel(P2, P).

np(P0, P) :- pn(P0, P).

vp(P0, P) :- tv(P0, P1), np(P1, P).

vp(P0, P) :- iv(P0, P).

optrel(P, P).

optrel(P0, P) :- connects(that, P0, P1), vp(P1, P).

pn(P0, P) :- connects(terry, P0, P).

pn(P0, P) :- connects(shrdlu, P0, P).

iv(P0, P) :- connects(halts, P0, P).

det(P0, P) :- connects(a, P0, P).

7Earley used the term completion for what we call resolution.
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n(P0, P) :- connects(program, P0, P).

tv(P0, P) :- connects(writes, P0, P).

Starting with a query of the form

:- s(0, 2)

the Prolog proof procedure will predict that the first rule in the grammar is applicable. Unifying the
goal literal with the prediction, we have the new clause

s(0, 2) :- np(0, P1), vp(P1, 2).

This clause is an instance of the first rule and a consequence of the grammar together with the initial
goal. Selecting the first literal in this new rule, we might then predict the second or third rule, in the
latter case yielding

np(0, P) :- pn(0, P). ,

from which can be predicted

pn(0, P) :- connects(bertrand, 0, P).

This clause can be resolved by matching a literal in its right-hand-side against a unit clause in the
program, say,

connects(bertrand, 0, 1).

The resolvent is formed by removing the matched literal.

pn(0, 1).

Now this clause can be used to resolve against another clause forming the resolvent

np(0, 1). ,

which resolves against the original prediction.

s(0,2) :- vp(1,2).

Now the process can start over, this time predicting the rules for verb phrases. Eventually, if a verb
phrase is found between positions 1 and 2, the clause

vp(1,2).

will be generated, which can resolve the previous clause to

s(0, 2).

The existence of this clause formed by alternately predicting and resolving demonstrates that the
initial goal has been proved.

Thus the normal Prolog proof procedure can be seen as operating by prediction and resolution,
and the results of prediction and resolution (the derived clauses) are lemmas, logical consequences
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of the program. The insight of methods of parsing and deduction based on Earley’s algorithm is that
this general flow of control can be made into a tabular parsing method by storing each lemma in a
table, and only forming a new predicted or resolved clause if the table does not already contain it (or
one which is more general).

We now describe the extended algorithm more precisely.
The predictor operates on clauses with nonempty antecedents, what we have in the past called

rules, but will call active clauses by analogy with the use of the term active edge in the parsing
literature. A literal is selected from the antecedent of the active clause and a matching program
clause is found. The clause instance formed by unifying the selected literal and the matching clause
is then added as a lemma. In general, this new clause will be active.

The resolver operates on clauses with empty antecedents, what we have in the past called unit

clauses or facts, but will call passive clauses within the discussion of Earley deduction. An active
clause is chosen whose selected (leftmost) literal matches the passive clause8 and the resolvent of
the two, which may be either active or passive, is added as a lemma. Newly derived clauses have
one less literal in their bodies than the active clause from which they were formed so that repeated
resolution will eventually create new derived passive clauses.

In each case, addition of the lemma occurs only if no subsuming clause exists in the table.
The predictor and the resolver interact as follows. The proof process is set off by calling the

predictor on the goal to be proved—in the case at hand, the grammar start symbol with appropriate
string arguments for DCGs. Each time an active clause is added to the table, the predictor is called
on the selected literal of the active clause to create new rule instances. Each time a passive clause
is added to the table, the resolver is called to resolve the passive clause against appropriate active
clauses.

We can see now how the loop check on predictions is implemented. Top-down prediction from
a literal X creates rule instances that may be used to conclude an X. The predictor is recursively
applied on the selected literals of the newly added rule instances. If this prediction process leads to
another attempt to predict from X because of left recursion, the potential derived rule instances for
X will have already been added to the lemma table for the earlier instance of X, and the prediction
will stop.

The family of proof procedures based on the method just described has been given the collective
name of Earley deduction because of its close connection to Earley’s parsing algorithm for CFGs.
However, the more specific constraints of CF parsing allow a simplification that we cannot take
advantage of here, and that we glossed over in the above description. In Earley’s algorithm, derived
clause creation proceeds strictly from left to right. Therefore, any passive clause needed to resolve
against some active clause is guaranteed to be constructed after the active clause is created. Thus,
to perform all the pertinent resolutions, the algorithm need only look for active clauses at the time
when a passive clause is created. A general Earley deduction proof procedure cannot guarantee this,
so in general it is necessary to run the resolver not only when passive clauses are added, but also
when active clauses are added as well.

We will now present a definite clause interpreter that operates according to the Earley deduction
method. Turning the method into a specific procedure requires specifying a literal selection function
(we will assume the Prolog one) and a particular interleaving of prediction and resolution steps.

8This leftmost-literal selection rule is the same one that Prolog uses. Other selection rules are possible, leading to different
parsing algorithms. For example, one could have a notion of head for rules and always start by resolving head literals. It is
a common mistake to assume that it is necessary to try resolutions with all body literals, rather than just with the one given
by the selection function. However, resolution only against the selected literal is sufficient, because if a resolution step with
some other body literal is required in a proof, any selection function will sooner or later (maybe infinitely many steps later)
come to select that literal. This is because resolution removes a literal from the body, so that the selection function has fewer
and fewer literals from which to select.
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There is also room for ingenuity in choosing a representation for the table of derived clauses that
will speed up the search for resolving derived clauses. The implementation below does not use such
methods, however, since it is intended to illustrate the basic algorithm as cleanly as possible.

In this implementation, user-supplied clauses (i.e., the program to be interpreted) and derived
clauses (the results of prediction and resolution) are represented as P <= [P1, . . ., Pn] and
P <*= [P1, . . ., Pn] respectively, where <= and <*= are appropriately declared infix operators.

The table of lemmas will be implemented by asserting <*= clauses into the Prolog database.
However, we will need a temporary storage for clauses that the predictor and resolver produce. This
will store clauses that have been added to the table but have not yet been processed to see what further
clauses they engender (by prediction or resolution). For this purpose, we add an agenda of derived
clauses that remain to be processed, which we will encode as a Prolog list. The main predicate of
the program takes the initial goal, uses the predictor to find all the predicted clauses thereby forming
the initial agenda, and processes each derived clause. If the passive clause encoding the goal can be
proved by this process, the goal itself has been proved.

prove(Goal) :-

predict(Goal, Agenda),

process(Agenda),

Goal <*= [].

