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§ Introduction and notations.

The purpose of the present paper is to study the prolongations of G-
structures on a manifold M to its tangent bundle T(M), G being a Lie
subgroup of GL(n, R) with n = dim M. Recently, K. Yano and S. Kobayashi
[9] studied the prolongations of tensor fields on M to T(M) and they
proposed the following question: Is it possible to associate with each G-
structure on M a naturally induced G’-structure on T(M), where G’ is a
certain subgroup of GL(2n,R)? In this paper we give an answer to this
question and we shall show that the prolongations of some special tensor
fields by Yano-Kobayashi —— for instance, the prolongations of almost
complex structures —— are derived naturally by our prolongations of the
classical G-structures. On the other hand, S. Sasaki [5] studied a prolonga-
tion of Riemannian metrics on M to a Riemannian metric on 7T(M), while
the prolongation of a (positive definite) Riemannian metric due to Yano-
Kobayashi is always pseudo-Riemannian on T(M) but never Riemannian.
We shall clarify the circumstances for this difference and give the reason
why the one is positive definite Riemannian and the other is not.

The crucial starting point for our study is the following simple fact
(§1): The tangent bundle (space) T(R™) of the n-dimensional real euclidean
space R" is also a vector space and the tangent bundle T(GL(xn,R)) of the
general linear group can be identified to a subgroup of GL(2n,R), the
tangent bundle 7(G) of a Lie group G being a Lie group by the natural
group multiplication. From this fact we can show that, if we denote by
F(M) the bundle of frames of M, T(F(M)) can be imbedded canonically
into F(T(M)) (§2). Using this imbedding and the above identification of
T(GL(n,R)) to a subgroup of GL(2r,R), we can associate with each G-
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structure P on M (i.e. P is a G-subbundle of F(M)), a canonically induced
G-structure P on T(M), where G is a Lie subgroup of GL(2x#,R), G being
isomorphic to T(G) (§3). We will call P the prolongation of P. In §4,
we shall prove that, if a difftcomorphism f of a manifold M onto another
which induces an isomorphism of a G-structure P on M to a G-structure P’
on M’, then the induced diffeomorphism 7f of T(M) onto T(M’) is an
isomorphism of P onto P’ and vice versa. In §5, we shall see that a G-
structure P on M is integrable (cf. Def. 5. 1) if and only if the prolongation
P is integrable. In §6, we shall consider some classical G-structures and
see that a certain geometric structure on M induces canonically a geometric
structure of the same kind on T(M). In §7, we shall consider the relations
of our prolongations of G-structures with the prolongations of tensor fields
due to Yano-Kobayashi and Sasaki. In particular, we shall see that an
almost complex structure on M induces an almost complex structure on
T(M) and in fact, this structure coincides with the one given in [9]. At the
end of §3 we shall show that, for a G-structure P on M, we can associate
with each connection I on the pricipal fibre bundle P a naturally induced
Gystructure P, on T(M), where G, is a subgroup of GL(2r,R) which is

isomorphic to G itself, more precisely G, is the subgroup consisting of the

a 0
matrices (0 a> for ae G. Applying this fact for G =0(n), we see that,

with each Riemannian metric ¢ on M and a connection I’ on the orthogonal
frame bundle P on M, we can associate a Riemannian metric 9, on T(M).

At the end of §7 we see that the associated Riemannian metric g,, with the

Riemannian connection I induced by the metric g is exactly the same metric
studied by Sasaki mentioned above. In §8, we shall give some remarks about
the relations between the G-structure P and the induced G,-structure P..

In this paper, all manifolds and mappings are assumed to be differenti-
able of class C*, unless otherwise stated. We denote by T(M) the tangent
bundle of a manifold M, T,(M) being the tangent space of M at z < M.
For manifolds M and N, T(M x N) is often identified with T(M) x T(N).
We shall denote by F(M) the frame bundle of M, i.e. the set of all linear
isomorphisms z : R* —> T,(M) with » =dim M. The isomorphism z will
be identified with the frame (z(e,), - - -, 2{e,)), where ¢; = (6%, .., %) € R,
6! being the Kronecker symbol. For a map f:M—> N, we denote by
Tf or T(f) the induced map of T(M) into T(N), which will be sometimes
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called the tangential map of f. If f is a diffeomorphism, we denote by
Ff or F(f) the induced map of F(M) to F(N), i.e. (F f)(2) =T f)oz for
z€ F(M). Forseveralmaps f : M'—>M", g: M—> M, f,: M,—> N, (i =
1,2) we have the following formulas which can be verified by the definitions:

T(fog)=T foTy,
T(1y) = 1ran F(lM) = 1pan s
T(fi X fa) =T fi XT fa,

where 1, stands for the identity map of M. We denote 1=1, if the
manifold M is clear from the context.

For a coordinate neighborhood U in M with a local coordinate system
{2', + + +, 2"} we can define canonically a coordinate system {z!,---, 2",
&t, -+, &"} on T(U), i.e. a tangent vector ;é &’ ({%—)x has the coordi-
nates (x', .-+, 2™, &', -+, 2" if the point z €U has the coordinates
(2, «+++,2"). We will call this local coordinate system {x!, «.., 2",
%', « -+, 2"} the induced local coordinate system on T(U) by {«!, « -+, z"}.
Similarly we can define the induced local coordinate system {z', -, z";

s,y ) on F{U), ie. a frame z=(---,iéy§<a—axi—>z,---) has

the coordinates (xt, « <+, 2™; +++, g}, +++). We shall sometimes omit the

n
summation notation >} for repeated indices, for instance 2‘1 y}'-( azi) =
1=

yf‘(aii >$

If f:M——> N is a map of a set M into N and A is a subset of M,
we often denote by f itself the restriction f|A4 of f to A, if there is no
confusion.

In the following, R™ always denotes the » dimensional real number
space. The group of all linear automorphisms of R™ will be denoted by
GL(n,R), GL(R") or simply by GL(»). If ajeR for i,j=1,2,--+,n, we
denote by (a}) the matrix of degree » whose (i, j)-entry is a}.

§1. Imbedding of T(GL(n,R)) into GL(2n,R).

Let M be a manifold. As usual, we denote by X+ Y and ¢X the sum
of tangent vectors X,Y € T,(M) and the scalar multiplication of X by c€ R.

Let z, : R"—> R"™ be the translation of R by z € R*, i.e. c,(y)=x+y
for y € R® and let ¢, : R®"—> R" be the scalar multiplication by ¢ € R, i.e.
olx) = cx for x € R™.
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DeriniTioN 1.1, Take two tangent vectors X € T,(R") and Y € T (R").
We define the sum X@®Y of X and Y and the new scalar multiplication
coX by ce R as follows:

XPY =Tzy) - X+ Tz,) Y,
coX=(To,) - X-

ProrosiTiON 1. 2. The tangent bundle T(R™) of R™ is a veclor space of

(13 bE

dimension 2n with respect to the sum “ @D and the scalar multiplication * o

Progf. Let 2* be the i-th component of 2 € R", then X & T,(R") and
Y e T,(R" can be expressed as follows:

=SS0 —sp (9
X—Ea,( axi>x’ Y Zlh( aw‘),
for some a;, B, € R, i =12 +++-,n. We see readily that

anyx:zﬁgﬁj) and so

z+y

X@Y=2@+mQ£ﬂMW

Similarly ¢o X =3¢, (%) . From these expressions of the sum and

cx

the scalar multiplication, it is clear that T(R") becomes a vector space of
dimension 2z, ie. T(R") has the induced ‘“global” coordinate system

{x19 ] xn’ xly tt 3.7”}'

ProrostTiON 1. 3. Let f: R"—> R™ be a linear map. Then, the tangential
map T f:T(R")—>T(R™) is also a linear map of the vector space T(R™) into
T(R™).

Proof. Let z* be the i-th component of x € R* and %’ be the j-th
component of ¥y € R™. Let f(x) be the j-th component of f(z). Then
F(x) is expressed as follows: fi(x)= é al 2* for some al € R. Then we

=1

have:

T NRe(or))=Be T £(F2r).

=3¢ g—]:: * < a?/k )/(z)
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=3 ci-a’f'(—a‘;‘r>f<x>

for ;€ R, i=1,2,-++,n. From this expression, it follows that T f is a
linear map, for instance:

T N(Re(5hr) @nei (52),)

=T (S let e (52). )

= 3V {ci + ¢f)a} (T‘;k

Sx+zry

=Ecia'{'( ©Licial ( : >f<x'>

oy*
=T NSa(2) )o N(Ze(5),)-

The following proposition is easily verified:

s(z)

ProrosiTioN 1. 4. For any finite dimensional vector space V' the tangent bundle
T(V) becomes a vector space with respect to the natural sum and the scalar multipli-
cation “@D, o”. If V is the direct sum of two subspaces W and W' then T(V) is
isomorphic canonically to the direct sum of T(W) and T(W’).

DerFiNtTION 1. 5. We denote by p: GL(n,R) X R*—> R™ the natural
operation of GL(n,R) on R", i.e. p(y,x)=y-% for y € GL(n,R) and z € R".

