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§ Introduction and Notations.

In the previous paper [4] we have studied the prolongations of G-
structures to tangent bundles. The purpose of the present paper is to
generalize the previous prolongations and to look at them from a wide view
as a special case by considering the tangent bundles of higher order. In
fact, in some places, the arguments and calculations in [4] are more or less
simplified. Since the usual tangent bundle 7(M) of a manifold M considers
only the first derivatives or first contact elements of M, the previous paper
contains, in most parts, only the calculation of derivatives of first order.

Now, since the tangent bundle TM to a manifold M of order 7 con-
cerns with the derivatives of higher order (up to order r), the situations
should be much complicated. Nevertheless, the (covariant) functor T: M~
TM from the category of differentiable manifolds and differentiable maps to
the same category, fortunately, has many properties similar to the functor
T: M—TM. For instance, (i) TG is a Lie group if G is a Lie group, (ii)
TR" has a natural vector space structure and (iii) ’?GL(n) can be considered
as a Lie subgroup of GL(n(r + 1)). Therefore, we can follow the procedure
in [4] by replacing the functor T with the functor T.

We mention here that Yano and Ishihara [7] study the prolongations
of tensor fields to the tangent bundles of order 2 from the viewpoint of
tensor analysis.

In §1, we explain the notion of tangent bundles TM of order 7 to a

manifold M, tangent bundles of order 1 coinciding with the usual tangent
bundle.
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In §2, 3, we consider the tangent bundles to a Lie group of order »
and prove that if a Lie group G operates on a manifold M effectively then

the Lie group TG operates canonically on TM also effectively.

In §4, 5, we consider the vector space TR* and prove that ’fGL(n)
operates on TR as a linear transformation group.

In §6, we consider the tangent bundle of higher order to (principal)
fibre bundles.

In §7, we construct a canonical imbedding of fFM into FYrM, where
FM denotes the frame bundle of M. Using the results in §6, 7 we can
define in §8 the prolongation P of order r of a G-structure P to the tan-
gent bundle TM for any 7.

In §9, we prove that a diffeomorphism @: M— M’ is an isomorphism
of G-structures P with P’ if and only if 79 is an isomorphism of P with
P,

In §10, we prove that a G-structure P is integrable if and only if the
prolongation P is integrable.

In §t1, we consider some classical G-structures and prove, among others,
that if a manifold M has an (resp. an integrable) almost complex sturcture,
symplectic structure, pseudo-Riemannian structure or a (completely integr-
able) differential system, then TM has canonically the same kind of struc-
tures. - Moreover, if M has an almost contact structure, then TM has a
canonical almost complex structure for r odd and has an almost contact
structure for 7 even.

In this paper, all manifolds and mappings (functions) are assumed to
be differentiable of class C*, unless otherwise stated. If ¢: M= N is a
map of a set M into a set N and if A is a subset of M, we often denote
by ¢ itself the restriction ¢|A of ¢ to A, if there is no confusion. If ¢;:
M;— N; is a map for i =1,2, then the map ¢, X ¢,: M; X M, N, X N; is
defined by (¢,X @,) (&1, 2,) = (@,(2,), Po(,)) for z,€M;, i=1,2. If M=M,=M,
the map (¢;, ¢,): M— N, XN, is defined by (¢, ¢,) (2) = (¢:(2), @,(%)) for xeM.

In the following, R" denotes always the n-dimensional real number
space. The group of all linear automorphisms of R™ will be denoted by
GL(n, R) or simply by GL(n). If i< R for i, =1,2,-+-,n, we denote by

(a?) the matrix of degree n whose (i, j)-entry is al.
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§1. Tangent bundles of order r.

Let § be the set of all real valued differentiable functions defined on
some neighborhood of R containing zero. Take two functions f and g in
%. For aApdsitive integer » we say f is r-equivalent to g iff &"fldt’ =
d’gldt® at t =0 for v =0,1,--+,7, and we will denote it by f~g. The
relation ~ is clearly an equivalence relation in & Let M be an rn-dimen—
sional m;nifold, and let C*(M) be the ring of all differentiable functions
defined on M. We denote by S(M) (resp. S(M)) the set of all maps ¢ of
some open interval (—e¢,¢) (resp. R) into M, o =¢>0 depending on ¢. Let
¢ and ¢ be two maps of S(M). We say that ¢ is r-equivalent to ¢ iff
fop~ fo¢ for every fe C°(M) and denote it by ¢ ~ ¢. The relation
~ 18 ralso an equivalence relation in S(M). For ¢ & §(M) we denote by

[¢], the equivalence class in S(M) containing e.

DeriniTioN 1. 1. We call [¢], the »-tangent to M at p € M (or r-jei)
defined by ¢ iff’ ¢(0) = p.

For any r-tangent [¢], to M there exists ¢’ € S(M) such that [¢'], = [¢],
by virtue of the following

LEmMA 1, 2. Let o =« S(M). Then there exist some e, >0 and ¢’ = S(M)
suck that ¢ is defined on (—é&y,e,) and o(t) = @'(¢) for 1t] <e,.

Proof. Since ¢ & S(M), there is some ¢>0 such that ¢ is defined on
(—&,6). We can find a function g € C*(R) such that g(¢) = ¢ for [t] <g/2
and g(#) =0 for {#] =2¢/3 and that |g(#)] =2¢/3 for all e R. Put & =¢/2
and ¢’ =¢og. Itis now clear that ¢" and ¢, satisfy the required conditions.

Q.E.D.

DeerFINTION 1. 3. Let f(M) (or YT‘M) be the set of all r-tangents to M,
and for p e M let ’;‘P(M) be the set of all »-tangents to M at p. We define
x: T(M)— M by x(¢],) = ¢(0) for [¢], & T(M).

The notion of 1-tangents to M at p coincides with the notion of usual
tangent vectors to M at p. In order to define the manifold structure in

TM we shall prove the following

LemMa 1.4,  Let {x, %y -+ -,2,} be a local coordinate system on some
neighborhood U of p € M. Take two elements’ ¢ and ¢ in S(M) such that
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¢(0) = ¢(0) =p. Then ¢ ~ ¢ if and only if 2,00 ~v2;0¢ for i =1,2, + + +,n.
r r

Proof. Suppose ¢ ~ ¢. There exist a neighborhood V of » contained
in U and a function :‘i eC (M) (i =1,2,--+, n) such that f,|V = x,]V.
Since fiop ~ fio¢ and since x,00(t) = fioo(t), ®;o¢(t)= f,o¢(t) for
1#] <& with srome ¢>0, we have xi]go,;/xiwp for 1 =1,2,++-,n.