The agenda of derived clauses is processed one by one by the predicate process_one. If the
list is empty, all consequences of the axioms relevant to proving the initial goal have been already
derived. Otherwise, the first clause in the agenda is considered, leading to some set SubAgenda of
new derived clauses to consider, which is combined with the rest of the main agenda and given to
process. Here we are actually adding the new derived clauses to the front of the main agenda; that
is, we have a stack rather than a queue discipline and consequently a kind of depth-first search. If
the new clauses were appended to the back of the agenda instead (as in a queue), the search would
be breadth-first.

process([]).

process([Head <*= Body | OldAgenda]) :-

process_one(Head, Body, SubAgenda),

conc(SubAgenda, OldAgenda, Agenda),

process(Agenda).

Each new derived clause is processed according to its form. If the derived clause body is empty,
we have a passive clause that should be given to the resolver.

process_one(Head, [], Agenda) :-

resolve_passive(Head, Agenda).

If the derived clause is active, the predictor has to be called with the clause’s selected literal,
the first body literal in this implementation. Furthermore, as we observed earlier it may be that
some passive clauses were added before active clauses they should resolve with, so there is a sup-
plementary call to resolve to deal with those belated resolutions. The clause sets resulting from
prediction and resolution are combined to give the set of clauses newly derived from the clause being
considered.

process_one(Head, [First|Body], Agenda) :-
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predict(First, Front),

resolve_active(Head <*= [First|Body], Back),

conc(Front, Back, Agenda).

The predictor, the passive clause resolver, and the active clause resolver are all very similar.
They use the meta-predicate all_solutions(x, g, l) to find the list l of all instantiations of x

such that g holds. This is defined to be just like the metapredicate bagof (Section 5.1.4), except that
it returns the empty list when g has no solutions and does not backtrack for alternative instantiations
of free variables. As can be seen in the clause below, in all calls of all_solutions all variables
are either bound in x or in an existential quantifier, so there will be no free variables to instantiate in
alternative ways in any case.

A prediction is simply the instantiation of a derived clause by the goal. A prediction is actually
made and stored only if the call to store succeeds.

predict(Goal, Agenda) :-

all_solutions(Clause,

Goalˆprediction(Goal, Clause),

Agenda).

prediction(Goal, Goal <*= Body) :-

Goal <= Body,

store(Goal <*= Body).

The resolver for passive clauses takes a derived passive clause Fact and finds active derived
clauses whose selected literal unifies with Fact, returning the results of the corresponding resolu-
tions.

resolve_passive(Fact, Agenda) :-

all_solutions(Clause,

Factˆp_resolution(Fact, Clause),

Agenda).

p_resolution(Fact, Goal <*= Body) :-

Goal <*= [Fact|Body],

store(Goal <*= Body).

The resolver for active clauses works the opposite way to the one for passive clauses: it takes
an active clause Clause and finds passive clauses whose head unifies with the selected literal of
Clause.

resolve_active(Clause, Agenda) :-

all_solutions(NewClause,

Clauseˆa_resolution(Clause,

NewClause),

Agenda).

a_resolution(Head <*= [First|Body], Head <*= Body) :-

First <*= [],

store(Head <*= Body).
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Newly derived clauses are stored only if they are not subsumed by an existing derived clause.

store(Clause) :-

\+subsumed(Clause),

assert(Clause).

subsumed(Clause) :-

GenHead <*= GenBody,

subsumes(GenHead <*= GenBody, Clause).

Finally, the implementation of all_solutions is simply:

all_solutions(Var, Goal, Solutions) :-

bagof(Var, Goal, Solutions) -> true ; Solutions = [].

As we saw in Section 3.8.2, the Prolog proof procedure loops on left-recursive rules such as
those for the English possessive construction.

NP→ Det N

DET→ NP ’s

However, our new proof procedure will cope with rules like the above. The clauses below encode an
extension of Program 3.11 to cover the possessive construction in the format required by the Earley
deduction interpreter.

s(s(NP,VP), P0, P) <=

[np(NP, P0, P1), vp(VP, P1, P)].

np(np(Det,N,Rel), P0, P) <=

[det(Det, P0, P1),

n(N, P1, P2),

optrel(Rel, P2, P)].

np(np(PN), P0, P) <= [pn(PN, P0, P)].

det(gen(NP), P0, P) <=

[np(NP, P0, P1), connects(’’’s’, P1, P)].

det(Det, P0, P) <= [art(Det, P0, P)].

vp(vp(TV,NP), P0, P) <=

[tv(TV, P0, P1), np(NP, P1, P)].

vp(vp(IV), P0, P) <= [iv(IV, P0, P)].

optrel(rel(epsilon), P, P) <= [].

optrel(rel(that,VP), P0, P) <=

[connects(that, P0, P1), vp(VP, P1, P)].

pn(pn(terry), P0, P) <= [connects(terry, P0, P)].

pn(pn(shrdlu), P0, P) <= [connects(shrdlu, P0, P)].

iv(iv(halts), P0, P) <= [connects(halts, P0, P)].

art(art(a), P0, P) <= [connects(a, P0, P)].

n(n(program), P0, P) <= [connects(program, P0, P)].

tv(tv(writes), P0, P) <= [connects(writes, P0, P)].

To show the operation of the algorithm, we use the input sentence
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Terry’s program halts.

encoded as

connects(terry, p0, p1) <= [].

connects(’’’s’, p1, p2) <= [].

connects(program, p2, p3) <= [].

connects(halts, p3, p4) <= [].

The listing below shows the derived clauses generated by the algorithm in order of derivation. To
unclutter the listing, we have replaced by ellipses the derived clauses used in recognizing preterminal
symbols (art, pn, n, iv and tv).

(1) s(s(B,C),p0,p4) <*= [np(B,p0,D),vp(C,D,p4)].