It is well known that if G is a Lie group, then T(G) is also a Lie
group by taking Ty as the group multiplication, where p:G X G—>G is
the group multiplication of G.

ProrostTioN 1. 6. By the tangential map Tp: T(GL(n)) X T(R™) —> T(R")
of p, the Lie group T(GL(n)) operates effectively on T(R"™) as a linear group.

Proof. (i) Take two tangent vectors X, € T, (R"), Y, € T,,(GL(n)) and
ce R. We shall prove:
(L. 1) Tp(Yy, coXy) =coTp(Yy, Xy).

First, we define the functions %’ :R"~——> R, %]:GL(n)xR*—>R, §i:
GL(n)—> R and #*: GL(n) x R®"— R, as follows: #(x) = &', #i(y,) =y,
i) =y, #w,x)=2" for x€R*, y=(yl)€GLn), jk=12+-+,n.
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Then we have: & o o(y,s) =#(y ) = #/(T v} 2" = Xvd-o* = 3 (718 ,
2). Therefore, it follows that
(To(Yo, co Xa)) - & = (Yo, co X)) (8 0 p)
=(Y,, co Xo) 7L« &
=2 (Y, co X,) (7]
=31(Yo, co Xo) L+ &Y, ¢ @)
+ 2705 o)+ (Yo, co Xy)Z*
=Y, 7l c 2k + X (Wi cX, &
=c- (Yo 7t 2k + (yo)}- X 7).
On the other hand, we have

(co(To(Yy, X))+ & =To(Tp(Yy, Xi)- &
= (To(Yy, X)) (& q,)
=c-To(Y,, Xo)&
=c- DYy gi- 2k + (wol- X 7).
Thus, (To(Ye, co X))+ & = (co (Tp(Y,, Xo)) - &' forj =1,2, - -+, n, hence (1, 1)
holds.
(i) Take Y,e T, (GL#n)), X; T’”i (R™), i=1,2.
We shall prove:
(1. 2) TolYy, X, ®X,) =TplY,, X)) ®Tp(Y,, X;).
Keeping the notations as in (i), we calculate as follows:
To(Yy, X,®X)E = (YV,, X, ®X)# 0 p
=Y, X, ®X,) 2 71~ 7"
=Y, i (=} + of) + T (Wi - (X, © Xp)&°
= DY, §i - (&} + 2}) 2yl Xi3" + X589
=2 (Yo gi- 2t + (yo)i - Xi%")
+ 2 (Yo 7l @k + (Yo X&)
=To(Yy, X)& + To(Yy, X)&
= (Tp(Ys, X) ®To(Y,, X,)&,

where we have used following calculations in the above fourth equality:
(X @ Xp)&" = (TroX, + TrXp)E = X(&* 0 745) + Xp(&F 017, = X, (& + of) +
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X,(3* + %) = X"+ X,&*. Hence we have Tp(Y,, X, ® Xp)#’ = (Tp(Y,, X)) ®
To(Yy, Xp))& for j=1,2, -+, n, which shows that (1,2) holds.

(iii) For every y,= GL(n), 2,€R", r ;€ R and c¢;€ R, we shall
prove the following:
0 d
@3 Te@r(Gyr ), Zer(or).,)

_ k 9
= ; (; Fije @) + ; ci(yo)f) <W v

0%
In fact, from the calculation in (i) we proved the following:

Tp(Yy, Xo)ij = ; (Yog{ HES (?/o){ . Xoil) .

Applying this equality for Y, = X7y (-3‘;—})7 and X, = Z‘,c,( 6?01"K W Ve
[

obtain the following:

(2 2y B ). )
(et 2 (), )
= ; (g ri.pﬁiﬁf,xf, + (yo)i- ; €»07)

=3 (rpxl + (yoic,) .
On the other hand we have:

l k 8 ~
S (St + e (o), o F

ok
=3 (ruws + alyal) .
Hence, the values of both hand sides of (1.3) at #’ are equal for any
i=12,+++,n, which shows that (1. 3) holds.
(iv) Take Y,Y" € T(GL(n)) and X & T(R").
We shall prove:
Tpo(Y Y, X) =To(Y,Tp(Y", X)),

where YY" = Tu(Y,Y’), p being the group multiplication of GL(n).
Since GL(n) operates on R™, we have
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polg X 1gn) = po(lerw X p).
Hence, we calculate as follows:

To(Y-Y’, X) = To(Tu(Y,Y"), X)
=Tpo(Tpe X 1pzm) (Y, Y, X)
=(TpoT(px X 1za)) (Y, Y, X)
=T(po(x X 1p)(Y,Y, X)
=T(p ° (Lgrew X o) (Y, Y, X)
=Tp(T 1w X Tp) (Y, Y, X)
=To(Y,Tp(Y", X)).

By (i) ~ (iv) we proved that the group T(GL(n)) operates effectively on T(R™)
as a linear group. Thus Proposition 1. 6 is proved.

DerintTION 1.7, For Y € T(GL(n)) and X € T(R") we define Y.-X by
Y-X=To,X).

More generally we see, by the same argument as in the proof (iv) in Prop.
1. 6, that, if G operates on a manifold M then 7(G) operates on T(M).

DeriniTION 1. 8. We denote by R, : GL(n) —> GL(n) the right transla-
tion of GL(n) by a<GL#n), ie. R,y)=y-a for ye GL(n). Take a
tangent vector Y & To(GL(n)). Then B =TR,(Y) is a tangent vector of
GL(n) at the unit element ¢ of GL(»), namely B is an element of the Lie
algebra gi(n) of GL(n). Conversely for any pair e< GL(n) and B & gl(n),
we obtain a tangent vector ¥ € T,(GL(n)) by YV =TR,(B). We express this
vector Y by :Y =[q,B]. On the other hand any X e& T,(R") is expressed

by X=X <T?ci—>x . We shall denote: X = (x,v) € T(R") = R*".

PropostTion 1. 9. We have the following equality:
la, B+ (z,v) ={a-x, Bea-x+a-v)
Jor any a € GL(n), B < gl{n) and z,v € R™.

Proof. Tirst, we shall show that

L 4 TR.((557),) = Zat (550),
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for a=(a}) € GL(n), b€ GL(n) and i,j=1,2,--+,n. In fact, denoting
by fi(++-, yi,--+)=yk-a? the (k, I)-entry of R,(y), we see that

(( oy} >> A [ %f ]m ('a‘ay"f),

= Doiahat (50 e

—Zal ayl)ba,

By using (1. 4) and several definitions and by putting B = Zb}f‘( 62’”) we
P [

calculate as follows:

[a, B) (2,0) = (TR B)- Do ()

= TR, (203 (52 3T ).) - Do),
=@ 2 (5r),) Bo(G50),
=To( B ¥ gyr), » Tol550))

=3 <p§jb;a§x’5}; +3 Uﬂ’f) (ﬁ;r)w

=3 (pz]: bkara’ + 33 vztﬁ) (ﬁ)z

=(a+2, Bea-2 —l—‘a-v).
Thus proposition 1. 9 is proved.
Remark 1. 10. We can easily verify the following
la, B]-[d', B’} = [ad’, B + ad(a™")B’]
for a, @ € GL(n) and B, B’ < gl(n).
DrrFiniTION 1. 11, We shall denote by
Jn t T(GL(n, R)) —> GL(2n, R)

the operation of T(GL(n, R)) on R** = T(R™) proved by Proposition 1. 6, i.e.
Ua¥ N X=Y - X=Tp(Y,X).

By Proposition 1. 9 we have proved the following
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ProrosiTiON 1. 12.  For any a € GL(n) and B & gl(n) we have the following
equality :
a 0
it B =5, )
ia([a,0]) = Ta.

§2. Imbedding of T(F(M)) into F(T(M)).

DerintTION 2. 1. Let P(M,n,G) be a principal fibre bundle with
bundle space P, base space M, projection = and structure group G. If
{U,} is an open covering of M, P being trivial bundle over U,, and if
9o : U, N Ug—> G is the transition function of P, we express this fibre
bundle by

P={U¢9 g“ﬁ}'

If G is a subgroup of a group G’ and j:G—>G’ is the injection map,
then there is a fibre bundle P’ = {U,, jog.p} and the injection j: P—> P’
which is a bundle homomorphism, i.e.

J(z-a)=j(z)-a

for any 2z Pand e G. (cf. [7])

DEFINITION 2. 2. If P(M,z,G) is a principal fibre bundle, then
T(P)T(M),Tr, T(G)) is again a principal fibre bundle (cf. [4]).