Conversely, suppose z; o P~ @0 ¢ for i =1,2,+«-,n. Take feC~(M).
We have to prove foeo~ fo¢, le. d’(foo)ldt’ =d*(fo¥)dt’ at t =0
forv=0,1,2, - + -,#. This holds for » =0, since ¢(0) = ¢(0). Define ¥:U—~R"
by ¥(g) = (2(q), 22(q), *+ <, 2,(q)) for g U. Then the function F = fo¥-t
is an element of C*(¥(U)) and we have f(q) = F(x,(g), + * +,®,(q)) for g U.
Since f(¢(t)) = F(x,(¢(t), + - -, x4(¢(t)), we have the following

3

Ad(foe) _ aF d(z;° )
(1. 1) dt = 1[ 0%, Jo=Tot)) di ’

and hence we get

[Lj;’;_@{ltﬂ:gl[ gi :L=¢(p>' [Jl(i;’;L) =0 "

Similarly, we have

[45:0]. -

M

1[ gi ilx=9’(p). [ d(xZZ; ¢) :It=o'

Hence we obtain [d(f o ¢)/dt],=[d(f o ¢)/dt],. Differentiate (1. 1) and evaluate
at + =0, then we get [d%(f o ¢)/dt?], =[d*fo ¢)/dt*], and so on. Thus we
see fop ~ fog. Q.E.D.

2

We define the local coordinate system E;c)ilizl, e e eyny v=0,1, ¢ +,7}
on (2)U) by wdlel,) = (s ) [ @ (e(E))/d* k=0 for [p], € (=)V).
It is straightforward to see that f(M ) has a differentiable manifold structure
by these coordinate systems and to see that z is a differentiable surjective

map of maximal rank. It is also clear that Trp(M) is diffeomorphic to R™"
for any p e M.

DerFintTion 1. 5. The manifold TM with the projection = is called the
tangent bundle to M of order r. If U is an open subset of M, then (;)'I(U)
is an open submanifold of f;"(M) which can be identified with f(U).
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However, it must be noticed that ’Jr"(M) (M,;) is not a vector bundle
over M.

We define z}: 11"(M)——>fl§(M) for » >s by zi(l¢l,) =[¢], for ¢ € S(M).

On the other hand, M can be imbedded in YY‘(M) by z—[r,], for
# € M, where 7, S(M) is defined by 7.(¢) =« for t € R.

Let N be another manifold of dimension m. For any map @: M— N,
we define the induced map Yr‘(l): f‘M — YV‘N by (’Ir‘@) ({el,) =[P o ¢], for ¢=S(M).
It is easy to see that T0 is well-defined and that 70 is a differentiable
map of TM into TN. We shall call 7o the tangent to @ of order # (or
simply r-tangent to @).

Let z, (resp. z,) be the projection of MxN onto M (resp. N). We
can readily see that i;‘(MxN) can be identified with Yr‘MXYr‘N by [¢l, =
([z1 0 91y [m20¢],) for ¢ € S(MXN).

We can prove the following Propositions 1. 6 and 1. 7 whose proof will
be straightforward.

ProrosiTiON 1. 6.  Let My, My, M, M; be manifolds. and let ®: M,—> M,,
O1: M,—~> My, ' My—~> M, and ¥: My~ M; be maps. Then, we have the following
equalities :

(i) T(@, o 0) = (T0,) o (T0),
(ii) 7,0 = (To, To"),
(i)  T@x¥)=ToxTv,

7

(iv) Ty = I;M s

where 1y stands jfor the identity map of M.

ProrosiTiON 1. 7. Let m(resp. m) be the projection of MyxM, onto M,
(resp. M), and let % (resp. #,) be the projection of YV"MIXYT‘M2 onto Tr‘M1 (resp.
TM,). Then, we have Tr, =7, for i =1,2.

ProrosiTiON 1. 8. Let M, N be manifolds and let & be a map of M into
N of maximal rank. Then, TO is a map of TM tnto TN of maximal rank.

Progf. We shall prove only for the case =2, since the proof for
r=3 is similar. Let p,€ M and put g¢,=&(p,). We take a coordinate
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neighborhood U (resp. V) of p, (resp. ¢,) with coordinate system {zy, « « +,%,}
(resp. {¥y + -+, ¥n}) such that oU) c V. Then, TU (resp. 72"V) has the in-
duced coordinate system {z;, &;, &;]i =1,2, - - -, n} (vesp. {¥s 95 ;17 =12,

sm}). Put Fyx, » -« 2,)=9,(@(x)) for xcU. Take an element [go]geflz"(U)
with coordinates {x,, @, &}, then z,(¢(¢) =z, + &;¢ + %,22 + &,(f), where
[d%,/dt*), = 0. Hence, we have y,®(x,(p(2)), + - -, %a(¢(2))) = Fi(xy -+, )

aF, 1 e OFy .. 0F: = N2, 0 238
SR (,Ekhaxa R ;) 2+ 7,(t), where [d%/dtY,

=0. Therefore, (T@) ([¢l) = [@ o ¢], has the following coordinates:

ox

(1. 2) T
S 1 sy 0, oF, ..
Vi =g B gny ST R

2
Hence, the map 7@ has the Jacobian matrix J with respect tlo the coordi-

@) )
nate systems {z;}i =1, -+, n; v=0,1,2} and {ylk=1, «+ -+, m; v =10,1,2}
as follows:

oF,
( ax; ) 0 0
(1. 3) ] = k4 i&_
gy (55)
Jo (25
N ol OF O
where Ji JE FER I and Ji 2 jv-'; 0% ;0%,0%, Tt 2:] dwome

Since the Jacobian matrix of @ is (%%L), which has the maximal rank,
k

J has also the maximal rank.

CorOLLARY 1. 9. Let @ be a regular map of M into N, namely the differ-
ential T® 1is an injective map of T,(M) into Tow(N) for every point p & M.
Then, T0 is also a regular map of TM into TN.

’
Remark 1.10. We see that if @ is a regular injective map, then 79 is
also a regular injective map.
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§2. Tangent groups of order r.

Let G be a Lie group with group multiplication g: GXG—G and
with the unit element e.

