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Abstract 

Ingestible electronics have revolutionized the standard of care for a variety of health conditions. 

Extending the capacity and safety of these devices, and reducing the costs of powering them, could 

enable broad deployment of prolonged monitoring systems for patients. Although previous 

biocompatible power harvesting systems for in vivo use have demonstrated short (minute-long) bursts 

of power from the stomach, little is known about the capacity to power electronics in the longer term 

and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-

harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The 

device delivered an average power of 0.23 µW per mm
2
 of electrode area for an average of 6.1 days of 

temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the 

capacity to provide power for prolonged periods of time to the next generation of ingestible electronic 

devices located in the gastrointestinal tract. 
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Thanks to recent advances in ingestible electronics, it is now possible to perform video capture
1
, 

electronically-controlled drug release
2
, pH, temperature, and pressure recording

3
, and heart rate and 

respiration monitoring
4
, all from within electronic pill-like capsules placed in the gastrointestinal (GI) 

tract. Recent progress in energy harvesting and wireless power transfer is offering new options to 

power these devices, but many are not well suited to ingestible capsules.  For example, traditional 

harvesting sources such as thermal
5
, and vibration

6
 energy harvesting are complicated by the lack of 

thermal gradients in the stomach and challenges in obtaining mechanical coupling to motion sources.  

Wireless power-transfer via near-field
7
 or mid-field

8
 coupling is also challenging in this case, due to the 

unconstrained position and orientation of the capsule.  Hence, there is still a strong reliance on primary 

cell batteries for ingestible electronics.  Hence, most current ingestible electronics still rely on primary 

cell batteries, many of which require toxic materials, have limited shelf life due to self-discharge and 

can cause mucosal injury
9
. There is therefore a need to explore alternative sources, particularly as the 

circuits scale to lower average power, to enable their use in a practical system. 

A few key trends have led to our work.  For one, the average power demands of 

Complementary Metal-Oxide-Semiconductor (CMOS) technology have been scaling into the nanowatt 

(nW) level thanks to advanced design techniques and technology improvements
10–12

, enabling a wider 

array of harvesters. Next, advances in material design and packaging have demonstrated fully passive 

gastric devices that are small enough to be swallowed, but then unfold after ingestion to remain long 

term, up to 7 days in the stomach for ultra-long drug delivery
13

.  Such devices could one day provide an 

ingestible non-invasive platform for active wireless electronic sensors that perform long term in vivo 

vital signs monitoring.  Finally, interest in bio-compatible galvanic cells is rising, with a focus on (1) 

transient electronics that fully disappear at the end of their tasks
14

, (2) electrolytes that are supplied on 

demand to extend the shelf life of the cell
15

, (3) material selection for fully biocompatible and 
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biodegradable cells
14–17

 and recently, (4) edible gastric-Mg-Cu cells, which can power near-field 

communication of medication compliance information to a body-worn patch for up to a few minutes
18

. 

Additional support for the potential of long-term harvesting is provided by two in vitro studies on cells 

in synthetic gastric-fluid- like electrolytes, which demonstrated measurements lasting a number of 

hours
19,20

. 

This has led us to investigate the practical use of a biocompatible galvanic cell for powering a 

wireless sensor node in the GI tract. Here, we report an energy-harvesting system with temperature 

sensing and wireless communication, evaluated in a porcine model. We demonstrate a fully 

autonomous sensor system, created from commercial semiconductor parts, and powered solely by the 

cell and capable of providing central temperature measurements. The device can also use the harvested 

power to activate drug release via electrochemical dissolution of a gold membrane. 

Results 

Basic principle and initial characterization 

The bio-galvanic cell characterized in this work consists of a redox couple formed by a 

dissolving metallic anode that undergoes galvanic oxidation and an inert cathode that returns electrons 

to the solution.  In our case, the gastric or intestinal fluids of the surrounding environment form the 

electrolyte. The final performance of the cell is a strong function of environmental conditions that 

change significantly during normal gastrointestinal routines. For example, the pH, chemical 

composition, and heterogeneity of the stomach contents
21

 vary considerably throughout the day. Hence 

there is a need to obtain the performance of the cell directly by in vivo measurement characterization. 

As previous studies have noted
14,22

, the cathodic reaction proceeds with either hydrogen gas evolution 
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or by the reduction of dissolved oxygen gas depending on the pH of the solution, and is usually limited 

by mass-transport conditions. The relevant cathodic reactions are given by: 

2 H
+
   +   2 e

−
    ↔    H2  (1) 

O2  + 2H2O + 4e
−
   ↔    4OH

−
 (2) 

A number of materials have been proposed as dissolving anodes, most prominently, 

magnesium
18,23

 and zinc
15,19,20

, which are noted for their dietary value
24

, low cost, ease of 

manufacturability, and their relatively low position in the electrochemical series
25

. The reaction at the 

anode is given by:  

X
 
      ↔     X

n+  
 +   n e

−
     (3) 

where X = Mg or Zn. The cathode, which sends electrons back into the solution, was created from pure 

copper metal
26

.  

