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Abstract

Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the

phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation

posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the

aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers

and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan

D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that

Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review

summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule

compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.

Facts

● Pin1 is the only known peptidyl-prolyl cis–trans

isomerase (PPIase) that regulates the conformational

transformation of phosphorylated Serine/Threonine-

Proline (pSer/Thr-Pro) motif.
● Pin1 is highly expressed in the majority of cancers

and negatively related to the clinical prognosis.
● Pin1 facilitates multiple cancer-driving pathways.
● Pin1 is a potential target for cancer therapy.

Open Questions

● What are the mechanisms for the high expression

of Pin1 in cancer?

● How does Pin1 upregulate the oncogenes and inhibit

the cancer suppressors?
● What are the molecular mechanisms of Pin1 that

lead to cancer immune escape?
● How does Pin1 facilitate the tumor-promoting

inflammation?

Introduction

Proline (Pro)-directed Serine/Threonine (Ser/Thr)

phosphorylation is a common modification of numerous

signaling pathways. Many Pro-directed kinases, including

mitogen-activated protein kinases and cyclin-dependent

kinases (CDKs), are involved in this process1–3. Owing to

the unique side-chain groups of proline, peptidyl-prolyl

adopts an alterable cis or trans conformation4. The

peptidyl-prolyl cis–trans isomerases (PPIases) accelerate

the structural transformation of peptidyl-prolyl to reg-

ulate the folding, subcellular location, stability, activation,

and interaction of multiple proteins5–7. The PPIase

superfamily includes cyclophilins, FK506-binding proteins

(FKBPs), and parvulins8 (Fig. 1). Cyclophilins and FKBPs

can be inhibited by the immunosuppressants cyclosporin
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A (CyA) and FK506/rapamycin, respectively8. Pin1

belongs to parvulins and can be inhibited by juglone9.

It is the only known PPIase that mediates the isomeriza-

tion of phosphorylated Ser/Thr-Pro (pSer/Thr-Pro)

motif10. Pin1 is comprised of an N-terminal WW domain

and a C-terminal PPIase domain, which are connected by

a flexible linker11,12.

The expression of Pin1 is immediately regulated by

transcription factors E2F13 and NOTCH114. Beside,

the CCAAT/enhancer binding protein-α (C/EBPα)-p30

increases Pin1 expression by recruiting E2F to the pro-

moter of Pin115. After that, the mRNA level of Pin1

is reduced by some microRNAs (miRNAs), including

the recently discovered miR-37016 and miR874-3p17.

Moreover, the posttranslational modifications of Pin1,

including phosphorylation18,19, sumoylation20, ubiquitina-

tion21, and oxidation22, regulate the stability, substrate-

binding ability, PPIase activity, and subcellular localization

of Pin1. These processes are always aberrant in cancer

that contribute to the high expression and/or over-

activation of Pin1 (Fig. 2).

Pin1 is involved in multiple cellular processes, including

division23, differentiation24, senescence25, and apoptosis26.

Pin1 is always deficient in degenerative disorders,

including Parkinson’s disease (PD)27, Alzheimer’s disease

(AD)28, and Huntington’s disease (HD)29. In contrast,

it is highly expressed in most cancers, especially in

cancer stem cells (CSCs), and negatively related to

the clinical prognosis30–32. The depletion of Pin1 sig-

nificantly inhibits tumorigenesis in the mice models

that are derived by mutation of p5333, activation of

HER2/RAS34 or constitutive expression of c-Myc35.

Additionally, many Pin1-targeted inhibitors, including all

trans retinoic acid (ATRA)36, juglone37, and KPT-656638,

have showed cancer suppression ability in multiple

researches (Table 1).

According to the existing research, Pin1 upregulates

>50 oncogenes or proliferation-promoting factors while

inhibits >20 tumor suppressors or proliferation-

restraining factors8,30 (Fig. 2). However, what are the

specific mechanisms of Pin1 in different cancer cap-

abilities? Following the ground-breaking summaries of

Hanahan and Weinberg, we have a clearer recognition

regarding the hallmarks of cancer. The ten major cancer

capabilities are sustaining proliferative signaling, evading

growth suppressors, activating invasion and metastasis,

enabling replicative immortality, inducing angiogenesis,

resisting cell death, evading immune destruction, tumor-

promoting inflammation, reprogramming of energy

metabolism, and genome instability and mutation39,40.

Mounts of researches indicated that Pin1 is an active

participant of these aberrant processes8 (Fig. 3). In this

review, we summarized the detailed mechanisms of Pin1

that contribute to these cancer capabilities and certain

Fig. 1 PPIases mediate structural transformation of target substrates. Peptidyl-prolyl uniquely exhibits a cis or trans conformation. Different

proline-directed kinases and phosphatases specifically recognize cis or trans Ser/Thr-Pro motif to modify the function of target proteins that highlight

the PPIase-mediated structural transformation. The PPIases, including cyclophilins, FKBPs, and parvulins. Cyclophilins and FKBPs mediate the turnover

of unphosphorylated substrates and Pin1 mediates the isomerization of phosphorylated substrates
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Pin1-targeted small-molecule compounds that exhibit

anticancer activities, expecting to facilitate anticancer

therapies by targeting Pin1.