TrEOREM 2. 1. TG is a Lie group with group multiplication ’_;‘y. The

group G is a closed subgroup of TG and i;‘e(G) is a closed normal subgroup of TG
such that

TG = G-T,(G),

with Gﬂ?r"e(G) =&, where & 1is the umit element of TG. Moreover the projection
7: TG—~G is a homomorphism. (¢f. 131 for r =1)

Proof. For any two elements ¢, ¢ € S(G) (cf. §1), we define ¢- ¢ S(G)
by (¢-9)(t) = ¢(1)+ ¢(t) for t<R. Then, we have (Tr)(l¢l., [¢],) = (Tr)
e, ¢)1,) =L o (e, ¢)l, =L+ ¢], and hence we get

(2. 1) (Tr) (01,» [41,) = Lo~ ¢,

Since (¢-¢) = ¢-(¢-9) for any ¢,¢,7 € S(G), we see that the multiplica-
tion f‘,u is associative. Define 7, & S(G) by 7,(t)=e¢ for t € R and put
é¢=1[r],. Clearly & is the unit element with respect to ’;‘,u. For ¢=S(G),
we define o= € S(G) by ¢7X(t) = (o(t))"* for t € R. Then Tu(el, [o~1,) =
[p-¢], =[r], =& and hence [¢™], is the inverse element of [¢],. Now,
[e~1], = (er)[go],, where ¢: G— G is the map ¢ >z for x € G. Since Yr‘e
is a differentiable map of TG into itself, we have proved that TG is a Lie
group with group multiplication Tr‘,u. Next, since G = {[7.],la € G}, where
7.(t) = a for t=R, it follows that G is a closed subgroup of {‘G. Similarly
we see that Ir‘eG is a closed normal subgroup of YT‘G. Next, any [¢], € fG
can be written as [¢], =[7o],*[ye-1+ ¢],» where a = ¢(0) and so [7,1+ go],ef‘eG.

The equality Gﬂfl,:eG =& is also clear. Finally the projection 7 is a homo-
morphism since (2. 1) holds. Q.E.D.

DerinrTionN 2.2, The Lie group TG with groﬁp multiplication Yr‘y will
be called the tangent group to G of order r.
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ProrosiTION 2. 3. Let © be a homomorphism of a Lie group G into a Lie
group G'.  Then To is also a homomorphism of the tangent group TG of order r
into TG'.

Proof. Let p' be the group multiplication of G. Since @ is a homo-
morphism, we have @o p=p"o(@x®). By Proposition 1. 6 we have Yr"diof‘/z
= Tr"y’o (f‘@ X Yr’Q), which means that To is a homomorphism of TG into
TG,

v v
ProposiTioN 2. 4.  The projection =y : TG = TG for r>s is s a homomor-
phism of tangent groups.

Proof. Clear from the equality (2. 1).

ProrosiTionN 2. 5. If G is a Lie subgroup of G’, then f;’(G) s also a Lie
subgroup of Yr‘(G’).

Proof. Let @: G—~ G’ be the injection map. Then @ is a regular map.
By Remark 1. 10 and Proposition 2. 3, To is a regular homomorphism of
TG into %G’. Let [¢], be an element of ’.1;‘G such that (TT“Q)) ([el,) =& is

the unit element of Yr"G’. Then [@o ¢], =[74],, where 7,: R— G’ is defined
by 74(¢) = ¢ for t=R, e being the unit element of G. We see that ¢(0)=e

and that [¢], ={r.]J=¢. Hence YV’(D is a regular injective homomorphism,
which means that TG is a Lie subgroup of TG Q.E.D.

§3. Tangent operations of order r.

Let G be a Lie group operating on a manifold M differentiably. We
denote by p: GXM-—>M the operation map of G on M.

Prorosirion 3. 1. The tangent group TG to G of order r operates on the

tangent bundle ™ of order v by the operation map fp (for the tangent group TG,
see [3]). )

Proof. Since p is the operation map of G on M, we have po(pzX1y)
= po(lgxp). By Proposition 1. 6 we have (f;"p) ° (T‘"X1{,M) = f‘p o (I;G xTr‘p),

which means that @-(b-%)=(g-5).-% for a, EEYr‘(G) and ief]r"M, where we
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have put ¢:% = (YT“P) (@, &). Let 7,: R—G be the constant map: 7,(¢) =¢
for t € R. Then, for any [¢], TM we have fP([Te], [e],) = YKP([TC, o),) =
[po(Tee)l, =7 9)). =[¢l,, which means that the unit element é&=[7,], of
TG operates on TM as the identity map. Hence we have proved that TG
operates on ™ by fp. Q.E.D.

,
DEerinrrion 3. 2. The operation map Te in Proposition 3.1 will be
called the tangent operation to p of order r.

Prorosirion 3.3, If a Lie group G operates on M effectively (i.e. a-z=u
2 2
Jor all xeM implies a=e), then TG operaties on TM effectively by the tangent
operation of order 2.

Proof. For ¢=S(G) and ¢ S(M) we define ¢-¢eSM) by (¢-¢)t) =
o(t)- ¢(t) for t € R. Suppose go-gb/;/gb for every ¢ € S(M). We have to
show that gpfzvn, where 7, S(G) is defined by 7,(¢) =e. First, since
¢(0) - ¢(0) = ¢(0) for any ¢ € S(M), we see that ¢(0)-2 =2z for any z € M,
whence ¢(0) = ¢ since G operates effectively on M. Next take a point p,eM
and fix it. We take a coordinate neighborhhod U (resp. V) of p, (resp. of
¢) in M (resp. in G) with coordinate system {z,, - - -, z,} (resp. {z, + -+, zx})
such that z,(p,) =0 for i =1,2, - -+, n (resp. z,{e) =0 for / =1,2, - .-, N).
Define the functions Fy(i =1, - -,#n) by

Fylzy « < 2zn; By o 0 o, 2,) = 2,(0(2, 2)).

) )

Let {z;]i =1, - -+, n; v=0,1,2} (resp. {z,)l=1, +++, N; v=0,1,2}) be the
L4 L4 (O] w
induced coordinate system on T(U) (vesp. T(V)). If x,{¢l)=2: %,0¢l) =2
@
%,([¢l) = &%;, we see that
GlE)=(++», B+ & + B2+ &(t), -+ )EU
for small |¢], where [d?%;/dt?}, =0 for i =1,-++,n. Similarly we see that
P(t) = (-, 2t + 52+t - )EV

for small |¢], where [d?9,/dt?],=0 for [ =1,---,N. We have the relations
o) ~a;0¢ (i =1,2, «++, n} for every ¢ € S(M). To simplify the
notations we define the functions f;(¢) for i =1,--+,un by

Fl) = Fule v oy@uE)y s eos vv ey ult)y » o 0)
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) )
and we define the variables y, for £ =1,2, +++ N+ #n; v=0,1, - -
Q) Q) Q) )

<, v by

yy=vlez, for k=1,2,+-++, N and y,=v! 2,y for «=N+1, +++, N+ n.

By means of these notations we have the following equalities

N+n
(3. 1) ‘fi{i =3 g’; (et iict+E5(8)
. (3
. 2) Pl =520 (et gt + 500
+ idd (s it + ) - (G Gt + el

31/,:
where [def/di], =0 for k=1,2. Since f,(t) = (x;0(p-¢)(#) and

x;0(0-¢) ~x;0¢ we obtain the following relations:

N oF, .
3. 3) El[ 9z ](o x)z‘ T Z 390, ](mx) 3= To

oF,
(3' 4) 82,' (0, x)zl + 22]: ax: :I(O 7'3)

J T 8, ]
1, m=1L 02,0z, J0O.»