Given prior successes in utilizing magnesium, which has a higher reduction potential, for in 

vivo power generation
18

, we first considered magnesium anodes for our initial in vivo characterization 

evaluating the impact of electrode size.  In Figure 1 (a)-(d), we characterized a Mg-Cu electrode system 

in a porcine model using small square electrodes of differing areas, mounted on the tip of an endoscope 

as shown in Fig. 1(a) (see Methods).  The current density was stepped in fixed increments resulting in 

the voltage and power densities shown in Fig 1(b). The resulting average peak power density across all 

sizes shown in Fig 1(c) was 2.48 µW/mm
2
 in the stomach (0.97 µW/mm

2
 in the duodenum), and the 

average observed cell voltage in Fig 1(d) was 0.23 V. Consistent with the low observed cell voltage, we 

also noted a large amount of corrosion on the magnesium electrodes, suggesting that the lifetime of a 

magnesium-based prototype would not exceed 24 h, thereby making week-long wireless measurements 

unfeasible. 
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Motivated by the observations of corrosion and given the intention to evaluate extended gastric 

residence of these electrodes, we performed extended in vitro studies of electrode longevity (see 

Methods).  With the configuration shown in Fig 1(e), we compared Mg and Zn anodes in side-by-side 

measurements using a load-sweep methodology (50 kΩ down to 150 Ω in 255 steps). Fig 1(f) shows 

the maximum power observed in each load resistance sweep.  The Mg anode gave 1.3× higher cell 

voltage and 6× higher peak power density, but the Zn anode lasted much longer (more than 23×), 

suggesting Zn for longer term use. The combination of the experiments presented in Figure 1 allowed 

us to proceed to the design of a zinc-based measurement capsule to enable evaluation of the power 

parameters via a stand-alone device in vivo.  

 

Characterization in the stomach environment 

We created a measurement capsule (Figure 2, and Methods) to obtain detailed measurements of 

the performance of the Zn-Cu cell in a porcine stomach and transmit the results to a nearby basestation.  

The design was fully self-sufficient and wireless to avoid a tether to the outside that could reduce the 

practical measurement duration or impact the comfort or normal routines of the animal.  A 

conventional coin-cell battery powered the capsule in order to avoid loading the electrodes with the 

demands of the circuitry during measurement, allowing a precise characterization of the cell with a 

separate controllable load. 

The capsule was created using all commercial low-cost semiconductor parts (Fig. 2 a and b) and 

consisted of: (1) an 8-bit digitally controlled potentiometer
27

 to set the load resistance of the cell, and 

(2) a microcontroller system-on-chip
28

 and its associated peripherals, which contained (i) a 10-bit 

analog-to-digital converter (ADC) that measured the electrode voltage, (ii) a temperature sensor, (iii) a 

wireless transmitter, and (iv) a processor that ran software code to control all of the functions. 
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To characterize the cell, the software was programmed sweep the load resistance through all 

256 available codes (50 kΩ down to 150 Ω in 255 linear steps), taking voltage measurements at each 

point.  Each step was held for 2 s, and at the end of a sweep, the resistor was reset to 50 kΩ and held 

for a further 64 s for the electrode voltage to re-equilibrate to the light-load condition before starting 

the next measurement (full measurement time: 576 s per sweep).  The data, which included electrode 

voltages at each of the 256 resistor-codes, and the temperature sensor measurements, were transmitted 

as a Frequency-Shift-Keying-modulated, +10 dBm, 920 MHz wireless signal, to a commercial 

basestation receiver, mounted about 2 m away (resistance sweep methodology flow diagram and 

example measured waveforms illustrated in Supplementary Fig. 1 and 2 respectively).  We also 

characterized the Zn-Cu cell and measurement electronics in synthetic gastric fluid (SGF) in vitro prior 

to the animal experiments (data shown in Supplementary Fig. 3). 

The measurement capsule was initially deployed in five animals with the results summarized in 

Fig. 2(d)-(i) and full data shown in Supplementary Fig. 4 and 5 (see Methods for experimental details).  