Pin1 sustains the proliferative signaling

Cell proliferation is strictly regulated by the intracellular

and extracellular signals41,42, but cancer cells utilize many

pathways to sustain proliferation43,44. Pin1 was initially

identified as a regulator of mitosis45 and many subsequent

studies showed that it facilitates multiple proliferation-

promoting pathways in cancer46 (Fig. 4).

Estrogen receptor α (ERα) promotes the proliferation

of cancer, especially breast cancer, by regulating the

expression of estrogen response element (ERE)-contain-

ing genes47. Research indicated that Pin1 increases the

transcriptional activity48, ERE binding affinity49, and

inhibits the E3 ligase E6AP-induced degradation of

ERα in breast cancer50. The garlic extract diallyl trisulfide-

treated breast cancer cells exhibit a reduced expression

of Pin1 along with reduced ERα activity and cell pro-

liferation51. Besides, the high expression of Pin1 and

HER2 are concurrent in most breast cancers. Pin1 acti-

vates HER2 by inhibiting its ubiquitination52 and desta-

bilizing its transcriptional corepressor SMRT53.

Additionally, activation of the nuclear factor (NF)-κB

pathway strongly induces cancer cell proliferation.

Pin1 activates the NF-κb pathway by enhancing the

nuclear accumulation of RelA/p65, c-Rel, and v-Rel54,55.

Besides, Pin1 inhibits the E3 ligase SOCS-1-mediated

ubiquitination of p6554. Pin1-mediated activation of

the NF-κB pathway is involved in the proliferation

of glioblastoma56, endometrial carcinoma57, acute mye-

loid leukemia (AML)58, and hepatocellular carcinoma

(HCC)59.

Furthermore, ΔNp63, an isoform of p63 that lacks

an intact N-terminal transactivation domain, is critical

for tumorigenesis60. Pin1 inhibits the E3 ligase WWP1-

induced ubiquitination of ΔNp63 to increase the pro-

liferation of human oral squamous cell carcinoma61.

Pin1 also stabilizes bromodomain-containing protein 4

(BRD4), a transactivator of multiple oncogenes, to pro-

mote the proliferation, migration, and invasion of

gastric cancer62. Besides, Pin1 upregulates many other

proliferation-inducing factors, including β-catenin63,

FoxM164, XBP165, NUR7766, c-Jun67, and c-Myc68.

Moreover, Pin1 also induces the proliferation of non-

tumorous cells, such as pancreatic β cells69, hepatic oval

cells70, and spermatogonial stem cells71. The deficiency

Fig. 2 The regulators and targets of Pin1. Pin1 is generally activated by oncogenes and inactivated by cancer suppressors. Meanwhile, Pin1

upregulates >50 oncogenes or proliferation-promoting factors and downregulates >20 tumor suppressors or proliferation-suppressing factors
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Table 1 Pin1 inhibitors

PIN1 inhibitor Chemical structure Pin1 inhibitory mechanism Refs.

Juglone Covalently modifies the active site 9

Buparvaquone Covalently modifies the active site 224

PiB Inhibits

PPIase

activity

230

PiJ Inhibits

PPIase

activity

230

Benzothiophene Competitively binds to active site 231,232

D-peptide Competitively binds to active site 233

E-peptide Binds to the catalytic domain 80

Phenyl imidazoles Binds to the active site 234

EGCG (epigallocatechin-3-gallate) Binds to the WW domain and PPIase domain 235
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Table 1 continued

PIN1 inhibitor Chemical structure Pin1 inhibitory mechanism Refs.

ATRA (all trans retinoic acid) Binds to the active site and induces degradation 36

Cis-locked alkene peptidomimetics Substrate analogs for Pin1 225

Pyrimidine derivative Covalently binds to Pin1 236

Cyclic peptides Substrate analogs for Pin1 237

Imazamethabenz Combines With Pin1 226

6,7,4′-THIF (6,7,4′-trihydroxyisoflavone) Interacts with the WW domain and PPIase domain 238

Rhein Inhibits Pin1 bind to c-Jun 239
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of Pin1 significantly suppresses the growth of multiple

cell types, indicating that Pin1 is a potential target to

treat hyperplastic diseases.

Pin1 downregulates numerous tumor suppressors

The tumor suppressors act as surveillant of multiple

cellular processes to prevent cancerization and suppress

cancer progression, but cancer cells utilize various

mechanisms to surmount these barriers. Research indi-

cated that Pin1 is guilty for the inactivation of numerous

tumor suppressors.