ProrosiTion 2. 3. If P={U,,g.p}, then T(P)={T(U.,),Tgsg}.
Proof. Let @,:U, X G——a~(U,) be the trivialization of P over U,.
Then, by definition,

0 o By(x,9) = (2, gup(x) - 9)

for x €U, NUgz and g G. Since (Trn)"Y(T(U,)) = T U.,)), it is sufficient
to prove the following:

To;' o TOHX, L) = (X, Tgep(X) - L),

for (X,L)e (TWU,) N TWg) X T(G). To prove this it is sufficient to prove
the following assertion:

Let f:U——>G be a map, for which we define the map #:U xG—>
UxG by
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U(zx,9) = (x, f(x)-9)

for (x,9) €U X G. Then TV X,L) = (X, Tf(X)-L) for (X,L) e TU) X T(G).
To prove this assertion we denote by n, : U X G——U, m, : U X G—>G the
projections and g : G X G—> G the group multiplication.
Since mo¥(x,9) = f(x)-g = (po(f X 1) (2,9), we have mo¥ = po(f X 1),
and hence
TryoT¥ =T(myo ¥) =T(po (f X 14))
=TuoT(f X1g) =Tpo(Tf X 1ye).
Therefore, |
Ty o TU(X,L) = Tp(TA(X), L) =Tf(X)-L.

On the other hand, Tr, o T¥(X,L) =T(m, o ¥)(X,L) =Tr(X,L) = X. Thus,
T¥(X,L) = (X,Tf(X)-L) and hence Proposition 2. 3 is proved.

TrareoreM 2. 4. For any manifold M, there is a canonical injection

T(F(M)) c F(T(M)).

Proof. Let M= U U, be the open covering of M by coordinate neigh-
borhoods U, with a local coordinate system {z', -« -, 2"}. We denote by
Jog : Ua NUg—>GL(n, R), n=dim M, the Jacobian matrix with respect
to the local coordinate systems {x!, -, 27} and {ag, -, a5}, ie.

Ay, - - -, )
Jesl®) = a

Loy xcl;)

for x€U,NU,. Then F(M)={U,, J.pz}, F(M) being the bundle of
frames of M. By Proposition 2.3 and the remark in Definition 2.1 we
have:

(2. 1) TEM) ={T(U.), TJep} ©{TWUe)s jnoTJap)

jn being defined in Definition 1. 11. Now, we denote by {xi,---, %,

&i, -, #5r the induced local coordinate system on T(U,), and by

Jag : TWU,) N TUg) —> GL(2n, R) the Jacobian matrix with respect to the

local coordinate systems {a%,---, 2%, %.,.+-, "} and {ag, e =, a5, Zps
-+, dpk, le.

Hahy e vy @Y, Gy e, &)

a(x;,. ..y, m'g’ d;é’. .., xg) °

jaﬁ(x: z) =
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We shall prove
(2. 2) Jeg=jnoTJeg on T(U,) N T(Up)a
Put zt==2i, y'=2f, U=U,, U =Us, J=Jsp and J=Jus. Then
y® = fix), where f* is a function on UNU’ for i=1,2+:+,n and so
af’° ]

Jiz) = g;; ) Since ( Py ) =3 P )x we have g* =314 af*

dxt
if 3y° a?ﬂ >x=2y( oz’ >x

From these relations between two local coordinate systems:
k

y' = fi(z) and y* =3 3" gx‘ , we obtain:
_af_> 0
2.3  Jwa=| 0%
n v asz afk
<;§1x dx'ox’ ) oz’ )

Now, for any map ¢ : U—> GL(n,R) we have

29 T0( ). = % e (o

where z € U and g(x) = (¢%(x)). We calculate as follows:

JnoTJ(x, %) = ]nT]<E y( aii )z>

- hmeny ()
= j"<2 & a?:’gxi ) < aZ’f >J(x)>

= []( ), lax TRy (ﬁ)ﬂw]

= il 1o e 2 v (L) ]

J(@) 0
(me 2L e -Jw
ey

= x,x ’
(2 52br) ()
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where we have used (1. 4) in the fifth equality and used (2. 4) in the third
equality.  Since we proved (2.2), we see, by (2.1), that T(F(M)) c
{TWU.,), Jag} = F(T(M)). Thus Theorem 2. 4 is proved.

DeriNITION 2. 5. We denote by jy: T(F(M))—> F(T(M)) the injection
obtained by Theorem 2. 4. The injection j, is independent of the choice
of the open covering {U.,} of M with coordinate neighborhoods {U,}.

If U is a coordinate neighborhood in M, then there is the canonical
trivialization @, : U X GL(n)—> F(U) and ¥y :T({U) x GL(2n)—> F(T{U)) of
F(M) and F(T(M)) over U and T(U) respectively. By virtue of (2. 2) in the
proof of Theorem 2. 4 we see readily the follwing

ProrosITION 2. 6.

Jul T(FU)) =¥y o (rwy X ja) o (TO)™.
The following proposition is also clear from our construction of jy:
ProrosiTiON 2. 7. Let n: F(M)——> M, %: F(T(M))—>T(M) be the pro-

Jections.  Then the map jiy s a bundle homomorphism of T(F(M)) into F(T(M))
with respect to j,, i.e.

Il X Y) = ju(X) - 7a(Y)
Jor XeT(F(M)), Y € T(GL(n)) and we have the following commutative diagram:

Ju

T(F(M) —> F(T(M))

1z

M) —>TM).

§3. Prolongations of G-structures.

Dermvarion 3.1, Let G be a Lie subgroup of GL(#,R). We shall
denote by G the image of T(G) by j, : G = j,(T(G)) (cf. Def. 1. 11). Clearly
G is a Lie subgroup of GL(2n,R) and isomorphic to 7(G).

DEeriniTiON 3. 2. Let M be a manifold of dimension # and G be a
Lie subgroup of GL(n,R). A G-structure on M is, by definition, a G-
subbundle P(M,n,G) of the frame bundle F(M) of M. Therefore, a G-
structure on M is nothing but a reduction of the structure group GL(n,R)
of F(M) to the subgroup G of GL(n,R). (For the general theory of G-
structures see, for instance [1], [2], [8]).
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Tueorem 3. 3. If a manmifold M has a G-structure P, then T(M) has a
canonical G-structure P .

Proof. Let M= U U, be an open covering of M by U,, over which
the bundle P(M,r,G) is trivial and let g,3: U, N Ug—> G be the transition
function. Then, by proposition 2. 3, T(P) = {T({U,), Tg.s}. Put P= ju{T(P)).
Then we see that P={T(U,), j,oTg.}. Since j,oTg,z maps TU)INTUp)
into G, we obtained a G-structure P on 7T(M).

DeriNrTioN 3. 4. We shall call P in Theorem 3. 3 the prolongation of
the G-structure P on M to the tangent bundle T(M).
We can prove the following well known fact:

CoROLLARY 3. 5. If a manifold M is completely parallelizable, then T(M)
is also completely parallelizable.

Proof. Since M is completely parallelizable, M has a {e,}-structure,
where e, is the unit matrix of GL(n,R), n =dimM. Then, by Theorem
3.3, T(M) has a j,(T({e.))-structure. Clearly ;. (T({e,})) = {e:n}, which
implies that T(M) is completely parallelizable.

ProrosiTiON 3. 6. If a manifold M has a G-structure P, then T(M) has a

. a 0
(not canonical) G ,~structure, where G, = [(0 a> ae G } .

Proof. Since G, is a closed subgroup of G such that the quotient space
G/G, is diffeomorphic to the Lie algebra of G, and hence G/G, is diffeo-
morphic to a euclidean space. Let P/G, be the space obtained by identify-
ing z and z+q, for z€ P and ¢, G,. Then P/G, is a fibre bundle with
base T(M), fibre G/G, and structure group G. Since the fibre G/G, is
diffeomorphic to a euclidean space, this bundle P/G, has a global cross
section ¢ and hence the structure group G of P is reduced to the subgroup
G, (cf. [7]), which means that T(M) has a G,structure P,. We remark that
P, is not canonical since the cross section ¢ is not canonical (cf. Remark
8. 4.). Thus Proposition 3. 6 is proved.

Remark 3.7. Let P(M,n,G) be a G-structure on M, and let I' be a
connection on the principal fibre bundle P, then T(M) has a G,-structure
Pr canonically induced by I'. In fact, the connection I' defines a global
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cross section op of P/G, and hence o, induces a Gg-structure on T(M) as

in the proof of Proposition 3. 6.

§4. Prolongations of isomorphisms of G-structures.

Dermnarion 4.1. Let M and M’ be manifolds of dimension » and G
be a Lie subgroup of GL(n,R) and let P and P’ be G-structures on M and
M respectively. Let f: M—> M be a diffeomorphism of M onto M’. We
call f an isomorphism of P to P’ if (Ff)(P)= P’. (cf. Introduction).

THEOREM 4. 2.  Let f be a diffcomorphism of M onto M. Then we have:

4. 1) - (FTf)eju=jwe(TFS).

Proof. Let {U,} be an open covering of M by coordinate neighborhood
U,. PutV,=fU,). Then we have M’ = UV, and V, is a coordinate
neighborhood. Let

o, : U, X GL(n)—> F(U,),
@ :V, X GL(n)—> F({V,)
be the trivialization of F(M) and F(M’) over U, and V, respectively. Then

we have the following commutative diagram:

O
FU) «—— U, x GL(n)

4. 2) o 2
F(V,) <——V, X GL(n),

where we have defined the diffeomorphism f, by
fo=0 0 Ffo®,.
The diagram (4. 2) induces the following commutative diagram:

T(F(U,) < T(U.) x T(GL(n))

(4. 3) Tf‘fl ror lm
T(F(V.) <—— T(V,) x T(GL(n)) .

