
CUCS-46-83

PROLOG Oil the DADO Maehlne:

A Parallel S1stem For Blgh-Speed Losle ProgrammIng·

Stephen Taylor
Christopher Maio

Salvatore J. Stolro
David E. Shaw

Columbia Unive~it.y
Department. or Computer Science

January 15, 1983

Ab.traet

DADO is a highly-parallel. VLSI-baaed. tree-~tructured machine d~igned to provide
~ignificant. performance improvements in the execution or large production 8S18tem programs.
In tru, paper. we describe clll'nnL research aimed at. implementing PROLOG within the
parallel rramework which DADO provid~. The implementation allo .. ~ parallel ~atisraction or
both disjunct.ions and conjunctions which occur in the goal tree generated during the
execution or a PROLOG program. Local unification routin~ in ea.ch proceS!Of allow parallel
satisfaction or disjunctive goals while a parallel relational join operation provid~ a framework
to solve conjunctive subgoals. An overview of the techniqu~ currently being implemented
and their relationship to the architecture is pr~ented.

-This research is supported in part by the Defense Advanced Research Project! Agency
under contract NOOO3~82-C-0427.

1

1. IDtroductloD

PROLOG [2) (10) is a simple goal-oriented programming language, based on symbolic logic,
which is weD suited to execution on paralJel hardware. PROLOG program consist of a logic
component, supplied by the prognmmer, and a distinct control component implicit in the
semantics o(the lantuace. The logic component involves a set of statements in predicate
calcuJ~, called clauses, which describe the domain of the program. We shall concern
our.lelves with two types of clauses, informally referred to as laet8 and ru/u. In general, a
fact consist! of a single atomic lormu/a of the fIrst order predicate calculll.! which may be
interpreted as a simple statement of truth. All atomic formula or literal consi5t! of a
predicate symbol applied to rlnt-order term which include constants, univer8all1l-quanti/ied
logical variables and skolem functions recursively applied to teMJ1!. For example,

likes(mary, logic). (1)

may be read declaratively as

marr liku logic.

A rule con.sists of a set of atomic formulae, which-convey procedural information. The left
hand-side of the rule always con.si5t! o(a single atomic formula, called the head, while the
right-hand-side, or 60dll' involves one or more formulae separated by lolical cODllectives
(conjlUlction is denoted by"," and di!jlUlction by ";"). For example,

logician(X) :- human(X), likes(X, logic). (2)

is read declaratively as

X .8 a logician .1 X .8 human AND X likea logic.

Similarly,

10gician(X) :- teache!(X, logic). (3)

is read declaratively as

Xi, CI logician il X teachu logic.

PROLOG has a set of procedural semantics which define how a program is to be executed.
Under this interpretation, terms in the body of a c1all.!e con.stitute subgoals which mll.!t be
examined in order to satisfy the head goal. Thll.!, c1a~ 2 and 3 are read procedurally as

to 8ati&I'I the goal 01 lindin, il X i& a logician, aalia/" the goal ollinding
il X i8 human AND 8ati,11I the the goal 01 linding il X Iike8 logic, OR
,atia", the goal ollinding il X teachu logic.

PROLOG employs an inference mechanism called unification [51 in order to satisfy goals.
This may be viewed as a general pattern matching algorithm, with special significance given
to the logical variable. The u.se of unification allows PROLOG to infer new (acts (rom fact~
that already exist in the PROLOG database.

2

1.1 Th. PROLOG AND/OR Goal Tree
The ~ SU'ateI1 employed by PROLOG has been referred to in the literature of

artificiallaMUipnce u 6atn,ard-daainin" ,oal-diretted execution. Given a goal to be
satisfied, PROLOG examines all rules whose head unifies with the goal in question. The
con.nit.uen' elements of the bodies of the matching rules are thell proposed as subgoals to be
achieved. Thus. each rule contributes a conjunctive set. or subgoals (AND goals) while the
entire set. o(unified clau.ses collectively contribute a disjunctin set. of subgoals (OR goals).
Bra.nches or t.he resultilll AND/OR goal tree. which may be exhaustively generated in this
fashion, are terminated by the presence or absence o(unifiable (acts in the initial PROLOG
database. Many aspects of this control st.rategy lend themselves naturally to parallel
execution: a PROLOG interpreter which exploits this characteristic o(the langua~ is
presently under denlopment. at Columbia Uninnit.y (or DADO, an experimental parallel
computer system. We are also investigating the implementation or PROLOG on
~ON-VON [71, another highly parallel machine now under construction at Columbia; this
work will not be discussed in this paper, however.