When DNA is damaged, the tumor-suppressor retino-

blastoma protein (pRb) directly inhibits the transcription

factor E2F to arrest the cell cycle72. However, pRb is

usually inactivated in cancer cells due to reduced expres-

sion and/or continuously hyperphosphorylation73,74,

which partially attribute to Pin1. The insulin-like growth

factor 1-stimulated wild-type mouse embryonic fibroblasts

(MEFs) exhibit hyperphosphorylated pRb and highly

expressed Pin1 simultaneously, but Pin1−/− MEFs show a

considerably lower level of phosphorylated pRb75.

Research illuminated that Pin1 promotes CDK-induced

phosphorylation76 and inhibits PP2A-mediated depho-

sphorylation77 of pRb that subsequently activate E2F and

trigger cells into S phase.

The promyelocytic leukemia protein (PML) is another

powerful tumor suppressor but always mutant in cancer.

Research indicated that Pin1 destabilizes PML to promote

the survival and proliferation of breast cancer78. Pin1

enhances the E3 adapter KLHL20-induced ubiquitination

of PML to promote the proliferation and angiogenesis

of prostate cancer79. Besides, Pin1 also stabilizes the

oncogenic fusion protein PML-RARα in AML81. Sup-

pression of Pin1 significantly inhibits the proliferation

of breast cancer cells and restores the expression of

PML and SMRT80.

Additionally, the runt-related transcription factor 3

(RUNX3) acts as an ERα inhibitor in breast cancer82.

Pin1 decreases the transcriptional activity and increases

the ubiquitin-dependent degradation of RUNX383. The

E3 ligase FBXW7 suppresses cancer by reducing multiple

oncogenes, but Pin1 inactivates FBXW7 by disrupting

its dimerization and promoting its self-ubiquitination84.

Pin1 also downregulates other tumor suppressors,

including Kruppel-like factor 1085, suppressor of var-

iegation 3-9 homolog 186, and CDK1087.

Interestingly, a number of studies indicated that Pin1

increases p53-induced cell senescence and apoptosis88,89.

However, Pin1 expression is higher in HCC cells with

mutant p53 (p53M) compared to wild-type p53 (p53WT),

Table 1 continued

PIN1 inhibitor Chemical structure Pin1 inhibitory mechanism Refs.

KPT-6566 Binds to the PPIase domain and induces degradation 38

Thiazole derivative Substrate analogs for Pin1 240

Product-like compound Substrate analogs for Pin1 241

API-1 Binds to the PPIase domain 227
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and the deletion of Pin1 significantly reduces the pro-

liferation of p53M HCC cells but not p53WT90. More

research revealed that Pin1 facilitates the p53M-induced

aggressiveness of cancers33,91,92, which contributes to a

reasonable explanation for why p53 is aberrant in most

cancers.

Pin1 promotes cancer invasion and metastasis

Cancer invasion and metastasis are the leading cause

of death in cancer patients. Research revealed that the

expression of Pin1 is much higher in the metastatic cancer

compared with primary, which reduces the invasion- and

metastasis-promoting function of Pin193,94.

The transforming growth factor (TGF)-β pathway

inhibits the proliferation but promotes the metastasis of

cancer95,96. The SMAD proteins are major downstream

adapters of TGF-β signal and extensively recognized by

WW domain-containing proteins, including Pin197,98.

Initial research revealed that Pin1 induces the E3 ligase

Smurf-2-mediated degradation of SMADs to suppress

the TGF-β signal99. However, the later research indicated

that Pin1 promotes the TGF-β-induced metastasis of

prostate cancer cells100. Inhibiting the phosphorylation

of SMAD3 reduces the interaction with Pin1 and

remarkably suppresses the aggressiveness of breast

cancer101. Therefore, the function of the TGF-β pathway

is complex and Pin1-mediated TGF-β pathway in cancer

requires a deeper investigation.

Pin1 also increases the invasion and metastasis of can-

cer by activating the NOTCH pathway. In breast cancer,

Pin1 facilitates the transcriptional activity of NOTCH1

by potentiating its γ-secretase-mediated cleavage14.

Meanwhile, NOTCH1 induces the expression of

Pin1, which consequently form a positive loop to

enhance cancer cell transformation14. Pin1 also promotes

breast CSC self-renewal and metastasis by inhibiting

FBXW7-mediated degradation of NOTCH1 and

NOTCH432. Besides, Pin1 activates the NOTCH3 signal

by enhancing its cleavage and stabilizing its intracellular

domain in T cell acute lymphoblastic leukemia (T-ALL)

cell lines and mouse models. The deletion of Pin1

markedly decreases the NOTCH-induced invasion of

T-ALL cells102.