On the other hand, let

v, : TWU,) X GL(2n) —> F(T(U,))
v, TWV,) X GL2n) —> F(T{V.,))
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be the local trivializations of F(T(M)) (and F(T(M"))) over T(U,) (resp. T(V,)
induced by the local coordinate system on U, (resp. V,).  Then, we have
the following commutative diagram:

T(U.) X GL(2n) ——> F(T(U.))

(4. 4) e | . |
T(V,) X GL(2n) —— F(T(V.)),

where we have defined the diffeomorphism fa by

fa=U o FTfo¥,.
Let j. = 1,00 X jn and ji =1;4a X jo. By virtue of Proposition 2.6, we
have:

jM = w‘a ° ja ° (T¢a)—l on TF(UG) ’
4. 5)

Jw =¥sejio(TO)™ on TF{V,).

To prove (4. 1), it is now sufficient to prove that the following diagram

TU,) x T(GL(n)) —h—> T(U,) X GL(2n)

(4. 6) Tfal . lf«
Ja
TV,) X T(GL(n)) — TV, X GL(2x)

is commutative, since the diagrams (4. 3) and (4. 4) are commutative and
since (4. 5) holds.

To prove the commutativity of the diagram (4.6), we take the local
coordinate system {z!,:--, 2"} on U, and {y',---, 3"} on V.. Then
TU,) (and T(V,)) has the induced local coordinate system {z!',--., 2",
By e e o, 2"} {yty ooy, y™, 4y o, 4") resp.).  Similarly F(U,) (and F(V.))
has the induced local coordinate system {a!, +-«, 2™, +««, wi, «+-}
{yty e ooy y™, oo+, 2, +} resp.). Now this local coordinate system on
F(U,) induces the local coordinate system {z!, « -+, 2", wi, &%, <« -, 2", Wi}
on T(FU){y" - y" 2 9%+, 9" 23 on T(F(V,) resp.). Let
J:U,—>V, be expressed by

y' = fixt -,z

in terms of the above local coordinate systems. Then the maps Tf, f,,
Tf, are expressed as follows:
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7y = flo) v =22

K
ax*

fordi=fa), ol =Swt-2%

i axk *

i

y' = fUx), 25 = 2wk g

axk s
i art
4.7 Tfs: ¥ =23 a;:k " ’
, 92f; 3f’
= STk
&= 2w ox*oux’ &'+ 2 ox*

On the other hand, the local coordinate system {a!, .-, z", &%, .-, 2"}
on TW,) ' -+, 4" %% -+, "} on T(V,) resp.) induces the local coordi-
nate system {x', ..., ", &'%+-+, 2% @} p,v=12,+++,2n on F(TU.)

2n H
gt -y g e e, 9" 24 on F(T(V,)) resp.). Since 2= x§=]1u7,’f 'gi: by

2

ajcr’“ i*, and ‘" =4i’, we can express the map f.

by the following equations:

putting f*"(x, ) = ; 0

i i i r af
y = f (x)’ ?/ - Z axk xky
~ »n af]
4.8 s 7 = ~1’5 ’
“.8 4 2 kglw dx"
n A2 £F f
Fi+n ok 4 f l —~N+k af
2 k,l}::l W axiant * +>:‘—‘ Yoogxt

for 4,j=1,2,+++,n; v=12,+++,20. We now remark that, if XeT(GL(n))
has the coordinates wi and w#} then, we have:

(wj)) 0
(4. 9) J'n(X)=< y . ) .
(w3 (w3)

In fact, since X =3} ( T
i

3n%) = ja([@ TRo- Dt (520)])

ow?

=j"([( i B (awl D
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_ ( (w3) 0 B ( (w3) 0 )
@iwnD- @) @\ @) wh) |
where we have used the notations in Definition 1. 8 and the formula (1. 4).

Now take an element X = (2, &, w!,w{) € T(U,) X T(GL(n)), then by (4. 7)

we have

TFAR) = (Fah 5 2h it ), G,

where 2{, 2] are given in (4. 7). Hence, by (4. 9) we have:

o [ : =) o
(4. 10) jéona(X)=((f‘(x),7‘_. of g, [ ) ))

V(D (=
Now, by using (4. 9) and (4. 8) we obtain:

- oo (W) 0
faoju.(X)zfa.((xL,i:l), ( ))

W]  (w)

‘ ‘ (z1) 0
=((fl(x),2 o7 >< i | ))

x .
ox &) (2

where 2z{ and %] are the same as in (4. 10). Finally we obtain jroT fo=Ffs0Fss

whence Theorem 4. 2 is proved.

THEOREM 4. 3.  Let P and P’ be G-structures on M and M’ respectively. Let
f be a diffeomorphism of M onto M'. Then f is an isomorphism of P to P’ if
and only if Tf is an isomorphism of P to P’ .

Proof. By the definition of P and P’ we have:
P = j, T(P), P = juwT(P).
Suppose f is an isomorphism of P to P’. Then
FTf(P) = FTf(ju(T(P))) = juw (TFf(T(P)))
= juw (T(P")) = P,

and hence Tf is an isomorphism of P to P,

Conversely, suppose Tf is an isomorphism of P to F'. Then
FTf(P)= P’, and hence FTf(j(T(P))) = jw (T(P’)) and so jy TFf(T(P)) =
Ju (T(P). Since jy is injective, we have TFf(T(P))=T(P’), which
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implies that Ff(P)= P’, whence f is an isomorphism of P to P’. Thus
Theorem 4. 3 is proved.

CoROLLARY 4. 4. Let P be a G-structure on M and let f be a diffeomorphism

of M onto itself. Then, f is an automorphism of P if and only if Tf is an
automorphism of P.

§5. Integrability of the prolongations of G-structures.

DerintTioN 5. 1. Let P(M,n,G) be a G-structure on M. The G-
structure P is called integrable (or flat) if for each point p € M there is a
coordinate neighborhood U with local coordinate system {«!,+ -+, 2"} on U
such that the frame

(Ga). e G =P
for any z € U.

Lemma 5. 2. Let {x% + + -, 2™} be a local coordinate system on a neighborhood
Uin M and let f:U—>GL(m,R) be a map, fi(x) being the (i, j)-entry of f(x)
Jor x€U. Then we have

) ] (fi(x)) 0

(5. 1) (JmoTf)(x,a) = 2f8 s

(2L ity

&

where (%, %) = (%!, + « +, 2% &%+, &™) s the induced local coordinate system on
TWw).

Proof. We have

Tf(x, &) = Tf<2 xk< ’ >x> =X Lfi(_ﬂ_)ﬂz) '

ox* ax* \ dwt
Applying (4. 9) for m, we see that (5. 1) holds.

ProrosiTioN 5.3,  Let {x%,+ -+, 2"} be a local coordinate system on a
neighborhood U in M. Let ¢ be a cross section of F(M) over U, which is expressed
by:

p(a) = (- + - Dotla) (5pr ), )
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Jor xeU. Define §=juoTgp. Then & is a cross section of F(T(M)) over
T(U) and is expressed by the following :

azi >x>=<‘ T ¢}(x)<—a%>x+ gﬁi xk( aiﬁi )X’ Tt

93@) (557), 0 ")

where {xt, « + +, ™ &Y+« +, 2"} in the right hand side is the induced local coordi-

0
o’

52

nate system on T(U) and X =33 o'ci< )x eTU).

Proof. Let n: F(M)—> M and # : F(T(M))—> T(M) be the projections.
Let @, and ¥, be the local trivialization of F(M) and F(T(M)) over U and
T(U) respectively as in Definition 2. 5. By Proposition 2. 6 we have
JulTFU) =¥y o (Lygy X §o) o TPyt

First, #od =fojyoT¢ =TnoT$ = T(no¢) = Tly = 1y, which shows that ¢
is a cross section of F(T(M)) over T(U). Now, by putting f(z) = (¢i(x)) for
x €U, and using Lemma 5. 2 we calculate as follows:
¢ =¥y oz X fn) o (TOy)™ o T(Dy 0 07" © ¢)
=¥y0(lpp X fu)o Ty X f)
=Tpo(leey X juoTSf),

which implies

) o (¢3(x) 0
3 (245 )):w"((x’“)’ ((z_giff;aak) (4}(a) ))

(o) )

#1@) (G5 ), )

Thus, Proposition 5. 3 is proved.

CorOLLARY 5.4. Let P be an integrable G-structure on M, then the prolon-
gation P of P is also integrable.

Proof. Take any X, € T,(M). Let U be a coordinate neighborhood of
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p in M with the local coordinate system {z!, - - -, 2™} such that, if we define

¢ by ¢(w)=<- . "(aii> , e ) for x €U, then ¢ is a cross section of P

x

over U. Let {a!,---,a" &% -+-, %"} be the induced local coordinate
system on T(U). Then, by Proposition 5.3 ¢ = j,oT¢ is a cross section of
F(T(M)) over T(U) and is expressed by

0= ) ()

a -
e )w e T(U). Now we have:

for X =x4(

$(TW)) = juo TP(TW)) C julTHU)) C julT(P)) = P,

which shows that ¢ is actually a cross section of P over T(U). Since
X, € T(M) is arbitrary, we have proved Corollary 5. 4.
Conversely, we have the following:

PropositioN 5. 5. Let P be a G-structure on M. If the prolongation P of
P is integrable, then P is also integrable.

