
Prometheus: User-Controlled P2P Social Data

Management for Socially-Aware Applications

Nicolas Kourtellis1, Joshua Finnis1, Paul Anderson1, Jeremy Blackburn1,
Cristian Borcea2, and Adriana Iamnitchi1

1 Department of Computer Science and Engineering, University of South Florida
{nkourtel,jfinnis,paanders,jhblackb,anda}@cse.usf.edu

2 Department of Computer Science, New Jersey Institute of Technology
borcea@cs.njit.edu

Abstract. Recent Internet applications, such as online social networks
and user-generated content sharing, produce an unprecedented amount of
social information, which is further augmented by location or collocation
data collected from mobile phones. Unfortunately, this wealth of social
information is fragmented across many different proprietary applications.
Combined, it could provide a more accurate representation of the social
world, and it could enable a whole new set of socially-aware applications.

We introduce Prometheus, a peer-to-peer service that collects and
manages social information from multiple sources and implements a set
of social inference functions while enforcing user-defined access control
policies. Prometheus is socially-aware: it allows users to select peers
that manage their social information based on social trust and exploits
naturally-formed social groups for improved performance. We tested our
Prometheus prototype on PlanetLab and built a mobile social applica-
tion to test the performance of its social inference functions under real-
time constraints. We showed that the social-based mapping of users onto
peers improves the service response time and high service availability is
achieved with low overhead.

Keywords: social data management, P2P networks, socially-aware
applications.

1 Introduction

Recently, we have witnessed the emergence of a wealth of socially-aware ap-
plications, which utilize users’ social information to provide features such as
filtering restaurant recommendations based on reviews by friends (e.g., Yelp),
recommending email recipients or filtering spam based on previous email ac-
tivity [19], and exploiting social incentives for computer resource sharing [37].
Social information is also leveraged in conjunction with location/collocation data
to provide novel mobile applications such as Loopt, Brightkite, Foursquare and
Google’s Latitude.

These applications need to collect, store, and use sensitive social information
(including location and collocation). The state of the art is to collect and manage

I. Gupta and C. Mascolo (Eds.): Middleware 2010, LNCS 6452, pp. 212–231, 2010.
c© IFIP International Federation for Information Processing 2010

Prometheus: User-Controlled P2P Social Data Management 213

such information within the context of an application (as in the examples above)
or to expose this information from platforms that specifically collect it, such as
online social networks (OSN). For example, Facebook allows third-party appli-
cation developers and websites to access the social information of its roughly
500 million users. Similarly, OpenSocial provides a common API for third-party
applications to access social information stored on any of the supported social
networks.

However, relying on social information exposed by OSNs has two major prob-
lems. First, the hidden incentives for users to have as many “friends” as possible
lead to declarations of contacts with little connection in terms of trust, common
interests, shared objectives, or other such manifestations of (real) social rela-
tionships [12]. Thus, an application that tries to provide targeted functionalities
must wade through a lot of noise. Second, the business plans of the companies
behind the social networks often conflict with the need to respect user privacy.
Additionally, some social networks institute particularly draconian policies con-
cerning the ownership of user-contributed information and content. For example,
users cannot easily delete their OSN profiles, as in the case of Facebook which
owns their data; they cannot export their social data to a service of their choice;
and their social information has restricted use.

This paper presents Prometheus, a peer-to-peer service for user-controlled
social data management that enables innovative socially-aware applications.
Prometheus collects social information from multiple sources (e.g., OSNs, email,
mobile phones) by quantifying the actual social interactions between users. Thus,
it maintains richer and more nuanced social information, which can lead to more
accurate inferences of trust, interests, and context. Prometheus implements and
exposes to applications several social inference functions.

The choice of a peer-to-peer (P2P) architecture was motivated by two factors:
user privacy and service availability. We considered two alternative architectures.
In a centralized architecture (as in current OSNs) there are no incentives or ap-
propriate business models to store social data for free and allow users to control
the privacy of their data. Prometheus leverages the P2P infrastructure of Mo-
bius [4] to provide user-controlled social data management and social inferences
for services and applications. An alternative architecture stores social informa-
tion on users’ mobile devices, as proposed in [26,27,34,36]. Even though much of
the social information is nowadays generated by mobile devices, they are inher-
ently unsuitable for running a complex social service such as Prometheus due to
resource constraints: the mobile devices may not be always online or synchro-
nized to provide fast and efficient inference support, and energy and computation
power may be scarce.

