CUCs-46-83

PROLOG on the DADO Machine:

A Parallel System For High-Speed Logic Programming®

Stephen Taylor
Christopher Maio
Salvatore J. Stolfo

David E. Shaw

Columbia University
Department of Computer Science
January 15, 1983

Abstract

DADO is a highly-parallel, VLSl-based, tree-structured machine designed to provide
significant performance improvements in the execution of large production aystem programs.
In this paper, we describe current research aimed at implementing PROLOG within the
parallel framework which DADO provides. The implementation allows parallel satisfaction of
both disjunctions and conjunctions which occur in the goal tree generated during the
execution of a PROLOG program. Local unification routines in each processor allow parallel
satisfaction of disjunctive goals while a parallel relational join operation provides a {ramework
to solve conjunctive subgoals. An overview of the techniques currently being implemented
and their relationship to the architecture is presented.

*This research is supported in part by the Defense Advanced Research Projects Agency
under contract N00039-82-C-0427.




1. Introduction

PROLOG [2] [10] is a simple goal-oriented programming language, based on symbolic logie,
which is well suited to execution on paralle! hardware. PROLOG programs consist of a logic
component, supplied by the programmer, and a distinct control component implicit in the
semantics of the language. The logic component involves a set of statements in predicate
calculus, called clauses, which describe the domain of the program. We shall concern
ourselves with two types of clauses, informally referred to as facts and rules. [n general, a
fact consists of a single atomic formula of the first order predicate calculus which may be
interpreted as a simple statement of truth. An atomic formula or literal consists of a
predicate symbol applied to first-order terms which include constants, universally-quants fied
logical variables and skolem functions recursively applied to terms. For example,

likes(mary, logic). (1)

may be read declaratively as
mary likes logse.

A rule consists of a set of atomic formulae, which-convey procedural information. The left-
hand-side of the rule always coasists of a single atomic formula, called the head, while the
right-band-side, or body, involves one or more formulae separated by logical connectives

iwon ("

(conjunction is denoted by *,” and disjunction by ‘‘;"'). For example,
logician(X) :- human(X), likes{X, logic). (2)

is read declaratively as
X 1aa logician i f X is human AND X likes logse.

Similarly,
logician(X) :- teaches(X, logic). (3)

is read declaratively as

X ia a logieian s f X teaches logic.

PROLOG has a set of procedural semantics which define how a program is to be executed.
Under this interpretation, terms in the body of a clause constitute subgoals which must be
examined in order to satisfy the head goal. Thus, clauses 2 and 3 are read procedurally as

to satiafy the goal of finding if X ia a logician, satiafy the goal of finding
if X is human AND satisfy the the goal of finding if X likes logic, OR
satiafy the goal of finding if X teachea logic.

PROLOG employs an inference mechanism called uni fication 5] in order to satisfy goals.
This may be viewed as a general pattern matching algorithm, with special significance given
to the logical variable. The use of unification allows PROLOG to infer new facts from facts
that already exist in the PROLOG database.



1.1 The PROLOG AND/OR Goal Tree

The comtrol strategy employed by PROLOG has been referred to in the literature of
artificial ‘imtelligence as backward-chaining, goal-directed execution. Given a goal to be
satisfied, PROLOG examines all rules whose head unifies with the goal in question. The
constituent elements of the bodies of the matching rules are then proposed as subgoals to be
achieved. Thus, each rule contributes a conjunctive set of subgoals (AND goals) while the
entire set of unified clauses collectively contribute a disjunctive set of subgoals (OR goals).
Branches of the resuiting AND/OR goal tree, which may be exhaustively generated in this
fashion, are terminated by the presence or absence of unifiable facts in the initial PROLOG
database. Many aspects of this control strategy lend themselves naturally to parallel
execution; a3 PROLOG interpreter which exploits this characteristic of the language is
presently under development at Columbia University for DADO, an experimental parallel
computer system. We are also investigating the implementation of PROLOG on
NON-VON (7], another highly parallel machine now under construction at Columbia; this
work will not be discussed in this paper, however.

