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Abstract

Prominin 1 (PROM1) is considered a biomarker for cancer stem cells, although its biological role is unclear. Prominin 2

(PROM2) has also been associated with certain cancers. However, the prognostic value of PROM1 and PROM2 in cancer is

controversial. Here, we performed a systematic data analysis to examine whether prominins can function as prognostic

markers in human cancers. The expression of prominins was assessed and their prognostic value in human cancers was

determined using univariate and multivariate survival analyses, via various online platforms. We selected a group of

prominent functional protein partners of prominins by protein-protein interaction analysis. Subsequently, we investigated the

relationship between mutations and copy number alterations in prominin genes and various types of cancers. Furthermore,

we identified genes that correlated with PROM1 and PROM2 in certain cancers, based on their levels of expression. Gene

ontology and pathway analyses were performed to assess the effect of these correlated genes on various cancers. We

observed that PROM1 was frequently overexpressed in esophageal, liver, and ovarian cancers and its expression was

negatively associated with prognosis, whereas PROM2 overexpression was associated with poor overall survival in lung and

ovarian cancers. Based on the varying characteristics of prominins, we conclude that PROM1 and PROM2 expression

differentially modulates the clinical outcomes of cancers.

Introduction

Cancer is one of the leading causes of human death and it

has a profound impact on global health. According to the

Surveillance, Epidemiology, and End Results Program’s

(SEER) Cancer Statistics Review (CSR) 1975–2014, the

number of new cases of cancer in the United States of

America alone for all sites combined was 442.7 per 100,000

(both men and women) per year [1]. Cancer constantly

introduces new challenges to various stakeholders, including

researchers, medical practitioners, industrialists, and econo-

mists attempting to implement optimal health solutions.

Cumulative genetic alterations in the form of base

insertions, deletions, substitutions, duplications, and trans-

locations can be considered as the basis of cancer. For-

tunately, targeted therapies or biological therapies based on

the use of either molecular medicine or nano-engineered

enzymes have been relatively successful in blocking the

growth of cancer and cancer stem cells (CSCs) [2]. Owing

to their self-renewing, multipotent, and high proliferative

capacities, CSCs play a pivotal role in tumor invasion and

metastasis. Therefore, targeting CSCs is critical for

achieving high therapeutic efficiencies and preventing
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tumor recurrence. To develop targeted therapies, it is

necessary to first identify suitable markers for identifying

CSCs. A member of the prominin family, prominin 1

(PROM1), is considered a valuable marker of stem cells and

CSCs [3–5]. Prominin family homologues in mammals

consist of five transmembrane domains, an N-terminal

domain exposed to the extracellular space, two small

cytoplasmic loops, two large glycosylated extracellular

loops, and a cytoplasmic C-terminal domain [6–9]. PROM1

is commonly reported as a marker of neuronal and hema-

topoietic stem cells [4], but it is also expressed in CSCs and

cancer cells, including in breast cancer [5], acute myeloid

leukemia (AML) [10], and various pediatric brain tumors

[11]. In addition, PROM1 is involved in maintaining

microvillar architecture and dynamics [12]. Recent studies

suggest that PROM1 is upregulated in non-small cell lung

cancer tissue compared to normal lung tissue, and mutations

in PROM1 are associated with poor prognosis [13, 14].

High levels of PROM1 mRNA are also associated with poor

prognosis in pediatric medulloblastoma [15]. Moreover,

PROM1 regulates metastasis, drug resistance, and stemness

properties in various cancer cells [3, 16, 17]. It can also

regulate the activation of stem cells by orchestrating ciliary

dynamics, and the absence of PROM1 allows stem cells to

resist the effects of sonic hedgehog (SHH) on growth sti-

mulation, thereby disrupting stem cell activation [18]. Pre-

vious studies have shown that therapies targeting PROM1

may prevent tumor development in various human cancers

[19–22]. Although PROM1 has been studied as a CSC

marker and a regulator of cancer progression and prognosis

over the last two decades, specific studies regarding the

relationship between PROM1 expression and prognosis in

certain cancers are lacking.

PROM2, the second member of the prominin family, is

structurally related to PROM1, but is encoded by a separate

gene [6]. PROM2 expression is limited to epithelial cells,

where it may be involved in the organization of plasma

membrane microdomains [6]. Furthermore, PROM2 causes

cell protrusions that recruit cholesterol with the aid of lipid

rafts and subsequently, increase the phosphorylation of

caveolin-1 in membrane microdomains [23]. A whole-genome

expression profiling study reported that PROM2 is over-

expressed in endothelial cells in lung cancer [24]. Moreover,

several other expression profiling studies have reported that

PROM2 is upregulated in various cancers including breast,

brain, lung, renal, and tongue cancers and melanoma

[6, 25, 26]. Despite this research, studies on PROM2 expres-

sion in cancer and its relevance to clinical outcomes are still

limited. Moreover, to the best of our knowledge, PROM1 and

PROM2 genes have not yet been studied using data mining

approaches. Therefore, this is the first systematic analysis of

the possible role of PROM1 and PROM2 in various cancers,

based on publicly available gene expression and clinical data.

Here, we aimed to identify the role of prominins in

cancer progression and their value in cancer prognosis. As

these proteins may exert their effects through signaling

pathways, we hypothesized that a multiomics data mining

approach could identify the link between prominin expres-

sion and clinical outcomes in cancer patients. Therefore, we

investigated the patterns of expression, mutation, and copy

number alteration of PROM1 and PROM2 genes to deter-

mine their clinical significance in human cancers through

systematic data analysis. Moreover, we aimed to determine

the combined prognostic significance of PROM1 and

PROM2 in certain cancers using a multivariate prognosis

analysis. We also analyzed the interacting partners and

genes co-expressed with PROM1 and PROM2 in various

cancers and subsequently, analyzed these genes to predict

the probable underlying signaling pathways involved.

These results provide useful information to facilitate the

development of new approaches for anti-cancer therapies

that target cancer stem cells.

Methods

mRNA expression analysis using Oncomine

Data regarding PROM1 and PROM2 mRNA expression in

various cancer types was retrieved from the online database,

Oncomine (https://www.oncomine.org/resource/login.html)

[27, 28]. This database platform contains a large collection

of independent datasets and expertly curated data. It can be

used to identify novel targets for drug development and to

interrogate gene expression profiles along with clear and

consistent interpretation of results. Differences in mRNA

expression between cancer tissues and their normal tissue

counterparts were calculated using the following threshold

parameters: p < 0.01, fold-change > 2, and gene ranking in

the top 10%. The details of the analyses are summarized in

Supplementary Tables 1 and 2. The co-expression profiles

of prominins in different cancer types were also extracted

from Oncomine and are illustrated as a heat map in Fig. 7.

mRNA expression analysis using GEPIA

Gene expression profiling interactive analysis (GEPIA, http://

gepia.cancer-pku.cn/) is a newly developed interactive online

platform for analyzing RNA sequencing data [29]. It provides

access to a large collection of data from 9736 tumors and 8587

normal samples from The Cancer Genome Atlas (TCGA) and

the Genotype-Tissue Expression (GTEx) project. GEPIA was

used for differential expression analysis of PROM1 and

PROM2 in tumor/normal tissue from various cancers. GEPIA

also provides other customizable functions, including patient

survival and correlation analyses.