Moreover, PTP-PEST and FAK are two pivotal effectors

of the RAS signal, which are involved in tumor

metastasis103. Pin1 facilitates the interaction of PTP-

PEST with FAK to accelerate the Tyr397 depho-

sphorylation of FAK, which consequently induce the

metastasis of numerous cancers104,105. Pin1 also promotes

the epithelial–mesenchymal transition of MCF-7 cells by

Fig. 3 Pin1 extensively participates in multiple cellular processes of cancer. According to the summaries of Hanahan D and Weinberg RA, the

hallmarks of cancer contain ten major biocapabilities. Pin1 is highly expressed in the majority of cancers and contributes to all of these aberrant

behaviors by dysregulating multiple cancer-driving pathways
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increasing the transcriptional activity of signal transducer

and activator of transcription factor 3 (STAT3) and

recruiting its transcription coactivator p300106. Addi-

tionally, Pin1 promotes the invasion and metastasis

of multiple cancers by activating NF-κB107, p53M108,

β-catenin63, and BRD462.

Pin1 enables the replicative immortality of cancer

After a limited number of cycles, the majority of

normal cells enter a nonproliferative but viable state,

which called cellular senescence. The cells that continue

to divide will face a fatal crisis, which causes the death

of most cells, but the minority that passes this barrier

will be immortal39,40. The mechanisms that control

the proliferative barrier include telomere shortening,

DNA damage, and mitochondria damage109–111. The

antisenescence function of Pin1 is widely revealed in

vascular smooth muscle cells112, cardiac progenitor

cells25, tendon stem/progenitor cells113, fibroblasts114, and

various cancer cells.

In most cancer, telomerase is reactivated to maintain

the telomeric DNA, but telomeric repeat-binding factors

(TRFs) prevent its elongation115. Research demonstrated

that Pin1 elongates the telomere via promoting E3 ligase

Fbx4-mediated degradation of TRF1 in multiple cancer

cells116. Additionally, the early mitotic inhibitor 1 (Emi1)

is an inhibitor of the DNA damage-induced senes-

cence117. Pin1 promotes the proliferation and suppresses

the senescence of several cancer cells by preventing

the E3 ligase βTrCP-induced degradation of Emi1118.

Pin1 also suppresses the senescence-inducing factors

pRb and PML in multiple cancers. Pin1 enhances p53-

induced senescence and apoptosis; however, inhibiting

Pin1 leads to senescence in p53-interfered BJ cells and

overexpression of Pin1 reverses the p53 responder BTG2-

induced senescence114.

Furthermore, the Pin1 deficit contributes to many

degenerative diseases, including AD28, HD29, and PD27, all

of which are related to aberrant neuronal senescence

and apoptosis. Considering the antisenescence function,

Pin1 and its substrates are potential targets to treat both

degenerative diseases and cancers.

Pin1 enhances cancer-induced angiogenesis

The angiogenesis is strictly controlled in vivo. However,

the rapidly expanded cancer can induce continuous

Fig. 4 Pin1 facilitates multiple proliferative pathways in cancer. Pin1 upregulates transcription factors, such as β-catenin, HIF1, ERα, NF-κB, JUN,

FOS, NUR77, and co-activator PKM2 by enhancing their stability, nuclear translocation, transcriptional activity, and/or activating their upstream

regulators in multiple cancers. These transcription factors induce the expression of target genes especially various cyclins to control the cell cycle.

Besides, Pin1 is a target of the transcription factor E2F, which is inhibited by pRb. In many cancers, pRb can be phosphorylated and inactivated by

CDKs, which facilitates the expression of Pin1. Moreover, Pin1 reverses the p53-mediated growth inhibition by stabilizing ΔNp63. In general, Pin1

facilitates the cancer proliferation through regulating different substrates at several levels

Chen et al. Cell Death and Disease  (2018) 9:883 Page 8 of 17

Official journal of the Cell Death Differentiation Association



angiogenesis to maintain the sustenance of nutrients and

oxygen, as well as the elimination of metabolic waste

and carbon dioxide. Abundant evidence illuminated that

Pin1 is involved in cancer-induced angiogenesis119.

The hypoxia-inducible factor 1α (HIF-1α) strongly

induces angiogenesis by promoting the expression of

vascular endothelial growth factor (VEGF) in the hypoxia

cancer tissue120. Studies indicated that the high expres-

sion of Pin1, HIF-1α, and VEGF are positively related

in TAM-resistant MCF-7 (TAMR-MCF-7) cells121,122.

Pin1 increases the stability and transcriptional activity

of HIF-1α in many cancers123,124. PML inhibits HIF-1α-

induced angiogenesis both in clear cell renal cell carci-

noma125 and human umbilical vein endothelial cells126,

but Pin1 destabilizes PML in multiple cancers. HIF-1α

also induces the expression of KLHL20, which cooperates

with Pin1 to induce the ubiquitin-dependent degradation

of PML79. Besides, Pin1 facilitates the NF-κB-induced

expression of VEGF in HCC59. Additionally, the VEGF-

promoting transcriptional factors, such as FoxM1127

and β-catenin128, are upregulated by Pin1 in numerous

cancers.