(2) np(np(B,C,D),p0,E) <*=

[det(B,p0,F),n(C,F,G),optrel(D,G,E)].

(3) np(np(B),p0,C) <*= [pn(B,p0,C)].

(4) det(gen(B),p0,C) <*=

[np(B,p0,D),connects(’s,D,C)].

(5) det(B,p0,C) <*= [art(B,p0,C)].

...

(10) pn(pn(terry),p0,p1) <*= [].

(11) np(np(pn(terry)),p0,p1) <*= [].

(12) s(s(np(pn(terry)),B),p0,p4) <*= [vp(B,p1,p4)].

(13) det(gen(np(pn(terry))),p0,B) <*=

[connects(’s,p1,B)].

(14) vp(vp(B,C),p1,p4) <*= [tv(B,p1,D),np(C,D,p4)].

(15) vp(vp(B),p1,p4) <*= [iv(B,p1,p4)].

...

(19) det(gen(np(pn(terry))),p0,p2) <*= [].

(20) np(np(gen(np(pn(terry))),B,C),p0,D) <*=

[n(B,p2,E),optrel(C,E,D)].

...

(23) n(n(program),p2,p3) <*= [].

(24) np(np(gen(np(pn(terry))),

n(program),

B),

p0,C) <*= [optrel(B,p3,C)].

(25) optrel(rel(epsilon),p3,p3) <*= [].

(26) optrel(rel(that,B),p3,C) <*=

[connects(that,p3,D),vp(B,D,C)].

(27) np(np(gen(np(pn(terry))),

n(program),

rel(epsilon)),

p0,p3) <*= [].

(28) s(s(np(gen(np(pn(terry))),

n(program),

rel(epsilon)),

B),
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p0,p4) <*= [vp(B,p3,p4)].

(29) det(gen(np(gen(np(pn(terry))),

n(program),

rel(epsilon))),

p0,B) <*= [connects(’s,p3,B)].

(30) vp(vp(B,C),p3,p4) <*= [tv(B,p3,D),np(C,D,p4)].

(31) vp(vp(B),p3,p4) <*= [iv(B,p3,p4)].

...

(35) iv(iv(halts),p3,p4) <*= [].

(36) vp(vp(iv(halts)),p3,p4) <*= [].

(37) s(s(np(gen(np(pn(terry))),

n(program),

rel(epsilon)),

vp(iv(halts))),

p0,p4) <*= [].

Derived clause (4) is the instantiation of the left-recursive determiner rule that the Prolog proof
procedure cannot handle. It is easy to see that the predictions from the first literal in that clause are
instances of derived clauses (2) and (3), so the subsumption check will avoid the loop.

6.6.7 Earley Deduction and Earley’s CF Parsing Algorithm

We have already informally indicated the connection between Earley deduction and Earley’s context-
free parsing algorithm. For readers who are familiar with Earley’s algorithm, it may be useful to
describe the relationship more specifically. We will make the connection a bit more precise here by
considering the application of Earley deduction to the definite-clause representation of a context-free
grammar. In Earley’s parsing algorithm, the state of the parser at input position j is represented by
a collection of dotted items I = [X → α · β, i], where X → γ is some grammar rule, γ = αβ, and i

is an input position with i ≤ j. It is very easy to interpret these items in terms of our definite-clause
representation. If β is empty, the item I above is called a completed item and represents the unit
derived clause X(i, j). If γ = Y1 · · ·Ym and β = Yk · · ·Ym, item I represents the derived clause

X(i, p)⇐ Yk( j, pk) ∧ · · · ∧ Ym(pm−1, p) .

6.6.8 Limitations of Tabular Parsers

We have just seen how loops and redundant analyses are avoided by using a tabular parser rather
than a depth-first backtracking one. However, these advantages are bought at the cost of having
to store dotted items to represent intermediate states of the analysis explicitly. For context-free
grammars, tabular parsers have an overwhelming advantage because dotted items can be efficiently
encoded as triples of a rule number, position of the dot within the rule, and item start position. In
contrast, storing a lemma (derived clauses) requires storing the bindings for the variables in the
clause or clauses from which the lemma was derived. The Prolog proof procedure avoids these
costs by considering only one alternative analysis at a time, but the whole point of tabular parsing
and tabular proof procedures is to be able to use lemmas from one alternative proof path in other
proof paths. In our example interpreters above, we use the implicit copying provided by assert to
store lemmas with their corresponding bindings. More sophisticated schemes are available that may
reduce the overhead, but in the worst case tabular parsing for DCGs is asymptotically as bad as top-
down backtrack parsing, and substantially worse if one considers constant factors. On the whole,
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the decision between tabular algorithms and Prolog for DCG parsing can only be done empirically
with particular classes of grammar in mind.

Similar observations apply to the question of termination. Even though Earley deduction termi-
nates for a larger class of programs than Prolog, it is easy to construct programs for which Earley
deduction loops, such as the following DCG:

P(succ(x))→ P(x) a

P(0) → b

Our Earley deduction procedure applied to the definite-clause representation of this grammar will
loop in the predictor for any start symbol matching P(succn(0)) for infinitely many values of n. This
is because the subsumption test on derived clauses stops loops in which the clause or a more general
one already exists in the table, but this grammar predicts ever more specific instances of the first
rule.

Exercise 6.11 Check that Earley deduction loops on this grammar.

6.7 Problem Section: DCG Interpreters and Compilers

Problem 6.12 Extend the DCG interpreter of Section 6.3.1 to handle the intersection operator as

defined in Problem 2.13.

Problem 6.13 Write a compiler for the extended language of the previous problem.

Problem 6.14 The DCG compiler given by the combination of compile, partially_execute,

and parse (the DCG interpreter) compiles a grammar by using the partial executor to interpret

the DCG interpreter. This process could be made more efficient by partially executing the partial

executor with respect to the parse predicate, akin to compiling the DCG interpreter. Perform this

compilation to yield a more efficient DCG compiler. What is lost in this process?

FG-DCG Analyses

Topicalization is a construction in English in which a filler constituent is prefixed to a sentence with
a gap of the appropriate type. For the purposes of this problem, we will assume that the filler is
always an NP. The following sentences exemplify the topicalization construction:

This book, Bertrand gave to Gottlob.
The professor that wrote this book, Alfred met.

