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Abstract

Background

Based on controlled 36 h experiments a higher dietary protein intake causes a positive pro-

tein balance and a negative fat balance. A positive net protein balance may support fat free

mass accrual. However, few data are available on the impact of more prolonged changes in

habitual protein intake on whole-body protein metabolism and basal muscle protein synthe-

sis rates.

Objective

To assess changes in whole-body protein turnover and basal muscle protein synthesis

rates following 12 weeks of adaptation to a low versus high dietary protein intake.

Methods

A randomized parallel study was performed in 40 subjects who followed either a high protein

(2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or

5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7

men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to

evaluate the impact of prolonged adaptation to either a high or low protein intake on whole

body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects

received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an

overnight fasted state, with blood samples and muscle biopsies being collected to assess

post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in

humans.

Results

After 12 weeks of intervention, whole-body protein balance in the fasted state was more

negative in the high protein treatment when compared with the low protein treatment
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(-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown

(43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1

±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs

2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low pro-

tein group. Basal muscle protein synthesis rates were maintained on a low vs high protein

diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620).

Conclusions

In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result

in a more negative whole-body protein balance and does not lower basal muscle protein

synthesis rates when compared to a high-protein intake.

Trial Registration

Clinicaltrials.gov NCT01551238.

Introduction
High-protein diets have attracted interest for many years because of their ability to preserve fat
free mass (FFM) during negative energy balance [1, 2]. While being in a neutral or positive
energy balance, a temporary increase in dietary protein consumption for 3 months can lead to
an increase in FFM [3, 4], especially when combined with regular exercise [5]. Therefore, a
temporary increase in dietary protein intake may act as a preventive measure to remain weight
stable [6]. However, the impact of prolonged adaptation to a low or high protein intake on
whole-body protein balance or muscle protein synthesis (MPS) has not been assessed. An
increase in protein synthesis, accompanied by a simultaneous reduction in protein breakdown,
due to increased protein consumption may be responsible for the preservation or increase of
FFM, irrespective of energy balance.

Several studies [7–12] have shown that ingestion of dietary protein stimulates net muscle
protein accretion. The post-prandial rise in circulating essential amino acids (EAA), and leu-
cine in particular, has been identified as the key factor stimulating the post-prandial rise in
MPS rate [8, 9]. In contrast to consumption of a high dietary protein diet, it is thought that a
relatively low protein intake may lead to a decline in muscle protein synthesis, resulting in net
protein loss. A diet providing 15 energy% protein, or an absolute amount of 0.8 g protein/kg/d,
is recommended to maintain proper protein balance [13, 14]. Prolonged under-consumption
of dietary protein has been suggested to induce muscle mass and strength loss. Nevertheless,
despite a large amount of short-term studies investigating the impact of dietary protein con-
sumption on whole-body protein turnover and MPS, few studies have examined the impact of
prolonged adaptation to either a low or high protein intake on whole-body protein turnover
and basal muscle protein synthesis rates. In the present substudy, we tested our hypothesis that
consuming a diet low in dietary protein induces a negative whole-body protein balance and
reduces basal muscle protein synthesis rates when compared with a high protein diet. We
applied contemporary stable isotope methodology to assess the impact of a low versus high
protein intake diet post-absorptive whole-body protein balance and fasting MPS rates in vivo
in humans. Furthermore, we assessed 24 h whole-body protein balance by nitrogen balance fol-
lowing prolonged adaptation to a low and high protein intake diet.
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Materials and Methods