Prometheus gives users the ultimate control over where their private infor-
mation is stored in the system, and which applications and users are allowed to
access it. We ensure data security and access control on the peers using built-in
public-key cryptography primitives and user-defined access control policies.

We prototyped and evaluated Prometheus on a large-scale deployment on
PlanetLab and tested its performance with realistic workloads. The results show

214 N. Kourtellis et al.

that the response time for social inferences decreases when user information is
mapped onto peers using a social-aware approach. Furthermore, high service
availability is achieved with low overhead. To test the Prometheus service under
real-time deadlines, we implemented CallCensor, a mobile social application that
uses Prometheus to decide whether to filter out incoming calls based on the cur-
rent social context. The response time for this application running on a Google
Android phone meets the real-time deadlines, proving that the Prometheus
service overhead is reasonable.

An overview of the Prometheus service is presented in Section 2, and related
work is covered in Section 3. Section 4 presents a detailed design of Prometheus,
and Section 5 describes the experimental evaluation. We conclude in Section 6.

2 Prometheus Overview

Prometheus is a peer-to-peer service that enables socially-aware applications by
collecting information from multiple sources and exposing it through an interface
that implements non-trivial social inferences. This is accomplished via decentral-
ized storage and management of a weighted, labeled, directed multi-edge social
graph on user-contributed nodes. The access to social data is controlled by user
defined policies.

Specifically, users register with Prometheus and allow it to collect social infor-
mation about them from multiple sources that we refer to as social sensors. Social
sensors are applications running on behalf of a user which report to Prometheus
information such as interactions with other users via email, phone, instant mes-
saging, comments on blogs, ratings on user-generated content, or even face-to-
face interactions determined from collocation data. Social sensors can therefore
be deployed on the user’s devices (e.g., mobile phone) or on the Web (e.g., as a
Facebook application reporting wall writing interactions).

The information collected by social sensors is processed by Prometheus to
create a decentralized, weighted, directed, and labeled multi-edged graph, where
vertices correspond to users and edges correspond to interactions between users
as reported by social sensors. The interactions are described with a label (e.g.,
“work”, “hiking”) and a weight that specifies the intensity of the interaction.
Prometheus uses this decentralized graph to answer various social queries from
applications. Both the social information from sensors and the social subgraphs
are stored and maintained in a P2P network formed by user PCs. The informa-
tion from sensors is stored in an encrypted form and can be decrypted only by
“trusted” peers, which are selected by users. The subgraph of each user is stored
on her trusted peers. The trusted peers also enforce user-defined access control
policies for each social query.

Figure 1 presents the Prometheus architecture. Prometheus runs on top of
Pastry [31], a distributed hash table (DHT)-based overlay, and uses Past [32] for
replicated storage of sensor data. Each user has a group of trusted peers respon-
sible for maintaining replicas of her social subgraph for high service availability.
Only trusted peers can decrypt the user’s social data. The maintenance of the

Prometheus: User-Controlled P2P Social Data Management 215

Fig. 1. Prometheus architecture: The service runs on top of Pastry, a DHT-based
overlay, Scribe, a DHT multicast infrastructure, and Past, a DHT storage system.
The social data from sensors are encrypted and can be stored at any peer. The social
subgraphs are stored on groups of trusted peers. Each peer runs three Prometheus
components for social graph management, privacy management, and trusted group
management. Same color nodes are members of a user’s trusted peer group. Continuous
(red) arrows show group communication for social graph maintenance, while dashed
(blue and green) arrows show social inference queries submitted to other peers.

trusted peer group is done by leveraging Scribe [6], an application-level DHT
multicast infrastructure.