The English left dislocation construction is a similar construction, except that instead of the empty
string in the position associated with the filler, there is a pronoun (called a resumptive pronoun)
filling that position, e.g.,

This book, Bertrand gave it to Gottlob.
The professor that wrote this book, Alfred met her.

Problem 6.15 Add FG-DCG rules to Program 6.5 to handle the English topicalization and left

dislocation construction. Be careful to avoid the ungrammatical

*Bill read the book that Alfred wrote it.
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Extending Earley Deduction with Restriction

In Section 6.6.8, we mentioned that even with the advantages of tabular parsing in being able to
parse left-recursive and other grammars not parsable by other means, there are still problematic
grammars for the methods outlined. The subsumption test for stopping prediction loops requires
that eventually a new entry will be no more specific than an existing one. But the sample grammar
given in that section predicts rules with ever larger terms. One method for solving this problem is to
limit the amount of structure that can be passed in the prediction process, using a technique called
restriction. When a literal G is to be predicted, we look for rules that might be useful in resolving
against G. But instead of performing this test by unifying G itself with the head of the rule, we first
restrict G to G′ by eliminating all but a finite amount of structure from G. The restricted version G′

is then matched against possible rules. Since the amount of information in G′ can be bounded, the
nontermination problem disappears for the problematic cases discussed in Section 6.6.8.

There are many possible ways of restricting a term to only a finite amount of structure. We might
replace all subterms below a given depth (say 2) by variables. Then the term f(g(h(a), s(b)),
c) would be restricted to f(g(X, Y), c). Another alternative is to define restriction templates that
eliminate certain information. For instance, the unit clause

restrict(f(g(A,B),c), f(g(X,Y),c)).

can be used to state the relationship between the sample term (and terms like it) and the restricted
form.

Problem 6.16 Modify the Earley deduction program to perform restriction before predicting using

either of the methods of restricting terms. Test it on the problematic grammar of Section 6.6.8 to

demonstrate that the algorithm now terminates.

6.8 Bibliographic Notes

Interpreters for Prolog-like languages in Prolog have been used since the early days of Prolog as a
means to explore different execution regimes for definite clauses and for trying out extensions to the
language (Gallaire and Lasserre, 1982; Porto, 1982; L. M. Pereira, 1982; Mukai, 1985). One of the
advantages of this approach is that it is not necessary to construct an interpreter for all the features
of the new language because the aspects not being investigated are just absorbed by the underlying
Prolog implementation.

The technique we suggest for a Prolog-in-Prolog with cut (Section 6.2.2) seems to have been
first used in a version of the interpreter in the DEC-10 Prolog system due to David H. D. Warren,
although it might have been in the folklore before then. A version is given by O’Keefe (1985).

Consecutively bounded depth-first search (Section 6.2.1) has been described and analysed by
Stickel and Tyson (1985) and, under the name “depth-first iterative deepening” by Korf (1985).

Compilation by partial execution (Section 6.4) has been discussed in a logic programming con-
text by Kahn (1982) and by Takeuchi and Furukawa (1985). However, much of what is done in
this area by logic programming researchers is still unpublished, so our particular approach to the
problem is to a great extent independently derived.

Left-corner parsers for context-free languages were discussed in a form close to the one used
here (Section 6.5) by Rosenkrantz and Lewis (1970), although the basic idea seems to be earlier. The
subject is also extensively covered in the exercise sections of Aho and Ullman’s textbook (1972).
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Rosenkrantz and Lewis introduce an algorithm that transforms a context-free grammar to an equiv-
alent one in which nonterminals are pairs of nonterminals of the original grammar. Left-corner
derivations for the initial grammar correspond to top-down derivations for the new grammar. The
BUP parser for definite-clause grammars (Matsumoto, et al., 1983) uses a similar technique, except
that the nonterminal pairs are instantiated at run time rather than at grammar compilation time. The
link relation (Section 6.5.1) gives a finite approximation of the in general infinite set of DCG non-
terminals that would be the result of applying the Rosenkrantz and Lewis process to a DCG. Pratt
(1985) developed a tabular parser based on similar notions.

Tabular parsers for context-free languages are the result of the application of “divide-and-
conquer”, dynamic-programming methods to the context-free parsing problem to avoid the exponen-
tial costs of backtracking (Aho and Ullman, 1972). The Cocke-Kasami-Younger (CKY) algorithm
is the first of these, but it does not use any top-down predictions so it will generate many useless sub-
phrases. Earley’s algorithm (1970; Aho and Ullman, 1972) uses left-context to its full extent so that
any recognized subphrase is guaranteed to fit into an analysis of a sentence having as a prefix all the
input symbols seen so far. The algorithm of Graham, Harrison, and Ruzzo (1980; Harrison, 1978)
combines a generalization of the CKY algorithm with preconstructed top-down prediction tables to
achieve the best practical performance known so far for a general context-free parsing algorithm.

The Earley deduction proof procedure is due to D. H. D. Warren (1975), but the first published
discussion of the procedure and its application in natural-language parsing is given by Pereira and
Warren (1983). The trade-offs between termination and detail of top-down prediction are discussed
by Shieber (1985c) for a class of formalisms with similar properties to definite-clause grammars. A
further difficulty with the extended Earley’s algorithm is the cost of maintaining rule instantiations,
which does not occur in the original algorithm because grammar symbols are atomic. Boyer and
Moore invented an instantiation-sharing method for clausal theorem provers (1972). The special
constraints of parsing allow some further optimizations for their method (Pereira, 1985).

The idea of parsing from the heads of phrases outwards has often attracted attention, even though
its computational merits are still to be proven. Instances of this idea are McCord’s slot grammars
(1980) and head-driven phrase-structure grammar (Sag and Pollard, 1986), and the use of a head-
selection rule for DCGs (Pereira and Warren, 1983).

Topicalization and left dislocation are discussed by Ross (1967).
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This digital edition of Pereira and Shieber’s Prolog and Natural-Language Analy-

sis is distributed at no charge by Microtome Publishing under a license described
in the front matter and at the web site. A hardbound edition (ISBN 0-9719777-
0-4), printed on acid-free paper with library binding and including all appen-
dices and two indices (and without these inline interruptions), is available from
www.mtome.com and other booksellers.