Subjects
In the main study, Martens et al. (n = 37) [15] studied the impact of a high-protein (HP) diet
compared with a low-protein (LP) diet on satiety and energy expenditure. They concluded that
maintenance of energy expenditure, initial transient higher fullness, and a sustained positive
protein balance on a HP vs LP diet in energy balance may prevent development of a positive
energy balance and subsequent body weight gain. In a subgroup of subjects (n = 20) we deter-
mined post-absorptive whole-body protein metabolism and basal muscle protein synthesis
rates to assess possible changes following 12 weeks of adaptation to a high vs low dietary pro-
tein intake. After drop-out of 5 subjects (2 subjects due to agenda problems, one subject we
were not able to place the catheters and 2 subjects withdrew from the study without giving any
reason), 15 subjects, (7 men and 8 women), aged 19 to 31 y; body mass index between 19 and
26 kg/m2) participated in the current substudy (Fig 1). The sample-size calculation was based
on previous research from this lab on protein metabolism [16]. We calculated the sample size
by using the following variables: the difference in fractional synthetic rate (FSR) of mixed mus-
cle protein>20% and a SD of 15% with a type I error of 5% and a type II error of 10%. Power
calculations showed that� 9 subjects were needed, and therefore we decided to include 10 sub-
jects per group. In the reference study, a crossover design with 10 healthy subjects was per-
formed and resulted in significant effects of dietary protein consumption on muscle protein
synthesis.

Subjects were recruited via advertisements in local newspapers and on notice boards at the
university. Subject recruitment started in November 2012 and the study was conducted
between January 2013 and September 2013. Subjects underwent a screening and all were in
good health, non-smokers, not using medication (except for oral contraception) and moderate
alcohol users (<10 drinks per week). None of them had a food allergy, gained or lost more
than 3 kg in 6 months prior to the study, or were cognitive dietary restrained (F1>9) as
assessed by a validated Dutch translation of the Three Factor Eating Questionnaire [17]. The
validated Dutch translation of the Baecke Activity Questionnaire was used to measure habitual
physical activity [18]. All procedures involving human subjects in this study, that were per-
formed with a subgroup of subjects from the main study [15], were specifically approved by
The Medical Ethical Committee of Maastricht University Medical Centre. This study was also
conducted according to guidelines laid down in the Declaration of Helsinki. All subjects pro-
vided written informed consent. The main study [15] was registered at clinicaltrials.gov with
identifier NCT01551238. The protocol for this trial and supporting CONSORT checklist are
available as supporting information; see S1 Protocol and S1 CONSORT Checklist.

Study design
The study had a randomized, single-blinded, parallel design and consisted of a long-term (12
weeks) dietary intervention. Subjects were randomly divided in two groups that received either
a HP (2.4 g protein/kg/d, 30/35/35% of energy from protein/carbohydrate/fat) or a LP energy-
balanced diet (0.4 g protein/kg/d, 5/60/35% of energy from protein/carbohydrate/fat).

In order to maintain their diet at home, all subjects received a booklet containing individual
guidelines with permitted and non-permitted foods and their corresponding portions, as well
as three example menus. The example menus consisted of commercially available food prod-
ucts and were tailored to the energy requirements of each subject based on basal metabolic rate
calculated with the Harris and Benedict equation [19] and multiplied with a physical activity
level of 1.7 estimated by means of a computer simulation program [20]. At week 5 and 9 of the
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intervention period subjects visited the university to discuss the compliance to the dietary
guidelines with a researcher. Subjects on the HP diet (30% of energy from protein) had to
drink two protein shakes each day during 12 weeks. The supplemental protein was whey pro-
tein with α-lactalbumin (Hiprotal Whey Protein Alpha and Domo; FrieslandCampina). Sub-
jects on the LP diet (60% of energy from carbohydrate) had to drink two carbohydrate shakes
each day during 12 weeks. The supplemental carbohydrate was maltodextrin (Fantomalt, Nes-
tle). During screening subjects had to rate the palatability of the shakes. Only subjects who
rated the shakes as sufficiently palatable (VAS score� 50 mm), and who were confident of
being able to consume these daily during the study period were included in the study. The fat
content between conditions was maintained at a constant proportion (35% of energy from fat).
Subjects were instructed to keep their body weight stable. Subjects’ characteristics reported in
Table 1 were determined as described by Martens et al. [15].