Due to the recognized slow motility of the porcine GI tract
29,30

 and the size of the capsule, the devices 

were retained in the animal for 7 days to 10 days without additional design considerations. During this 

time, the data were collected as the animal performed its normal daily routines.  The traces in Fig. 2(d)-

(f) correspond to an example device, and show the electrode voltage measured at the point of maximum 

power density for each load resistance sweep (one sample every 576 s), as well as the associated peak 

power density level, and the temperature recorded by the temperature sensor. Figs. 2(h) and 2(i) give 

the statistics of the measured peak power and optimum source voltage. Across all five stomach-

deployed capsules, the mean time for which power was available, the mean peak power Pmax, and mean 

voltage at Pmax were 5.0 days, 1.14 µW/mm
2
 and 0.149 V respectively.  There was a large amount of 
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variation in the transit time of the devices, which was anticipated and consistent with prior observations 

of the porcine GI tract
29–31

.  

Interestingly, by correlating the anatomic location of the capsule determined through serial x-

rays we demonstrated that the peak power drops significantly after passage through the pylorus to the 

small intestine. The combination of Figs. 2(e) and 2(g) shows an example of this correlation.  To 

confirm this observation, we deployed 3 devices directly into the small intestine and tracked their 

passage through the colon until exit. The three devices showed an average of 13.2 nW/mm
2
 of peak 

power density and the power remained present, between 1 to 100 nW/mm
2
, throughout the passage 

time until exit (see Supplementary Fig. 4). 

 

Harnessing power in vivo for sensing, communication, and drug delivery 

To demonstrate the utility of the energy obtained, we created a second capsule powered entirely 

by the Zn-Cu cell (see Figure 3, and Methods).  This harvested power was used for all functions of the 

capsule, which included temperature measurement, software control, and wireless transmission to a 

basestation located 2 m away.  In this design (Fig. 3a) we used a commercial energy harvesting boost-

converter integrated circuit (IC)
32

, which took energy directly from the Zn-Cu cell at low voltage (0.1 

to 0.2 V) and boosted it onto a temporary storage capacitor at a higher voltage (between 2.2 and 3.3 V) 

for use by the circuits. The encapsulated sensor device prepared for deployment is shown in Fig 3(b). 

When the input source is applied, the boost converter IC pulls energy from the input voltage Vin 

and transitions through a startup region.  Once the startup is complete, the main higher-efficiency boost 

converter is activated and sets the OK signal, which then powers the microcontroller through a switch.  

From here the microcontroller transmits packets containing temperature measurement data at a variable 

rate depending on the input power.  Fig. 3(c) shows an example of steady state operation of the capsule, 
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where the storage capacitor is slowly charged until enough energy is available for packet transmission. 

The system regulates the rate by periodically sampling the supply voltage VDD to determine whether to 

send a packet or wait for more energy to be harvested. If the sampled voltage is below 3.0 V, the 

system remains in a low-energy sleep mode for 4 s before attempting to sample again.  If the voltage is 

above 3.0 V, the system transmits a packet and then returns to periodically sampling the voltage 

(initially 0.5 s after the packet, and then again every 4 s) to determine when to transmit the next packet.  

Further details on the capsule design and operation are provided in Supplementary Figs. 6, 7, and 8. 

Since packet transmission is the dominant energy consumer, we used the number of transmitted 

packets in a given window length ("#$%&'#) to estimate the overall amount of energy delivered to the 

load. Each packet is 176 bits long including preamble and headers and is transmitted at 50 kbps, 

resulting in a 3.5 ms packet transmitted at +10 dBm. Prior to the experiments, a laboratory source-

meter was used to characterize the energy consumed by the capsule in transmitting each packet as a 

function of the VDD, 	)*+, = .(011).  Then during the in vivo experiment, the number of packets 

transmitted during a given interval was used to determine the average power (3454,789)	delivered to the 

load using: 

3454,789 =
1

"#$%&'#
)*+,(011 ; )

7<<	=

 
(4) 

where m represents a packet and Σ is the sum over all the packets transmitted within "#$%&'#. 

011 ;  is the measured system VDD at the beginning of each packet transmission – information that 

was transmitted along with the temperature measurement data. To obtain an accurate packet count 

despite the possibility of dropped packets, we also transmit an internally generated packet count to the 

basestation along with the other measurements.  
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The system was deployed in 3 animals and the results are summarized in Fig. 3(d) (full 

measurements in Supplementary Fig. 9). Fig 3(e) shows the power delivered from the cell to the load 

using eqn. (3), with "#$%&'# = 1 h.  Fig 3(f) shows the measured temperature sensor data, and Fig 3(g) 

shows the RF signal strength seen by the receiving basestation for each packet.  Of note was that 

temperature readings below the expected core or central temperature were observed to coincide with 

daytime hours and times around feeding (Fig. 3f), probably representing transient temperature 

decrement associated with ingestion of foods and liquids. The disconnected regions in the figures 

represent periods for which electrical power was not sufficient to send wireless packets, for example, 

due to variations in both the fluidic environment of the stomach and the position of the capsule within 

it.  On average, packets were received in 91% of the 1 h time slots during the three experiments.  