1.3 The DADO Architecture

DADO (8] is a highly parallel tree-structured architecture based on VLSI technology.
Although originally intended as a special purpose device for rapid execution of production
systemns [4], it is our belief that DADO can provide significant performance improvements
over sequential machines in a wide range of Artificial Intelligence applications. The DADO
prototype now under construction comprises 1023 processing elements (PE’s) inter-connected
to form a complete binary tree. Currently, each PE is implemented using an Intel 8751
microcomputer chip, an Intel 2186 8Kx8 RAM chip, and a special combinational [/O switch,
implemented as a custom integrated circuit, which provides high-speed tree communication
facilities. The full-scale version of the system, implemented entirely in custom VLSI, is
expected to contain on the order of hundreds of thousands of PE's.

Each PE may operate in either single instruction, multiple data stream (SIMD) or
multiple inatruction, multiple data stream (MIMD) mode [3]. In SIMD mode. a PE executes
instructions broadcast by some ancestor PE in the tree. [n MIMD mode, a PE may execute
instructions stored in its local RAM, independently of other PE's. A PE in MIMD mode may
utilize the subtree below as a SIMD device, provided its descendants have been switched into
SIMD mode. DADO can be configured in such a way as to logically divide the tree into a
number of smaller machines, each acting as independent subsystems. In the envisioned
PROLOG implementation, however, the operation of the entire DADO tree will be supervised
by the Control Processor (CP) adjacent to the root node.

A framework for the execution of production system programs on DADO [8] is currently
under development. [ts running time depends not on the number of rules within the
production system program, but rather on the size of the largest rule. Using similar
techniques, the PROLOG implementation outlined in this paper will provide significant
asymptotic performance improvements over implementations based on von Neumann
machines.



It should be noted that the binary tree organization of DADO was chosen for reasons related
to efficient- implementation in VLSI. As is the case with many highly parallel DADO
algorithms, the DADO tree structure has no direct relevance to the PROLOG algorithm
outlined ia this paper.

Details of the DADO architecture have been reported in a companion paper [9).

3. A Parallel Implementation of PROLOG

For simplicity, we will assume in this paper that one PE in the DADO tree is allocated to
each clause in the PROLOG database; using packing techniques analogous to those employed
in the production system algorithm reported in (8], however, this assumption is easily relaxed
at the expense of a modest cost in time.

During the evaluation of a PROLOG program, it is often necessary to communicate
information between the Control Processor and various subsets of PE's within the DADO tree
which are relevant to a particular computation. A high-speed, associatively-based mechanism
which allows certain distinguished sets of PE's to be chosen and information to be broadcast
to them is available {8]. The algorithms outlined in the following sections make extensive use
of these facilities in order to effect the high-speed execution of PROLOG programs. As noted
earlier, various features of the underlying control strategy employed by PROLOG lend
themselves naturally to parallel execution. I[n the following sections, we outline the various
parallel techniques utilized in the satisfaction of both OR- and AND-levels which occur within
the PROLOG goal tree.

3.1 Parallel Computation at OR-levels within the Goal Tree

As poted earlier, given a goal to be satisfied, PROLOG examines all clauses whose head
unifies with the goal in question. These clauses collectively form a disjunctive set of subgoals
for the goal under consideration and occur at an OR-level in the PROLOG execution tree.
The semantics of this operation provide the opportunity for the unification process to be
carried out independently, and in parallel, for each clause. In the DADO implementation, a
program resident within each PE is used to compute a set of variable bindings for a goal
broadcast from the Control Processor.

After successful unification, PE's containing facts which unify with the goal in question may
immediately be marked as contributing to the solution set for the goal. In order to maintain
PROLOG's procedural semantics, this marking process is carried out in such a way as to
preserve the order in which the clauses appear in the database. Rules whose head goal unified
successfully must be consideréd in the same order, and will thus be executed sequentially.

Prior to the execution of successfully unified rules, variable instantiations made during
unification are substituted for the corresponding variables in the rule body. This operation
occurs independently in each of the rules in question and therefore can also be carried out in
parallel. Execution of a rule involves transmitting the body of the rule, along with any
variable instantiations made during unification, to the Control Processor. The rule body,



which may contain a subgoal or conjunction of subgoals, may then be satisfied recursively.
Having esmputed all results for the body of a rule, it is necessary to convert the results to a
form conmsistent with the rule head. This operation requires a back-substitution for variables
occurring in the goal that originally unified with the rule. Since all results are converted in
the same manner, this process may be carried out in parallel.

The solutions which result from the satisfaction of rules, together with those contributed by
facts marked during the original unification, constitute all possible results for a given goal.