Fig 1. Flow diagram (CONSORT) of a substudy in two diet groups (12 weeks High Protein or Low Protein diet), with n = 20 eligible men and women.

doi:10.1371/journal.pone.0137183.g001
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Biomarker of protein intake and 24-h protein turnover
Nitrogen excretion was used as biomarker for protein intake (to measure compliance) and to
estimate 24-h protein turnover. Subjects collected their 24-h urine at five different time points
during the 12 week period. Collection started after the first voiding in the morning at 0800h
and lasted until the next day at 0800h including the first voiding. The total volume of the 24-h
urine was recorded. Urine was collected in 2-L urine bottles with 10 mL of diluted hydrochloric
acid (4 mmol/L) added to prevent nitrogen loss through evaporation. Urine was gently mixed,
and samples were taken and stored at -20°C until analysis. Nitrogen concentrations were mea-
sured with a nitrogen analyzer (CHO-O-Rapid; Hereaus). 24-h protein turnover was calculated
using the prescribed protein intake and measured urinary nitrogen excretion data.

Test day
The experiment started at 0800 am, when overnight-fasted subjects arrived at the laboratory by
car or public transportation. A polytetrafluoroethylene catheter was inserted into an antecubi-
tal vein for stable isotope infusion. A second polytetrafluoroethylene catheter was inserted in a
heated dorsal hand vein of the contralateral arm and placed in a hot box (60°C) for arterialized
blood sampling [21]. After basal blood collection (t = 0 min), plasma phenylalanine (Phe) and
tyrosine (Tyr) pools were primed with a single intravenous dose of L-[ring-2H5] Phe (2 μmol/
kg) and L-[ring-2H2]Tyr (0.615 μmol/kg), after which a continuous L-[ring-2H5]Phe and L-
[ring-2H2]Tyr infusion was started (0.050±0.0005 and 0.015±0.0001 μmol/kg/min, respec-
tively). After resting in a supine position for 120 min, a second arterialized blood sample was
drawn, and a muscle biopsy was collected from the vastus lateralismuscle (t = 120 min). Addi-
tional arterialized blood samples (8 mL) were collected at t = 180, 240, and 300 min with a sec-
ond muscle biopsy, taken from the contralateral leg, at t = 300 min, which marked the end of
the basal fasting period as well as the experiment. Blood samples were collected in tubes con-
taining EDTA and centrifuged at 1000g for 10 min at 4°C. Aliquots of plasma were frozen in
liquid nitrogen and stored at –80°C. Muscle biopsies were obtained from the middle region of
the vastus lateralis, 15 cm above the patella and ~3 cm below entry through the fascia, by using

Table 1. Subjects’ characteristics.

Δ HP LP Total P-Value

N (M/F) 9 (4/5) 6 (3/3) 15 (7/8)

Age (Y) 23.9±4.2 25.0±6.2 24.3±4.9 0.686

Height (m) 1.70±0.08 1.70±0.09 1.70±0.09 0.899

Weight (kg) 62.8±6.1 67.3±8.6 65.1±7.1 0.312

Δ Weight (kg) +0.71±0.8 +0.06±1.2 +0.45±0.98 0.216

BMI (kg/m2) 22.1±2.4 23.3±2.2 22.6±2.3 0.373

Δ BMI (kg/m2) +0.26±0.30 +0.04±0.39 +0.17±0.34 0.903

FM% 24.2±7.3 22.7±7.8 23.6±7.3 0.339

Δ FM (%) +0.04±1.31 +0.32±0.97 +0.15±1.16 0.672

FFM% 75.8±7.3 77.4±7.8 76.5±7.3 0.709

Δ FFM (%) -0.04±1.31 -0.32±0.97 -0.15±1.16 0.672

PAL 1.82±0.14 1.79±0.15 1.81±0.14 0.677

Δ changes over 12 weeks. BMI, Body Mass Index; FM, fat mass; FFM, fat free mass; PAL, physical activity level. These data concern the as analysed

population and not the as randomised population. Values are expressed as mean ± SD. Data were analyzed with one-way ANOVA. Table adapted and

modified from Martens et al. [15].

doi:10.1371/journal.pone.0137183.t001
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the percutaneous needle biopsy technique [22]. Muscle samples were dissected carefully and
freed from any visible non-muscle material. Muscle samples were immediately frozen in liquid
nitrogen and stored at –80°C until additional analysis.