Prometheus exposes an interface that enables applications to have access to a
rich set of social inference requests computed over the distributed social graph.
For example, an application can request on its user’s behalf to receive the top
relations (a function of a specified label and weight) of its user. Similarly, it
can request the social strength between its user and another user not directly
connected in the social graph. Prometheus provides the mechanism by which
inference requests can access not only a single user’s social graph (i.e., directly
connected users), but also the social information of users located several hops
away in the global social graph.

All inferences are subject to users’ access control policies. These policies allow
users to have fine-grained control over the access of all or parts of their graph by
other users. For example, these policies can specify access control as a function of
social labels. Prometheus uses a public-key infrastructure (PKI) to ensure both
message confidentiality and user authentication. Each user and group has its
own pair of public/private keys. For access control purposes, users are identified
by their public keys. Social sensors use the appropriate keys to encrypt the data
submitted to Prometheus.

Prometheus not only enables novel socially-aware applications but also specif-
ically takes advantage of social-based incentives. Social awareness is embedded
in the design of Prometheus in two ways. First, Prometheus allows users to
select trusted peers to maintain their social subgraph based on out-of-band re-
lationships. Socially-incentivized users keep their computers online, thus reduc-
ing churn [22] and consequently increasing service availability for their friends’
social inference requests. Second, given the characteristics of social graphs,
socially-related users will likely select the same trusted peers to store their social

216 N. Kourtellis et al.

subgraphs (i.e., friends have common friends who contribute peers in the system
and thus select the same trusted peers). This allows complex social inferences
over several social graph hops to be fulfilled locally, without traversing multiple
network hops to access all the needed social information.

3 Related Work

Socially-aware applications and services have so far addressed ways to leverage
out-of-band social relationships for diverse objectives such as improving secu-
rity [41], inferring trust [23], providing incentives for resource sharing [37], or
building overlays [28] for private communication. Leveraging online social infor-
mation has been used to rank Internet search results relative to the interests of a
user’s neighborhood in the social network [13], to favor socially-connected users
in a BitTorrent swarm [29], and to reduce unwanted communication [25].

In all of these cases, social knowledge has been mined in the context of a
single application and from a single source of information. Our work differs
from these systems in four important ways. First, we collect information from
multiple sources. The only system we are aware of that considers social infor-
mation aggregation for enriching information value is Sonar [16]. Unlike our
approach, Sonar is limited to improving information flow in an organization
by aggregating social network information within the enterprise context, from
sources such as email, instant messaging, etc. Second, we extract social knowl-
edge from the social graph by accessing larger portions of the network, not only
a user’s direct neighborhood. Somewhat similarly, RE [11] uses two hop relation-
ships to automatically populate email whitelists. Third, in Prometheus, social
information can cross application boundary contexts, similar to Ramachandran
and Feamster’s proposal to “export” the social ties formed in social networks
for authentication in off-social applications [30]. And finally, our social graph
representation offers richer information for fine-grained evaluation of social ties.
Kahanda and Neville also represent interactions with a weighted, directed multi-
edged graph [17]. Prometheus differs in its generality of the graph—its edges can
represent interactions collected from different sources.

APIs for accessing social information has been offered by Facebook through
its Open Graph API [1] for access to simple, unprocessed social data. This API
does not provide direct “friends of friends” inferences as Prometheus does, but
instead an application must explicitly crawl the graph.

Privacy in Online Social Networks (OSNs) through decentralization has been
addressed in [7]. Prometheus similarly forwards messages based on social rela-
tions while restricting a large scale view of the graph through a P2P mechanism.
Prometheus differs dramatically, however, in the exposure of the graph as a first
class data object through inference functionality. Persona [3] uses an attribute-
based encryption (ABE) to provide privacy in OSNs. Prometheus can leverage
this system to provide more flexible access control policies.

Peer-to-peer management of social data is also proposed in PeerSoN [5]
and Vis-à-Vis [35]. PeerSoN uses direct data exchange between users’ devices.

Prometheus: User-Controlled P2P Social Data Management 217

Prometheus differs from this approach by using trusted peers, which are inde-
pendent from the users’ devices, to store and exchange social data. Vis-à-Vis
introduces the concept of a Virtual Individual Server (VIS) where each user’s
data are stored on a personal virtual machine. While similar to the trusted
peer concept in Prometheus, VISs are hosted by a cloud computing provider to
counter peer churn, while Prometheus uses social incentives to reduce churn on
user-supplied peers.