Across all of the experiments, the devices operated for a mean of 6.1 days, delivering an average power 

of 0.23 µW per mm
2
 of electrode area to the load, and transmitting packets with temperature 

measurements every 12 seconds. 

To further demonstrate the utility of the energy harvested by the system, we designed and 

fabricated a device for drug release that can be triggered with the harvested energy, as shown in Fig 

3(h), and tested this device in vitro with physiologic gastric fluid (See Methods for the details of device 

fabrication). The device, as shown in Fig 3(i), encapsulates a model drug (in this case, methylene blue) 

in a PMMA reservoir (2 mm × 1 mm × 1.5 mm) that is sealed with a 300 nm thick gold membrane. The 

release is achieved via electrochemical dissolution of the membrane, as demonstrated previously by 

Santini et. al
33

. The gold membrane, which is otherwise inert in the gastric environment, can be 

chemically corroded when the potential is raised (+1.04 V with respect to Saturated Calomel Electrode) 

to allow formation of water-soluble chloro-gold complexes
34

. Our results show that the device remains 

intact when it is connected to the system ground (shorted to the zinc electrode) in physiologic gastric 
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fluid (See Methods for experimental details). Upon activation via the application of discharge of 

voltage from 2.0 to 2.3 V with respect to zinc system ground, the corrosion of the gold weakens the 

membrane integrity, causing crack formation that is visible at t = 155 minutes (blue arrow, shown in 

the middle inset of Fig. 3j), and ultimately the visible release of the contents (indicated with red arrow 

at the right inset of Fig. 3j.) through the corroded membrane. The voltage profile plotted in Fig 3(k) 

shows the discharge characteristics that gradually activate the release.  The initial shallow ramp from 

3.15 V to 2.95 V represents the microcontroller boot-up followed by temperature measurement. The 

steep drop from 2.95 V to 2.3 V represents the packet transmission, and the more slow discharge from 

2.3 V to 2.0 V represents charges delivered to the gold electrode. With the 220 µF storage capacitance, 

this represents 66 µC of charge delivered to the electrode per pulse.  The pulse ends when the boost 

converter toggles the OK signal to low (due the storage voltage declining below the threshold), which 

deactivates the microcontroller and release electrode switch, and allows the storage capacitor to begin 

charging in preparation for the next cycle.  The average pulse interval during the experiment was 11.9s, 

and charge delivery rate was 5.5 µC/s.  For the designed size of 2 mm x 1 mm active gold area (with 

300 nm thickness), the total theoretical charge necessary to completely dissolve the electrode was 17.0 

mC, and hence an ideal dissolution time of 51 min. In gastric fluid, it is expected that side reactions can 

occur on the electrode surface resulting in a longer release time, hence the observed time of 155 min. 
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Discussion 

Ingestible electronics have an expanding role in the evaluation of patients
35

.  The potential of 

applying electronics or electrical signals for treatment is being explored
36

 and the potential for long 

term monitoring and treatment is being realized through the development of systems with the capacity 

for safe extended gastrointestinal residence
13,37

. Energy alternatives for GI systems are needed to 

enable broad applicability, especially given size and biocompatibility constraints coupled with the 

potential need for long-term power sources and low cost systems. 

Here we report the in vivo characterization of a galvanic cell composed of inexpensive 

biocompatible materials, which are activated by GI fluid.  We have demonstrated energy harvesting 

from the cell for up to 6 days (average power 0.23 µW/mm
2
) and using this energy we have developed 

a self-powered device with the capacity for central temperature measurement and wireless transmission 

from within a large animal model.  The combining of the cell with a boost converter in the energy 

harvesting IC allowed the system to power these more complex electronics, even as the cell voltage and 

power level varied during the experiments. 

The device we have fabricated could be rapidly implemented for the evaluation of core body 

temperature and for the evaluation of GI transit time given the differential temperature between the 

body and the external environment. A recent study evaluating data collected from 8682 patients found 

that peripheral temperature readings did not have acceptable clinical accuracy to guide clinical 

decisions
38

. Hence, continuous automated central temperature measurements via a wireless ingestible 

system may provide significant clinical benefit. We have also demonstrated, via a custom designed 

drug release device, that such an energy harvesting method could be used to activate drug delivery via a 

gold membrane corrosion mechanism. This proof of concept could ultimately allow the incorporation 

drug delivery in the ingestible electronic capsule. 
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  Furthermore, we have characterized and demonstrated the capacity for harvesting from across 

the GI tract including stomach, small intestine and colon.  Interestingly, the available power density 

ranged between a few µW/mm
2
 down to a few nW/mm

2
 across the GI tract. The reduced power in the 

intestine could potentially be explained by anatomical variation between it and the stomach -- diffusion 

could be impaired by close contact with the intestinal walls.  Further development will be required to 

delineate the exact causes and could lead to an improved design.  In the meantime, these observations 

may guide future development of gastrointestinal resident electronic power harvesting systems 

according to their targeted anatomic location. For example, there may be a need for greater storage 

capability to carry energy from the stomach, or depending on the application, it may be necessary to 

support even lower power modes.  