Plasma analysis
Plasma glucose (Uni Kit III, 07367204; Roche) concentrations were analyzed with a COBAS--
FARA semiautomatic analyzer (Roche). Insulin was analyzed by using a radioimmunoassay
(Insulin RIA kit; LINCO Research Inc). Plasma (100 mL) for amino acid analyses was deprotei-
nized on ice with 10 mg dry 5-sulphosalicylic acid, mixed, and the clear supernatant fluid was
collected after centrifugation. Plasma amino acid concentrations were determined by using
HPLC after precolumn derivatization with o-phthaldialdehyde [23]. For plasma enrichment
measurements, plasma Phe and Tyr were derivatized to their t-butyldimethylsilyl derivatives
and analyzed by using gas chromatography–mass spectrometry (GC-MS) (Agilent 6890N GC/
5973N MSD; Agilent) by using selected ion monitoring of masses 336 and 341 for unlabeled
and labeled (ring-2H5) Phe, respectively; and masses 466, 468, and 470 for unlabeled and
labeled (ring-2H2 and ring-

2H4) Tyr, respectively [24]. Thereafter, ratios of labeled: unlabeled
derivatives were analyzed by using gas chromatography–combustion isotope ratio mass spec-
trometry (FinniganMAT 252; ThermoFisher Scientific). Standard regression curves were
applied in all isotopic enrichment analyses to assess the linearity of the mass spectrometer and
to control for the loss of tracer.

Muscle analysis
For the measurement of L-[ring-2H5]Phe enrichment in the muscle tissue–free amino acid
pool and mixed muscle protein, 55 mg wet muscle was freeze-dried. Collagen, blood, and other
non-muscle fiber material were removed from muscle fibers under a light microscope. The iso-
lated muscle fiber mass (10–15 mg) was weighed, and 8 volumes (8x dry weight of isolated
muscle fibers x wet:dry ratio) of ice-cold 2% perchloric acid were added. The tissue was homog-
enized and centrifuged. The supernatant fluid was collected and processed in the same manner
as plasma samples, such that tissue-free L-[ring-2H5]Phe enrichments could be measured by
using their t-butyldimethylsilyl derivatives on a GC-MS.

The protein pellet was washed with 3 additional 1.5-mL washes of 2% perchloric acid, dried,
and hydrolyzed in 6 mol/L HCl at 120°C for 15–18h. The hydrolyzed protein fraction was
dried under a nitrogen stream while heated to 120°C, and a 50% acetic acid solution was
added, and the hydrolyzed protein was passed over a Dowex exchange resin (AG 50W-X8,
100–200 mesh hydrogen form; Biorad) by using 2 mol/L NH4OH. The eluate was collected,
and L-[ring-2H5]Phe was derivatized to N-methyl-N-tert-butyldimethylsilyltrifluoroacetami-
dephenylethyl- amine [25]. Thereafter, ratios of labeled:unlabeled derivatives were determined
by using GC-MS. Standard regression curves were applied to assess the linearity of the mass
spectrometer and to control for the loss of tracer.

Calculations
The intravenous infusion of L-[ring-2H5]Phe and L-[ring-

2H2]Tyr, and arterialized blood sam-
pling were used to assess whole-body protein metabolism in steady state conditions. The total
Phe rate of appearance (Ra) was calculated by using modified Steele’s equations [26, 27]. These
variables were calculated as follows:

ð1Þ TotalRa ¼ ðF�ðpV xCðtÞ x dEiv=dtÞÞ=EivðtÞ ¼ protein breakdown

where F is the intravenous tracer infusion rate (μmol/kg/min), pV (0.125) is the distribution
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volume for Phe [27]. C(t) is the mean plasma Phe concentration between two consecutive time
points. dEiv/dt represents the time-dependent variations of plasma Phe enrichment derived
from the intravenous tracer, and Eiv(t) is the mean plasma Phe enrichment from the intrave-
nous tracer between 2 consecutive time points. Total Ra represents the plasma entry of Phe
derived from whole-body protein breakdown. The total rate of disappearance of Phe (total Rd)
equals the Phe-to-Tyr conversion rate (first step in Phe oxidation) and utilization for protein
synthesis. These variables were calculated as follows:

ð2Þ Total Rd ¼ total Ra � ðpV x dC=dtÞ

ð3Þ PHE to TYR conversion ¼ TyrRa x ððEtðtÞÞ=ðEpðtÞÞÞ x ðPheRd=ðFpþ PheRdÞÞ

ð4Þ Protein synthesis ¼ total Rd � PHE to TYR conversion

ð5Þ PHE net balance ¼ protein synthesis� Total Ra

where Phe Rd and Tyr Ra are the flux rates for Phe and Tyr, respectively; Et(t) and Ep(t) are the
mean plasma enrichments of L-[ring-2H2]Tyr and L-[ring-

2H5]Phe, respectively; and Fp is the
infusion rate of the Phe tracer. The FSR (in %/h) was calculated by using the precursor-product
method [24]:

ð6Þ FSR ¼ ðDEp=ðEprecursor x tÞÞ x 100

where ΔEp is the Δ increment of muscle protein-bound L-[ring-2H5]Phe during the incorpo-
ration period. Eprecursor is the average plasma L-[ring-2H5]Phe enrichment during the time
period for determination of amino acid incorporation, and t indicates the time interval (h)
between biopsies.

Statistical analysis
A one-way ANOVA was used to assess differences in subject characteristics, hormone, amino
acid concentrations and basal FSRs between treatments. Further, a 2-factor ANOVA with time
as factor 1 and treatment as factor 2 was used to assess differences between treatments over
time (time x treatment interaction) for plasma Phe, Tyr, Leu concentrations and plasma
enrichments, as well as whole-body protein metabolism. In case of a significant time x treat-
ment interaction, pairwise comparisons for individual time points were applied to locate differ-
ences between treatments. A 2-factor repeated measures ANOVA was used to assess
differences over time and between treatments for 24-h protein turnover (protein intake, excre-
tion and balance). Finally, Gender comparisons for whole-body protein metabolism and basal
FSRs were made using a 2-factor ANOVA with gender as factor 1 and treatment as factor 2
(gender x treatment interaction). Statistical significance was set at P<0.05. All calculations
were performed with the SPSS 20.0 software package (SPSS Inc). All data are expressed as
means ± SEMs. For whole-body protein metabolism, FSR and 24 h protein turnover data we
also report the 95% confidence interval as well as the mean difference, SEMs and the 95% con-
fidence interval of the mean difference.

Results
All individual data points behind means, medians and variance measures presented in the
results, tables and figures are available in S1 File.
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Plasma analyses
Basal plasma insulin (10.9 ± 1.8 vs 11.0 ± 1.7 mU/l; P = 0.879) and glucose (4.95 ± 0.18 vs
4.62 ± 0.11 mmol/l; P = 0.153) concentrations did not differ between the HP vs LP group after
12 weeks.

Plasma Phe is illustrated over time in Fig 2A. After 12 weeks on a HP vs LP diet plasma Phe
levels were not significantly different between groups (P = 0.282). Plasma Tyr (P<0.05) and
Leu (P<0.03) concentrations were significantly increased after the HP diet compared with the
LP diet. At week 12, basal EAA (P = 0.551), basal branched-chain amino acids (P = 0.402) and
basal total amino acids (P = 0.535) concentrations in plasma were not different between the
HP vs LP group (Table 2).

Fig 2B shows the time course of the plasma L-[ring2H5]phenylalanine enrichment. Plasma
L-[ring2H5]phenylalanine enrichments were significantly higher in the LP group compared
with the HP group (P<0.001).

Whole-body protein metabolism
Whole-body protein synthesis, breakdown, oxidation and net balance in the fasted state are
expressed as the AUC in Fig 3. Whole-body protein synthesis, reflected by Phe-utilization and
expressed as the average of total Phe Rd minus the conversion rate of Phe into Tyr, was signifi-
cantly higher in the HP group (38.9±4.2 μmol Phe/kg/h, 95%CI: 36.1–42.0; P<0.01) vs LP
group (35.1±3.6 μmol Phe/kg/h, 95%CI: 31.5–38.6; P<0.01), with a mean difference of 4.01
±2.10 μmol Phe/kg/h, 95%CI: -0.60–8.63; P = 0.008. Phenylalanine Rd was also increased in the
HP-group (43.0±4.4 μmol Phe/kg/h, 95%CI: 40.3–46.1; P<0.03) vs the LP group (37.8
±3.8 μmol Phe/kg/h, 95%CI: 34.3–41.3; P<0.03), with a mean difference of 5.44±2.08 μmol
Phe/kg/h, 95%CI: 0.86–10.02; P = 0.024.