Our work significantly differs from the previously noted approaches in that it
not only collects and stores user social information from multiple sources in a
P2P network but also exposes social inference functions useful for novel socially-
aware applications. This approach shares ideas with the MobiSoc middleware[15];
however, the MobiSoc middleware is logically centralized leading to “big brother”
concerns similar to existing OSNs.

4 Prometheus Design

4.1 User Registration

Users register with Prometheus from a trusted device by contacting any peer
in the network and are assigned a unique user id (UID). At registration time,
they specify the peer(s) they will contribute to the network (if any). The peer
handling the registration creates a mapping between UID and the list of these
peers’ IP addresses. This mapping is stored in the network as the key-value pair
UID={IP 1, ..., IP n}. When a peer returns from an offline state, it updates the
mapping with its current IP address. Users have a pair of public/private keys,
and the mappings are signed with their private key.

Users select, deploy, and configure the social sensors they want to use. They
may wish to declare particular social relationships, such as family relations,
that may prove difficult or impossible to infer by social sensors. Finally, they
select an initial set of trusted peers based on out-of-bound trust relations with
other Prometheus users. The larger the size of this set, the higher the service
availability; but at the same time, the consistency and the overall performance
may decrease. Users have also a pair of public/private keys for their trusted peer
group. The group keys are transferred to each group peer by encrypting them
with the peer’s owner public keys. As social information about a new user will be
incorporated in the social graph, users may be prompted with different choices
for trusted peers (e.g., peers belonging to users with stronger ties).

4.2 Trusted Peer Group Management

We address three issues concerning the trusted peer group management of a
user: (a) group membership, (b) search for trusted peers, and (c) group churn.

A user can add peers in the trusted peer group by executing a secure three-way
handshake procedure which establishes a two-way trust relationship between her
and the peer owner. All the messages in this exchange are signed and verified.
If the owner of a candidate peer accepts a peer addition request, the initiator

218 N. Kourtellis et al.

will send the group keys to the new peer as described above. Then, the new peer
subscribes to the Scribe Trusted Peer Group UID of the user.

If a user decides to remove a peer from the trusted group (e.g., she no longer
trusts the peer’s owner), the user submits an unsubscribe request to one of the
other trusted peers. This request is multicast to all group peers. Then, the peer
generates a new pair of public/private keys for the group; this pair is distributed
to all other trusted peers except the newly removed one. Additionally, the social
sensors must be informed that the public key of the group has been changed. A
peer owner may also decide to remove her peer from a trusted group of another
user. This request is multicast to all the other group members.

Service requests can be sent to any peer, but only the trusted peers of a user
can provide data about that user. Therefore, a random peer can find trusted peers
for a user by submitting a multicast request to the user’s trusted peer group.
The group peers respond with their signed membership which is verified for
authenticity with the user’s group public key. The random peer is subsequently
able to directly communicate with the individual trusted peers.

Past replicates the sensor data, thus maintaining data availability. However,
the social graph for a user is unavailable if all her trusted peers leave the network;
no service requests involving this user can be answered until a trusted peer rejoins
the network. We ensure that generated data (e.g., input from social sensors) are
not lost while a user’s group is down via replication in the DHT by PAST. If a
peer becomes untrusted while offline, a trusted peer from the particular group
instructs the returning peer to unsubscribe.

4.3 Geo-social Graph Representation

Prometheus represents the social graph as introduced in [2]: a directed, labeled,
and weighted multi-edged graph, maintained and used in a decentralized fashion,
as presented in Figure 2.

Multiple edges can connect two users, and each edge is labeled with a type
of social interaction and assigned a weight that represents the intensity of that
interaction. The labels for interactions and their associated weights are assigned
by sensors. From an application point of view, distinguishing between different
types of interactions allows for better functionality. Weights are assigned as a
function of the number and frequency of interactions. This allows for a more
accurate estimation of relationship strengths [40]. The latest known location of
a user is also maintained as an attribute of the vertex representing the user in
the graph.