Our electrode area in this study was limited by the availability of a nanowatt-level commercial 

harvester.  Nevertheless, the total elemental zinc present in our largest tested electrode (30 mm x 3.0 

mm x 0.25 mm) was 161 mg.  Assuming extreme case of full dissolution across the six-day experiment, 

the average zinc ion deposit rate for this electrode would be 27 mg/day.  This amount is below the US 

Food and Nutrition Board recommended upper limit UL = 40 mg/day
24

, and in line with levels found in 

over-the-counter zinc supplements (15, 30, and 50 mg/day dosings are commonly available).  Looking 

ahead, we would expect that a custom designed system would be able to target much lower power 

levels and hence integrate smaller electrodes and less zinc deposition than we have tested here. 

Research in ultra-low-power electronics continues to push the boundaries of the average power 

consumption, and already provides a range of options for circuits that could be adapted for use in GI 

applications at the nanowatt level. Examples include energy harvesters (for < 10 nW available power
10–

12
), ADCs and signal acquisition circuits (< 10 nW

39,40
), far field wireless transmitters (< 1 nW 

standby
41

), and mm-scale sensor nodes with sensing and processing (< nW standby
42

). Such systems 
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could allow the electrode dimensions to scale to just a millimetre or two in width and length, and could 

enable broad applications for extended power harvesting from alternative cells for long term 

monitoring of vital signs
4
 and other parameters in the GI tract, especially with the introduction of 

devices that are deployed endoscopically
43

 or self-administered
13

 and have the capacity to reside in the 

gastric cavity for prolonged periods of time.  

Though sufficient for our animal studies, one limitation is the size of the capsule.  Without a 

clear picture of the expected voltage and power levels in vivo at the outset, achieving further 

miniaturization as part of this study would have been challenging.  Given our measured results, and 

with further engineering development, for example, to create a custom single-chip Application Specific 

Integrated Circuit (ASIC)  and to apply enhanced packaging techniques like component stacking, the 

design could potentially be miniaturized by 3 to 5× as compared to the volume of the currently 

presented hardware.  In addition, future work should strive to match animal behavior information, such 

as feeding and motion data, with the measured power level and observed physiologic signals in order to 

better understand the sources of variations observed here. 

One further limitation is the physical design of the electrochemical cell.  Our focus was on 

powering robust in vivo measurements over longer periods of time compared to previously reported 

cells. However, future work should include efforts to improve the voltage and power of the cell; for 

example, by integrating membranes to improve proton exchange
20

 while controlling corrosion of the 

electrodes
44

. In addition, further improving the efficiency of low-voltage boost converters at ultra-low 

power levels will facilitate demonstration with smaller electrode areas (approaching 1 mm x 1 mm), or 

allow energy harvesting across the entire GI tract.  Another important direction of future research will 

be the development of systems that can be safely retained in the GI tract over long periods, thereby 

enabling self-powered monitoring on the order of weeks, months or even years following a single 
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ingestion. This work should focus on solving material-, packaging-, and interface-related challenges in 

order to design a capsule for eventual human trials. 
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Methods 

Magnesium, zinc and copper electrode fabrication and attachment. All electrodes were created 

from pure metal foils (Alfa Aesar, 0.25 mm thick) and cut to the specified length and width dimensions 

to within ± 10%.  Attachment of the zinc and copper electrodes to wires or to the PCBs was performed 

with standard solder and flux, whereas magnesium, which is not solderable, was attached with 2-part 

silver conductive epoxy (8331, MG Chemicals).   

 

In vivo characterization of magnesium-copper system.  Electrodes (with attached wires) were fixed 

via thermoplastic adhesive to opposite sides of a 3D-printed post (30 mm long, 3.8 mm diameter) for 

easy mounting on an endoscope for guidance into the stomach and duodenum.  The electrodes were 

connected by a ~3m long cable which passed through the lumen of the endoscope to a Keithley 6430 

source-meter, which executed the specified current steps and voltage measurements from outside the 

animal. 

 

Electrode longevity comparison. Electrode anode and cathode (with attached wires) were placed side-

by-side (3 mm separation) on a polystyrene support and fixed using 2-part epoxy (20845, Devcon), 

with 10 mm electrode length exposed.  The electrode pairs were submerged in a pH 4 buffer solution 

(33643, Fluka Analytical) and measured using the same electronics as the characterization capsule, 

described below. 