Whole-body protein oxidation, which was expressed as the average of the Phe-to-Tyr con-
version rate, was greater in the HP group (4.1±0.6 μmol Phe/kg/h, 95%CI: 3.85–4.53; P<0.001)
vs the LP group (2.7±0.6 μmol Phe/kg/h, 95%CI: 2.29–3.11; P<0.001), with a mean difference
of 1.49±0.24 μmol Phe/kg/h, 95%CI: 0.96–2.03; P = 0.000. The deduction of synthesis minus
breakdown, resulting in whole-body protein balance, was more negative in the HP group (-4.1
±0.5 μmol Phe/kg/h, 95%CI: -4.50 –-3.84; P<0.001) compared with the LP group (-2.7

Fig 2. Mean (+SEM) plasma Phe (A) concentration (μmol L-1) and plasma L-[ring-2H5]Phe (B) enrichment (MPE) after 12 weeks on a HP (grey) vs LP
(black) diet. n = 15. Data were analyzed with a two-factor ANOVA (time x treatment). *Treatment effect P<0.001.

doi:10.1371/journal.pone.0137183.g002
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±0.6 μmol Phe/kg/h, 95%CI: -3.14 –-2.34; P<0.001), with a mean difference of -1.43
±0.24 μmol Phe/kg/h, 95%CI: -1.95 –-0.91; P = 0.000.

Whole-body protein metabolism differed significantly between men and women with
higher protein synthesis (P<0.05), protein breakdown (P<0.01) and protein oxidation
(P<0.001) rates as well as a more negative protein net balance (P<0.001) in men compared
with women. When expressed per kg FFM, only protein synthesis and protein breakdown rates
differed between genders, with higher protein synthesis (P<0.03) and protein breakdown
(P = 0.05) rates for women. There were no significant interactions between gender and treat-
ment for whole-body protein metabolism

Muscle tracer analysis and mixed-muscle protein synthesis rates
The increment in muscle protein bound L-[ring-2H5]Phe enrichment between the first and the
second biopsy did not differ between the HP group and the LP group (0.0094±0.0023 vs 0.0101
±0.032 MPE; P = 0.395).

Post-absorptive mixed MPS rates (Fig 4) did not differ following 12 weeks on either the HP
diet (0.042±0.01%/h, 95%CI: 0.039–0.051; P = 0.620) or LP diet (0.045±0.01%/h, 95%CI:
0.035–0.050; P = 0.620), with a mean difference of 0.002±0.004%/h, 95%CI: -0.007–0.012;
P = 0.621. FSRs were significantly higher in women vs men (P<0.01), without any significant
interaction for gender vs treatment.

24h-nitrogen retention
In Fig 5 we present results for this subgroup, taken fromMartens et al. [15] providing estimates
of 24h- whole body protein turnover, based on nitrogen retention data. 24h-protein turnover,
based on protein intake and nitrogen excretion, did not differ between the HP (0.1 ± 7.7 g/d,
95%CI: -11.7–12.7; P = 0.892) vs LP (1.4 ± 5.1 g/d, 95%CI: -14.7–15.0; P = 0.892) diet groups at
baseline, with a mean difference of 0.41 ± 8.7 g/d, 95%CI: -18.8–19.6; P = 0.964. During the fol-
lowing 12 weeks, protein intake and nitrogen excretion were significantly increased in the HP
(P<0.001) and significantly decreased in the LP (P<0.03) diet group compared with baseline.
Therefore, 24h-protein turnover at week 12 was significantly different between the HP
(10.7 ± 5.2 g/d, 95%CI: -0.50–21.2; P<0.01) vs LP diet groups (-18.5 ± 4.4 g/d, 95%CI: -31.7
–-5.3; P<0.01), with a mean difference of 28.9 ± 7.7 g/d, 95%CI: 11.8–46.0; P = 0.003. More-
over, the observed change between baseline and week 12 was significantly different between

Table 2. Hormone and amino acids concentrations in plasma at baseline.