This appendix includes commented listings of the talk program developed in Chapter 5 and
the DCG compiler of Chapter 6. Besides combining all of the bits of code that were distributed
throughout that and other chapters, this listing provides an example of one commenting style for
Prolog.

A.1 A Note on Programming Style

We have adopted the following stylistic conventions in the programs in this appendix and elsewhere
in the book. Although these particular conventions are not sacrosanct, adherence to some set of
uniform conventions in Prolog programming (and, indeed, for programming in any language) is
desirable.

We attempted to use variable names that are long enough to provide some mnemonic power.
Predicate names were chosen to be as “declarative” in tone as possible (without sacrificing appro-
priateness). Thus, we used the name conc (for “concatenation”) rather than the more common,
procedural term append. Of course, certain predicates which rely on side-effects are more appro-
priately named with procedural terms such as read_word or print_reply.

Conventionally, the words in multi-word variable names are demarcated by capitalization of the
first letter, e.g., VariableName. Multiple words in functor symbols, on the other hand, are separated
with underbar, e.g., multiple_word. These conventions are relatively widespread in Prolog culture.

As mentioned in Section 3.4, we use the Prolog notational convention of giving a name beginning
with an underbar to variables whose role is not to pass a value but merely to be a place holder.
Anonymous variables (notated with a single underbar) are used for place-holder variables for those
rare occasions in which naming the variable would detract from program readability. Such occasions
occurred only in two areas: in specifying the tables for lexical entries and in listing generic forms
for auxiliary literals.
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Despite statements to the contrary, no programming language is self-documenting. Since the
sample programs presented in the text have been surrounded by a discussion of their operation,
no comments were interspersed. However, the commenting of programs is an important part of
programming.

The commenting style used here includes an introductory description of each predicate defined,
including a description of its arguments. The normal mode of execution of the predicate is conveyed
by the direction of arrows (==> or <==) for each argument. In addition, the individual clauses are
commented when appropriate.

It is usually preferable to place comments pertaining to a particular literal on the same line as
the literal as is done, for instance, in the commented version of main_loop below. Unfortunately,
page width limitations necessitated interleaving these comments in many cases.

In general, cuts, asserts, and similar metalogical operations are suspect in Prolog code. In the
programs that follow, cuts are used only to encode conditionals. The conditional construct, though
typically preferred, was not used in several cases because it was deemed less readable than the
version using the cut. Asserts in these programs are not used as part of the program’s control
strategy, but rather, as the output of meta-programs.

A.2 The TALK Program

/******************************************************

TALK Program

******************************************************/

/*=====================================================

Operators

=====================================================*/

:- op(500,xfy,&).

:- op(510,xfy,=>).

:- op(100,fx,‘).

/*=====================================================

Dialogue Manager

=====================================================*/

%%% main_loop

%%% =========

main_loop :-

write(’>> ’), % prompt the user

read_sent(Words), % read a sentence

talk(Words, Reply), % process it with TALK

print_reply(Reply), % generate a printed reply

main_loop. % pocess more sentences
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%%% talk(Sentence, Reply)

%%% =====================

%%%

%%% Sentence ==> sentence to form a reply to

%%% Reply <== appropriate reply to the sentence

talk(Sentence, Reply) :-

% parse the sentence

parse(Sentence, LF, Type),

% convert the FOL logical form into a Horn

% clause, if possible

clausify(LF, Clause, FreeVars), !,

% concoct a reply, based on the clause and

% whether sentence was a query or assertion

reply(Type, FreeVars, Clause, Reply).

% No parse was found, sentence is too difficult.

talk(_Sentence, error(’too difficult’)).

%%% reply(Type, FreeVars, Clause, Reply)

%%% ====================================

%%%

%%% Type ==> the constant "query" or "assertion"

%%% depending on whether clause should

%%% be interpreted as a query or

%%% assertion

%%% FreeVars ==> the free variables (to be

%%% interpreted existentially) in the

%%% clause

%%% Clause ==> the clause being replied to

%%% Reply <== the reply

%%%

%%% If the clause is interpreted as an assertion,

%%% the predicate has a side effect of asserting

%%% the clause to the database.

% Replying to a query.

reply(query, FreeVars,

(answer(Answer):-Condition), Reply) :-

% find all the answers that satisfy the query,

% replying with that set if it exists, or "no"

% or "none" if it doesn’t.

(setof(Answer, FreeVarsˆCondition, Answers)

-> Reply = answer(Answers)

; (Answer = []

-> Reply = answer([none])

; Reply = answer([no]))), !.

% Replying to an assertion.
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reply(assertion, _FreeVars,

Assertion, asserted(Assertion)) :-

% assert the assertion and tell user what we asserted

assert(Assertion), !.

% Replying to some other type of sentence.

reply(_Type, _FreeVars, _Clause, error(’unknown type’)).

%%% print_reply(Reply)

%%% ==================

%%%

%%% Reply ==> reply generated by reply predicate

%%% that is to be printed to the

%%% standard output.

print_reply(error(ErrorType)) :-

write(’Error: "’), write(ErrorType), write(’."’), nl.

print_reply(asserted(Assertion)) :-

write(’Asserted "’), write(Assertion), write(’."’), nl.

print_reply(answer(Answers)) :-

print_answers(Answers).

%%% print_answer(Answers)

%%% =====================

%%%

%%% Answers ==> nonempty list of answers to be printed

%%% to the standard output separated

%%% by commas.

print_answers([Answer]) :- !,

write(Answer), write(’.’), nl.

print_answers([Answer|Rest]) :-

write(Answer), write(’, ’),

print_answers(Rest).

%%% parse(Sentence, LF, Type)

%%% =========================

%%%

%%% Sentence ==> sentence to parse

%%% LF <== logical form (in FOL) of sentence

%%% Type <== type of sentence

%%% (query or assertion)

% Parsing an assertion: a finite sentence without gaps.

parse(Sentence, LF, assertion) :-

s(LF, nogap, Sentence, []).
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% Parsing a query: a question.

parse(Sentence, LF, query) :-

q(LF, Sentence, []).