1.2 The DADO Architecture

DADO [8J is a highly parallel tree-struct.ured architecture based on VLSI technololY.
Although originally intended as a special purpose device ror rapid execution of production
6vatem6 [4J, it is our belief t.hat. DADO can provide significant. perform&nce improvements
over sequential machines in a wide range of Artificial Intelligence applicatioM. The DADO
prototype now under construction comprise5 1023 processing elements (PE's) inter-connected
to (orm a complete 6inarv tree. Currently, each PE is implemented using an Intel 8751
microcomputer chip, an Intel 2180 8Kx8 RAM chip. and a special combinational I/O switch,
implemented as a cWltom integrated circuit, which provides high-speed tree communication
facilities. The (ull-scale venion or the system, implemented entirely in cWltom VLSI, is
expected to contain on the order or hundreds or thoWland! or PE's.

Each PE may operate in either .ingle in"truction, multiple data dream (SIMD) or
multiple in6truttion, multiple data "tream (MIMD) mode [31. In SI~fD mode. a PE executes
i~tructio~ broadcast by some ancestor PE in the tr~. In MIMD mode, a PE may execute
instructions stored in its local RAM. independently or other PE's. A PE in MIMD mode may
utilize the subtree below as a SIMD device, provided its descendants have been switched into
SIMD mode. DADO can be configured in such a way as to logically divide the tree into a
number o(smaller machines, each acting as independent subsystems. In the envisioned
PROLOG implementation, however, the operation of the entire DADO tr~ will be supervised
by the Control Proee66or (CP) adjacent to the root node.

A framework for the exeeution or production system programs on DADO [81 i5 currently
under development. Its running time depend! not on the number or rules within the
production system program, but rather on the size or the largest rule. Using similar
techniques. the PROLOG implementation outlined in this paper will provide significant
asymptotic performance improvement! over implementations based on von Neumann
machines.

3

It should be noted that the binary tree orpnization ot DADO was chosen ror reasoD.! related
to efficia\- implementation in VLSI. ~ is the case with many highly parallel DADO
aJsorit~ the DADO tree structure haa no direct relevance to the PROLOG algorithm
outlined iA tlLia paper.

Details ot the DADO architei:ture han been reported in a companion paper [9].

2. A Parallel Implementation of PROLOG

For simplicity, we wilJ aasume in this paper that one PE in the DADO tree is allocated to
each clause in the PROLOG database; wing packing techniqu~ analogoll! to tho!e employed
in the production system alCOrithm reported in [81, howenr, this aasumption is easily relaxed
at the expeJl!le or a mod~t cost in time.

During the evaluation or a PROLOG program, it is orten nec~ary to communicate
information between the Control Proces!Or and vanoll! subset! or PE's within the DADO tree
which are relevant to a particular computation. A high-speed, ~iatively-ba.sed mechanism
which allows certain distinguished !et! or PE's to be chosen and information to be broadca.st
to them is available [81. The alCOrith.m.s outlined in the rollowing sections make exteD.!in U!e

or these racilities in order to effect the high-speed execution or PROLOG programs. As noted
earlier, varioU.! reatures or the underlying control strategy employed by PROLOG lend
themselv~ naturally to parallel execution. In the rollowing sectioll3, we outline the various
parallel ~hniques utilized in the satisraction or both OR- and AND-levels which occur within
the PROLOG goal tree.

2.1 Parallel Computation at OR·level. within the Goal T~e

A., noted earlier, given a COal to be satisfied, PROLOG examines all clauses whose head
unifies with the goal in qu~tion. These clauses collectively rorm 3 disjunctive set or subgoals
ror the goal under cOll3ideration and occur at an OR-level in the PROLOG execution tree.
The semantics or this operation provide the opportunity ror the unification process to be
carried out independently, and in parallel, ror ea.c:h clause. In the DADO implementation. a
program ~ident within each PE is used to compute a set or variable bindinl' ror a goal
broadcast rrom the Control Processor.

After successful un.ification, PE's containing racts which uniry with the goal in qu~tion may
immediately be marked as contributing to the solution set ror the goal. In order to maintain
PROLOG's procedural semantics, this marking process is carried out in such a way as to
preserve the order in which the clauses appear in the databa"e. Rules who:!!e head goal unified
successfully m U.!t be con"idered in the same order, and will thll! be executed stqutntiallv.

Prior to the execution of succ~rully unified rul~, variable ill3tantiatioD..! made during
unification are substituted ror the corresponding variables in the rule body. Thi! operation
occurs independently in each or the rules in question and therefore can al:!!o be carried out in
parallel. Execution of a rule involves transmitting the body of the rule, along with any
variable ill3tantiatioD.! made during unification, to the Control Processor. The ruJe body,

4

which may contain a subgoaJ or conjunction of subgoals, may then be satisfied recursively.
Havinc ee.,Qt.ed aU result.! (or the body of a rule, it is n~essary to convert the result.! to a
form coaliRellt with the rule head. This operation requires a back·substitution (or variables
occ1ll'l'iq ill ~ihe COal that originally unified with the rule. Since all result.! are converted in
the same manner, this proce;s., may be carried out in parallel.

The !Olutions which result (rom the satisfaction of rules, together with those contributed by
(acts marked during the original unification, constitute all possible result.! (or a given goal.