HP LP P-value

Glucose (mmol L-1) 4.9 ± 0.2 4.6 ± 0.1 0.948

Insulin (mU L-1) 10.9 ± 1.8 11.0 ± 1.7 0.202

Phenylalanine (μmol L-1) 55 ± 2 52 ± 4 0.121

Tyrosine (μmol L-1) 54 ± 3 46 ± 3 <0.01

Leucine (μmol L-1) 122 ± 5 105 ± 8 <0.01

Total BCAA (μmol L-1) 457 ± 42 374 ± 41 0.199

Total EAA (μmol L-1) 969 ± 75 880 ± 54 0.402

Total AA (μmol L-1) 2566 ± 148 2642 ± 117 0.717

BCAA, branched chain amino acids; EAA, essential amino acids; AA, amino acids. Values are expressed as mean ± SEM. Data were analyzed with one-

way ANOVA.

doi:10.1371/journal.pone.0137183.t002
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the HP (9.3 ± 5.9 g/d, 95%CI: -4.2–23.8; P<0.03) and the LP treatment (-18.6 ± 8.5 g/d, 95%CI:
-35.7 –-1.6; P<0.03), with a mean difference of 28.5 ± 10.0 g/d, 95%CI: 6.4–50.5; P = 0.016.

Protein intake (P<0.001) and nitrogen excretion (P<0.01) were significantly different
between men and women. However, 24h-protein turnover (P = 0.485) as well as the changes
over time (P = 0.626) did not differ between both genders

Discussion
In the current study, continuous intravenous infusions of L-[ring-2H5]Phenylalanine and L-
[ring-2H2]Tyrosine were used to asses whole-body protein metabolism and MPS rates in the
basal fasted state, in subjects that followed either a HP diet or LP diet for 12 weeks. Prolonged
adaptation to a low dietary protein intake may lead to muscle loss due to a negative whole-
body protein balance and a decline in basal muscle protein synthesis rates [13]. The results
from the present study show that basal whole-body protein synthesis, breakdown, and oxida-
tion rates were modified following three months on a LP when compared with a HP diet. Pro-
tein turnover was significantly lower with significant lower protein synthesis, protein
breakdown, and protein oxidation rates on the low protein intake diet. Despite the lower

Fig 3. Mean (+SEM) basal whole-body protein metabolism expressed as the AUC (μmol Phe/kg/h) after 12 weeks on a HP (grey) vs LP (black) diet.
n = 15. Data were analyzed with a two-factor ANOVA (time x treatment). *Treatment effect P<0.001.

doi:10.1371/journal.pone.0137183.g003

Impact of Prolonged High vs Low Protein Intake

PLOS ONE | DOI:10.1371/journal.pone.0137183 September 14, 2015 10 / 15



protein turnover rates, post-absorptive whole-body net protein balance had not declined fol-
lowing prolonged adaptation to the low when compared with the high protein intake diet (Fig
3).

Post-absorptive plasma phenylalanine kinetics can be used to provide some insight in
whole-body protein turnover rates. When combined with the intravenous infusion of a tyro-
sine tracer, phenylalanine oxidation rates can be assessed via the rate of phenylalanine hydroly-
sis to tyrosine [28, 29]. Despite obvious limitations [28, 29], phenylalanine kinetics provide us
with a good estimate of potential differences in basal protein breakdown, synthesis, and oxida-
tion rates on a whole body level. However, these measurements of basal protein synthesis and
protein breakdown rates do not necessarily reflect skeletal muscle tissue protein metabolism.
Therefore, we also collected multiple muscle tissue biopsies to measure fasting mixed muscle
protein fractional synthesis rates. In line with the absence of a decline in post-absorptive
whole-body protein balance following adaptation to a low protein intake, we did not detect a
decline in basal mixed muscle protein synthesis rates when comparing muscle protein synthesis
rates after the low protein versu high protein intake diet. To our surprise, prolonged habitua-
tion to a diet providing only 0.4 g protein per kg body mass per day did not lower basal muscle
protein synthesis rates, with muscle protein synthesis rates being maintained at the same level
observed in the high protein intake diet (Fig 4). The observation that post-absorptive whole-
body protein balance as well as mixed muscle protein synthesis rates were not reduced on the
low protein intake regimen seems to be in line with the observations in the full study, in which
no changes in body composition were observed following 12 weeks of adaptation to a low or
high protein intake with respect to body weight, FFM and fat mass. Apparently, prolonged
adaptation to a low protein intake reduces whole-body protein turnover but does not seem to
compromise whole-body protein balance, basal muscle protein synthesis rates or skeletal mus-
cle mass maintenance. This study is the first to show that on a low protein diet (0.4 g/kg/d)
body mass and fat free mass can be preserved by lowering whole-body turnover and