Inhibition of Pin1 significantly reduces the cancer-

induced angiogenesis. Directly suppressing the expression

of Pin1 by RNAi inhibits both growth and angiogenesis

of prostate cancer129. The phosphoinositide-3 kinase

(PI3K)/p38 signals increase the expression of Pin1 via

activating E2F1121. In TAMR-MCF-7 cells, the PI3K inhi-

bitor quercetin122 and the E2F1 inhibitor amurensin G130

markedly reduced the expression of Pin1, secretion of

VEGF, and angiogenesis. In conclusion, Pin1 enhances

the angiogenesis of multiple cancers by promoting the

expression of VEGF.

Pin1 facilitates the cell death resistance of cancer

Apoptosis is an important form of programmed cell

death, which acts as a natural barrier to prevent cells

from developing into cancers131,132. However, cancer

cells can block the proapoptotic signals and activate

antiapoptotic signals to make them survive in cytotoxic

stress. Pin1 is a powerful “weapon” of cancer to against

apoptosis133.

First, Pin1 inhibits the proapoptotic factors. Outer

mitochondrial membrane located BAX and BAK induce

apoptosis by enhancing the release of cytochrome c
134.

In human eosinophils (Eos), Pin1 inhibits the BAX-

induced apoptosis by preventing its mitochondria trans-

location135. Besides, the death-associated proteins DAXX

and FADD are two critical responders of CD95/Fas-

induced apoptosis136,137. The Fas signal notably increases

the activity and nuclear translocation of FADD by phos-

phorylating its Ser194 and inhibits Pin1 by phosphor-

ylating its Ser16138. However, exogenetic expression of

Pin1 maintains the cytoplasmic location of FADD by

accelerating its dephosphorylation, which consequently

blocks the Fas-FADD pathway138. Pin1 also isomerizes

DAXX to promote its ubiquitin-dependent degradation in

malignant human gliomas139. Additionally, DNA damage-

induced apoptosis is mediated by many surveillance pro-

teins, such as p53, PML, and pRb. However, PML and pRb

are downregulated by Pin1 in numerous cancers. Pin1

enhances p53-induced apoptosis but facilitates the

cancer-driving function of p53M.

Second, Pin1 upregulates the antiapoptosis factors.

The B-cell lymphoma 2 (BCL-2) family proteins inhibit

apoptosis via directly inactivating BAX and BAK

depending on their shared BH3 domain140. Research

indicated that Pin1 enhances the stabilization and cell

death resistance ability of BCL-2 and myeloid cell

leukemia-1 (MCL-1)141,142. Some anticancer drugs, such

as sorafenib and amsacrine, induce the apoptosis of

cancer cells by reversing the Pin1-mediated stability

of MCL-1141,143. Pin1 also enhances the survival of

cisplatin-treated cervical cancer cells by upregulating

Wnt/β-catenin and FoxM1 pathways144. In addition,

Pin1 upregulates LC-3 to induce protective autophagy,

which consequently increases the tamoxifen resistance

of breast cancer145.

Interestingly, Pin1 increases the antiapoptotic activity

of Survivin in HCC146, which is opposite in neuro-

blastoma147. In addition to p53 and Survivin, Pin1 also

induces cell apoptosis by activating and stabilizing the

tumor-suppressor homeodomain interacting protein

kinase 2148, increasing the mitochondrial translocation

of p66Shc26, as well as inhibiting the activity of ataxia

telangiectasia and rad3 related149. However, all of these

results were observed in non-tumorous cells.

Pin1 helps cancer cells to evade immune destruction

With further research on cancer and the immune sys-

tem, the traditional concept that the immune system

prevents tumor initiation and development has been

questioned150. Cancer cells arising from immunocompe-

tent mice are much more aggressive than that arising

from immunodeficient mice150. Multiple studies demon-

strated that Pin1 participates in the regulation of immune

response.

The Toll-like receptors (TLRs) recognize pathogen-

associated molecular patterns to initiate the immune

response151,152. Pin1 is involved in the regulation of the

TLR signals. In plasmacytoid dendritic cells, engaged

TLR7/TLR9 activate interleukin (IL)-1 receptor asso-

ciated kinase-1 (IRAK1) and subsequently activated

IRAK1 induces the secretion of type I interferon (IFN-αβ)

by activating the transcription factor IFN-regulatory fac-

tor 7 (IRF7)153,154. IRAK1 is autophosphorylated within

the activated TLR complex and then Pin1-mediated iso-

merization induces its liberation from the complex155.
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Pin1-induced overactivation of the TLR-7/TLR-9/IRAK-

1/IRF-7 signal contributes to the autoimmune disease

systemic lupus erythematosus156. In addition, IRF3 is a

downstream adapter of TLR3/TLR4 signal that induces

the expression of IFN-β in the antiviral response157.