2y zm+22 b3

—_—a— 2@
=1 j=1 azla.’tj ](0 %) i

n
€@l = %,
=21 [ ax,axk ](o gy TITE T

since

for i =1,2,--.,n and for every (z,;,%;) €U. Now, since e-z =2 for

any x € M, we have
F%(O, ce ey 05 By v e .,xn) = 2
oF,;

ox;
Finally, we obtain. from (3. 3), (3. 4) the following relations:

for i =1,2, - +,n. Therefore, we get l: ] =4} for {,j=1,2,
(0, )

N
or, .
(3. 5) El[ 0z ](o,ao % =0.
o°F, ..
(8. 6) 22 [ oz, ](o 3] b2z, Jom FiEm

2o8;=0
1][0213.’1}1 0,2) “t Y

for every (¢, +++,2,€lU and i=1,.--,n.
Now, we shall prove the following

.« . n’n.
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LemMa 3. 4. Let a, -+ -,aysR.  Suppose Zal gfi ](0 o= 0 holds for

every (Xy,-+ » ~,2,)0€U and for i =1,2,+ - «,m, w/zere U is an arbitrary coordinate
neighborhood in M. Then a, =0 for 1 =1,2,---,N.

By virtue of this lemma, we see from (3. 5) that ¢, =0 for / =1,2,- - -,
N and then from (3.6) it follows that %, =0 for {=1,2,+++, N, which
proves that ¢~ and thus the proposition will be proved.

Proof of Lemma 3. 4. Suppose a, 70 for some /. Let g be the Lie
algebra of G. By taking a linear transformation of the coordinates {z, - - -,
zy}, if necessary, we can suppose that [0F;/6z4)w, =0 for any 2 U and

that zi(expifZl 4;X;)=t;, for i =1,2,---, N, where {X;,-+-,Xn} is a base
of g. Now]iet X, be the vector field on M induced by the one-parameter
group exptX;. For any point « € U, we have (X)), =0, since (X)), ®; =
[da;((exp tX,) - 2)/dt), = [dF(t,0, - + +, 0; 2)/dt]y = [6F[082:Je0,;» =0 for i=1,2,
«++,n. Since U and x are arbitrary, we see that X, =0 on M and that
exp tX; operates trivially on M. It follows that expitX, =e¢ for any {€R
and hence X; =0, which is a contradiction. Thus Lemma 3. 4 is proved
and hence the proof of Proposition 3. 3 is complete. Q.E.D.
More generally, we can prove the following

Tu:orEM 3. 5. If a Lic group G operates on M effectively, then TG operales
on TM effectively by tangent operation of order v for any poistive integer r.

Proof. Using the notations of the proof of Proposition 3. 3, especially
the notations of (3. 1), we define ¢,(¢) by ¢.(¢) = g, + §.t + &5(¢) for a=1,2,
N+ n. Then the equality (3. 2) can be written as follows:

d*f; aF, 0 F,
(30 7) di? = 2 aya Py + 2 ay 6?/ 9%90/9

By differentiating (3. 7), we obtain the following

d&if, ?F,;
(3. 8) i 593U 97, PPy
azFr; 7
+32 30.90; Plog+ 25 aya o7

In general, by induction on v =1,2, -+, we obtain the following equality
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(3. 9) ’fﬁf* =2 f’".Ffaya Poy * * * Ps,

v—lF ~
i il Y 4 .. e Py,
+ i 2 ayul .. 3yav_1¢ 1990‘2 SD 1

av—ZFi
0Yas* * * 0Yaps

+ C(ll.? ¢é1§0ég¢ﬂ3' b ¢¢v-z

v—2
R gy T e e

9*F;
3:1/«13%,

0 =Dy, + S0 po-D,

+---+c§”_>22 Y,

where ¢{? ~are some positi e integer for ,F.s:_‘lﬂi =1,2,+++,v—2 and for
any v=12,+++,

Suppose (¢-¢) ~ ¢ for every ¢=S(M) as in the proof of Proposition
3.3. By using (3. 9; and Lemma 3. 4 repeatedly we can show, by induc-
tion on v, that z,=0 for any /=1,2, ---, N and v=0,1, -+ -, 7, which
proves that ¢ ~Te Q.E.D.

§4. Tangent bundle to R* of order r.

Let R™ be the real euclidean space of dimension ». For any two 7-
tangents [¢l,, [¢], to R®, we define their sum by: [¢], + [¢1, =[¢ + ¢l
where (¢ + ¢) (¢) = o(t) + ¢(t) for teR. For any ceR we define the scalar
multiplication of [¢], by ¢ as follows: ¢:[¢], =[c-¢]l,, where (c-¢)(#)=c-p(¢)
for teR. Clearly [¢], 4+ [¢], and c-[¢], are well-defined.

THEOREM 4. 1. By the above sum and scalar multiplication the tangent bundile

Yr‘Rn to R™ of order v is a real vector space of dimension n(r + 1).
Progf.  Straightforward verification. Q.E.D.

PrROPOSITION 4, 2, Let VOW be a direct sum of vector subspaces V and

W, then TV and TW are tdentified with vector subspaces of TV O W) and we
have

’.IV"(V @OW) = ’.;‘V @ Yr‘W (direct sum).

Remark 4.3. Let {2, +++,2} be the natural coordinate system on R"

r
and let {x,)i=1,-++, n;»} be the induced coo dinate system on TR".
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,
Then the sum and scalar multiplication in TR™ in Theorem 4.1 are as

follows:

) (V)/ v (VZ
(@) 4+ (@7) = (%; + ®7)s
) )

¢ (&) = (¢ ay).

$5. Imbedding of TGL(n) into GL(n(r+ 1)).

Let p: GL(n)XxR™—> R" be the usual operation of the general linear
group GL(n) on R". By Proposition 3.1, the tangent group TGL(n) to
GL(n) of order » operates on TR by the tangent operation Tp to p of
order ». Now, by Theorem 4. 1, TR" is a vector space of dimension n(r+1).

We shall prove the following

TueoREM 5. 1. The tangent group ItGL(n) to GL(n) of order r operates on
TR" effectively as a linear group.

Progf. Since p is effective, we see that ’_I'r‘p is effective by Theorem 3. 5.
For any 7 € S(GL(n)) and ¢ € S(R™), we define 7-¢ = S(R") by the equality
(-9) (t) = n(t)-(t) = p(y(2), ¢(t)) for t = R. We put [y, -[¢], = :f‘p([n],,[<p],).
Then we have [7],[¢]l. =[y-¢],. Take an element [¢], of flr‘(R”) and cER.
Then we calculate as follows: [71,{[¢l, +[¢].) =7, - [¢ + ¢l = [+ (¢ + )],
=[n-9+79-¢l, =In-¢l, + - ¢, =1, -T¢], +[9]--[¢],. Similarly, we have
[l (c-Te]) = [9)le- o1, = D7+ (cp)l- =[c- (- @)1, = cln- ¢1, = c(91, -[¢],). Thus
we have proved that [7], operates on ’fR“ as a linear transformation.