Fig 4. Mean (+SEM) mixedmuscle protein fractional synthesis rates (%/h) in the basal state after 12 weeks on a HP (grey) vs LP (black) diet. n = 15.
Data were analyzed with a one-way ANOVA.

doi:10.1371/journal.pone.0137183.g004
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maintaining basal muscle protein turnover rates. Future work is required to investigate the fac-
tors responsible for orchestrating such a protein conservation strategy.

Though we show that prolonged adaptation to a (very) low protein intake diet (0.4 g/kg/d)
allows maintenance of post-absorptive whole body protein balance as well as basal muscle pro-
tein synthesis rates, we can only speculate on the impact of prolonged adaptation to a low com-
pared with a high protein intake on 24 h whole-body protein balance as well as post-prandial
muscle protein synthesis rates. It could be speculated that a low versus high protein intake diet
modulates dietary protein digestion and amino acid absorption, peripheral amino acid uptake,
muscle protein synthesis and breakdown in an effort to maintain a proper post-prandial mus-
cle protein synthetic response to feeding and, as such, allow skeletal muscle maintenance. In
the full study [15] we performed 24 h nitrogen balance analyses as a means to verify adherence
and compliance to the low and high protein intake diet. We could use these data to get some
insight in the overall 24 h whole-body protein balance following ingestion of a low or high pro-
tein diet. The 24 h nitrogen excretion data revealed a more positive whole-body protein balance
in the HP versus LP diet [15], suggesting greater tissue protein accretion following the high
protein intake diet. However, this seems to be at odds with the absence of any significant
changes in body mass or fat free mass over the 12 week time span in both dietary conditions
[15]. However, the more positive whole-body protein balance on the high protein versus low

Fig 5. Mean (+SEM) protein intake, excretion and balance (g/d) at baseline and after 12 weeks on a HP (grey) vs LP (black) diet. n = 15. Data were
analyzed with a two-factor repeated measures ANOVA (time x treatment). *Treatment effect P<0.001. #Time effect P<0.03. Adapted and modified from
Martens et al. [15].

doi:10.1371/journal.pone.0137183.g005
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protein intake diet when assessed using 24 h nitrogen balance is likely attributed to the applied
methodology. Previous work has already shown implausible high nitrogen retention rates
when ingesting large amounts of protein [30–32].

Evidently, nitrogen retention data should be interpreted with much caution when using
them as a proxy for changes in whole-body or muscle protein metabolism. Clearly, more work
is required to assess whether the maintenance of post-absorptive whole body protein balance
and basal muscle protein synthesis rates are accompanied by changes in the (muscle) protein
synthetic response to feeding [33].

Though we did not intend to assess potential gender differences in basal protein balance
and fasting MPS rates, we did observe differences with respect to whole-body protein balance
and mixed muscle protein synthesis rates between men and women. Despite the small number
of men and women, our data show that post-absorptive whole-body and muscle protein syn-
thesis rates where greater in women compared with men after correction for differences in fat
free mass. This seems to be in line with some [34] but certainly not all researchers, who gener-
ally fail to detect any major gender differences with respect to post-absorptive muscle protein
synthesis rates [35–38].

In conclusion, prolonged adaptation to a low dietary protein intake lowers fasting, whole-
body protein turnover rates, but does not compromise post-absorptive whole-body net protein
balance. Post-absorptive skeletal muscle protein synthesis rates are maintained even when con-
suming a (very) low protein intake diet (0.4 g/kg/d).
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