Progf. Take a point p € M and take a coordinate neighborhood U of
p with local coordinate system {z', - - -, "} on U such that there is a local
cross section ¢ :U——>P of P over U. Then by Proposition 5.3 and the
proof of Corollary 5.4, ¢ =jyoT¢ is a cross section of P over T(U).

Now, let X, € T({U) be the zero tangent vector of M at p. Since P
is integrable, there can be found a coordinate neighborhood U of X, with
local coordinate system {y!, - - -, y*"} such that U < T({U) and that if we
define §, by

30 = (G ) -+ ()

@0 is a cross section of P over U. Since §|{U and &, are both cross sections
of P over U, there exists a map §: U —>G such that

(5. 2) $(X) = go(X) - §(X)

for Xe U. By virtue of Proposition 1. 12, we can write

9(X) 0
g(X) = ( > ,
B(X)g(X)  ¢(X)
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where g : U~—>G, B:U—>g are C*-maps, g being the Lie algebra of G.
Since {y%, -+, ¥*} and {x!,.--,2"% 4! ---,2"} are both coordinate
systems on U we can express:

=l e, 2%, 3l e, 87)

for (z,%) € U, where f* are differentiable functions for v =1,2,-- -, 2n.
Now, if

#(x) = (2 pilo) (

3 ) ?
axi )zy c Z¢n(x)<axz >z>
for x € U, then by Proposition 5.3, (5.2) can be written as follows:

(5. 3) ;Sﬁ(x)( aZi )X . z:l ( ot )X

= 600 (G00), + 5 B0 (5 0m0)

where ¢(X) = (g4(X)) and B(X) = (Bi(X)) for Xe U.
Since (5), =255

be written as follows:

a 0 _ afv P
oy’ /x and < oxt >X" 2 Y (—’*ayy ¥ (5. 3) can

G.4) 33 gia) 2Lr

i=1y=1 ox’

l 2n n a¢] k afv
oy” «F vgl i,él ox" ( ay” >

= S0 af/i o+ 3 Bi0e (500,

(5. 4), we have:

5. 5) oia)-2L 1 ggf i 2L = g300)

for j,s=1,2, -+ +,n. Now, define maps f,:U' —>R (s=1,2,++-, n)
and §: U —> G by

fox) = f¥(x,0) and (g(x)™)5 = g3(x,0)
for x € U’ =a(U). Putting 4*=0 (k=1,2,---, n) in (5. 5) we get

(5. 6) S1gi(e) L = (gla));
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for x € U’. Now define Z'(x) = f,(x) for x € U’, then there exists a neigh-
borhood U, of_p such that {#',.-., "} is a coordinate system on U,,

(5. 6). We shall prove

because. det

(5. 7) $(z) = ¢(x) - g(x)
for x € U,, where we have defined ¢ by

(5. 8) $(x) = ((7?7> ’ ( o&" ) )

for x «U,. In fact, since ( ajci >$ = 2%—(

62‘*) , we have

ola) gl = (- -, Dgie) (5or), sl -+ )
(- Dolta ()af:( 2 ). e0)
(- 119 (o L"")
((axx)x’ o (5).) = gt

Since g(z) € G for 2 € U,, the map ¢ :U,—> F(M) is a cross section of P,
Thus, for any point p € M, there exists a coordinate neighborhood U, of

i

p with coordinate system {&!,---,Z"} such that the map ¢ defined by
(5. 8) is a cross section of P over U,. Thus Proposition 5.5 is proved,

Combining Corollary 5. 4 and Proposition 5.5 we obtain the following

THEOREM 5. 6. Let P be a G-structure on a manifold M. Then, P is
integrable if and only if the prolongation P is integrable.

§6. Prolongations of some classical G-structures.

(I) G=GL(n,0C).

We take a linear automorphism J : R* — R*" such that J? = —1, and
denote by GL(n,C) the group of all ae GL(21n,R) such that ao J= Joa.
More precisely, GL(n,C) will be denoted by GL(xn,C; J).

Lemma 6. 1. The tangential map TJ of ] is a linear automorphism of the
vector space T(R*") such that (T])? = —1.



90 AKIHIKO MORIMOTO
Proof. By virtue of Proposition 1.3, TJ is a linear endomorphism of
T(R*). Moreover,
T]P=T]T]=T(J") =T(-1) = —1.
Thus Lemma 6. 1 is proved.

ProposiTioN 6. 2.  Let G =GL(n,C;J), then G < GL(2n,C;T]).

Progf. Take an element @ € G. We can take an element A € T(G)
such that @ = j,,(4). Then, by the notations in Definition 1. 8, we can
write A =[a, B}, where a= G and Beg, g being the Lie algebra of G.
Hence, by Proposition 1. 12 we have the following expressions:

a 0
a= j2n<[a: B]) = ( ) y
Ba a

J 0
T] = ]Zn([],O]) = ( ) ’
0 J

Since B & g, we have the equality Bf = JB. Therefore, we get

DS [ A L P
dOT]: =

Ba a 0 J Ba] a]
<]a 0
JBa Ja

where we have used the equality BJ = JB in the third equality. Thus
@ € GL(2n,C; T]) and Proposition 6. 2 is proved.

):T]od',

THEOREM 6. 3. (1) If a manifold M has an almost complex structure, then
T(M) has a canonical almost complex structure.

(2) If a manifold M is a complex manifold, then T(M) has a canonical complex

structure.

Proof. (1) As is well known, M has an almost complex structure if
and only if M has a GL(n,C; J)-structure. If M has a G-structure then
T(M) has a canonical G-structure P.  Applying this assertion for
G =GL(n,C;J), we see that the G-structure P induces canonically a
GL(2n,C; T])-structure P’ by virtue of Proposition 6. 2., which means that
T(M) has a canonical almost complex structure. Thus the assertion (1) is
proved.
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(2) It is well known that a GL(n,C; J)-structure is integrable if and
only if the associated almost complex structure is a complex structure.
Therefore, if M is a complex manifold, M has a canonical integrable
GL(n,C; J)-structure P. Then, by Corollary 5. 4 the prolongation B ofP
is also integrable, Therefore the canonical GL(2n, C; TJ)-structure P’ is
again integrable. Thus 7(M) has a canonical complex structure and the
assertion (2) is proved.

L) G = S,(m).

Let f:R*™ X R*™—> R be a skew-symmetric non-degenerate bilinear
form on R*". We denote by S,(m) the group of all e GL(2m,R) such
that

Sflax,ay) = f(z,y)

for all z,y € R*™. More precisely, we write S,(m)= S,(m, f). We shall
denote by =z the projection of T(R) = R X R onto R defined by

”<c< dd >> =

for ¢,s € R, where ¢ is the natural coordinate in R.

LemMa 6. 4. If f is a skew-symmetric non-degenerate bilinear form on R*™,
then f =noTf is also a skew-symmeiric non-degenerate bilinear form on R*"=T(R®™).

Progf. We define z:R?*™ x R*™—— R*™ X R*™ by <(u,v)=(v,u) for
u,v € R*™, Then, we have for = —f and hence
TfoTe=T(for)=T(—f)=T(—1)eTf=(=1)oTf,

(3 b

where “o” in the last term means the scalar multiplication in T(R®™).
Therefore, we have

@woTf)o(Te)=—moTf.
Thus, 7 is skew-symmetric on T(R*™. We take a skew-symmetric matrix
(a}) € GL(2m, R) such that

flz,y) = 23 ala'y’
2,j=1

for x = (2%, ---, 2" and y=(y',---, y") with » =2m. Then it follows
that
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Tf<<%>@.m>= 5
75 (35 ) =
Therefore, we have for any by, ¢, € R:
a(:ci )Z 26 <a—ayf>y>
=17(20 (550, + 2o ()
5 ) 20T (557),..,)

d PR d
dt f(z,y)+zcjajx ( dt )f(a:.y)

i d
3Gy’ + cjaia)(—; )m) .

’
f(z, ¥

( ddt )f(:n,y) :

«-M

f(x u)

Tf (b

-~z

= X b.aly’

Hence, we obtain

6.0 F(Zh(

8 9 . L
20). Ba( )~ St +cate
Now, we calculate as follows:
= 0 d
(eomn(), 25,

= f(E ‘bi< aii )m R Cj(—agy_j—)ﬂ)
= 3 (chaly’ + ciatca’)

=c'f(2b"<a§c

1(547),)

for any ¢ € R. Similarly, we obtain

a0, o2

aii >w, 2164 (?;_gf‘>y>
- H(2a( ). Be(r),)
aii ). e <3%>v> ’

+ F(zoi(
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which means that 7 is bilinear on T(R*™). If we identify a tangent vector

Z]b,-( ai ) € T(R™ with the vector (x!, ..., 2% b,---,b,) € R?, then
ax z

we have the following expression of f:

(6' 2) f((xiy bz)) (yi’ cz))
,:Ul
0 i oy
=(x1,-.‘,x", bl,---’bn)( N (a)> y
(a3) 0 ¢
Ca

which implies in particular, that f is non-degenerate. Thus, Lemma 6. 4
is proved.