3.3 Parallel Computation at AND-levels within the Goal Tree

- A conjunctive goal is solved by a relational equs-join operation (1] applied to the partial
solutions, generated sequentially, of its constituent elements. Solutions to a given goal are
represented by sets of bindings for variables occurring in the goal. When all solutions for
each constituent subgoal have been accumulated, inconsistent bindings of variables which are
common to subgoals are eliminated by this join process. Those solutions remaining form the
result for the conjunctive goal.

While space does not permit a full exposition of the general theory which allows this
elimination to be carried out efficiently, readers familiar with the literature of relational
database systems, and in particular, database machines, may find the following brief
comments illuminating. First, we note that the set of facts represented in the database may
be regarded as comprising several relations, each the eztension of some goal literal. Viewed
in this way, the elimination of binding conflicts may be carried out by applying a relational
join algorithm to sets of variable bindings for goals occurring in the conjunction under
consideration.

On a conventional von Neumann architecture, this algorithm is expensive to compute;
however, on DADO, it can be computed optimally, in time which is strictly proportional to:

- the size of the smallest set of results for any goal involved in the join,
- the number of common variables joined over, and

- the size of the result set.

The result of this operation is a new relation which embodies all consistent instantiations for
variables occurring in the conjunction. This algorithm is based on a technique described in a
doctoral dissertation by Shaw [8].

3. Current and Future Research

Although originally designed as a special purpose device for the execution of production
system programs, DADO can support the high-speed execution of a considerably larger class
of Al applications. Other applications currently under study include parallel implementations
of frame-based systems, as well as methods for improving the performance of conventional Al
languages such as LISP.



Presently, we are implementing the algorithms presented within this report on a small,
fifteen-element prototype of DADO that will shortly become operational.

The authors are also interested in developing new languages, based on logic, which may
better utilise parallelism. The reduction of the number of imperative constructs and the
separation of logic and control components in programming languages seems to allow a
natural transition toward the specification of highly parallel languages.

4. Conclusions

In the paralle] algorithm outlined in this paper, the conventional procedural semantics of
PROLOG have been preserved in order to support the inherently sequential constructs
available to the programmer. The natural embedding of parallel constructs has been
employed wherever possible without reducing the generality of the language. The complexity
of the algorithm for finding all solutions for a goal is reduced in the following ways:

- Paralle! unification of clauses (OR-levels).

- Parallel resolution of binding conflicts (AND-levels).
The algorithms outlined in this paper run in time dependent on the number and size of rules

activated during execution of a given program.
Acknowledgments

The authors would like to extend their thanks to Rod Farrow and Monnett Hanvey, whose
critical insight proved invaluable during the early stages of this research.




References

1]

[2]

3l

(4]

(5]

(8]

[7]

(8]

[9]

[10]

~—e———

E. F. Codd.
Relational Completeness of Data Base Sublanguages.
Courant Computer Seience Symposium 6: Data Base Systems , 1972.

R. Rustin (ed.), Prentice-Hall, Ine.

P. Roussel.
Prolog : Manuel de Reference et d Utilisation.
Technical Report, Marseille-Luminy, 1975.

M. Flynn.
Some Computer Organizations And Their Effectiveness.
IEEFE Transactions On Computers vol. C-21:pp. 948-960, September, 1972.

R. Davis and J. King.

An Overview of Production Systems.

Technical Report, Stanford University Computer Science Department, 1975.
Al Lab Memo, AIM-271.

J. A. Robinson. )
A Machine-Oriented Logic Based on the Resolution Principle.
JACM vol 12, pp. £3-44 , 1965.

D. E. Shaw.
Knowledge-Based Retricval on a Relational Database Machine.
PhD thesis, Department of Computer Science, Stanford University, 1980.

D. E. Shaw.
The NON-VON Supercomputer.
Technical Report, Department of Computer Science, Columbia University, 1982,

S. J. Stolfo and D. E. Shaw.
DADO: A Tree-Structured Machine Architecture For Production Systems.
Proceedings of the National Con ference on Arti ficsal Intelligence , August, 1982,

S. J. Stolfo, D. Miranker and D. E. Shaw.

Architecture and Applications of DADO, A Large-Scale Parallel Computer for
Arti ficsal Intelligence.

Technical Report, Department of Computer Science, Columbia University, January,
1983.

D. H. D. Warren.
Implementing Prolog - Compiling Predicate Logic Programa.
PhD thesis, Department of Artificial Intelligence, Edinburgh University, 1977.