148 S. K. Saha et al.

https://www.oncomine.org/resource/login.html
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/


Survival analysis using Kaplan–Meier plotter

The web-based tool, Kaplan-Meier plotter, was used to

analyze the impact of 54,675 genes on survival using

HGU133 Plus 2.0 array data from 10,461 cancer samples.

Of these samples, 5143 were from breast cancer patients,

1816 from ovarian cancer patients, 2437 from lung cancer

patients, and 1,065 from gastric cancer patients, who

underwent an average follow-up period of 69, 40, 49, and

33 months, respectively. The main objective of this tool is

to perform a meta-analysis-based biomarker assessment. In

this study, the correlations between prominin expression

and patient survival were analyzed using the Kaplan–Meier

plotter (http://kmplot.com/analysis/) [30]. According to

various quantiles of biomarker expression, the tool divides

patient samples into pairs of groups to analyze the prog-

nostic value of a particular gene. Kaplan–Meier survival

plots were constructed to compare the two patient groups

and calculate the log-rank p-value and the hazard ratio, with

95% confidence intervals.

Prognosis analysis using PrognoScan

PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/)

[31] is a database that is used for the meta-analysis of the

prognostic value of various genes. This online platform

assists in investigating the relationship between gene

expression and patient prognosis across a large collection of

cancer microarray datasets. The correlation between pro-

minin expression and survival was investigated in several

cancer types using this tool. The significance threshold was

adjusted to a Cox p-value < 0.05. These results are briefly

presented in Supplementary Tables 3 and 4.

Survival analysis using OncoLnc

OncoLnc (http://www.oncolnc.org/) is a web-based inter-

active tool for analyzing survival correlations and retrieving

clinical data matched with expression data for mRNAs,

miRNAs, and long non-coding RNAs [32]. It is a large

collection of clinical data from 8,647 patients across 21

cancer studies from the TCGA and MiTranscriptome beta

collections. Using this platform, Cox regression analysis

data were acquired for PROM1 and PROM2 in up to 21

cancers. These data were then used to generate Kaplan-

Meier plots for further analysis of RNAs of interest.

Survival analysis using SurvExpress

SurvExpress (http://bioinformatica.mty.itesm.mx/SurvExpress)

is a cancer-wide gene expression database with clinical out-

comes and a web-based tool for survival analysis [33]. This

database contains more than 39,000 samples and 225 datasets

covering tumors in more than 26 different tissues. Using this

platform, survival plots were generated for specific cancer

types, using TCGA and GEO microarray data. Biomarkers can

be assessed in several ways using this tool. For example,

specific genes can be switched on and off, samples can be

framed by available clinical information, and training and test

samples can be identified.

Correlation and survival analysis using the R2
platform

R2 (http://r2platform.com) is a genomics analysis and

visualization platform with a database, coupled to a web-

interface that provides a set of analysis tools [34].

R2 supports all types of survival data (e.g., overall survival)

and can also be used to generate a Kaplan-Meier plot for a

specific dataset. The Kaplan Scan feature was used to

establish the optimum cut-off values for PROM1 and

PROM2, based on the p-value from a log-rank test of the

cancers of interest. Although the Kaplan Scan tool was

applied, the binary heat map was also used to show clus-

tering based on “good” vs. “bad” prognoses. The

R2 software was also used to identify genes that correlated

with PROM1 and PROM2, using the freely available TCGA

datasets on the R2 website. To import the list of common

genes that correlated with PROM1 or PROM2 for all tumors

of interest, a Venn diagram was generated using the tool,

Venny 2.1 [35]. To understand how these common corre-

lated genes collectively regulate signaling pathways, gene

ontology and pathway analyses were performed using the

Protein Analysis Through Evolutionary Relationships

(PANTHER) tool (http://pantherdb.org/) [36]. This is an

online system that classifies proteins (and their genes) in

terms of various ontologies, including molecular function,

biological process, cellular components, and pathway.

Analysis of gene expression and mutations using
cBioPortal

An integrative analysis of PROM1 and PROM2 and clinical

characteristics was performed using cBioPortal for Cancer

Genomics (http://www.cbioportal.org), which is an open-

access and open-source resource for the interactive visua-

lization and analysis of multidimensional cancer genomics

data sets [37, 38]. At the time of this study, 56,250 tumor

samples from 215 cancer studies were available online. It

contains various types of data, including DNA copy num-

ber, mRNA expression, non-synonymous mutations, DNA

methylation, and limited de-identified clinical data. The

query interface combined with personalized data storage

enables interactive investigations of genetic alterations

within specific genes, across available samples. The primary

search parameters included alterations (amplifications, deep
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deletions, and missense mutations), copy number alterations

(CNAs) from GISTIC, and RNA sequencing data, using the

default settings. For the secondary search, we focused on

RNA sequencing data.

Protein-protein interaction (PPI) analysis using
GeneMANIA

GeneMANIA (https://genemania.org/) is an online tool that

provides information on hypothetical gene function, inter-

rogates gene lists, and ranks genes based on functional

evaluations [39]. It contains a large set of functional asso-

ciation data, including protein and gene interactions, path-

ways, and co-expression data. We applied the GeneMANIA

analysis tool to predict PPIs using PROM1 and PROM2 as

queries. The prediction output is in the form of a network

that shows the relationships between genes in the list, where

nodes symbolize genes and links represent networks.

Statistical analysis

Bar and forest plots were drawn using GraphPad Prism

version 7 (GraphPad Software, La Jolla, CA, USA). Sur-

vival curves were constructed using PrognoScan, PROG-

geneV2, OncoLnc, and Kaplan-Meier plotters. All results

are displayed with p-values obtained from a log-rank test.

The levels of significance (p-values) of the Oncomine and

heat map data were determined by the programs used for the

analyses. An unpaired t-test was performed to analyze two

groups (normal vs. cancer). For multivariate survival ana-

lysis, clinical outcome data were retrieved from the TCGA

database using OncoLnc. The data were then processed to

generate survival curves using GraphPad Prism version

7 software. Cox regression analysis was performed for

univariate and multivariate survival analysis to define the

independent factors that had a significant effect on patient

survival. Log-rank p-values < 0.05 were considered sig-

nificant and p= ns denoted results that were not significant.

Results

To understand the role of prominins in cancer, we compared

their transcription levels in cancer tissues and normal tissues

using the visualization tools provided by the Oncomine

database. The various underlying threshold parameters,

without altering any filter settings, were as follows: p-value,

0.01; fold change, 2; and gene ranking, 10%. Using these

settings, we observed that prominins were overexpressed in

some cancer tissues when compared to their expression

levels in normal tissues and were underexpressed in others.

These results indicate that the prominins may possess either

oncogenic or anti-oncogenic characteristics, depending on

the type of cancer (Fig. 1a). TCGA contains a large col-

lection of RNA sequencing data and is useful resource for

understanding the molecular basis of cancer. By accessing

TCGA data via cBioPortal, we also further analyzed the

mRNA levels of prominins in various types of cancer.

PROM1 and PROM2 were found to be differentially

expressed in many cancer types (Fig. 1b). The analyses of

prominins are described in more detail below.

Prominin mRNA expression analysis

To explore the expression patterns of prominins in various

cancer types, we analyzed cDNA microarray data, using the

differential analysis tool of the Oncomine database. The

database was queried for prominin expression in each

cancer type and in respective normal tissue, individually.