However, Pin1 reduces the transcriptional activity and

promotes ubiquitin-dependent degradation of IRF3 lead-

ing to reduced production of IFN-β in poly(I)poly(C)- or

RIG-I-stimulated immune cells158. Furthermore, the

double-stranded RNA-induced expression of IFN-β is

significantly lower and the replication of the invading

virus is higher in Pin1+/+ mice compared with Pin1–/–

mice158. Both tripartite motif-containing 21 and PML

isoform IV stabilize IRF3 and enhance IRF3-mediated

production of IFN-β by disturbing the interaction of Pin1

with IRF3159,160. Besides, the IRF3-mediated expression

of IFN-λ1 is also decreased by the exogenous expressed

Pin1161. In conclusion, the function of Pin1 in immune

regulation is cell-type and pathogen dependent.

Pin1 is involved in the immune escape of cancer.

Indoleamine-pyrrole 2,3-dioxygenase (IDO) exhausts

local tryptophan to limit the function of T lympho-

cytes162. Research indicated that the cytotoxic T

lymphocyte-associated protein 4 (CTLA-4)-stimulated

dendritic cells (DCs) produce IDO upon simultaneously

activating the PI3K and NOTCH pathways. Pin1 increases

the enzyme activity of casein kinase II to abolish the

PTEN-mediated suppression of PI3K163. Suppressing the

NOTCH signal significantly reduces the expression of

Pin1 and the CTLA-4-induced IDO production163.

Besides, TGF-β powerfully inhibits the proliferation and

function of multiple immune cells to disorganize the

host immune surveillance164. In the lung, liver, and

cardiac fibrosis mouse models and even in patients, Pin1

increases the expression of TGF-β by stabilizing its

mRNA and protein165–167. It is clear that Pin1 enhances

the TGF-β-induced invasion and migration of cancers,

but the Pin1-mediated TGF-β signal in cancer immune

escape requires a deeper investigation. In conclusion,

targeting the immunoediting checkpoints is an effective

strategy to treat cancer168 and Pin1 is a potential

candidate.

Pin1 participates in the tumor-promoting inflammation

The release of necrotic cell content and microbe

infection induce the inflammatory response by recruiting

inflammatory cells into the local microenvironment169,170.

Research indicated that chronic inflammation is correla-

tive to cancer initiation and progression171.

Pin1 is a regulator of inflammatory response. In human

neutrophils, NADPH oxidase catalyzes the production of

superoxide which subsequently generates reactive oxygen

species (ROS) to annihilate ingested microbes172. Pin1

promotes the formation of integrated NADPH oxidase by

facilitating the membrane translocation of its cytosolic

component, p47phox173,174. Besides, granulocyte macro-

phage colony-stimulating factor (GM-CSF) is essential for

activation of circulating leukocytes175. The 3′-untrans-

lated region of GM-CSF mRNA is abundant in AU-rich

elements (AREs) and ARE-binding protein AUF1 nega-

tively regulates its mRNA stability176. Pin1 stabilizes GM-

CSF mRNA by decreasing the ARE-binding ability of

AUF1 in Eos and T lymphocytes177,178. Inhibiting

Pin1 significantly reduces the production of GM-CSF in

allergen-treated rats179.

The aberrant Pin1-mediated inflammation contributes

to numerous diseases, including cancer. Pin1 enhances

the IL-22-induced proliferation and survival of breast

cancer cells by activating mitogen-activated extracellular

signal-regulated kinases, c-Jun, and STAT3180. Pin1 also

increases the nuclear translocation of IRAK-M in DCs to

enhance the IL-33-induced allergic airway inflamma-

tion181. Besides, Pin1 is correlated in other inflammatory

diseases, including rheumatoid arthritis182, period-

ontitis183, diabetes-induced atherosclerosis184, nonalco-

holic steatohepatitis185, and primary biliary cholangitis186.

However, research indicates that Pin1 also stabilizes

and activates some anti-inflammatory proteins, such as

NUR77187 and glucocorticoid receptor188. Similar to the

immune regulation, Pin1 probability plays a dual role

in inflammation regulation, but the cancer-promoting

function of Pin1 is much more clarified.

Pin1 regulates the metabolic reprogramming of cancer

The metabolic pattern of glucose in mammalian cells is

dependent on the oxygen environment. In aerobic con-

ditions, the common intermediate pyruvate is mainly

transferred to the mitochondria and efficiently produces

massive ATP through oxidative phosphorylation, while

in anaerobic conditions, pyruvate rapidly produces small

amounts of ATP via glycolysis in the cytoplasm. The

majority of normal cells are fueled by more efficient

oxidative phosphorylation except for some special con-

ditions, such as muscle cells in high-intensity exercise.