 

Characterization and demonstration capsule fabrication: The PCBs for the capsules were 4-layer 

FR4, with 35-µm copper metallization. The electrodes were soldered onto the PCB for protrusion 

outside the encapsulation. Encapsulation was performed as a 2-step process. Prior to 
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polydimethylsiloxane (PDMS) moulding, the boards were fully coated in 2-part epoxy (1-2 mm thick) 

to act as sealant against moisture and prevent fluid from entering the device via the protruding 

electrodes. The outer layer was PDMS (Sylgard 184, Dow Corning), selected for biocompatibility with 

the stomach environment and moulded into a capsule shape to facilitate passage through the GI tract.  

The electrodes protruded through the back of the encapsulated device and were bent around towards 

the front and secured to the outer layer of the PDMS with 2-part epoxy (20845, Devcon). 

 

In vivo characterization.  All procedures were conducted in accordance with the protocols approved 

by the Massachusetts Institute of Technology Committee on Animal Care.  In vivo porcine studies were 

performed in female Yorkshire pigs aged between 4 and 8 months and weighing approximately 45-

50 kg.  The porcine model was specifically selected given prior observations noting slower transit time 

and thereby providing the capacity for extended residence of a macroscopic device in the GI tract
29,30

.  

Animal sample size was guided by prior work demonstrating proof-of-concept studies with 

gastrointestinal drug delivery and sensor systems
4,13,45

. In vivo experiments were not blinded or 

randomized. Prior to endoscopy or administration of the prototypes the animals were placed on a liquid 

diet for 48 hours.  The animals were fasted overnight immediately prior to the procedure.  On the day 

of the procedure for the endoscopic characterization studies the animals received induction of 

anesthesia with intramuscular injections of Telazol (tiletamine/zolazepam) 5 mg/kg, xylazine 2 mg/kg, 

and atropine (0.04 mg/kg), the pigs were intubated and maintained on inhaled isoflurane 1-3%.  For the 

deployment of the capsule prototypes the animals were sedated via intramuscular injections of the 

above agents.  The esophagus was intubated and an esophageal overtube placed (US Endoscopy).  The 

prototypes were delivered directly to the gastric cavity or endoscopically placed in the small intestine 

through the overtube. Prototypes were followed with serial x-rays. A total of five stomach-deposited 
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characterization devices were evaluated in five separate pig experiments.  One device (C1) was 

retrieved early from the small intestine after recording for 8.3d and passing through the pylorus.  Two 

devices stopped their recording early owing to leakages in the PDMS/epoxy encapsulation: one after 

7.1 days of measurement but prior to reaching the small intestine (C2), and one after 10.1 days of 

measurement, including 8.0 days in the stomach and 2.1 days spent in the small intestine (C4), as 

estimated by the observed power density drop.  Two devices (C3 and C5) recorded all the way to exit 

(8.8d and 7.5d of recording).  The four devices reaching the small intestine exhibited significant power 

density drops co-inciding with extra gastric location.  Three additional characterization devices (C6 to 

C8) were deployed directly into the duodenum to confirm the power density differential, all of which 

recorded from deposition until exit (3.0d, 2.9d, and 2.3d respectively).  Finally, three self-powered 

temperature devices (D1 to D3) were evaluated in three separate pig experiments (6.8d, 6.6d, and 4.7d 

respectively). All three self-powered devices were deployed in the gastric cavity.  Before placing the 

devices, the electrodes were temporarily supplied with 3 V from an external source in order to 

guarantee cold-start of the harvester and to obtain a temperature reading from the room for offline 

calibration of the temperature measurement data.  During and after the experiment, we did not see 

evidence of toxicity from clinical observation. While in place animals were maintained on a liberalized 

diet. 

 

Drug release prototype fabrication.  Drug cavities and the substrate of the release prototype were 

first defined with a conventional carbon dioxide laser engraver (Universal Laser Systems VLS 6.60, 

Engraving Systems LLC) on a 1.5 mm thick poly(methyl methacrylate) (PMMA) board (KJ-35052050, 

McMasterCarr). A 300 nm thick gold layer was deposited on a separate PMMA substrate using an 

electron beam evaporator and a polyvinyl alcohol (PVA) film was adhered to the gold surface. The 
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gold/PVA layer was then peeled off from the substrate and transferred to the delivery device to seal the 

cavity by stamping the device into a thin layer of low viscosity epoxy (EPO-TEK 301-1, Epoxy 

Technology). Here the PVA film acts as a dissolvable temporary support layer to provide mechanical 

rigidity for the 300 nm thin gold film during the transfer process. Methylene blue (M9140, Sigma 

Aldrich) is then added to the reservoir, accessible from the bottom of the device, before it is sealed with 

high viscosity epoxy (20445, Devcon). The relatively high viscosity prevents the infiltration of the 

sealant to the filled cavity. Following curing of the epoxy, the sealed device was put into DI water to 

dissolve the temporary PVA film and subsequently dried in air. An electrical connection was then made 

to the gold layer using conductive epoxy (CW2400, Circuitworks). Finally, all conductive areas except 

the membrane portion of the gold layer covering the drug cavity were insulated with medium-viscosity 

UV-curable epoxy (EPO-TEK OG116-31, Epoxy Technology) and subsequently UV cured. 