Q.E.D.

Dermnrrion 5. 2. Let {#,, - - -,2,} be the natural coordinate system on
R™ and let {(;:zli =1,+«+,n; v=0,1, -« -,7} be the induced coordinate sys-
tem on TR™ Using these coordinates, Theorem 5, 1 shows that there is
a canonical injective homomorphism 7§ of TGL(xn) into GL(n(r + 1)).

Let (y!) € GL(n). Then Yr"GL(n) has the induced coordin te system
{(;/)}li,j =1,+++,n;v=0,1, -+, 7}, We denote by Y, the nxu-matrix
((1;)5) for y =0,1, - - &7,
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ProrostTION 5. 3. The homomorphism j3° is given by the following equality :

Vo 0o e oeosncnooeaon 0
Y, Y, .

. ) ¢ Yl S .
JO(e e s ¥Ysy e e ey) = : T .
'0-

Voo o oo oo eneeasl, Y,

Progf. We shall prove the proposition only for the case » =2, since

the proof for the case »=3 is similar. Let [¢], & YZ‘GL(n) be such that [¢],
2
= (yi, 9%, 41). Let [£,=TR"™ be such that [€], = (z;, %; %;). Then we can

assume that
o(t) = (y! + git + 432,
&(t) = (m; + @48 + &,2%)

(5. 1)

for teR. From (5. 1) it follows that (¢-&)(#) = ¢(t)-&(t) = (X2 (i + it +
G5 (4 dut + B = (D + D @hes + yiet + D+ 9+ i)
+ 2@+ GiE)E + 2 §#;2Y). Therefore, we get [¢l[§], =[p- €], = (Zyjwe
2 (e + s, Wik + 95+ &+ i),

and hence we obtain

FP0ek) = | 95 Y5 0

which proves the proposition. Q.E.D.

§6. Tangential fibre bundle of order r.

Let EM,z, F,G) be a fibre bundle with bundle space E, base M,
projection =, fibre F and structure group G. We shall prove the following

ProrosiTION 6. 1. f‘E(’;‘M, Tr‘n, Yr'F , Tr“G) is a fibre bundle with bundle space
%E, base ’;M, projection :7‘7:, fibre TF and structure gro'p TG.
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Proof.  First, since G operates on F effectively, TG operates on TF
effectively by virtue of Theorem 3.5. Let {U,} be an open covering of
M such that E is trivial over U, with trivialization ¥,: z'(U,) > U,x F and
with transition functions g.s i.e. ¥,o¥5'(%,y) = (2,9.4(%) - ¥) for x€U, NU,

and yeF. Clearly {fUa} is an open covering of YY‘M and YV‘TG is a diffeo-
morphism of (Yr“n)“‘(Yr"Ua) onto Yr‘Uax’Ir"F . We shall verify the following

6. 1) (T¥.) o (T [¢1, [0],) = (01 (Tgug) [21) - [41,)

for [gD]TEYr‘(UaﬂUﬁ) and [¢],ETIT"F. We denote by p: GXF — F the operation
of G on F and by =;: U,NUgXxF—>U,NUz (resp. mp: U, NUgX F = F) the

projection. Similarly we define #,: T({U., N U XTF — Yr(U «NUpg) and #,. Then,
we have the following equalities

(6. 2) Ty © w‘“ ° ?[fﬁl =T, Wy ©° wa o w‘;l = po (gaﬂx 11«")-

Taking the tangent to (6. 2) of order », we get, by Propositions 1. 6 and
1. 7, the following

7o TW, o TUZ = 7,
(6. 3) - v v . » v
7,0 T, o TG = Tp o (TgupX1y ),
which proves (6. 1). Therefore, we have proved that TE is a fibre bundle
with transition functions {f‘guﬁ}. Q.E.D.

DEerFintTION 6, 2. We shall call the fibre bundle YZE(YY‘M, f;'n', YV‘F, Yr'G)
the tangential fibre bundle to E of order v.

Let P(M,x,G) be a principal fibre bundle with bundle space P, base
M, projection = and structure group G, and let {U,} be an open covering
of M such that P is trivial over U, and let {g.3} be the transition function
with respect to this covering {U,}. We denote such a principal fibre bundle
by P(M,z,G) = {U,,g.p}. (For the general theory of fibre bundles, see [5]).
Then, by the proof of Proposition 6. 1 we obtain the following

CoROLLARY 6. 3. From a principal fibre bundle P(M,z,G) = {U,,g.5} we
get a principal fibre bundle Yr‘P(Jr"M, Yr'n, fG) = {Yr‘U,,,Yr‘ga,;} for any positive in-
teger 7.



168 AKIHIKO MORIMOTO

§7. Imbedding of TFM into FTM.

Let F(M) (M, =, GL(n)) be the frame bundle of an n-dimensional mani-
fold M as in [4]. We shall prove the following

TaEOREM 7. 1. For any mamfold M, there is a canomical injection j5p: TFM
> FTM of the tangential fibre bundle TFM to FM of order r tnto the frame bundle

quM such that j(x-g) = j52(x) - 55(g) for xeTFM ge TGL( Y and that the
Jollowing diagram is commutative:

(r)

TFM — s FTM
Fo l
1,
Y M
™ ————— TM,

where =i FM—> M (resp. #: FTM— fM) is the projection.

Proof. We shall use the same notations as in the proof of Theorem
2.4 [4]. We denote by Jo3 the Jacobian matrix with respect to the co-

. (€D)] ()
ordinate systems {x“'ili =1+, n;v=01,--+,7} and {2g.li=1,-+,n;
y=0,1,++,7}. Using the same arguments as the proof of Theorem 2.4
[4], in order to prove the Theorem 7. 1, it is sufficient to verify the follow-
ing relation:

7. 1) @ = 0o T,e on TUINTUy).