We chose to represent the graph as directed because of the well-accepted result
in sociology that “ties are usually asymmetrically reciprocal” [38]. Representing
edges as directed enhances security by limiting the potential effects of illegitimate
graph manipulation. For example, if Alice repeatedly performs interactions with
Bob that are not reciprocated, only the edge connecting Alice to Bob will have
its weight increased, not the edge from Bob to Alice.

Prometheus: User-Controlled P2P Social Data Management 219

Fig. 2. An example of a social graph for eight users (A-H) who own seven peers. The
mapping between users, peer owners, and trusted peers is shown in the upper left
corner. Each edge is marked with its label and weight. The bottom figures illustrate
the subgraphs maintained by peers 1 and 5. Users shown in dark color (e.g., users A,
B and C on peer 1) trust the peer to manage their social data. Users shown in light
shaded color (e.g., users E and D on peer 1) do not trust the peer but are socially
connected with users who do.

4.4 Social Sensors

Two types of social ties can typically be inferred from user interactions. The
first type, object-centric ties, is identified through the use of similar resources or
participation in common activities. Examples include tagging the same items in
collaborative tagging communities such as Delicious or CiteULike and repeatedly
being part of the same BitTorrent swarms. The second type, people-centric ties,
is determined from declared social relationships (e.g., in online social networks),
declared membership to groups (e.g., networks in Facebook or company name
in LinkedIn), or collocation information.

Social sensors are applications that are installed on the user’s mobile device
or PC that aggregate and analyze the history of user’s interactions with other
users and report to Prometheus labels and weights corresponding to directed
edges. These social data are encrypted with the public key of the user’s trusted
group, signed with the user’s private key, and stored in the DHT by Past. Note
that if web sensors (such as Facebook applications) are used, the data have to be
first sent to one of the user’s devices to be signed and encrypted. The data for

220 N. Kourtellis et al.

each user are stored as records in an append-only file, named Social Data UID.
Only the trusted peers can decrypt these records.

We designed Prometheus to be oblivious to the types of social activity re-
ported by social sensors, thus allowing extensibility. For example, many such
sensors already exist, although they have been implemented in different con-
texts; these sensors record and quantify OSNs’ user activity [21], co-appearance
on web pages [24], or co-presence recorded as collocation via Bluetooth [8]. Sen-
sors can perform relatively sophisticated analysis before sending the data to
Prometheus. For instance, collocation social sensors can differentiate between
routine encounters with familiar strangers and interactions between friends [8].

4.5 Social State Maintenance

The social data for each user are stored in the file Social Data UID as encrypted
records. To ensure atomic appends, a lock file associated with the data file is
created by the sensor trying to append a record. Other sensors trying to append
concurrently will receive an error when trying to create this file. Once the append
is done, the lock file is deleted. Since the file is append-only, readers can access
it at any time: in the worst case, they will miss the latest update.

Social sensors can send updates to create new edges, remove old edges, or
modify an edge weight. Each record contains a sequence number and encrypted
data with the label and its associated weight. Trusted peers periodically check
the file for new records and retrieve all such records: this is easily done based on
sequence number comparison starting from the end of the file. The peer decrypts
the new records and verifies the digital signature to make sure the updates are
authentic. Then, it updates the subgraph of the user with the newly retrieved
records. For short periods of time, the trusted peers may have inconsistent data,
but this is not a major problem as social graphs do not change often.

Social sensors may specify that certain edges must be “aged” over time if
no new updates for those edges are received (i.e., lack of social interactions
associated with those labels). The social sensors may also specify the decre-
ment value and the time period for aging (these values are also stored in the
Social Data UID file for each user).

4.6 Service Interface

Prometheus implements in a distributed fashion a set of basic social inference
functions, which are exposed to applications through a service interface. We
assume that every device running an application that interacts with Prometheus
caches a number of peer IP addresses to bootstrap the interaction.