However, the major metabolic pattern of cancer cells

is glycolysis even in aerobic conditions, which called

“aerobic glycolysis” or “Warburg effect” after its dis-

coverer, Otto Warburg189. The “Warburg effect” is ben-

eficial for cancer progression by supplying intermediates

for rapid biosynthesis and avoiding cytostatic controls

that are induced by activated oncogenes and/or mutant

cancer suppressors190,191. The mechanisms that result in

“Warburg effect” include increased glucose import,

aberrant hypoxia response system, and the incapacitation

of oxidative phosphorylation40. They are correlated with

many aberrant signals, including PI3K/Akt/mammalian

target of rapamycin192, Wnt/β-catenin193, HIF-1α194, and

non-coding RNAs195, all of which finally regulate the
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expression and/or activation of metabolism-associated

proteins.

Research indicates that Pin1 is a crucial regulator of the

“Warburg effect” (Fig. 5). Pin1 increases the nuclear

localization of the phosphorylated pyruvate kinase iso-

zyme M2 (PKM2)196. The nuclear translocated PKM2

phosphorylates histone H3-T11 leading to the H3-K9

acetylation of target genes. Meanwhile, it also acts as a

co-activator of β-catenin to increase the expression of

CCDN1 and c-Myc. Subsequently, c-Myc induces the

expression of glucose transporter 1 and lactate dehy-

drogenase A to promote the “Warburg effect”196,197. In

addition, pyruvate dehydrogenase kinase 1 (PDHK1)

suppresses the tricarboxylic cycle by phosphorylating and

inactivating the pyruvate dehydrogenase (PDH) com-

plex198. Pin1 increases the mitochondria translocation

of PGK1 where it activates PDHK1 to facilitate the PDH-

inhibited activity of PDHK1199. Moreover, Pin1 upregu-

lates many other metabolic regulators directly, such as

β-catenin, HIF-1α, and c-Myc. Targeting the metabolic

reprogramming process is effective to suppress cancer

progression200, and these studies revealed that Pin1 is a

potential candidate to reverse these dysregulations.

Pin1 contributes to the genome instability and mutations

of cancer

Cytotoxic factors, such as ionizing radiation and DNA

topoisomerase II poisons, induce DNA double-strand

breaks (DSBs) to trigger cellular senescence and apopto-

sis201. It is effective to suppress cancer by bringing in a

mass of DNA damage202, but most cancer is insensitive

to genome instability and mutations. Pin1 not only sup-

presses the DAN damage-induced senescence and apop-

tosis but also contributes the genome instability in cancers.

The mechanisms of DSBs repair include error-free

homologous recombination (HR) and fallible non-

homologous end-joining (NHEJ)203. CtIP facilitates HR by

promoting DNA-end resection204. However, Pin1 pro-

motes the ubiquitin-dependent degradation of CtIP to

attenuate HR and increase NHEJ, which consequently

increase genome instability205. Pin1 also interacts with the

DSB repair regulators 53BP1 and BRCA1, but there is no

further study on them205. Besides, it is a promising

direction that Pin1 modifies DSB repair through regulating

the CDK-mediated DNA-end resection206. Meanwhile,

rapid proliferation leads to replication-associated DNA

damage207. Whether the Pin1-promoted proliferation

induces DNA damage is also worth of deeper research.

The aberrant mitotic process also contributes to genome

instability. Separase promotes sister chromatid paired

segregation by cleaving ring-shaped cohesin208. Research

indicated that the full function of separase requires the

Pin1-mediated isomerization at its pSer1126-Pro motif209.

The centrosome protein 55 kDa (Cep55) is crucial for the

formation of midbodies in cytokinesis210. Pin1 increases

the midbody translocation of Cep55 by facilitating its

polo-like kinase 1-mediated phosphorylation at Ser436211.

Pin1 is also involved in the SEPT9-mediated final

separation of daughter cells212. Moreover, the over-

expression of Pin1 promotes an abnormal centrosome

Fig. 5 Pin1 is involved in metabolic reprogramming of cancer. “Warburg effect” that first observed by Otto Warburg is an aberrant characteristic

of cancer. Pin1 facilitates the glucose metabolic reprogramming of cancer. On the one hand, Pin1 enhances the nuclear localization of PKM2. Nucleus

PKM2 acts as a co-activator of β-catenin to promote the expression of LDH-A and GLUT1, thereby enhancing lactification and increasing glucose

import, respectively. On the other hand, Pin1 increases the mitochondrial translocation of PGK1. Mitochondrial PGK1 phosphorylates and activates

PDHK1, thus inactivating PDH and finally inhibits TCA cycle

Chen et al. Cell Death and Disease  (2018) 9:883 Page 11 of 17

Official journal of the Cell Death Differentiation Association



duplication and chromosome instability in breast can-

cer213. Human papillomavirus (HPV) infection also indu-

ces genome instability and enhances the malignant

phenotype of cervical cancers by promoting aberrant

centrosome synthesis214. Research indicates that HPV-

infected cervical lesions exhibit an elevated level of

Pin1215, but the relationship of HPV-induced Pin1 and

genome instability in cervical cancer requires a deeper

investigation.