The analysis showed that PROM1 was overexpressed in

pro-B acute lymphoblastic leukemia, and brain, esophageal,

liver, testis, ovarian, and gastric cancers, but under-

expressed in bladder, breast, kidney, and skin cancers,

compared to that in normal tissue (Fig. 2a [i-xii)], Supple-

mentary Fig. S1, Supplementary Table 1) [40–49]. To

confirm the PROM1 expression results obtained from the

Oncomine database, we performed a single-gene analysis of

PROM1 using another online platform, GEPIA. These

results, as shown in Fig. 2b (i-x), confirmed PROM1

overexpression in brain, esophageal, leukemia, testis,

ovarian and stomach cancers and PROM1 underexpression

in bladder, breast, and kidney cancers. The pattern of

PROM2 expression in different types of cancers was con-

siderably different to the expression pattern of PROM1. We

observed that compared to that in normal tissues, PROM2

was significantly overexpressed in breast, lung, bone mar-

row, and ovarian cancers, whereas it was underexpressed in

colon, esophageal, gastric, kidney, prostate and skin cancers

(Fig. 3a [i-xi], Supplementary Fig. S3, Supplementary Table

2) [42, 49–55]. The above expression pattern of PROM2 in

colon, lung, ovarian, kidney, and skin cancers has also been

reported from TCGA data on the GEPIA website (Fig. 3b [i-

vii]). Note that TCGA-based GEPIA results on prominin

mRNA expression are mainly used for validating the

expression results obtained via Oncomine-assisted analysis.

When we performed expression analysis using GEPIA, we

also recorded the expression patterns of for some other

cancers which are not available in Oncomine platform

(Supplementary Fig. S2 and S4). The systematic analysis

carried out here was able to assess the mRNA expression

status of prominins across a wide range of cancer types.

Since expression the prominin expression status was con-

firmed in multiple databases, these results can be considered

reliable. These results regarding PROM1 and PROM2

expression are also supported by previous studies. For

example, PROM1 overexpression has been shown in
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esophageal and ovarian cancers [56, 57]. Moreover,

PROM1+ ovarian CSCs are highly tumorigenic, chemo-

resistant, and metastatic and they promote the adhesion

capabilities of the ovarian cancer metastatic niche [57]. In

contrast, our analysis showed that PROM2 is overexpressed

in breast and lung cancers, and this result is in agreement

with those of previous genome profiling studies and studies

on expressed sequence tag (EST) clones deposited in the

GenBank database [58, 59]. Thus, these results imply that

prominins may be either oncogenes or tumor suppressor

genes, depending on the type of cancer. These results

showing the dysregulation of prominins can potentially be

translated into clinical practice. For example, PROM1 may

be a biomarker for the prediction of lung metastasis and

poor prognosis in patients with osteosarcoma, in which the

expression of this gene is considerably high [60, 61].

PROM1 expression may also be a predictor of poor clinical

outcome in patients with ovarian cancer [62]. Therefore, we

next investigated the extent to which prominin expression is

associated with prognosis.

Estimation of the prognostic value of prominins

To investigate the relationship between prominin gene

expression and clinical prognosis, we used several online

tools, namely, PrognoScan, R2, Kaplan-Meier plotter,

SurvExpress, and OncoLnc. A positive correlation was

observed between PROM1 overexpression and poor prog-

nosis in brain, skin, and soft tissue cancers (Fig. 4a [iii, v,

vi], Supplementary Fig. S5 [b–d], Supplementary Table 3),

as analyzed using the PrognoScan database. In addition, low

levels of PROM1 expression were correlated with poor

overall survival (OS) in prostate and lung cancers (Fig. 4a

[iv, vii], Supplementary Table 3). Therefore, these results

indicated that PROM1 can be considered an oncogene for

brain, skin, and soft tissue cancers, but a tumor suppressor

gene for prostate and lung cancers. However, the relation-

ship between PROM1 expression and survival in breast

cancer was not clear, because of contradictory results (Fig.

4a [i, ii], Supplementary Fig. S5a, Supplementary Table 3).

For example, an analysis of the GEO dataset, GSE12093,

Fig. 1 Transcription levels of PROM1 and PROM2 in different types

of cancers (Oncomine and TCGA databases). a This graphic was

generated using Oncomine, indicating the numbers of datasets with

statistically significant (p < 0.01) overexpression (red) or under-

expression (blue) of PROM1 and PROM2 mRNA (cancer vs. corre-

sponding normal tissue). The threshold was designed with the

following parameters: p-value= 0.01, fold change= 2, and gene

ranking= 10%. The numbers in the boxes represent the number of

analyses that met these thresholds. b Analysis of PROM1 and PROM2

mRNA levels in 30 types of human cancer using data from cBioPortal

(http://www.cbioportal.org/index.do). Every dot represents a single

study. White dots represent those without gene sequencing data, blue

dots represent normal gene sequencing results (no mutation), and

orange spots represent missense mutations. Flowchart: merged spots

represent frame shifts, isosceles triangles represent splice sites, dia-

monds represent nonsense mutations, and rectangles represent others.

The median and interquartile ranges are shown in each box
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showed that the probability of long-term survival of a

patient with breast cancer was higher with higher levels of

PROM1 expression, whereas an analysis of dataset

GSE11121, gave the opposite result. In addition, we found

that high PROM1 expression was associated with poor OS

in patients with esophageal cancers and mixed Ewing sar-

coma (Fig. 4a [viii and ix]), whereas Ewing sarcoma

patients with high PROM1 expression showed good

Fig. 2 PROM1 expression analysis in different cancer types (Onco-

mine and TCGA databases). a The box plot comparing PROM1

expression in normal (left plot) and cancer tissues (right plot) were

derived from the Oncomine database. The fold change of PROM1 in

various cancer types was determined from the analyses shown in

Supplementary Table 1 (i). Analysis of SBC relative to normal bladder

(ii), GBM relative to normal brain (iii), MBC relative to normal breast

(iv), BE relative to normal esophagus (v), CCSK relative to normal

kidney (vi), PBALL relative to PBMC (vii), cirrhosis relative to nor-

mal liver (viii), TEC relative to normal testis (ix), OMA relative to

normal ovary (x), BMSN relative to normal skin (xi) and GST relative

to normal stomach (xii). The threshold was designed with the fol-

lowing parameters; p-value= 0.01, fold change= 2, and gene rank=

10%. b PROM1 expression in The Cancer Genome Atlas (TCGA)

database. Box plots showing PROM1 mRNA expression in various

tumor (T) and corresponding normal (N) tissues, using TCGA data

from GEPIA (i-x). The threshold was designed with the following

parameters: p-value= 0.01, fold change= 2. SBC superficial bladder

cancer, MBC mucinous breast carcinoma, BE Barrett’s esophagus, EA

esophageal adenocarcinoma, CCSK clear cell sarcoma of the kidney,

CRCC chromophobe renal cell carcinoma, PBMC peripheral blood

mononuclear cell, PBALL pro-B acute lymphoblastic leukemia, TEC

testicular embryonal carcinoma, OMA ovarian mucinous adenocarci-

noma, OCCA ovarian clear cell adenocarcinoma, BMSN benign mel-

anocytic skin nevus, GST gastrointestinal stromal tumor, BLCA

bladder urothelial carcinoma, BRCA invasive breast carcinoma, CHOL

cholangiocarcinoma, COAD colon adenocarcinoma, ESCA esophageal

carcinoma, GBM glioblastoma multiforme, HNSC head and neck

squamous cell carcinoma, KICH kidney chromophobe, KIRC kidney

renal clear cell carcinoma, LAML acute myeloid leukemia, OV ovarian

serous cystadenocarcinoma, PAAD pancreatic adenocarcinoma, READ

rectum adenocarcinoma, STAD stomach adenocarcinoma, TGCT tes-

ticular germ cell tumor, THCA thyroid carcinoma, UCEC uterine

corpus endometrial carcinoma, UCS uterine carcinosarcoma
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prognosis (Supplementary Fig. S5e), as analyzed using the