ProrosiTioN 6. 5. Let G = S,(m, f), then G < S,(2m, f).

Proof. Let g be the Lie algebra of G. Then, if we denote by A = (af)
the matrix in the proof of Lemma 6. 4, we have the equality B- A+A-‘B=0
for any Be g, 'B being the transpose of B. Now, take any & G, then
@ = fyu(X) for some X & 7(G). By Proposition 1. 12 we can write X = [q, B]
with € G and Beg. Then, we have the following expression:

(5 o)
a= .
Ba a

Now, we can calculate as follows:

(0 A) (a 0\(0 A)(‘a ‘a‘B)
a. . la=

A 0 Ba al\A 0/\0 ‘a
0 2A> (‘a ’a‘B)

aA BaA 0 ‘a

( 0 aA‘a >
aA'a aA 'a‘'B-+ BaA ‘a

0 A ) (0 A)
A A-'‘B+B.-A] \A o)’



94 AKIHIKO MORIMOTO

. . 0 A
which means that & € S,(2m, f), since f is expressed by ( 4 ) as in
0

(6. 2). Thus Proposition 6. 5 is proved.

THEOREM 6. 6. (1) If a manifold M has an almost symplectic structure, then
T(M) has a canonical almost symplectic structure.

() If M has symplectic structure, then T(M) has a canonical symplectic struc-
ture.

Progf. (1) A manifold M has an almost symplectic structure if and
only if M has a S,(m)-structure. Hence, by Proposition 6. 5, T(M) has a
canonical almost symplectic structure if M has an almost symplectic struc-
ture.

Now, it is well known that an almost symplectic structure is a
symplectic structure if and only if the associated S,(m)-structure is integrable,
Therefore, we see that the assertion (2) follows from Corollary 5. 4.

) G =GLYV,W).

Let V = R* and W be a vector subspace of V. We denote by GL(V,W)
the group of all a€ GL(V) such that oW)=W. The foliowing lemma is
easily verified:

Lemma 6. 7. Let G =GLWV,W), then G < GL(T(V), T(W)).

ProrosiTioN 6.8. (1) If a manifold M has a k-dimensional differential
system, (i.e. a differentiable assignement M > x—> D(x) C T (M) of vector subspaces
D(x) with dimD(x) =k for £ = M) then T(M) has a canonical 2k-dimensional
differential system.

(2) If a k-dimensional differential systems on M 1is completely integrable, then
the canonical 2k-dimensional differential system on T(M) is also completely integrable.

Proof. (1) A manifold M has a k-dimensional differential system if
and only if M has a GL(V,W)-structure with dimV =dim M, dimW =k.
If M has a GL(V,W)-structure, then T(M) has a canonical GL(T(V), T(W))-
structure by virtue of Lemma 6.7. Hence T(M) has a canonical 2k-
dimensional differential system, since dim 7(W) = 2k,

(20 It is well known that a differential system on M is completely
integrable if and only if the associated GL(V, W)-structure on M is integrable.
Therefore, the assertion (2) follows from Corollary 5. 4. '
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V) G =0(k,n—k)

Let f be a symmetric non-degenerate bilinear form on R" of signature
(k,m — k) and let = : T(R)—> R be the same projection as in (II) and let f
be the map f=noTf:T(R") X T(R")—>R. We denote by 0(k,n —k) the
group of all a € GL(n) such that f(ax,ay) = f(x,y) for z,y € R".

LemMA 6. 9.  The notations being as above, f is a symmetric non-degenerate
bilinear form on T(R™) of signature (n,n)

Proof. By the natural basis of T(R") induced by the natural basis of
0 A

R*, f is expressed by the matrix ( 4 ) as in (6. 1), if f 1is expressed
0

by the matrix A. From this fact, Lemma 6. 9 follows.
The following proposition can be proved in the same way as the proof
of Proposition 6. 5.

PropositioN 6. 10. Let G = 0k, n—Fk), then G < 0(n,n).

THEOREM 6. 11. If M has a quasi-Riemannian metric, then T(M) has a
canonical quasi-Riemannian metric.

Proof. A quasi-Riemannian metric on M is nothing but a 0k, n —k)-
structure on M. Therefore, the prolongation of this 0(k, n—Fk)-structure
induces a canonical 0(x,#)-structure on T(M) by virtue of Proposition 6. 10,
and hence T(M) has a canonical quasi-Riemannian metric of signature
(n,n).

(V) G=SL(n,R).
As usual, SL(n, R) denotes the group of all e GL(rn) with det(a)=1.

LemMA 6.12. Let G =SL(n,R), then G < SL(2n,R).
a

Ba
with e€ G and Be g, g being the Lie algebra of G. Since det(a) =1,

we have det (@)=1. Thus Lemma 6. 12 is proved.
The following proposition is easily verified:

0
Proof. Take de G, then ad=j,(X) =< ), - where X = [a, B]
a

ProrosiTioN 6. 13.  If a manmifold M has a SL(n, R)-structure, then T(M)
has a canonical SL(2n, R)-structure.
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VI G=Un)x1cGL2n+1,R).
As usual, U(n) denotes the wunitary group of degree zn.  Then
Un)x1c GL(n,C) x1c GL(2n + 1, R) by the usual injection.

LemmMa 6.14. Lt G=Um x1c GL(2n+1,R), then we have
G cGL(2n +1,0).

Proof. Let J:R*® —> R** be the linear isomorphism such that
GL(n,C) = GL(n,C; J). We denote by J,:T(R)—> T(R) the linear iso-

morphism of T(R) defined by J, (a(—jt—)) = s(%)_a for a,s € R, where

¢t is the natural coordinate of R. Let J:T(R**)— T(R?**!) be the linear
map defined by f=77 X J,. Then it is readily seen that G ¢ GL(2rn + 1,
C;J). Thus Lemma 6. 14 is proved.

PrOPOSITION 6. 15. If M has an almost contact structure (cf. [3], [6] for the
definition), then T(M) has a canonical almost complex structure.

Progf. An almost contact structure on M induces a U(n) X 1-structure
Pon M. Then, by Lemma 6. 14, the prolongation P of P induces a
canonical GL(2n + 1,C)-structure on T(M), that is, an almost complex
structure on T(M). Thus Proposition 6. 15 is proved.

§7. Relations between the prolongations of G-structures and
the prolongations of tensor fields.

(I) We shall prove that our prolongation of GL(m,C)-structure given
in Theorem 6. 3 is exactly the complete lift of the associated almost complex
structure given by Yano and Kobayashi [9].

Let P(M,z,GL(m,C)) be a G(m,C)-structure on a manifold M. We take
a coordinate neighborhood U in M with a local coordinate system
{zt, - - -, 2™} with n=2m Let ¢ be a cross section of P over U. Then
the map ¢ =jyoT¢ is also a cross section of the prolongation P of P by
Proposition 5.3 and the proof of Corollary 5.4. Let J be the linear
isomorphism of R?*" such that GL(m,C)=GL(m,C;J) and let ¢(z): T (M)
—> T,(M) be the map defined by

P(x) = p(x) o J o p(2)!
for x€U. Then ¢ is the (globally defined) almost complex structure
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associated with the GL(m,C)-structure P. If we take [( ajcl >x, ceey,

( ai,,) ] as a basis of the tangent space 7,(M) we can write ¢(x) and ¢(x)

as follows:

o@) =+ Doite) (52)s ) s
¢(z) = (¢j(x)) o J o (pj(x))*.

We define §(X) : Tx(T(M))—>T+(TM)) by

F(X) = §X) o T o FX)*

for Xe T(U). Then, since (TJ)?=—1, we have ((X)?=—~1. Thus ¢
is an almost complex structure on T(M). In fact, we see easily that ¢ is

(7. 1)

the canonical almost complex structure on T(M) given in Theorem 6. 3.

We ke (520,00 (5260, (e (55),) s e bass o

Tx(TM)), where {a', .-, 2", &', +++, 4"} is the induced local coordinate

system on T(U). Then, using Proposition 5.3, the map ¢(X) can be
expressed as follows:

($3()) 0 ((qs;'-(x)) 0 )
.2 FX)=| , oy TT| oy |
((Zj‘;; i) (¢;ﬁ<x>)) (2249 (i

0
for X=(x,9’c)=§]a':"< a,,) e T(U), where we have T]=<] ) by

ox
virtue of Proposition 1. 12.

Now, we shall prove the following

ProrosiTION 7. 1. The notations being as above, if ¢(z) = (¢pi(z)) then $(X)
is given by the following :

(@) 0
J(X) = i
’ (2224 Wit

Jor X = (x,%).