We shall prove (7. 1) only for » =2, since the proof for the case r=3
. . w) W) @
is similar. Put #;=2,; and y, =g, for i =1,2,+++,n; v=0,1, -+ -,7.
By expressing y, as a function fy(z;, +--,2,) of %,.--, 2, we get from

(1. 3) the following relation:

Jop 0 0

(7' 2) ];2[3 = ja‘B ]uB 0
Jag Josg  Jes
where f,5= (/i) with Ji =21 @fi 4. and Jeg = (J3) with Ji= 1 3t
af k k ri axjax i 7] 13 k= J’_ll

°fs *f4

. .. fi
3% 02507, xsz'l-‘]j wpm, L Putting Ji =

we get the following
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. 3) Ji=getk s, Ji- o555

1 0% ;0%

8/i p

0xy L

By%, + 2

Now, con51der the map J = Ju5: U.,NUg—GL(n). We can calculate the
)

coordinates (y,lz,] =1,+,n;v=0,1,2) of the image of (z;,|i=1,-.-,n;

v =0,1,2) by the map T J as follows:

)
i =Ji(z), vt =801 4,

I3 axk
(7. 4) @ 4 2y ot
Y1 =5 & owen, daby + 2 oy
By Proposition 5. 3 and (7. 4), (7. 3) we obtain
2 2 2
JR 0T Jap= J% on TUINTUp). Q.E.D.

§8. Prolongations of G-structures to tangent bundles of order r.

DeriniTioN 8. 1. Let G be a Lie subgroup of GL(n). We denote by
G the image of YT‘G by the homomorphism j3°, i.e.

8. 1) G = j (TG).

Clearly, G is a Lie subgroup of GL(n(r + 1)).

Let P(M,z, G) be a G-structuure on M (for the general theory of G-
structures see, for instance [1], [2], [4] or [6]. We denote by z™ the rest-
riction of the projection z: Ff’M—)Yr‘M to the subbundle P = j‘,,?(f‘P).
Then we obtain a G‘-structure P (YV“M, 27, G) on the tangent bundle
TM to M of order ». We shall call P™ the prolongation of order » of the
G-structure P to the tangent bundle TM to M of order 7.

We can easily see the following

ProrosiTION 8, 2. If M s completely parallelizable, then TM is also com-
pletely parallelizable.

ProrosiTiON 8, 3. There is a canonical bundle homomorphism B85 of P
into P for r>s, i.e. the following diagram
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5

pm T P®
77 sy

;l: 7'[7‘ sJ/

™ ———— T

is commutative and there is a canonical homomorphism hy: G — G® such that

Bi(w - a) = pi(w) - kila)

Jor x € P and as G,
§9. Prolongations of isomorphisms of G-structures.

THEOREM 9. 1. Let M and M be two manifolds and f: M—M be a
diffeomorphism betw en them. Then, we have the following commutative diagram:
1>

(4 M 7
TFM ———= FTM

TFf FTf

, i +,
TFM —————— FTM' .

Progf. We use the same notations @,, @,, f, as in the proof of Theo-
rem 4.2 [4]. On the other hand, let
¥,: TU.xGL{n(r + 1)) > FTU,
¥.: TV.x GL(n(r + 1)) > FTV,
be the local trivializations of FTM (resp. F’}M’) over YT"U‘, (resp. YT‘V‘,)
induced by the coordinate system on U, (resp.V,). Define f$: fUu X
GL(n(r + 1))~ TV, x GL(n(r +)) by the following
ffzr) = qf(/x-l ° Ff'fo q,-u .

Let ;9= ;ij(,{’ and j;“):lT,V xj7’. By the same arguments-as the
2

proof of Th. 4, 2 [4], in order to prove the Theorem 9.1, it is now suf-
flicient to prove the commutativity of the following diagram:



PROLONGATIONS OF G-STRUCTURES 171

1(r)

TUXTGL(n) — = TU, X GL(n{r + 1))

©. 1) Tf. o

s7{(1)
TV XTGL(n) — > TV, XGL(n(r +1)).

We shall prove the commutativity of (9. 1) only for the case » =2,
since the case for » =3 is similar. Using the same notations y,, fi(), wt, 2%
as in Th. 4, 2 [4] (we use y, instead of ¥°, etc), we introduce the notations
Sel2), %y, y, for £ =1,2,.-.,3n by the following

fi+'n.=2 -gg—;xky

fi+2n = 2 9 f xkxl + 2 ng iy’:ky
L

0200,
Zyan = Ty Lragn = £49 Yivn = Y15 Yjron = U5
for i=1,2, -»+, n. Let {x, @|t,2=1,2,+-,3n} (resp. {y: 251,42 =12,

-,3n}) be the coordinate system on FYZ‘U“ (resp. FYZ‘VG) induced by the
coordinate system {z,} (resp. {y.}). Now since the map f,: U,xGL(n)—~>
V.XGL(n) is expressed as follows:

9. 3) foi Ui = filw), &l = Xwk gj;f (hf=1,2+ + -, ),

k

2
we obtain the expression of Tf, as follows:

of
= f, 7 = L4 f
yi f.,,(x), zz ;wz axk s
o= gt de
b=y af:g‘; b+ -Gt
(9' 4) k 0wy k
L1 fr . . of, =
Y1 = "5 4 on,0m, x"x‘—i_zk" dxy F?
g 1 % *fy .
“E (k;‘ wi X1 0%,0% xlxm+l§ ax,‘axl wa>
9% f; 0 0 .
rpuwtett LS P e

k1 00, 2 £1 dx.dx,
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By Proposition 5. 3 we get the following

2] 0 0
2
(. 5) (j(,z(2) © Tfa) (@xs w;) = | Y Z{ 2} 0 ,

where y, and zf are given by (9. 4).
On the other hand, since f: U, =V, is expressed by y; = fi(;, + + +, %)

2
(i=1,--+,n), we have the expression of Tf as follows:
= =51 00y 4
. Y, = fi(®), 9, % T Xk
Tf:

- Ls 0 g Bfi 5
Y. = 2 ;l 3xkawl xkxl-l-; axj L

Therefore, we get the expression of f& as follows:

= y afs .
, = A2 s ;= ,
Y. = fi(2), ¥ % T
. 1 32f; .. of: .
(2. —_ + P
F& 5 di=3 kzl 0w, “EUL ; ax, F
3n

2'5... Ew# afl:

#=1 4 ax#

for x, 2=1,2,+++,37 and i =1,2,+--,n. Now, we calculate z§ by (9. 2)

as follows:
of;
2‘] = wk J
K ; 4 axk ’
; af; of;
2—n+] — wk &, + wn+k J
& T1F dwon, Zk} Fooxy

S an+ 0 on+ af,

y2n+d ok antJ ~ntk 2n+s 2Ntk 2ntj

¥4 = 2 w, ————— E w e Z w — i
T C 90X T " 0% T " 0%

:zku‘j’;(_l_z L¢m¢1+2%%l>

2 Im 00,0000 I 0x,0%%
N af; . _ of;
n+k 7 2n+k J
+ k,lwx axkax, e - Zk W awk '

for k=1,2,+++,3n and j=1,2,-++,n. By Proposition 5, 3 and the above
calculations, we have the following equalities:
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wk 0 0
(9. 6) S& o 2 (wu; wh,y W, w}) = f& | @, Wb wi 0

z] 0 0
=| fi(x), Ys o5 | 27 zZ} 0 ’
FA At VAC #1
57 — % af.?' sn+f _ 4 azfj . 3 6fi
where we see that 2/ Esz Gz, * 0 k,lwl Frrrm xl-i-%wl TN and
yon+f _— E L aafj . azf.i I > Wk azfi .
2 %w‘<2 ?;In 0 ,,0%,0%;, x”‘x‘_'_; awom, + kzl P aman, + ‘?
wk gj; ! =7%{. Therefore, we obtain, by (9, 5) and (9. 6), the commutativity

of (9. 1) for 7 = 2. Q.ED.
By the same arguments as the proof of Th. 4. 3 [4] we can prove the
following

THEOREM 9. 2.  Let @ be a diffeomorphism of a manifold M onto a manifold
M. Let P (resp. P') be a G-structure on M (resp. M'). Then @ is an isomor-
phism of P with P’ if an only if TO is an isomorphism of P with P'™.