R2 platform. Similarly, in gastric, liver, and ovarian cancer

patients, high levels of PROM1 expression were associated

with poor OS (Fig. 4a [x-xii]). In kidney cancers, we

observed a positive correlation between PROM1 expression

and high rates of survival (Supplementary Fig. S5g). In liver

cancer, mixed results were observed. Data from the Sur-

vExpress database showed that PROM1 expression

Fig. 3 PROM2 expression analysis in different cancer types (Onco-

mine and TCGA databases). a The box plot comparing PROM2

expression in normal (left plot) and cancer tissues (right plot) was

derived from the Oncomine database. The fold change of PROM2 in

various cancer types was identified from our analyses presented in

Supplementary Table 2 (i). Analysis of MBC relative to normal breast

(ii), CC relative to normal colon (iii), EAC relative to normal eso-

phagus (iv), DGAC relative to normal stomach (v), PRCC relative to

normal kidney (vi), LAC relative to normal lung (vii), MGUC relative

to normal bone marrow (viii), OSAC relative to normal peritoneum

(ix), PC relative to normal prostate (x) and SBCC relative to normal

skin (xi). The threshold was designed with the following parameters:

p-value= 0.01, fold change= 2, and gene rank= 10%. b PROM2

expression data from the Cancer Genome Atlas (TCGA) database. Box

plots showing PROM2 mRNA expression in various tumors (T) and

corresponding normal (N) tissues using TCGA data from GEPIA

(i-vii). The threshold was designed with the following parameters: p-

value= 0.01, fold change= 2. MBC mucinous breast carcinoma, CC

colon carcinoma, EAC esophageal adenocarcinoma, DGAC diffuse

gastric adenocarcinoma, PRCC papillary renal cell carcinoma, LAC

lung adenocarcinoma, MGUC monoclonal gammopathy of unde-

termined significance, OSAC ovarian serous adenocarcinoma, PC

prostate carcinoma, SBCC skin basal cell carcinoma, CESC cervical

squamous cell carcinoma and endocervical adenocarcinoma, CHOL

cholangiocarcinoma, KIRC kidney renal clear cell carcinoma, KIRP

kidney renal papillary cell carcinoma, LUAD lung adenocarcinoma,

LUSC lung squamous cell carcinoma, OV ovarian serous cystadeno-

carcinoma, PAAD pancreatic adenocarcinoma, SARC sarcoma, SKCM

skin cutaneous melanoma, THYM thymoma, UCEC uterine corpus

endometrial carcinoma
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correlated positively with OS, whereas the Kaplan-Meier

plotter showed that low PROM1 expression was associated

with increased OS rates (Fig. 4a [xii]; Supplementary Fig.

S5f). Interestingly, the Oncomine database also showed low

and high expression of PROM1 in liver cancer and sarcoma

(Fig. 1a) depending on the analysis. The source of the

contradiction in survival results between Kaplan-Meier

plotter and SurvExpress may be the inadequate number of
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studies and reports. Therefore, survival data for patients

with liver cancer may be more precise if the merged data

from the SurvExpress database and the Kaplan-Meier

plotter database were analyzed.

Analysis of data from the PrognoScan database showed a

significant correlation between PROM2 overexpression and

poor relapse-free survival in patients with lung cancer (Fig.

4b [iii], Supplementary Table 4). In addition, low PROM2

expression was associated with poor prognosis in eye and

blood cancers (Fig. 4b [iv and v], Supplementary Table 4).

The relationship between PROM2 expression and survival

in breast cancer patients is also questionable because of

contradictory results (Fig. 4b [i and ii], Supplementary Fig.

S6a and b, Supplementary Table 4). In this regard, the

analysis of data from the PrognoScan database is in

agreement with the results of Kaplan-Meier plotter data

analysis. According to the latter, the association of PROM2

expression with survival of breast cancer patients is not

straightforward and shows some inconsistencies (Supple-

mentary Figs. S6c–e), depending on the receptor status of

breast cancer cells. For instance, low PROM2 expression

was associated with poorer relapse-free survival in HER2+

breast cancer patients compared to ER+ and PR+ breast

cancer patients (Supplementary Figs S6f-h). We also found

that HER2+ breast cancers showed an association between

low survival rates and low PROM2 expression, whereas

breast cancers with mutated p53 showed an association

between low survival rates and high PROM2 expression

(Supplementary Fig. S6h and i). Therefore, PROM2

expression is not a reliable prognostic marker of OS in

patients with breast cancer. We also observed that both low

and high levels of PROM2 expression were associated with

poor survival in ovarian cancer patients (Fig. 4b [x]). In

contrast, low PROM2 expression was associated with poor

clinical outcomes in patients with colon and esophageal

cancer, lymphoma, and sarcoma, using the R2 platform

(Fig. 4b [vi-ix]).

The prognostic value of PROM1 and PROM2 expression

levels for different cancer patients was also determined

based on data from the PrognoScan database (Supplemen-

tary Tables 3 and 4). The poor prognosis seen in lung cancer

patients with higher PROM2 expression (Fig. 4b [iii]) was

in agreement with the analysis of Kaplan–Meier plotter data

(Supplementary Fig. S6j). While high PROM1 expression

was common in esophageal and liver cancers, based on data

from Oncomine, R2, and SurvExpress (see Figs. 1a, 4a [viii

and xii]), this gene was underexpressed in kidney cancer,

according to the analysis of data from the Oncomine and

OncoLnc databases (Fig. 1a and Supplementary Fig. S5g).

In contrast, data from both the Kaplan-Meier plotter and

PrognoScan databases confirmed high PROM2 expression

in lung cancer (Figs. 1a, 4b [iii] and Supplementary Fig.

S6j). In summary, a comprehensive analysis of survival data

from a range of online resources, highlighted the oncogenic

role of PROM1 in brain and ovarian cancers. However, the

role PROM1 in liver and breast cancers was not clear. In

contrast, the oncogenic role of PROM2 in lung cancer was

obvious, unlike in breast cancer.

To investigate the relationship between prognosis and

co-expression of PROM1 and PROM2, we retrieved clinical

prognosis data from patients with various types of cancers,

including breast, kidney, brain, ovarian, lung, and skin

cancers, using OncoLnc, which accesses data from TCGA

(Fig. 4c and Supplementary Fig. S7). The clinical prognosis

data were then used to prepare a multivariate survival plot to

assess the effect of high/high, high/low, low/high, and low/

low expression of PROM1 and PROM2 in each cancer. The

primary endpoint for this analysis was OS. The expression

levels of both PROM1 and PROM2 were higher in ovarian

cancer tissues than in their corresponding normal tissues,

leading to poor prognosis (Fig. 4a [xi] and 4b [x]). Based on

this expression pattern, we performed a multivariate survi-

val analysis of PROM1/PROM2 co-expression in ovarian

cancer. We did not observe a significant effect on survival

probability among the high/high, high/low, low/high, and

low/low groups (Supplementary Fig. S7). A similar result

was also observed in several other cancers, including breast,

brain, and lung cancers (Supplementary Fig. S7). The

multivariate survival analysis revealed a significant asso-

ciation between low/high expression of PROM1/PROM2

and poorer prognosis of patients with kidney renal clear cell

carcinoma (KIRC) compared to patients with high/high,

low/low, or high/low expression patterns (Fig. 4c [i]). This

result suggested that the partial-co-expression of PROM1

and PROM2 may regulate cancer prognosis. In the case of

Fig. 4 Correlation of PROM1 and PROM2 expression with prognosis

of various cancers (PrognoScan, R2: Kaplan Meier Scanner,

Kaplan–Meier plotter, SurvExpress, and OncoLnc). a Survival curves

comparing patients with high (red) and low (blue) PROM1 expression

were plotted using breast (i and ii), brain (iii), prostate (iv), skin (v),

soft tissue (vi), and lung (vii) cancer data from PrognoScan; esopha-

geal cancer (viii) and sarcoma (ix) data from R2: Kaplan Meier

Scanner; gastric (x) and ovarian (xi) cancer data from Kaplan-Meier

Plotter; and liver cancer (xii) data from SurvExpress. Cox p-value

threshold < 0.05. b Survival curves comparing patients with high (red)