Targeting Pin1 is effective to suppress cancer

Targeting a single pathway to treat cancer is challenging

because multiple aberrant pathways are involved in cancer

progression39,40. Moreover, almost all of the current

therapies are ineffective to treat CSCs216. Therefore, a

strategy that simultaneously targets multiple cancer-

driving pathways is urgently required. In cancers, Pin1

promotes and suppresses numerous oncogenes and

tumor suppressors, respectively. Multiple studies

demonstrated that inhibition of Pin1 is effective to sup-

press the progression of cancers. Aurora kinase A217,

ribosomal S6 kinase 2218 and protein kinase A19 abolish

the substrate interaction ability of Pin1 by phosphorylat-

ing its Ser16 residue in the WW domain. The death-

associated protein kinase 1 inactivates Pin1 by phos-

phorylating Ser71 in the catalytic core of Pin1 that con-

sequently inhibits the centrosome amplification of breast

cancer cells18 but aggravates neurodegeneration219. Pin1-

targeted microRNAs (miRNAs), including miR-200b220,

miR-200c31, miR296-5p221, miR-37016, and miR874-3p17,

inhibit human cancer progression via directly decreasing

the mRNA level of Pin1. However, Pin1 can suppress the

miRNA biogenesis by inhibiting exportin-5 (XPO5)222. In

addition, researchers have discovered and synthesized

many Pin1-targeted small-molecule compounds that

exhibit anticancer activity (Table 1). ATRA, a currently

used target drug for acute promyelocytic leukemia (APL),

mechanically combines with the substrate-binding site of

Pin1 to inhibit its activation in APL and breast cancer

cells36. Yang et al. designed a novel slow-releasing, non-

toxic, biodegradable, and biocompatible ATRA formula-

tion. Their work showed that this novel formulation

exhibits long-term inhibition of Pin1 and is more efficient

than the traditional ATRA to suppress HCC cell

growth223. Juglone, a compound extracted from walnut

tree, and its derivative buparvaquone both inhibit Pin1

by covalently modifying its catalytic core9,224. Juglone is

effective to suppress multiple cancer cells and universally

used in Pin1 research. Cis-locked alkene peptidomimetics

inhibit Pin1 by simulating a substrate of Pin1 and exhibit

antiproliferation activities in an ovarian cancer cell line225.

Imazamethabenz, an imidazoline ketone herbicide, inhi-

bits migration and invasion and induces apoptosis in

breast cancer cells via directly combining with Pin1226.

The Pin1 inhibitor API-1 suppresses HCC development

by restoring Pin1-inhibited miRNA biogenesis227.

Recently, a novel Pin1 inhibitor, KPT-6566, inhibits

the PPIase activity and induces the degradation of

Pin1 by covalently interacting with its catalytic core38.

Moreover, inhibiting Pin1 sensitizes many cancer cells

to chemotherapy, including HCC to sorafenib228,

breast cancer to trastuzumab229, rapamycin53, Taxol and

5-fluorouracil141, colon cancer to Taxol84, and AML

to retinoic acid81. Increasing evidence showed that Pin1

is a potential target for cancer therapy. However, the

majority of the existing inhibitors lack the required spe-

cificity, efficacy, and safety in clinical application.

Conclusions

The diversity and complexity of cancers are always

challenging the treatment. Fortunately, after decades of

research, we are uncovering the secret of cancer. Hanahan

and Weinberg summarized the common hallmarks of

cancer cells, which lets us recognize cancers more clearly.

Currently, targeted therapies have applied to the treat-

ment of multiple cancers, which have a higher efficacy

and lower side effects than traditional therapies. However,

the “smart” cancer cells, especially the CSCs, utilize

multiple mechanisms to avoid being eradicated. There-

fore, therapies that target common aberrant pathways

to block the escape of tumor cells are urgently warranted.

Pro-directed phosphorylation is an extensive modification

of numerous pathways, which regulate multiple basic

cellular processes, including proliferation, differentiation,

metabolism, and death. Pin1 is the only known PPIase

that mediates the cis–trans isomerization of pSer/Thr-Pro

bond, which highlights its significance in the regulation

of Pro-directed phosphorylation.

Pin1 is highly expressed in most cancers, especially

CSCs. According to the existing discovery, some regula-

tion loops, including at least Pin1/NOTCH/Pin1 axis14,

Pin1/pRb/E2F/Pin1 axis13,72,76, and Pin1/XPO5/miRNAs/

Pin1 axis31,222, contribute to the high expression of Pin1.

Pin1 is involved in almost every cancer biocapability,

suggesting that it is a potential common therapeutic tar-

get. There are many Pin1-targeted inhibitors, including

the novel structure-based designed compounds, natural

extracts, and their derivatives, that exhibit anticancer

activity in in vitro, animal models and even in certain

patients. Hence, the mechanisms of Pin1-induced cancer

progression and targeting Pin1 for cancer therapy are

worthy of further investigation. When matured, the

extensive clinical applications would benefit many cancer

patients.
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