Proof. By virtue of (7. 1) and (7. 2), it is sufficient to show the following
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(([Jj) 0 (¢j) 0
73 ((Zjﬁi— ) <;¢>>.<(§ﬁ ) W))

<(¢;¢) o>(1 0>
(Ple) 6] \e s

The left hand side of (7. 3) is equal to

(@) (65) 0 )
(7. 4) : ; ; ’

while the right hand side of (7. 3) is equal to

(4 0
. ( (Biiy ) '
Now, from (7. 1) we get the following
.1y (@3 ($1()) = (g}{a)) - ] .

Differentiating the both hand sides of (7. 1)’ with respect to z*, multiplying
#* and summing up for ¥=1,2, - - -, n, we obtain

(7. 6) (S ) 0 + ) (2L ) = (21 44). /.

By (7. 1) and (7.6) we see that (7. 4) is equal to (7.5) and hence (7. 3)
holds. Thus Proposition 7. 1 is proved.

TrEOREM 7. 2.  The canonical almost complex structure ¢ on T(M) induced
by a GL(m,C)-structure P on M is just the complete lift ¢° of the associated almost
complex structure ¢ with P .

Proof. By the formula of the complete lift of a (1, 1)-tensor field on M
given in [9] p. 204, we see that ¢¢ = ¢ by virtue of Proposition 7. 1.

(I Take G =0(k,n —k) and a G-structure P{M,n,G) on a manifold
M. Then the prolongation P of P induces an 0(xn, n)-structuré Q =Q(T(M),
% 0(n,n)) as proved in Proposition 6.11. We take a symmetric non-
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degenerate bilinear form f on R™ such that G is the group of.all a.€ GL(%)
satisfying f(a-u,a-v) = f(u,v) for u,v € R*. Then 0(n,n) is the group of all
@ € GL(2n) such that f(@-a, a-o) = f(a,9) for @,5 < T(R"™), where f = noTf
as in §6(IV).

Let U be a coordinate neighborhood in M with a local coordinate
system {z%, - - -, 2"} such that there is a cross section ¢ of P over U. For

any z € U we denote by g, the symmetric non-degenerate bilinear form on
T.(M) defined by

(7.7) 9:(X,Y) = fp(2)7 X, ¢(2)7'Y),

then ¢ is the associated quasi-Riemannian metric on M with the G-structure
P. We now define, for any X< T(U), the symmetric non-degenerate
bilinear form gy on Tx(T(M)) by

(7. 8) 3 X, ¥) = F($(X)" X, §(X)'7)
for X,Y € Tx(T(M)). We can easily see that § is the (globally defined)

canonical quasi-Riemannian metric on 7(M) induced by the prolongation
P of P given in Theorem 6. 11. We shall now study the relations between

g and §. Let (¢i(2)) be the matrix defined by ¢(z)-e; =Z¢j~(x)< 9 )

ox'
for x €U, where ¢;,=(3}, -+, ) e R". Let {xt, .-, 2", &'+, &"}
be the induced local coordinate system on 7T(U). We now define the

functions g;(x) on U and §,,(X) on T(U) for i,j=1,2, -+, n and for
v, p=1,2, -+ ,2n as follows

0 =5 (). ()

0 =0e( 55+ (356).)

for x € U and X € T(U), where we have put ™ =4’ for i =1,2, - -+, n.
We define A = (a]) € GL(n,R) by fle;e) =aj for j,k=1,2,++-+,n. Since
9:(¢(w)es, ¢(x)er) = flese) = af, (7.9) implies

(7.9

.10 23 $H@)p k@) = af

i,i=1

for j,k=1,2,-+-,n. By virtue of (6. 1) we have

@10 F(So(or). s Do o)) = Slajbe’ + ciatu)

~
o
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for b,¢c;€ R.
On the other hand, by Proposition 5. 3 we have

r d0(En( ) = ulee (), + 2 25

+ SIby9i(e) (52r),

for X =3\ &t Gx($(X) -, $(X)P)= f(a,v) for a,5€T(R™),
the formulas (7. 9) and (7. 11) imply

18 @ (F0-2a(5or),, #X-2a(

= Ylakby’ + c;u).

)

Substituting &;=¢;=0, #' = &} and o' = 5% in (7. 13) for fixed 7, k=1,2, + -+, n,
we have:

i 5 (o) + st (S0, o) (S20), + ks (2))

=0

and hence we obtain, by (7. 9), the following

(7. 14) $H@)PL(8)Fe.n(X) + §3(2) a‘“ # G nea(X)

9 a5 ., 065
+ a¢zj &P L) Forn, i X) +—az—;—wp a¢f & Gisn,sea{X)
=0.

Substituing &, =0, v =0, ¢; = 6% and #* =48] in (7. 13) we have

ax{ 83ta) (o), + gi’ & (2),» 9t (am),) = ab

and hence we obtain the following

(7. 15) 83(2) 9% (®)Fz,040 (X) + ¢j GG () Goan,san(X) = al. Similarly,

substituting # =v =0, b, = and ¢, =0 In (7.13), we have

§x( $3(x) (a%)x y ¢i(x) (a%)r) =0 and we obtain

(7. 16) ¢§(x)¢i(x)§i+n.s+n(X) =0
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Since det (¢i(x)) =0, we see that §;in.sa(X) =0, which we insert in (7. 15)
and we obtain the following

(7.°17) $Hx)g4(2) s, s0n(X) = af.

Then (7.10) and (7. 17) imply §; e (X) =9:..(2). Therefore we get the
following equality by (7. 14)

9%

BIOLTAK) + $ 2k .. (x) + Z #pige(@) =0,
and hence we obtain
) i 7
(7. 18) $5¢idi (X +(¢J {‘ &+ ¢’ 3 1 )g1s = 0.

On the other hand, by differentiating the both hand sides of (7. 10) with
respect to #*, multiplying +* and summing up for £k=1,2, «-+,n, we

obtain:
] s .o
019 (2 agre 51 BN+ gigr - <o,
Hence, (7. 18) and (7. 19) imply ¢!igid, . = ¢ids —— - agi *_ 47, and thus we obtain
~ 99,5 .
(7- 20) Gi,s = ?ip—xp .

Finally we obtain the expression of § with respect to the induced local
coordinate system as follows

095 & )
§ <« ( dx® “ ) (g:s) ,
(gij) 0

which is exactly the complete lift of the pseudo-Riemannian metric g as
written in [9] p. 203. Thus we have proved the following:

THEOREM 7. 3.  The canonical pseudo-Riemannian metric on T(M) induced by
the prolongation of Ok, n — k)-structure P on a manifold M is the complete lift of the
pseudo-Riemannian melric g associated with P,

In the same way as in the case of O(k, n — k)-structure we can prove
the analogous fact on a symplectic structure in the following proposition
whose proof will be omitted.
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ProrostTioN 7. 4. The symplectic form on T(M) associated with the prolon-
gation of a S,(m)-structure on a manifold M is the complete lift of the symplectic
Jorm associated with the structure P .

(III) Let P(M,m,0(n)) be an O0(n)-structure on M, O0(n) being the
orthogonal group of degree n. Let I be a connection on the principal
fibre bundle P. (We denote by the same letter I" the connection on F(M)
induced natually by the connection I on P, (cf. [4] for the general theory
of connections). Then I' is nothing but a cross section of the fibre bundle
T(P)/o(n) over T(M) (cf. Remark 3.7). Then the bundle homomorphism
Ju : T(F(M)) —> F(T(M)) induces a cross section Iy of P/ .(0(n)) over T(M).
Hence the cross section Iy reduces the structure group G of P to

a 0
oy ={(; )
Now, since 7,(0(»)) is included in 0(@2n), P, induces canonically an 0(2n)-
structure P, such that P, is a subbundle of P,. We denote by g (resp. §)
the Riemmannian metric on M (resp. on T(M)) associated with the 0(n)-

ac O(n)], and we obtain a 7,(0(n))-subbundle P, of P.

structure P (resp. 0(2n)-structure B). We shall study the relations between
g, I' and §.

LemmA 7.5. Let ¢ be a cross section of P over an open set U in M, then
we can find a cross section ¢, of P over T(U) such that po g, =1, on T{U),

where p : P——> P[j,(0(n)) is the natural projection.

Proof. 'Take any tangent vector X € T,(U), then there is a unique
horizontal tangent vector X of P at ¢(x) with respect to the connection I'
such that (Tz)- X = X, = being the projection of P onto M. We denote
this X by ¢.(X). Then ¢, is a map of T{U) into T(P) such that
(Tr)o ¢y = 1oy » Now, put 9;1“ = juo ¢, then it is easy to see that the

map @, satisfies the required conditions.

LEMMA 7.6. Let o be the map of T(P) into ToG) suck that h(X)=X- o(X)
is the horizontal part of any X & T(P) with respect to the conncetion I'. (We
remark that o is essentially the connection form of I, ¢f [4l). Define ‘the map
@:P—>T,G) by

&(X") = jalo(73 (X))
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for X' € P.  Then, we have

(7. 21) (X)) = $(X) - a(¢(X))
for X e T(U), where ¢ = jyoT¢ as in Proposition 5. 3.