and low (blue) PROM2 expression were plotted using breast (i and ii),

lung (iii), eye (iv), and blood (v) cancer data from PrognoScan; colon

cancer (vi), esophageal cancer (vii), lymphoma (viii), and sarcoma (ix)

data from R2: Kaplan Meier Scanner; and ovarian cancer (x) data from

Kaplan-Meier plotter. Cox p-value threshold < 0.05. c Co-expression

of PROM1 and PROM2 with respect to the cancer patient prognosis.

Multivariate survival curves comparing the prognosis of patients with

high/high (red), high/low (orange), low/high (green), and low/low

(blue) expression co-expression patterns of PROM1/PROM2 in KIRC

(i), KIRP (ii), and SKCM (iii). Clinical outcome data were retrieved

from TCGA using OncoLnc. p < 0.05 represents statistical sig-

nificance. Abbreviations: KIRC - kidney renal clear cell carcinoma;

KIRP - kidney renal papillary cell carcinoma; SKCM - skin cutaneous

melanoma
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kidney renal papillary cell carcinoma (KIRP), the low/low

expression pattern of PROM1/PROM2 was associated with

poor prognosis compared to the high/high, high/low, and

low/high patterns (see Fig. 4c [ii]). We next focused on skin

cancer, where the high expression of both PROM1 and

PROM2 was associated with poorer prognosis than the

high/low, low/high, and low/low PROM1/PROM2 expres-

sion patterns (Fig. 4c [iii]). Thus, our multivariate survival

analyses showed that the pattern of PROM1 and PROM2

co-expression modulated the clinical outcomes of patients

with certain types of cancers, which may help our under-

standing of the underlying mechanism of cancer prognosis

with respect to prominin expression. Furthermore, the

interaction between these two prominins may be associated

with the progression of various types of cancers.

Predicting PPIs of prominins

Studies have shown that PPIs are crucial events in cellular

mechanisms that process downstream signaling and subse-

quently, affect cellular processes, including cell growth and

division [63–65]. Accumulating evidence suggests that sev-

eral factors, including DNA hypomethylation and hypoxia,

affect PROM1 expression in cancer cells [66, 67]. However,

unlike PROM1, the factors that affect PROM2 expression are

still mostly unknown. As reported previously [68], PROM1

may play a role in cell differentiation, proliferation, and

apoptosis. It also plays a major role as the principal regulator

of disk morphogenesis and MAPK and AKT signaling

pathways [69–71]. Several studies have shown that mutations

in PROM1 are associated with photoreceptor degeneration in

mice [69, 72, 73] and this photoreceptor degeneration is

regulated through interactions between PROM1 and PCDH21

[69]. It has also been reported that PROM1 directly interacts

with actin filaments (β-actin) in the protrusions of cells [69].

However, the factors associated with the expression of

PROM2 remain largely unidentified. In silico studies suggest

that PROM2 transcription may be regulated by several pro-

teins, including E74A, HFH-2, Snail, and Spz1 [74, 75].

Moreover, PROM2 has been reported to be a testosterone-

regulated gene in the rat ventral prostate [76], which suggests

the possible hormone-mediated regulation of PROM2

expression. Another study has also reported that PROM2 is

regulated by the androgen receptor (AR) [77]. Therefore,

regulation of prominins by other interacting partners warrants

further investigation. To identify the PPIs involving promi-

nins, we used GeneMANIA, which compiles data on co-

expression, co-localization, genetic interactions, pathways

involved, physical interaction predictions, and shared protein

domains. We selected the prominent functional protein part-

ners of prominins from this analysis, as mentioned below, for

further investigation. The predicted protein partners of

PROM1 along with their respective genes were: prominin 2

(PROM2), gastrin-releasing peptide (GRP), zinc finger pro-

tein 157 (ZNF157), frizzled related protein (FRZB), claudin

10 (CLDN10), phosphatidylinositol-4-phosphate 5-kinase

type 1 beta (PIP5K1B), cadherin-related family member 1

(CDHR1), C-X3-C motif chemokine ligand 1 (CX3CL1), and

PDZ domain-containing protein (PDZD2, Fig. 5a [i]). The

predicted protein partners of PROM2 along with their corre-

sponding genes were: prominin 1 (PROM1), ETS homo-

logous factor (EHF), family with sequence similarity 110

member C (FAM110C), sphingosine-1-phosphate phospha-

tase 2 (SGPP2), adhesion G protein-coupled receptor G1

(ADGRG1), PGAP2-interacting protein (CWH43), proline-

rich gla protein 2 (PRRG2), tetraspanin 1 (TSPAN1), and

E74-like ETS transcription factor 3 (ELF3, Fig. 5a [ii]). Thus,

these predicted interacting partners of prominins may be

involved in the regulation of prominin-mediated cancer pro-

gression and prognosis.

Cross-cancer analysis of prominin mutations and
copy number alterations

We analyzed genetic alterations of PROM1 in different

cancers using cBioPortal and compared the results with

those of other genes of interest mentioned in the preceding

subsection. The database was first queried for PROM1 gene

mutations in 56,250 samples from 215 studies that covered

the entire set of available cancers. The gene set or pathway

was altered in 310 of the queried samples, with a somatic

mutation frequency of 0.6%. As shown in Fig. 5b (i), 331

mutations, including 118 duplications were detected in

patients with multiple samples. The mutation sites were

located between amino acids 0 and 865. Of these mutations,

243 missense mutations and 88 truncating mutations were

detected. We also observed that PROM1 mutations pri-

marily occurred in uterine cancer and spanned the prominin

domain, with a hotspot in N566Ifs*29/Kfs*2. The database

was also queried for PROM2 using the same settings as for

PROM1. In this case, the gene set or pathway was altered in

372 of the queried samples. Therefore, the somatic mutation

frequency was 0.7%, which was slightly higher than the

frequency for PROM1. In total, 405 mutations, including

114 duplications, were detected, which were located

between amino acids 0 and 834. Thus, the mutations in

PROM2 were slightly denser than those in PROM1. We

found 344 missense mutations, 55 truncations, and 6 in-

frame mutations among these mutations. Unlike PROM1,

PROM2 mutations primarily occurred in skin cancer. They

also spanned the prominin domain, with hotspots in Q508R

and R582Q/W (Fig. 5b [ii]).