2.2 ParalleJ Computation at AND-leyela within the Goal Tree

. A conjunctive goal is solved by a relationalequi.join operation {11 applied to the partial
!Olutions. generated sequentially, of it.! constituent. element!. Solutions to a pven goal are
represented by sets of bindings for variables occurring in the goal. When all !Olutions for
each constituent subgoal have been accumulated, inconsistent bindings of variables which are
common to subgoals are eliminated by this join process. Those !Olutions remaining (orm the
result (or the conjunctive goal.

While space does not permit a full eX~ltlon of the general theory which allows this
elimination to be carried out efficiently, readers (amiliar with the literature of relational
database systems, and in particular, database machines, may find the (ollowing brief
comments illuminating. First, we note that the set o((act.! represented in the database may
be regarded as comprising several relation., each the ezten"ion of !Ome goal literal. Viewed
in this way, the elimination of binding conflicts may be carried out by applying a relational
join algorithm to sets of variable binding! (or goals occurring in the conjunction under
cOD!lideration.

On a conventional von Neumann architecture, this algorithm is expensive to compute;
however, on DADO, it can be computed optimally, in time which is strictly proportional to:

• the size o(the smallest set of results (or any goal involved in the join,

· the number of common variables joined over. and

• the size of the result set.

The result of this operation is a new relation which embodies all consistent instantiations ror
variables occurring in the conjunction. This algorithm is based on a t~hnique described in a
doctoral dissertation by Shaw [61.

3. Current and Future Research

Although originally designed as a special purpose device (or the execution or production
system programs, DADO can support the high·speed execution o(a considerably larger class
or AI applications. Other applications currently under study include parallel implementations
of frame-based systems, 3.'5 well 3.'5 methods ror improving the performance of conventional AI
languages such as LISP.

5

Presently, we are implementing the algorithms presented within this report on 3. small,
firteelHlelDll~ proiO'ype or DADO that will shortly become operational.

The .u are abo interested in deTeloping new languages, based on logic, which may
better u~illse parallelism. The reduction or the number or imperative co~truct! and the
~paration of losie and control components in prop-amming languages seems to allow a
natural transition toward the specification or highly parallel languages.

4. CODclulionl

In the parallel algorithm outlined in this paper, the conventional procedural semantics or
PROLOG have been preserved in order to sappon the inherently sequential COD.!tructs
available to the programmer. The Ilatural embedding or parallel COD.!tructs has been
employed wherever possible without reducing the generality or the language. The complexity
o(the algorithm ror finding all !OlutiollS ror a goal is reduced in the (ollowing ways:

- Parallel unification of clauses (OR-levels).

- Parallel resolution or binding con.fiicts (AND-levels).

The algorithms outlined in this paper run in time dependent on the number and size of rules
activated during execution or a given prop-aID.

Acknowledgment.

The authors would like to extend their thanb to Rod Fanow and Monnett Hanvey, whose
critical insight proved invaluable during the early stages or this research.

6

Reference.

[11 E. F. Codd.
Relational Completeness or Data Base Sublanguages.
Courant Computer Seienee SVmpo6ium 6: Data 8a6e Sv~tem' , 1972.
R. RU5tin (eel), Prentice-Hall, Inc.

[21 P. Roussel.
Proia, : Manuel de Reference et d 'Utili~ation.
Teehnical Report, Maneille-Luminy, 1975.

[31 M. Flynn.
Some Computer OrpnizatioD.! And Their Erreetiveness.
IEEE Tran~action. On Computers vol. C-21:pp. 948-960, September, 1972.

[4J R. Davis and J. King.
An OverviuLI of Production Sll~tem'.
Teehnical Report, Stanford Univenity Computer Science Department, 1975.
AI Lab Memo, AIM-271.

[5J J. A. Robinson. .
A Machine-Oriented Logic Based on the Resolution Principle.
J.4.CAf IJol 12, PI'. es-.u ,19M.

[el D. E. Shaw.
KnoUJledge-8aaed Retrieval on a Relational Databaae Machine.
PhD th~is, Department or Computer Science, Stanford Univenity, 1980.

[71 D. E. Shaw.
The NON-VON Supercomputer.
Technical Report, Department or Computer Science, Columbia Univenity, 1982.

[81 S. J. Stolfo and D. E. Shaw.
DADO: A Tree-Structured Machine Arehiteeture For Production Systems.
Proceeding' of the National Conferena on Artificial Intelligence, August, 1982.

[91 S. J. Stolro, D. Miranker and D. E. Shaw.
Architecture and Application' 01 DADO, A. Large-Scale Parallel Computu for

Artificial Intelligence.
Teehnieal Report, Department or Computer Science, Columbia Univenity, January,

1983.

[10J D. H. D. Warren.
Implementing Prolog· Compiling Predicate Logic Program~.
PhD th~is, Department or Artificial Intelligence, Edinburgh University, 1977.