CoroLLARY 9. 3. Let @ be a diffeomorphism of M onto itself, and let P be
a G-structure on M. Then © is an automorphism of P if and only if To is an
automorphism of the prolongation P of order .

§10. Integrability of prolongations of G-structures.
In this section, we shall prove that the prolongation of an integrable
G-structure (see Def. 5.1 [4]) of order 7 is also integrable and vice versa.

PropostTioN 10, 1. Let {zy, ««+,2,} be¢ a local coordinate system on a
netghborhood U in M, on which we give a G-structure P. Let ¢ be a cross section
of P over U, which is expressed by ¢(x) = (+ -+, 1 d4x) 0/6%:)z - - ) for z<U.
Define ¢ by ¢ = j‘,&’OYT"«;S. Then ¢ is a cross section of the prolongation P
over ’.lr‘U and is expressed with respect to the induced coordinate system {(92]2' =1,
cee,ny v=0,1,+++,7} as follows:

(10.1) ¢(- v -y 2y - - SECES
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L4 . . €3]
where X = (-, %, ++-)€TU and Fi%WX) is a polynomial of aa=p; k=1,

< «,m) without constant term and with coefficients, which are partial derivatives of
SLl,m=1,++,m).

Proof. Let z: F(M)—»M and #: FTM~TM be the projections. Let

Oy and ¥y be the local trivialization of FM and F YT‘M over U and Yr‘U,
respectively. We see that

FSRITFM =Wy (1, X ) o (T00).

Using Proposition 1. 6, we have the following equalities:
ﬁo¢<r> = ﬁojngrng = f‘noyr’gs = 77‘(,,095) ___7r~1v =1,

Since ¢”)(77‘U) = jﬁ(,)on‘q&(TU) = j%)r(gﬁ(U))cj‘A}’;‘P: P™, we see that ¢ is
a cross section of P over TU.

We shall prove (10. 1) only for the case » =2, since the case r=3 is
similar. Put f(x) = (¢i(z))e GL(n) for x €U, then we have 93 o ¢ = (1y, /).
Hence, we ﬁlave $® = WuO(lng Xj)e (72"@)"1 ° 72‘575 =¥yo (1]2,[[ 2><i§3’) ° 72‘(1m f)=
llfgo(l%ux j2eTf). Therefore, using the expression (1. 2) of Tf and Proposi-
tion 5,3 we get the expression of ¢ as follows:

b3 0 0
¢ (2, &, &) = Uyl (2,2, %); | 6 Bk 0
¢ o ¢}

= (o 2l o G 8GR

(o8 (50), + 85 (), ) B (), )

- b . _ 1 _aﬂ% ..
where ¢j—22 Go. o ¢j—7% 3757, kaz-}-%}

.
B
0%, ¥

These functions ¢% and ¢% have the properites stated in the proposition.
Thus the proposition is proved. Q.E.D.

Remark 10. 2. By the properties of the functions F};(X), we see that
¢» vanishes if the functions ¢}, are constants for I,m=1,2,+--,n. The
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. . . ) . A
function Fi%(X) also vanishes at X = (+ - -,2; « - ») with z, =0 for all 2=

. . . “y
and k=1, ..-,n, since Fi is a polynomial of z, without constant term.

THEOREM 10. 3. Let P be a G-structure on a manifold M. Then, P is
integrable if and only if the prolongation P\ of P order r is integrable for any r.

Proof. Suppose P is integrable. Let z,&M be any point of M and let
{2, - +,2,} be a local coordinate system on a neighborhood U of x, such
that

¢(x)=<- .., < aii )z, . ->EP for any z€U.

Then, by Proposition 10, 1 and Remark 10,2, ¢ is a cross section of P"
and is expressed with respect to the induced coordinate system {(o;zli =1,
«ve,n; =01, -+, 7} as follows: ¢ (..., (923, cee)=(0n, (ala(ayc)i)x, cee)
for X = (.. -,(;:)i, .. -)EYy‘U. Since ¢(X)eP” and since z, is arbitrary,
we have proved that P is integrable.

Conversely, suppose P is integrable for some ». To prove that P is
integrable, we use the same arguments as the proof of Prop. 5.5 [4]. Take
a point peM and take a coordinate neighborhood U of p with coordinate
system {x,, -« -,2,} such that there is a local cross section ¢: U—~P of P
over U. Then, by Proposition 10. 1, ¢ = j‘,}’o?r‘qs is a cross section of P‘”
over TU. Now, let X, be the element of fU having coordinates {(;c)i} with
2; = 2,(p) and (;ci =0 for all v=1and i=1,-.-,# Since P is integr-
able, there can be found a coordinate neighborhood U of X, with coordi-
nate system {yy, ¥ ¢+« *, ¥y} (N=mn{r + 1)) such that ﬁcf‘U and that, if we
define ¢, by &,(X) = ((8/0¥.)xs * * *» (8/0Yx)x)y &, is a cross section of P’
over U. Since ¢|U and §, are both cross sections of P over U, there
exists a map §: U — G'” such that

(10. 2) " (X) = (X)) §(X)

holds for XeU. By Proposition 5. 3, there is a map g: U—G such that
§(X) has the following form:

g{X) 0
(10. 3) §(X) = g(X) .
* T g(X)
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. (v) . .
Since {y,, +--,yy} and {x;} are both coordinate systems on U we have
. . . ) ) .
differentiable functions f, such that y,=f.(- «+, 25+« ) for (+ « +, 35 + - ) &U
and £ =1,2, -+, N. Now if ¢(z)=(---, 2 ¢i(x)(3/62), ) for x €U,

then by Proposition 10. 1, (10. 2) can be written as follows:

(10, 4) ¢ 90)< (o) ) +2Fj# < (/x) >

=200 (55),+ 2,050 (35,

for j=1,2,-+.,n, where §(X) = (95(X)) for X e U. Since (a/a(oyo)i)x = 3o fxl

)
92,) - (8/6yc)x, (10. 4) can be written as follows:

i, of . 0 i 0f 0
(10. 5) Z_.lqu —E—O)_LL ( 59, )X +i§,cFJ'Z (X) a(ﬂ)’( oY )x
0%, P

-pen (5, + B (),

Comparing the coeflicients of (3/6y,)y for k<# in (10. 5), we have

(10. 6) S e+ 3 P e = gy
oz, 0,

for j,k=1,2,--+,n. Now, define maps f;: U =R and §: U'—~G by
Fil®) = fulx,0, -+ - +,0) and (g(x)™)} = g} (#,0, + - -,0) for i,5,k=1,+-+,n and
zel’ = n(0).
. S . .
Putting 2, =0 (k=1,2, -+ -, n;v=1,2, +++,#) in (10.6) and using
Remark 10. 2 we obtain

(10.7) S193(a) L = (g(a)

Now, by the same arguments as in the proof of Prop. 5.5 [4, pp. 88-89],
we see that there exists a coordinate neighborhood U, of p with coordinate
system {Z, - --,%,} such that the map ¢, defined by &(x) = ((8/6%,), - - -,
(8/0%,),) for x€U,, is a cross section of P over U, Thus P is integrable.

Q.E.D.
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§11. Prolongations of classical G-structures.
I) G=GL(x,O).

Let J be a linear automorphism of R*" such that J? = — 1, and let
GL(n,C; J) be the group of all ae GL(2n) such that ao J = Joa. It is easy
to see that Yr‘] is a linear automorphism of R*"+1 = Yr’(R“) such that (77"])2
= —1. We shall prove the following

ProrosiTioN 11. 1. If G= GL(#,C; J), then G cGL#n(r + 1), C; Qr“]).

Proof. Take an element a=G. We have to prove that (dof;“]) (X)
= ((f‘])od) (X) for every XEYr’(R“). Now, we can find maps ¢=S(G) and
¢=S(R*") (cf. Notations in §1) such that @ =[¢], and X =[¢],. First, it
is readily seen that ¢-(Jo¢) = Jo(p-¢) (cf. Notations in Th. 5. 1). There-
fore, we have a(TJ(X)) = [01.0J o @], =[¢-1J o ¢}, = [J o (¢ )1, = TJ (o - ¢1.)
= TJ(le], - [¢1,) = TJ(@(X)). Q.E.D.

By the same arguments as the proof of Theorem 6. 3 [4], we obtain
the following

TaeoreM 11. 2. (1) If a manifold M has an almost complex structure, ™
has a canonical almost complex structure for every r.

(2) If a manifold M has a complex structure, then TM has a canonical complex
structure for every r.

(II) G = S (m).

Consider a skew-symmetric non-degenerate bilinear form f on R*™.
Let S,(m, f) be the group of all a= GL(2m) which leaves f invariant. We
denote by =z, the projection of Yr‘R = R™* onto R defined by =.([¢l.) =Q/r!)
[d"¢/dt"], for ¢=S(R) = C*(R).

LemMA 11, 3. If f is a skew-symmetric non-degenerate bilinear form on R*™,
then f =7r,o(f‘ f) is also a skew-symmetric non-degenerate bilinear form on
R27ﬂ(7’+1) — YZR2M.

Proof. We take the skew-symmetric matrix (a}) € GL(2m) such that
fla, y(l): SNaix,y; for o = (2, -+, 2,) and y={(yy, + -, ¥, with »n=2m.
Let {z;} be the induced coordinate system on R"“*®. Take an element
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v v) v
[¢1, (resp. [¢],) of TR™ with coordinates {z;} (resp. {<y1}). We can assume
r (v) r (v
that go(t)=(---,f‘_,2xit”, cou) and @f) = (- -+, 2L, - ++). It is now
yv= y=0

straightforward to see that the following equality holds:

v W) (r-v)
(11. 1) 57 (el [¢,]) = ?‘_ijgo ;i %y Yy

which shows that f is a skew-symmetric non-degenerate bilinear form on

R’n(7‘+1).
ProposiTioN 11, 4. If G = S,(m, f), then GV cS,(mir + 1), fO).

Proof. Similar to the of Proposition 11. 1.

By the same arguments as the proof of Th. 6. 6 [4] we obtain the fol-
lowing

TraEOREM 11. 5. If a manifold M has a (resp. an almost) symplectic struct

7 . .
ure then TM has a canonical (almost) symplectic structure.

(III) G = GLWV,W).
We have the following Proposition whose proof will be omitted.

ProrosiTioN 11. 6. If a manifold M has a k-dimensional (completely integr-
able) differential system, then TM has a canonical k(r + 1)-dimensional (completely
integrable) differential system.

(IV) G=0kn—k.

Let g be a symmetric non-degenerate bilinear form on R" of signature
(ksn — k) and let z,: TR R be the same projection as in (II) and let ¢
be the map ¢’ = zr,o(?r‘g): %R"‘x %R”%R. We denote by O{k,n —k,g) or
simply O(g) the group of all eeGL(n) such that a leaves g invariant.

Lamma 11. 7. The notations being as above, ¢'” is a symmetric non-
degenerate bilinear form on R™*V of signature (n{r + 1)/2, n{r + 1)/2) if 7 is odd

and of signature (Ic—l— rzn , % —k+%- if v is even.

Proof. If the bilinear form g is expressed by a symmetric matrix
A ={(a})eGL(n), then by the same computation as the proof of (11. 1) in
Lemma 11. 3, we see that g is expressed by the following matrix
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0 4 A
A = : (A: (r + 1)-times).

A 0
Since A is of signature (k, n — k), A"’ is of signature (n(r + 1)/2, n(r + 1)/2)
if » is odd and of signature (k+ (rn/2), n —k+ (rn/2)) if » is even.
Q.E.D.

LemMa 11. 8. If G = 0(g), then G'cO(g"), the signature of ¢ being
gwen in Lemma 11. 7.

Proof. Omitted.
By the Lemma 11. 8, we obtain the following

,
TueoreM 11. 9. If M has a pseudo-Riemannian metric, then TM has a
canonical pseudo-Riemannian metric for every v.

(V) G=GL#n,C)x1cGL2n+1).

LemMA 11.10. Let G = GL(n,C)X1cGL2n + 1). Then, G cGL{(2n + 1)
(r +1)/2,C) if v is odd and GV cGL((2nr + 2n + 1)[2,C)X1 if r is even.

Proof. We shall omit the proof, which is similar to the proof of Lem-
ma 6. 14 [4].

By Lemma 11. 10. we obtain the following

THEOREM 11. 11, If M has an almost contact structure, then (i) TM has a

”
canonical almost complex structure for any odd r and (ii) TM has a canonical almost
contact structure for even r.
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