Next, we analyzed mutations and CNAs in a set of genes

(corresponding to functional protein partners) centered

around PROM1 (Fig. 5a [i]) in 215 different cancer studies.

The query was customized to select 20 different cancer
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studies, representing 5796 samples that contained an

alteration frequency > 25%, with at least 100 samples in

each dataset (Fig. 5c [i], Supplementary Table 5). Fig. 5c (i)

shows that the alteration frequency ranged from 25.27 to

52.34%. The alterations occurred mostly in neuroendocrine

prostate cancer (NEPC). Similarly, an analysis of mutations

and CNAs in the PROM2-centered functional partner genes

(Fig. 5a [ii]) showed alteration frequencies ranging from

20.2 to 44.9% (Fig. 5c [ii], Supplementary Table 6). Similar

to PROM1, the PROM2-centered gene set also showed that,

with the exception of deep deletions, alterations occurred

mainly in NEPC (Fig. 5c, Supplementary Tables 5 and 6).

Next, we applied the OncoPrint sub-tool of cBioPortal to

investigate how the genomic alterations in NEPC are
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distributed over various genes corresponding to the func-

tional protein partners of prominins. For PROM1, altera-

tions in the gene set of PROM1, PROM2, GRP, ZNF157,

FRZB, CLDN10, PIP5K1B, CDHR1, CX3CL1, and

PDZD2 are shown in Fig. 6a. For PROM2, alterations in the

gene set of PROM2, PROM1, EHF, FAM110C, SGPP2,

ADGRG1, CWH43, PRRG2, TSPAN1, and ELF3 are

shown in Fig. 6b. In the PROM1 and PROM2 gene sets, the

alteration percentages varied in the range of 8–39% and

6–32%, respectively, for individual genes. In both cases,

alterations largely occurred due to amplifications. Notably,

ZNF157 was predominantly amplified in the PROM1-

centered gene set (Fig. 6a) and this gene has been shown to

be epigenetically regulated in medulloblastoma [78]. In the

PROM2-centered gene set, however, ELF3, a member of

the E-twenty-six family of transcription factors, was pre-

dominantly amplified (Fig. 6b). It plays a key role in

β-catenin signaling in colorectal cancer and thus, has

potential prognostic and therapeutic significance [79]. The

genomic alterations in other cancer types were distributed

over various genes corresponding to functional protein

partners of prominins. These are summarized in Supple-

mentary Tables 7 and 8.

To determine whether each member in the set of genes

corresponding to the functional protein partners of PROM1

were significantly correlated, we used the co-occurrence

analysis sub-tool of cBioPortal, which is based on Fisher’s

exact test. This analysis confirmed the statistical sig-

nificance of the co-occurrence of alterations in PROM1 and

each gene in the associated set (Fig. 6c). A similar analysis

was performed for PROM2, which also shows the statisti-

cally significant co-occurrence of alterations of each pair of

PROM2 and its partner genes (Fig. 6e). An analysis of the

corresponding levels of expression associated with the

mutation status of prominins showed that deletions of both

PROM1 and PROM2 correlated with increased mRNA

expression (Figs. 6d and f).

The Oncomine database provides an important list of co-

expressed genes, which may help to identify the pathways

involved. Co-expression analysis showed that PROM1 was

significantly co-expressed with ProSAPiP1, FAAH, and

LTA in esophageal cancer (Fig. 7a). In liver cancer PROM1

was more strongly co-expressed with a larger number of

genes, including CFTR, KRT7, ANXA3, TACSTD2, and

FZD1 (Supplementary Fig. S8). ANXA3 encodes the

annexin 3 protein, which can interact with acidic phos-

pholipids in a calcium-dependent manner. Its dysregulation

has a potential role in tumorigenesis [80]. Another study

reported that the upregulation of TACSTD2 regulates breast

cancer invasiveness and subsequently, correlates with poor

prognosis [81]. In contrast, PROM2 was significantly co-

expressed with LAD1, C1ORF106, PVRL4, and KCNK5 in

lung cancer (Fig. 7b). Previous studies have reported that

LAD1, C1ORF106, PVRL4, and KCNK5 are upregulated

in cancer cells [82–85]. Furthermore, LAD1 has been

reported as a filament-binding regulator and also regulates

EGF signaling-mediated breast cancer tumorigenesis [82].

In ovarian cancer, PROM2 is slightly co-expressed with

CARD14 (Supplementary Fig. S9). Thus, the findings

presented here, in combination with those of previous stu-

dies, provide ample evidence that prominin expression may

be involved in cancer progression and prognosis by asso-

ciating with co-expressed genes.

Genes correlated with prominin genes and their
functional GO and pathways

To identify genes that correlate with PROM1 and PROM2

expression in selected cancers, we performed a systematic

analysis using the R2 platform, as outlined below. Two

different sets were selected, each containing four tumor

types for both PROM1 and PROM2, based on their high

levels of expression in those cancers. From the advanced

dataset selection panel of R2, we first selected the TCGARS

platform as the expression data for a particular cancer.

Based on the degree of expression, we individually con-

sidered the following four tumor types for PROM1: eso-

phageal, liver, pancreatic, and prostate tumors. Next, we

made a query to identify the list of genes that correlated

with PROM1 in these tumor types, individually using

Bonferroni correction and a p-value < 0.01 for each case.

We observed that 2513, 1598, 3507, and 4206 genes

Fig. 5 Identification of known and predicted structural proteins

essential for PROM1 and PROM2 function (GeneMANIA) and fre-

quency of mutations and copy number alterations (CNAs) in various

types of cancer (cBioPortal web). a Interacting nodes are displayed in

circles using GeneMANIA. Predicted functional partners of PROM1

(i) and PROM2 (ii) are shown after considering co-expression, co-

localization, genetic interactions, pathways, physical interactions, and

predicted shared protein domains. b In total, 331 mutation sites were

identified and were located between amino acids 0 and 865 of

PROM1. PROM1 mutations mainly occurred in uterine cancer and

existed in a hotspot in the prominin domain (i). In total, 405 mutation

sites were detected and were located between amino acids 0 and 834 of

PROM2. PROM2 mutations mainly occurred in melanoma and also

existed in a hotspot in the prominin domain (ii). c The alteration

frequency of a ten-gene signature (PROM1, PROM2, GRP, ZNF157,

FRZB, CLDN10, PIP5K1B, CDHR1, CX3CL1, and PDZD2) was

determined using cBioPortal. Only data sets containing >100 samples

per cancer type and an alteration frequency of >25% are shown. The

alterations included mutations (green), amplifications (red), deep

deletions (blue), or multiple alterations (grey) (i). The alteration fre-

quency of a ten-gene signature (PROM2, PROM1, EHF, FAM110C,

SGPP2, ADGRG1, CWH43, PRRG2, TSPAN1, and ELF3) was

determined using cBioPortal. Only data sets containing >100 samples

per cancer type and an alteration frequency of >20% are shown. The

alteration frequency included mutations (green), fusions (brown),

amplifications (red), deep deletions (blue), or multiple alterations

(grey) (ii)
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positively correlated with PROM1 expression in esophageal

(ESCA), pancreatic (PAAD), liver (LIHC), and prostate

(PRAD) cancers, respectively. One hundred and ten genes

(hereafter referred to as “PROM1-correlated gene cluster”)

that positively correlated with PROM1 were common

among all four cancer types considered in this analysis (Fig.