 

Demonstration of activated drug release. The release prototype and zinc and copper electrodes 

(preparation as described earlier with 30 mm length and 3 mm width) were submerged in physiologic 

gastric fluid. Gastric fluid was endoscopically extracted from live Yorkshire pigs that were on liquid 

diet two days prior to the procedure. The drug release prototype was connected to a controller board 

described earlier, which harvests and releases the captured energy to the prototype. The demonstration 

proceeded in two phases, (1) a control phase, and (2) the release phase. In the control phase, the 

integrity of the device is first tested submerged in gastric fluid (47 hours in our case), while the 

potential of the gold membrane was maintained at the system ground (0 V relative to the zinc). Upon 

determination of its mechanical integrity, and examining the membrane for leakage, the reservoir along 

with harvesting electrodes were placed in a fresh sample of gastric fluid for the release phase. In this 

phase, the controller was configured to short the reservoir electrode to the system VSTOR to deliver 
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packets of charge at the end of each wake-up interval in order to corrode the electrode. The device 

submerged in gastric fluid was observed through a macroscopic lens, and the electrical profile was 

collected through an oscilloscope. 

 

Data collection: A commercial transceiver evaluation board (SmartRF TrxEB, Texas Instruments) was 

used to receive the 900 MHz FSK packets transmitted from the capsules. For the large animal 

experiments, the board and its antenna were mounted above the steel cage area that housed the animals 

(about 2 m above the ground).  The transceiver board was connected via USB cable to a laptop that 

saved the raw packet information for later offline processing in MATLAB version 2014b 

(MathWorks). 

 

Code availability:  The microcontroller code that was used in this study is available in Figshare with 

the identifier “doi:10.6084/m9.figshare.4451420”
46

. Certain proprietary code from Microchip Inc. that 

was used in the microcontroller is not publicly available. 

 

Data availability:  The data that support the findings of this study are available in Figshare with the 

identifier “doi:10.6084/m9.figshare.4451420”
46

. The authors declare that all other data supporting the 

findings of this study are available within the paper and its Supplementary Information. 
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Figure captions 

 

Figure 1 | Initial in vivo characterization and anode comparison. (a) Mg-Cu electrodes for probing 

the available power in vivo in different areas of the stomach and duodenum, with results shown in b, c 

and d. (b) Example of measured electrode voltage and output power density versus load current density 

(2 mm x 2 mm electrodes, duodenum). (c) Measured peak power density (horizontal bars denote 

mean), taken at the peak indicated in b, for different electrode sizes and locations (N = 3). (d) Voltage 

at peak power in c (N = 3),  (e) Electrode configuration for anode comparison in vitro with 

measurements given in f and g. (f) Measured peak power density across time for both anode 

configurations. (g) Summary of the measured performance. 

 

Figure 2 | Electrical characterization of the gastric battery in a porcine model. (a) Simplified 

architecture of the measurement system. (b) Photograph of the front and reverse sides of the system 

along with encapsulation using epoxy and PDMS.  The PCB includes the programmable load resistor 

(DCP), crystal (XTAL), microcontroller (µP), RF matching network (MATCH), and antenna (ANT) on 

the front side, and the battery (BATT) and decoupling capacitor (CAP) on the reverse. (c) Diagram of 

the experimental setup, including photograph of the encapsulated pill in contact with gastric fluid 

inside the porcine stomach.  (d, e, f) In vivo power characterization for a representative device (C4) 

including d: the voltage at the point of maximum power extraction during each sweep frame, e: the 

peak extracted power level in each frame and f: the measured body temperature.   (g) X-rays at two 

time points showing passage from the stomach to the small intestine and the corresponding drop in 

observed power. (h) Statistical summary of the source voltage characterization data for 8 deployed 
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devices (window size, 1h; IQR, interquartile range). (i) Corresponding peak power measurements for 

the 8 devices. 