/*=====================================================

Clausifier

=====================================================*/

%%% clausify(FOL, Clause, FreeVars)

%%% ===============================

%%%

%%% FOL ==> FOL expression to be converted

%%% to clause form

%%% Clause <== clause form of FOL expression

%%% FreeVars <== free variables in clause

% Universals: variable is left implicitly scoped.

clausify(all(X,F0),F,[X|V]) :- clausify(F0,F,V).

% Implications: consequent must be a literal,

% antecedent is clausified specially.

clausify(A0=>C0,(C:-A),V) :-

clausify_literal(C0,C),

clausify_antecedent(A0,A,V).

% Literals: left unchanged (except literal

% marker is removed).

clausify(C0,C,[]) :- clausify_literal(C0,C).

% Note that conjunctions and existentials are

% disallowed, since they can’t form Horn clauses.

%%% clausify_antecedent(FOL, Clause, FreeVars)

%%% ==========================================

%%%

%%% FOL ==> FOL expression to be converted

%%% to clause form

%%% Clause <== clause form of FOL expression

%%% FreeVars ==> list of free variables in clause

% Literals: left unchanged (except literal

% marker is removed).

clausify_antecedent(L0,L,[]) :- clausify_literal(L0,L).

% Conjunctions: each conjunct is clausified separately.

clausify_antecedent(E0&F0,(E,F),V) :-

clausify_antecedent(E0,E,V0),

clausify_antecedent(F0,F,V1),

conc(V0,V1,V).
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% Existentials: variable is left implicitly scoped.

clausify_antecedent(exists(X,F0),F,[X|V]) :-

clausify_antecedent(F0,F,V).

%%% clausify_literal(Literal, Clause)

%%% =================================

%%%

%%% Literal ==> FOL literal to be converted

%%% to clause form

%%% Clause <== clause form of FOL expression

% Literal is left unchanged (except literal

% marker is removed).

clausify_literal(‘L,L).

/*=====================================================

Grammar

Nonterminal names:

q Question

sinv INVerted Sentence

s noninverted Sentence

np Noun Phrase

vp Verb Phrase

iv Intransitive Verb

tv Transitive Verb

aux AUXiliary verb

rov subject-Object Raising Verb

optrel OPTional RELative clause

relpron RELative PRONoun

whpron WH PRONoun

det DETerminer

n Noun

pn Proper Noun

Typical order of and values for arguments:

1. verb form:

(main verbs) finite, nonfinite, etc.

(auxiliaries and raising verbs) Form1-Form2

where Form1 is form of embedded VP

Form2 is form of verb itself)

2. FOL logical form

3. gap information:

nogap or gap(Nonterm, Var)

where Nonterm is nonterminal for gap
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Var is the LF variable that

the filler will bind

=====================================================*/

%%% Questions

q(S => ‘answer(X)) -->

whpron, vp(finite, XˆS, nogap).

q(S => ‘answer(X)) -->

whpron, sinv(S, gap(np, X)).

q(S => ‘answer(yes)) -->

sinv(S, nogap).

q(S => ‘answer(yes)) -->

[is],

np((XˆS0)ˆS, nogap),

np((Xˆtrue)ˆexists(X,S0&true), nogap).

%%% Declarative Sentences

s(S, GapInfo) -->

np(VPˆS, nogap),

vp(finite, VP, GapInfo).

%%% Inverted Sentences

sinv(S, GapInfo) -->

aux(finite/Form, VP1ˆVP2),

np(VP2ˆS, nogap),

vp(Form, VP1, GapInfo).

%%% Noun Phrases

np(NP, nogap) -->

det(N2ˆNP), n(N1), optrel(N1ˆN2).

np(NP, nogap) --> pn(NP).

np((XˆS)ˆS, gap(np, X)) --> [].

%%% Verb Phrases

vp(Form, XˆS, GapInfo) -->

tv(Form, XˆVP),

np(VPˆS, GapInfo).

vp(Form, VP, nogap) -->

iv(Form, VP).

vp(Form1, VP2, GapInfo) -->

aux(Form1/Form2, VP1ˆVP2),

vp(Form2, VP1, GapInfo).

vp(Form1, VP2, GapInfo) -->

rov(Form1/Form2, NPˆVP1ˆVP2),

np(NP, GapInfo),
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vp(Form2, VP1, nogap).

vp(Form2, VP2, GapInfo) -->

rov(Form1/Form2, NPˆVP1ˆVP2),

np(NP, nogap),

vp(Form1, VP1, GapInfo).

vp(finite, XˆS, GapInfo) -->

[is],

np((XˆP)ˆexists(X,S&P), GapInfo).

%%% Relative Clauses

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, vp(finite,XˆS2, nogap).

optrel((XˆS1)ˆ(Xˆ(S1&S2))) -->

relpron, s(S2, gap(np, X)).

optrel(NˆN) --> [].

/*=====================================================

Dictionary

=====================================================*/

/*-----------------------------------------------------

Preterminals

-----------------------------------------------------*/

det(LF) --> [D], {det(D, LF)}.

n(LF) --> [N], {n(N, LF)}.

pn((EˆS)ˆS) --> [PN], {pn(PN, E)}.

aux(Form, LF) --> [Aux], {aux(Aux, Form, LF)}.

relpron --> [RP], {relpron(RP)}.

whpron --> [WH], {whpron(WH)}.