8a [i]). There were no common genes detected that nega-

tively correlated with PROM1 in these four tumors (Sup-

plementary Fig. S10). We performed a similar analysis for

PROM2, assessing cervical (CESE), lung (LUAD), ovarian

(OV), and pancreatic (PAAD) tumors. As discussed below,

we analyzed a different set of cancer types for PROM2
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because high expression levels of this gene were detected in

these cancers. Compared to PROM1, fewer genes correlated

positively with PROM2 in each cancer type and 94 genes

(hereafter referred to as “PROM2-correlated gene cluster”)

were common in all four cancers analyzed (Fig. 8b [i]). In

addition, a short list of three genes was identified that

negatively correlated with PROM2 in all cancers analyzed

(Supplementary Fig. S10). Finally, as we compared the

genes that correlated with PROM1 or PROM2 in each

individual tumor type, we observed a substantial number of

commonly correlated genes with the same correlation

direction and we observed no commonly correlated genes

with the reverse correlation direction. This suggested that

PROM1 and PROM2 participate in many common pro-

cesses, depending on the tissue.

Next, we performed GO and pathway analyses for the

PROM1/PROM2-correlated gene clusters using the web-

based classification system, PANTHER. We made a sepa-

rate query for the functional classification of each of the

correlated genes and presented the four important ontolo-

gies associated with them. Each of the ontologies consisted

of multiple sub-ontologies. We showed that binding, cata-

lytic, and transporter activities were the main molecular

functions associated with the PROM1-correlated gene

cluster (Supplementary Fig. S11a [i]), whereas binding and

catalytic activity were the major molecular functions

associated with the PROM2-correlated gene cluster (Sup-

plementary Fig. S11b [i]). In addition, the major biological

process associated with both PROM1 and PROM2-

correlated gene clusters was “Cellular process” (Supple-

mentary Figs S11a [ii], S9b [ii]). “Cell part” and “Mem-

brane” were the two key cellular components associated

with both PROM1- and PROM2-correlated gene clusters

(Supplementary Figs S11a [iii], S11b [iii]). The PROM1-

correlated gene cluster affected 20 pathways, whereas the

PROM2-correlated gene cluster affected 36 pathways and

was involved in more diverse roles (see Figs. 8a [ii], 8b [ii]).

The Alzheimer disease-amyloid secretase pathway was the

most significant pathway associated with the PROM1-

correlated gene, whereas the EGF receptor signaling path-

way was the key player in the PROM2-correlated gene

cluster. However, seven common pathway classes occurred

in both clusters, including those involved in 5-

hydroxytryptamine degradation, Alzheimer disease-pre-

senilin, chemokine and cytokine signaling, integrin signal-

ing, interleukin signaling, and PDGF signaling. In

summary, our results suggested that, although PROM1 and

PROM2 participate in the regulation of different pathways,

they demonstrate similar correlations in certain signaling

pathways, depending on the tissue.

Discussion

Prominins have been shown to contribute to the generation

and development of various cancers [4, 6, 86]. PROM1 is

reported to be a regulator of stem cell activation by modifying

microvillar architecture and dynamics and ciliary dynamics

[12, 18]. PROM2 can cause cellular protrusions and enhance

phosphorylation of caveolin-1 to promote endocytosis [23]. In

addition, several studies have shown that PROM1 and

PROM2-targeted therapies are promising for the prevention of

tumor development [14, 87]. However, the role of these

prominin family members in the development of human

cancers is still not understood. To determine the utility of

PROM1 and PROM2 as markers of cancer prognosis, we

performed a systematic data analysis of numerous gene

expression datasets with clearly defined distinguishing para-

meters between cancer and normal tissues. PROM1 and

PROM2 were found to be differentially expressed in cancer

and normal tissues. The extent of their expression also dif-

fered depending on the tissue, according to Oncomine and

GEPIA-based transcription analysis. Analysis of Oncomine

data showed that PROM1 was upregulated in leukemia and

esophageal, liver, and ovarian cancers, but downregulated in

other cancer types, including kidney cancer. In contrast,

PROM2 was upregulated in myeloma and breast, lung, and

ovarian cancers and downregulated in colon, esophageal,

gastric, kidney, and prostate cancers.

Fig. 6 PROM1 and PROM2 gene signatures are predominantly

amplified and significantly co-expressed in neuroendocrine prostate

cancer (NEPC) and bladder cancer. aWe used the Oncoprint feature of

cBioPortal to determine the copy number alteration frequency of each

individual gene of the PROM1 (a) cluster (PROM1, PROM2, GRP,

ZNF157, FRZB, CLDN10, PIP5K1B, CDHR1, CX3CL1, and

PDZD2) and the PROM2 (b) cluster (PROM2, PROM1, EHF,

FAM110C, SGPP2, ADGRG1, CWH43, PRRG2, TSPAN1, and

ELF3) within selected cancer subtypes. The alterations included mis-

sense mutations (green), amplifications (red), deep deletions (blue), or

no alterations (grey). c and d Mutual exclusivity panel analysis

revealed the co-occurrence of alterations of PROM1 gene signatures

and correlations between PROM1 gene copy number and mRNA

expression. The correlation between PROM1 CNAs and mRNA levels

was investigated using the cBioPortal for Cancer Genomics. Data are

shown for the 107 NEPC samples in which CNAs were available. The

search criteria were: “neuroendocrine prostate cancer (NEPC), muta-

tion, and putative copy-number alterations adjusted by ploidy and

purity with CLONET.” The x-axis is divided according to the copy

number status of the tumor and the Y-axis represents PROM1 mRNA

levels. e and f Mutual exclusivity panel analysis revealed the co-

occurrence of alterations of PROM2 gene signatures and correlation

between PROM2 gene copy number and mRNA expression. The

correlation between PROM2 CNAs and mRNA levels was investi-

gated using cBioPortal for Cancer Genomics. Data are shown from the

402 bladder cancer (TCGA PanCan Atlas) samples in which CNAs

were available. The search criteria were “Bladder cancer (TCGA

PanCan Atlus), mutation, putative copy-number alterations from

GISTIC, and mRNA expression z-Scores (U133 microarray only).”

The x-axis is divided according to the copy number status of the tumor

and the Y-axis represents PROM2 mRNA level
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To improve our understanding of the value of prominins

as prognostic markers, we next investigated the association

between their expression levels and OS in various cancers.

The prognostic value of PROM1 and PROM2 mRNA

expression was assessed using PrognoScan, R2, Kaplan-

Meier plotter, SurvExpress, and OncoLnc. In general, high

PROM1 expression was associated with poor survival in

mixed Ewing sarcoma and brain, esophageal, gastric, liver,

and ovarian cancers. However, owing to contradictory

results from different analyses, its role in liver cancer was

not clear. Our observations are in agreement with the results

of several previous studies. For example, PROM1 upregu-

lation has been reported in ovarian cancer [88, 89] and

targeting this gene retards ovarian cancer development in an

in vivo model [90]. Furthermore, PROM1 has been identi-

fied as a stem cell marker in esophageal and breast cancers

[5, 56]. Next, we observed that PROM2 upregulation was

associated with poor OS in lung cancer; however, owing to

contradictory results, its role in breast cancer was not clear

and the receptor status of breast cancer cells also had some

Fig. 7 Co-expression profile of

PROM1 and PROM2 in

esophageal and lung

adenocarcinoma. a PROM1 is

co-expressed with the indicated

genes across a panel of nine

esophageal adenocarcinomas, 19

Barrett’s esophagus samples,

and 24 normal samples.

b PROM2 is co-expressed with

the indicated genes across a

panel of 58 lung

adenocarcinomas and 58 normal

samples. Bar length represents

the significance and negative

logarithm of the enrichment p-

value
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effect on patient survival. Any significant deviation (either

high or low) in PROM2 expression can be considered as a

valid prognostic marker of low survival rates in patients

with ovarian cancer. Thus, based on mRNA expression and

clinical data from Oncomine and TCGA, we conclude that

PROM1 has as an oncogenic role in brain, esophageal,

ovarian, and gastric cancers and melanoma and PROM2

shows oncogenic behavior in lung and ovarian cancers (Fig.