 

Figure 3 | Demonstration of the gastric cell powering temperature measurement, wireless 

transmission, and drug delivery.  (a) Architecture of the harvesting system. (b) The fabricated and 

encapsulated system printed circuit board. (c) Snapshot of storage capacitor during continuous 

harvesting in SGF. (d) Summary of the in vivo measured performance of three deployed devices in a 

porcine model. (electrode area: 30 mm x 3 mm, thickness: 2 × 250µm). (e) Example of the full in vivo 

measurement data for a representative device (D1), including the estimated average power harvested by 

the board in t = 1 h windows versus time and the overall average power (red line).  (f) In vivo 

measurement of the body temperature performed using the harvested power. (g) Received signal 

strength indication (RSSI) at the receiver for packets transmitted from the body using the harvested 

power. (h) Image of a drug release prototype device, placed on a United States dime (scale bar, 5 mm). 

(i) Cross-sectional view of the device in h, where methylene blue is contained in a PMMA reservoir 

sealed with a 300 nm gold membrane and epoxy. (j) Demonstration of self-powered release (blue tail) 

from the device (yellow box) after activation in a beaker of porcine gastric fluid. Inset shows sequential 

images where the simulated drug is released in gastric fluid through gold corrosion. The gold 

membrane is intact in the beginning (t = 5 min) before triggered corrosion weakens the gold membrane 

causing crack formation on the film at t = 155 min (as shown by blue arrows), and ultimately the 

release of significant amount of methylene blue as shown at 355 min (blue color dye, shown in the red 

arrow). (k) Electrical profile during delivery of a pulse of charge to the release electrode. The dark line 

is the storage capacitor voltage and the lighter line is the voltage on the gold release electrode. 
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Supplementary Figure 4: Measured peak power density (Pmax) and source voltage (obtained at

the peak power, VPmax) for five capsules deposited in the stomach (C1 to C5) and three capsules

deposited in the small intestine (C6 to C8). The sampling rate is one sample every 576 s, and the

data are averaged into bins of size 1 h for display. The dashed lines in C1 to C5 indicate the times at

which x-rays were taken: ‘G’ indicates when the capsule was determined to be in the gastric cavity and

‘I’ indicates the capsule was in the intestine.
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Supplementary Figure 5: Summary of power and voltage levels measured with the

characterization capsule in a porcine model.

5

Device Deposit 
Location 

Electrode  
Length 

 

Time1 

(T) 
Average during T 

Volt. at Peak 
Power 

Peak Power 

(w = 
3mm) 

[μW/mm2] 

C1 Stomach 30 mm 5.71 d 0.148 V      0.98 

C2 Stomach 10 mm 7.16 d 0.127 V      1.07 

C3 Stomach 10 mm 3.20 d 0.135 V      1.58 

C4 Stomach 10 mm 7.86 d 0.144 V      0.88 

C5 Stomach 10 mm 0.88 d 0.185 V      1.21 

C6 Small Int. 10 mm 3.01 d 0.102 V      0.0138 

C7 Small Int. 10 mm 2.90 d 0.090 V      0.0121 

C8 Small Int. 10 mm 2.27 d 0.101 V      0.0136 

(C1,C3,C4,C5) Time of passage to the small intestine, estimated as the duration 
after which the measured peak power level remained below 0.20 μW/mm2. 

(C2)  Device malfunctioned before passage to the intestine.  The total available 
measurement duration of 7.16 d is used. 

(C6, C7, C8)   Total measurement duration until the capsule exited the body. 

1
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Supplementary Figure 6: Connection diagram for the energy harvesting boost-converter IC.

The voltage on the storage capacitor is regulated to 3.3 V, and after startup, the voltage at the input is

regulated to a fixed ratio of the storage capacitor voltage (1/12th). The OK signal turns on and starts

the microcontroller code once the storage capacitor reaches 3.2 V, and turns off if the voltage declines

to below 2.2 V.

Supplementary Figure 7: Energy harvesting demonstration setup. (a) Flow diagram for the

microcontroller code. (b) Illustration of the starting and stopping of the microcontroller code based

on the storage voltage relative the to the hysteresis levels set by the energy harvesting IC. (c)

Measured energy consumption for a packet versus storage voltage level.

a b

Vdd Packet energy

3.0 196.5 µJ

3.1 207.7 µJ

3.2 217.6 µJ

3.3 229.4 µJ

c
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Supplementary Figure 8: Measured waveforms during bench-top operation (Iin= 400 μA). The

top red trace is the voltage across the storage capacitor. The middle green trace is a digita l signal that

is low during the startup and ensures the microcontroller remains disconnected from the storage

capacitor. The bottom cyan trace is the transmitted data.
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Supplementary Figure 9: Measurements from three harvesting capsules (D1 to D3) deposited in

the stomach of a porcine model. Top plot: average power delivered to the system load, estimated

using the number of transmitted packets. Middle plot: temperature measurement result. Bottom plot:

RF signal strength at the receiver basestation. All data are captured at the variable arrival rate of the

packets (every 12s on average across all three experiments) and averaged into bins of size t = 1 h for

display. (s) Statistical summary of the power availability.
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