% Verb entry arguments:

% 1. nonfinite form of the verb

% 2. third person singular present tense form of the verb

% 3. past tense form of the verb

% 4. past participle form of the verb

% 5. pres participle form of the verb

% 6. logical form of the verb

iv(nonfinite, LF) --> [IV], {iv(IV, _, _, _, _, LF)}.

iv(finite, LF) --> [IV], {iv(_, IV, _, _, _, LF)}.

iv(finite, LF) --> [IV], {iv(_, _, IV, _, _, LF)}.

iv(past_participle, LF) --> [IV], {iv(_, _, _, IV, _, LF)}.

iv(pres_participle, LF) --> [IV], {iv(_, _, _, _, IV, LF)}.

tv(nonfinite, LF) --> [TV], {tv(TV, _, _, _, _, LF)}.

tv(finite, LF) --> [TV], {tv(_, TV, _, _, _, LF)}.

tv(finite, LF) --> [TV], {tv(_, _, TV, _, _, LF)}.

tv(past_participle, LF) --> [TV], {tv(_, _, _, TV, _, LF)}.
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tv(pres_participle, LF) --> [TV], {tv(_, _, _, _, TV, LF)}.

rov(nonfinite /Requires, LF)

--> [ROV], {rov(ROV, _, _, _, _, LF, Requires)}.

rov(finite /Requires, LF)

--> [ROV], {rov(_, ROV, _, _, _, LF, Requires)}.

rov(finite /Requires, LF)

--> [ROV], {rov(_, _, ROV, _, _, LF, Requires)}.

rov(past_participle/Requires, LF)

--> [ROV], {rov(_, _, _, ROV, _, LF, Requires)}.

rov(pres_participle/Requires, LF)

--> [ROV], {rov(_, _, _, _, ROV, LF, Requires)}.

/*-----------------------------------------------------

Lexical Items

-----------------------------------------------------*/

relpron( that ).

relpron( who ).

relpron( whom ).

whpron( who ).

whpron( whom ).

whpron( what ).

det( every, (XˆS1)ˆ(XˆS2)ˆ all(X,S1=>S2) ).

det( a, (XˆS1)ˆ(XˆS2)ˆexists(X,S1&S2) ).

det( some, (XˆS1)ˆ(XˆS2)ˆexists(X,S1&S2) ).

n( author, Xˆ ‘author(X) ).

n( book, Xˆ ‘book(X) ).

n( professor, Xˆ ‘professor(X) ).

n( program, Xˆ ‘program(X) ).

n( programmer, Xˆ ‘programmer(X) ).

n( student, Xˆ ‘student(X) ).

pn( begriffsschrift, begriffsschrift ).

pn( bertrand, bertrand ).

pn( bill, bill ).

pn( gottlob, gottlob ).

pn( lunar, lunar ).

pn( principia, principia ).

pn( shrdlu, shrdlu ).

pn( terry, terry ).

iv( halt, halts, halted,

halted, halting, Xˆ ‘halt(X) ).

tv( write, writes, wrote,

written, writing, XˆYˆ ‘writes(X,Y) ).

tv( meet, meets, met,

met, meeting, XˆYˆ ‘meets(X,Y) ).

tv( concern, concerns, concerned,
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concerned, concerning, XˆYˆ ‘concerns(X,Y) ).

tv( run, runs, ran,

run, running, XˆYˆ ‘runs(X,Y) ).

rov( want, wants, wanted,

wanted, wanting,

% semantics is partial execution of

% NP ˆ VP ˆ Y ˆ NP( Xˆwant(Y,X,VP(X)) )

((Xˆ ‘want(Y,X,Comp))ˆS) ˆ (XˆComp) ˆ Y ˆ S,

% form of VP required:

infinitival).

aux( to, infinitival/nonfinite, VPˆ VP ).

aux( does, finite/nonfinite, VPˆ VP ).

aux( did, finite/nonfinite, VPˆ VP ).

/*=====================================================

Auxiliary Predicates

=====================================================*/

%%% conc(List1, List2, List)

%%% ========================

%%%

%%% List1 ==> a list

%%% List2 ==> a list

%%% List <== the concatenation of the two lists

conc([], List, List).

conc([Element|Rest], List, [Element|LongRest]) :-

conc(Rest, List, LongRest).

%%% read_sent(Words)

%%% ================

%%%

%%% Words ==> set of words read from the

%%% standard input

%%%

%%% Words are delimited by spaces and the

%%% line is ended by a newline. Case is not

%%% folded; punctuation is not stripped.

read_sent(Words) :-

get0(Char), % prime the lookahead

read_sent(Char, Words). % get the words

% Newlines end the input.

read_sent(C, []) :- newline(C), !.
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% Spaces are ignored.

read_sent(C, Words) :- space(C), !,

get0(Char),

read_sent(Char, Words).

% Everything else starts a word.

read_sent(Char, [Word|Words]) :-

read_word(Char, Chars, Next), % get the word

name(Word, Chars), % pack the characters

% into an atom

read_sent(Next, Words). % get some more words

%%% read_word(Chars)

%%% ================

%%%

%%% Chars ==> list of characters read from standard

%%% input and delimited by spaces or

%%% newlines

% Space and newline end a word.

read_word(C, [], C) :- space(C), !.

read_word(C, [], C) :- newline(C), !.

% All other chars are added to the list.

read_word(Char, [Char|Chars], Last) :-

get0(Next),

read_word(Next, Chars, Last).

%%% space(Char)

%%% ===========

%%%

%%% Char === the ASCII code for the space

%%% character

space(32).

%%% newline(Char)

%%% =============

%%%

%%% Char === the ASCII code for the newline

%%% character

newline(10).
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A.3 The DCG Compiler

/******************************************************

DCG Compiler

******************************************************/

/*=====================================================

Operator Declarations

=====================================================*/

:- op(1200,xfx,--->).

%%% These declarations are required by certain Prolog

%%% systems for predicates that are to be asserted

%%% at run-time. Predicates are specified by terms

%%% of the form name/arity.

:- dynamic (--->)/2, parse/3, connect/3.

/*======================================================

Compiler Driver

======================================================*/

%%% compile

%%% =======

%%%

%%% Generates compiled clauses by partial

%%% execution of the DCG metainterpreter below,

%%% and adds them to the Prolog database.

compile :-

program_clause(Clause),

partially_execute(Clause, CompiledClause),

add_rule(CompiledClause),

fail.
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%%% add_rule(Clause)

%%% ================

%%%

%%% Clause ==> clause to be added to database

%%% after rewriting into a normal

%%% form that changes calls to parse

%%% into calls on particular

%%% nonterminals

add_rule((Head :- Body)) :-

rewrite(Head, NewHead),

rewrite(Body, NewBody),

write(’Asserting "’),

write((NewHead :- NewBody)),

write(’."’), nl,

assert((NewHead :- NewBody)).