Progf. First, we shall prove that ¢.(X) = T¢(X)-o(T$(X)) for X € T(U).
In fact, if X € T,(U) then T¢(X)-w(T¢(X)) is a horizontal tangent vector at
é(2) and Ta(T¢(X) - o(T$(X)))=TaT¢(X)=X, and hence S (X)=TH(X) - o(T$(X))
holds. Now we calculate as follows:

(X)) = juo ¢(X) = julTH(X) - 0o(T$(X)))

= julTH(X))+ juloTH(X)) = $(X) - jawji inT¢(X)

= ¢(X)- (@0 $(X)).

Thus Lemma 7. 6 is proved.

Lemma 7.7. Let ¢ :U—>P be a cross section of P over a coordinate
neighborhood U in M with local coordinate system {z', - - -, a™}. Let (¢4 (x))EGL(n)

be the expression of ¢ with “respect to the basis {( ai‘ )x, sy, ( ain )x} of

T(M), ie. ¢(z)-e; =3¢} (x)( 9 >$ Then we have the following

ox’
it @) e (G

(r.22)  w0oTy(( aik

)=~

where (pi(x)) = (¢5(2)~" and {- + -, yi, « + + } is the natural coordinates in GL(n, R).

Proof. Let {a%, -+, 2", yi} be the induced local coordinate system on
F({U). Then we have

(7. 23) T¢(< aik >z> = giz < 32} )¢(x) + (~5§c7°—>¢(x) ’

Now, it is easily seen that

(7. 24) w(( BZ} )) = “TL""« a?/;‘ )::)

for @ = ( R Z‘,a}(—aiL—) , e ) € F{U) and a = (a}), where L, : GL(n) —>
GL(n) is the left translation of GL(n) with respect to the element a € GL(n),
ie. Ly(y)=a-y for y€ GL(»). Using (7. 23) and (7. 24), we obtain (7. 22).
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Thus Lemma 7. 7 is proved.

DzeFmviTioN 7. 8. We define the function TI%;:U — R for
i,j,k=1,2, MRS 4 by
? ; 3
(7. 25) ~ao(555),) = 2rh@) (5,3 ).

where # =(- . ,('—a%rh, . -)EF(U)

The following Lemma is well known as a property of the form .

LeMMA 7. 9.

d(520),.) - sl ().

Now, we define the Riemannian metrics g (and §) on M (resp. on
T(M)) by the following:

(7. 26) 9:(X,Y) = (¢(x)7' X, ¢(x)"' V) for X,Y € T, (M),
(7- 27) gX(X~s Y) = (ap(X)—l M X: S;I*(X)—l * I’;‘)Rz“ for Xy ? = TX(T(M)) ’

where ( , )z» denotes the usual inner product in R". These metrics g
and § are independent on the choice of the local cross section ¢. In fact
¢ is the Riemannian metric associated with the 0(x)-structure P and § is the
Riemannian metric canonically induced by g and the connection I' on P.
We define the functions ¢;; : U—> R and §,, : T({U)—> R for i,j=1,2,- + +,n
and v, 2 =1,2, + -+, 2r in the same way as (7. 9. By using Lemma 7.6

aik) , as fol-

and Proposition 5.3, we can calculate, for X =Z}a‘:"(

lows:

0 (e 4r),) = 8 (mT¢() ;>'(Eci3%>u>

(¢2) 0\ (E O\
(D0 ik
Py "’ ogt % (3¢J z) (63) oT¢(X) E/|C
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"
¢ 0\ | *n
= (_i_' S L u
! 92" _g_z_ 2+ ¢-0THX) ¢ ¢

1

Cn
where we have omitted the indices in the matrix of the last term. We
shall put

(7. 28) ol = jjjf # + ¢ (T (X)) .

Thus we have proved the following

LemMMA 7. 10.

.29 §X)(De(500) ) = 2! (5

3?vi >X + (ﬁ( af';" )x)

e Bagi ()

p.q

for X =314 ( aii ). -

Using (7. 26) ~ (7. 28), we obtain the following equalities in the same
way as in the proof of (7. 14) ~ (7. 16):

(7' 30) ¢§‘¢I‘Z§i.3 + ¢§¢;gi,s+u + ¢}¢I€g"+mi
+ ¢§'¢lzgi+n.a+n = 5? b

(7. 31) ¢.ii¢lsc§i.a+n + ¢§¢igi+n,a+n =0,

(7° 32) ¢§¢I‘;g‘i+n,:+n = 5_,16 3

for j,k=1,2, ---,n, the summation notations with respect to the repeated
indices being omitted.

On the other hand, since g.(¢(x)e;s ¢(x)e;) = (e;€;)rn = 64, we have the
following

(7. 33) P50 g, (x) = 87 .
Now, (7. 32) and (7. 33) imply

(7. 34) Firn,gen(X) = ¢;,5(x) .
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By (7. 28), (7. 22) and (7. 25), we see that

8¢"
da*

= _¢§Pprzs¢ﬂ =—T% b 2.

9
¢ = "+¢< ¢jwps pz‘»l’i’aqi}é")

Substituting this in (7. 31) and using (7. 34) we get:
¢§¢ig~i.s+n = F3z¢}z*"é;g? .

which implies

(7. 35) i jen = Fllcii‘kgt,j .

Combining (7. 30), (7. 31), (7. 33) and (7. 35), we have

PiBibi.s + OH— [ippla") « Thet™ s,
+ (= L9587 + Iind's,s
+ (= Tha$ie™) « (— 50590,
= ¢ii0us>

where the third and fourth terms of the left hand side cancel each other
and hence we obtain finally:

¢}¢;gz s = ¢J¢kgz s+ 5 ¢przprqu E"G;,5

or

(7. 36) Gij = 95,5 + L5 L5875, .

THEOREM 7. 11. If the connection I' on P is the Riemannian connection
tnduced by the Riemannian metric g, then the induced metric § on T(M) is exactly
the same Riemannian metric studied by Sasaki [5].

In fact, Sasaki ([5] p. 342, (3.1)~(3.3)) introduced his Riemannian
metric ¢ on T(M) by the formulas (7. 34) ~ (7. 36).

§8. Final remarks. ( ‘

Let P(M,z,G) be a G-structure on a manifold M, P(T(M),#0G). the
prolongation of P to T(M) and I’ be a connection on the principal;;ﬁbre
bundle P. Then, as stated in Remark 3. 7, the structure group G of P is

(a0 .o
reduced to the subgroup G,= {<O a)‘aeG]. We denote by P, the

associated G-subbundle of P. Let f be a diffeomorphism of M onto’ itself.
Suppose f is an automorphism of the G-structure P. Then by Corollary 4. 4,
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the map Tf is an automorphism of the prolongation . We can prove the
following proposition whose proof will be omitted.

PropositioN 8. 1.  The tangential map Tf of f is an automorphism of the
Gystructure By if and only if f is a I-transformation, i.e. f preserves the connection
I.

DeriNiTION 8. 2. Let § be a subspace of the vector space Hom (V,V)
of all linear endomorphisms of a vector space V. We define the map
d5: Hom (V,5)— Hom (V AV,V) by the following:

@y S) (#,v) = S(u) (v) — S@) (),

for u,v €V, S Hom (V,%). We denote by §® the kernel of a5.
Let g be a Lie subalgebra of gi(V) = Hom (V,V). We shall call g to
be of type 1 if g® = (0).

ProrosiTioN 8. 3. Let g be a Lie subalgebra of gUV) and g, be the Lie
subalgebra of gi(V @V) consisting of all AX A for Acg. Then g, is of type 1.

Proof. Take an element S e Ker 3;,. Then we have
(8. 1) S(u ®v) (w P ) = S(w @ x) (u D v)

for any w#,v,w,x€V. We define S, Hom (V,g,) by Six)=Su®0),
S,v) = S(0Dv) for u,y €V . Then, (8.1) can be written as follows:

(8. 2) Siw) (w® t) + S3(0) (w D t)
= Sj(w) (v Do) + Su(t) (u D),

for u,v,w,x €V. Now, we define S, Hom (V,g) by S;(u) = S;(u) X S;(u)
for ueV. Then, from (8. 2) we obtain the following two equations:

(8. 3) Si(w)w + S,(v)w = Si(w)u + S,(H)u
(8. 4) Si{u)t + S,(v)t = S,(w)v + Su(t)v

for any u,v,w,x €V. 1If we put v=¢=0 1in (8. 3), we get S,(w)w=S,(w)u,
which we subtract from (8. 3). Then we get

(8. 5) S(v)w = S,(Hu

for any f,u,v,weV. If we put w=0 in (8.5), we have S,(f)u =0 for
t,u €V and hence S, =0. Therefore, we get S; =0 from (8. 4) and hence
§ =0, which proves Proposition 8. 3.
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ReMARk 8. 4. There is, in general, no canonical G,-structure on T(M),
even if M has G-structure. In fact, if T(M) has a canioncal G-structure
for G =GL(#n,R), n =dim M, then the group of all diffeomorphisms of M
onto itself would be a Lie group of finite dimension, since the Lie algebra
of G, is of type 1 by Proposition 8. 3. This will be absurd.

REMARK 8.5. We shall discuss the relation between the tangent con-
nection T(I") of an affine connection I' [4] and the complete lift I'° of I
[9] in a forthcoming paper.
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