8c). To assess the impact of PROM1/PROM2 co-expression

on various cancers, we performed several multivariate sur-

vival analyses on OncoLnc, using TCGA data. The co-

expression (high/high), partial co-expression (low/high),

and lack of co-expression (low/low) of PROM1/PROM2

were associated with skin, KIRC, and KIRP cancers,

respectively. The results suggested that the co-expression of

PROM1 and PROM2 may impact clinical outcomes in

patients with certain types of cancers.

Tumorigenesis is a multi-step process that leads to the

development of a tumor. It is primarily influenced by four

major factors - somatically acquired genetic, epigenetic,

transcriptomic, and proteomic alterations [91, 92]. Somatic

loss-of-function or gain-of-function alterations occur in

particular genomic regions involved in potential inhibitory

or carcinogenic effects, respectively [93, 94]. Therefore, we

used cBioPortal to determine human cancers with CNAs

and mutations in prominin genes. Missense and truncating

mutations predominantly occurred within protein-coding

sequences. Mutations in PROM1 were mainly missense and

truncating mutations, including p.R373C, p.Y452fsX12, p.

G614fsX626, and p.Q576X in the prominin domain, which

are associated with human inherited diseases [95–98]. A

recent study reported the identification of a point mutation

at p.S281R (serine [S] changed to arginine [R] due the

mutation of thymine [T] to guanine [G]) in the prominin

domain of the PROM1 protein in 8/555 lung cancer patients

[99]. However, mutations in the PROM2 protein have not

been well studied. In our systematic analysis, we also found

several missense and truncating mutations within PROM1

and PROM2 protein-coding sequences, especially in the

prominin domain, in various cancer types. These results are

yet to be experimentally validated. Specifically, PROM1

mutations mainly occurred in uterine pan-cancer and con-

sisted of several frame-shift insertion or deletion mutations

in a hotspot at position p.N566Ifs*29/Kfs*2 in the prominin

domain. PROM2 mutations were mainly found in skin

cancers and predominantly consisted of point mutations of a

hotspot at position p.Q508R and p.R582Q/W in the pro-

minin domain. These mutations have a potential role in the

regulation of cancer progression and prognosis, but this is

yet to be confirmed. PPIs trigger the majority of biological

processes, including signaling and disease development

[100]. Thus, understanding the factors that modulate PPIs is

important. Therefore, we first identified the top ten

significantly correlated functional protein partners of

PROM1 and PROM2 and constructed their interaction net-

work using GeneMANIA. With a cross-cancer viewpoint

for both, as Subsequent analysis using cBioPortal showed

that genetic alterations of the ten genes in the PROM1 and

PROM2 signatures, mainly occurred in NEPC, with

alteration frequencies of 25.27–52.34% and 20.2–44.9%,

respectively. Genomic alterations in NEPC were differen-

tially distributed over the set of genes, with individual gene

alterations occurring at frequencies of 8 to 39% for

PROM1-related genes and 6–32% for PROM2-

related genes.

A high degree of correlation between PROM1 and

PROM2 gene expression indicates that they have either

have comparable roles or are involved in the same bio-

chemical processes and may be co-regulated [101]. There-

fore, the R2 genomics platform was used to identify genes

correlated with PROM1 and PROM2 in certain cancers in

which these prominins are highly expressed. For PROM1, a

large number of positively correlated genes were detected in

esophageal, pancreatic, liver, and prostate cancers. Of those

genes, 110 were common in all cancers. For PROM2, a

relatively fewer number of correlated genes were detected in

cervical, lung, ovarian, and pancreatic tumors, among

which 94 genes were common in all cancers. Next, to

determine the shared role of these correlated genes in the

above cancers, we used the online tool, PANTHER, to

perform GO and pathway analyses. Despite the existence of

seven common pathways, PROM2-correlated genes

demonstrated more varied characteristics than PROM1-

correlated genes (20 vs. 36 pathways). This correlation

analysis suggested that PROM1 and PROM2 perform dif-

ferent functions with respect to pathway regulation; how-

ever, they may have some similar functions in certain

signaling pathways, in certain cancer types.

In summary, we investigated the expression, mutation,

and copy number alteration patterns of PROM1 and

PROM2 genes and assessed their prognostic significance

through a systematic data analysis, using publicly available

expression and clinical data. This analysis was able to

predict the expression status of prominins for various cancer

types. These data suggest that prominin expression may be

translated into clinical practice and that their co-expression

may impact clinical outcomes in patients with certain types

of cancers. In addition, this study found that some func-

tional protein partners of prominins show high frequencies

of genomic alterations in certain cancer types. For example,

amplifications were predominantly found in ZNF157 and

ELF3 genes among the PROM1- and PROM2-centered

gene sets, respectively, in NEPC. Therefore, investigation

of the combined roles of PROM1 and ZNF157 and PROM2

and ELF3 are important topics for future research. More-

over, we propose that effects of PROM1 and PROM2 on
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Fig. 8 Analysis of genes that positively correlated with PROM1 and

PROM2 and their predicted pathway analysis using PANTHER.

a Venn diagram of genes that positively correlated with PROM1,

showing coincident genes in ESCA, PAAD, LIHC, and PRAD (i).

Pathway analysis using PANTHER and subsequent classification

based on their pathways (ii). b Venn diagram of genes that positively

correlated with PROM2, showing coincident genes in CESE, LUAD,

OV, and PAAD (i). Pathway analysis using PANTHER and sub-

sequent classification based on their pathways (ii). c Summary of

predictive value of PROM1 and PROM2 in different cancers, based on

systematic genetic analyses
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cancer progression and prognosis, may be more prominent

when associated with their respective co-expressed genes,

such as ANXA3 and TACSTD2 for PROM1 and LAD1 and

C1ORF106 for PROM2. Furthermore, in this study, we

demonstrated that PROM1 and PROM2 perform different

functions with respect to pathway regulation.

Concluding remarks

In this study, we focused on data mining approaches to

investigate the expression, mutation, and CNA of prominins

with respect to clinical outcomes in various cancers. Our

results demonstrated that PROM1 and PROM2 expression

differentially modulate the clinical outcomes of cancer

patients. While the former can act as a therapeutic target for

certain cancers, including esophageal, liver, and ovarian

cancer, the latter can be considered as an oncogenic marker

for ovarian and lung cancers. Meanwhile, both PROM1 and

PROM2 are potential targets for skin and kidney cancers. PPI

and co-expression analyses of prominins may also predict the

probable underlying signaling mechanisms associated with

prominins in certain cancers. In summary, these multiomics

findings are expected to improve our understanding of the

relationship between prominin expression and clinical prog-

nosis. They also provide new insights into the molecular

mechanisms involved in cancer and thus, will assist in

transforming genomic knowledge into clinical practice.

Hence, the specific roles, detailed molecular mechanisms, and

clinical significance of prominins in cancer progression and

prognosis deserve further investigation.
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