%%% rewrite(Term, NewTerm)

%%% ======================

%%%

%%% Term ==> a term encoding a literal or

%%% sequence of literals

%%% NewTerm <== the term rewritten so literals

%%% of the form

%%% parse(s(...),...)

%%% are rewritten into the form

%%% s(...,...)

rewrite((A,B), (C,D)) :- !,

rewrite(A, C), rewrite(B, D).

rewrite(parse(Term, P1, P2), NewLiteral) :- !,

Term =.. [Function|Args],

conc(Args, [P1, P2], AllArgs),

NewLiteral =.. [Function|AllArgs].

rewrite(Term,Term).
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/*=====================================================

Partial Execution of Prolog Programs

=====================================================*/

%%% partially_execute(Term, NewTerm)

%%% ================================

%%%

%%% Term ==> term encoding Prolog clause,

%%% literal list or literal to be

%%% partially executed with respect to the

%%% program clauses and auxiliary clauses

%%% given by program_clause and clause

%%% predicates respectively.

%%%

%%% NewTerm <== the partially executed term.

% Partially executing a clause involves

% expanding the body.

partially_execute((Head:-Body),

(Head:-ExpandedBody)) :- !,

partially_execute(Body, ExpandedBody).

% Partially expanding a literal list involves

% conjoining the respective expansions.

partially_execute((Literal, Rest), Expansion) :- !,

% expand the first literal

partially_execute(Literal, ExpandedLiteral),

% and the rest of them

partially_execute(Rest, ExpandedRest),

% and conjoin the results

conjoin(ExpandedLiteral, ExpandedRest, Expansion).

% Partially executing an auxiliary literal involves

% replacing it with the body of a matching clause (if

% there are any). Nonauxiliary literals, or those

% not matching any clauses, are left unchanged.

partially_execute(Literal, Expansion) :-

( aux_literal(Literal),

setof(Body, Literalˆaclause((Literal :- Body)),

[_Clause|_Others]) )

-> ( aclause((Literal :- Body)),

partially_execute(Body, Expansion) )

; Expansion = Literal.
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/*-----------------------------------------------------

Utilities

-----------------------------------------------------*/

%%% conc(List1, List2, List)

%%% ========================

%%%

%%% List1 ==> a list

%%% List2 ==> a list

%%% List <== the concatenation of the two lists

conc([], List, List).

conc([Element|Rest], List, [Element|LongRest]) :-

conc(Rest, List, LongRest).

%%% conjoin(Conjunct1, Conjunct2, Conjunction)

%%% ==========================================

%%%

%%% Conjunct1 ==> two terms to be conjoined

%%% Conjunct2 ==>

%%% Conjunction <== result of the conjunction

% Conjoining a conjunction works just like

% concatenation (conc).

conjoin((A,B), C, ABC) :- !,

conjoin(B, C, BC),

conjoin(A, BC, ABC).

% Conjoining true and anything leaves the other

% conjunct unchanged.

conjoin(true, A, A) :- !.

conjoin(A, true, A) :- !.

% Otherwise, use the normal comma conjunction

% operator.

conjoin(A, C, (A,C)).
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%%% aclause(Clause)

%%% ===================

%%%

%%% Clause <== the head and body of a clause

%%% encoded with the unary ‘clause’;

%%% unit clauses can be encoded directly

%%% with clause and the Body returned will

%%% be ‘true’. Furthermore, the top-to-

%%% bottom clause ordering is preserved.

aclause((Head :- Body)) :-

clause(Clause),

(Clause = (Head :- Body)

-> true

; (Clause = Head, Body = true)).

/*=====================================================

Program to Partially Execute

=====================================================*/

/*-----------------------------------------------------

Control Information for Partial Executor

-----------------------------------------------------*/

aux_literal( (_ ---> _) ).

aux_literal( parse(_, _, _) ).

/*-----------------------------------------------------

DCG Metainterpreter to be Partially Executed

Encoded form of program in Section 6.3.1

-----------------------------------------------------*/

program_clause(( parse(NT, P_0, P) :-

(NT ---> Body),

parse(Body, P_0, P) )).

program_clause(( connect(Word, [Word|Rest], Rest) :-

true )).
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clause(( parse((Body1, Body2), P_0, P) :-

parse(Body1, P_0, P_1),

parse(Body2, P_1, P) )).

clause(( parse([], P, P) )).

clause(( parse([Word|Rest], P_0, P) :-

connect(Word, P_0, P_1),

parse(Rest, P_1, P) )).

clause(( parse({Goals}, P, P) :- call(Goals))).

/*=====================================================

Operators

=====================================================*/

/*-------------------------------------------------

Sample Data for Program to Partially Execute:

The parse-tree building DCG of Program 3.11

-----------------------------------------------------*/

clause(( s(s(NP,VP)) ---> np(NP), vp(VP) )).

clause(( np(np(Det,N,Rel)) --->

det(Det),

n(N),

optrel(Rel) )).

clause(( np(np(PN)) ---> pn(PN) )).

clause(( vp(vp(TV,NP)) ---> tv(TV), np(NP) )).

clause(( vp(vp(IV)) ---> iv(IV) )).

clause(( optrel(rel(epsilon)) ---> [] )).

clause(( optrel(rel(that,VP)) ---> [that], vp(VP) )).

clause(( pn(pn(terry)) ---> [terry] )).

clause(( pn(pn(shrdlu)) ---> [shrdlu] )).

clause(( iv(iv(halts)) ---> [halts] )).

clause(( det(det(a)) ---> [a] )).

clause(( n(n(program)) ---> [program] )).

clause(( tv(tv(writes)) ---> [writes] )).
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d’Intelligence Artificielle, Université d’Aix-Marseille II, Marseille, France.

Sag, Ivan A. and Carl Pollard. 1986. Head-driven phrase-structure grammar: an informal synopsis.
Draft CSLI Report.

Schubert, Lenhart K. and Francis J. Pelletier. 1982. From English to logic: context-free computa-
tion of ‘conventional’ logical translation. Computational Linguistics, 8(1):26–44. Reprinted in
(Grosz et al., 1986).

Shapiro, Ehud Y. 1982. Alternation and the computational complexity of logic programs. In
Michel van Caneghem, ed., First International Logic Programming Conference, 154–163bis.
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