Social Inference Functions: We implemented the following social inference
functions; more complex inferences can be built on top of this set.

relation test(ego, alter, α, x) is a boolean function that checks whether ego is
directly connected to alter in the social subgraph of ego by an edge with label
α and with a minimum weight of x. A mobile phone application can use this

Prometheus: User-Controlled P2P Social Data Management 221

function, for example, to determine whether an incoming call is from a coworker
with a strong social tie, and therefore, should be let through even on weekends.

top relations(ego, α, n) returns the top n users in the social subgraph of ego
(ordered by decreasing weights) who are directly connected to ego by an edge
with label α. An application can use this function, for example, to invite users
highly connected with ego to share content related to activity α.

neighborhood(ego, α, x, radius) returns the set of users in ego’s social neigh-
borhood of size radius who are connected through social ties of a label α and
minimum weight of x. The radius parameter allows for a multiple hop search in
the social graph (e.g., setting radius to 2 will find friends of friends). Our Call-
Censor mobile phone application which silences ego’s cell phone during meetings
at work (Section 5.3) uses this function to determine if a caller is in ego’s work
neighborhood in the social graph even if not directly connected.

proximity(ego, α, x, radius, min distance, timestamp) is an extension of the
neighborhood function which filters the results of the social neighborhood infer-
ence based on physical distance to ego. After the location information is collected
for ego and the set of users is returned by neighborhood, proximity returns the
set of users who are within min distance from ego. A mobile phone application
might use this function to infer the list of collocated coworkers within a certain
distance of ego. Users who do not share the location or have location information
older than the timestamp will not be returned.

social strength(ego, alter) returns a real number in the range of [0, 1] that
quantifies the social strength between ego and alter from ego’s perspective. The
two users can be multiple hops apart in the social graph. The return value is
normalized, as shown below, to ego’s social ties to ensure that the social strength
is less sensitive to the social activity of the users. NW is the normalized weight
between two directly connected users, K is the path length joining two indirect
users, Ni is a user in this path, w is the weight of an edge, and strength is the
return value for a multi-hop path:

NW (ego, neighbori) =

∑

all−labels

w(ego, neighbori)

max
all−neighbors

(∑

all−labels

w(ego, neighbor)
) . (1)

strength
(
path(N1, N2, . . . , NK)

)
= max

all−paths

min
i=1,...,K−1

(
NW (Ni, Ni+1)

)

K
. (2)

Such a function could be used, for example, to estimate social incentives for
resource sharing. We limit the length of the indirect path that connects two
users to two, using a well-accepted result in sociology known as the “horizon of
observability” [9].

Inference Function Execution: Social inference requests are signed with the
private key of the user who submitted them and sent to any Prometheus peer.

222 N. Kourtellis et al.

The request will then be forwarded to one of the trusted peers of the user, which
enforces the access control policies and verifies the submitter’s identity through
her public key. The peer fulfills the request by traversing the local social subgraph
for the information requested by the application, encrypting and signing the
result using the requesting user’s public key and the trusted group’s private key,
respectively, and returning the result to the application.

For functions that need to traverse the graph for more than one hop (e.g.,
social strength), the peer will forward requests for information about other users
to their trusted peers. The requests include the UID of the original submitter (in
order to verify her access rights). The peer signs these requests with the group
private key and optionally encrypts them with the destination group public
key. Each receiving peer authenticates the request and checks the access control
policies for the requesting user. If the request is granted, the result is returned to
the requesting peer. If the request still needs more information, the peer repeats
the same process. Finally, the original requesting peer collects recursively all the
replies and submits the final result to the application.

4.7 Access Control Policies

Users can specify access control policies (ACP) upon registration and can update
them any time thereafter. These policies are stored on each trusted peer of the
user and are applied each time an inference request is handled by these peers. For
availability, the policies are also stored encrypted with the group public key in
the DHT, thus allowing rejoining trusted peers to recover policies updated while
the peer was offline. The same mechanism used for updating the social graph is
used to update policies. As future work, we plan to investigate providing strong
consistency for policies.

Currently, we consider four different categories of social information for which
users can set access control policies: relations, labels, weights, and location. By
design, ACPs are whitelists. To specify who is allowed to access these categories
of social information, ACPs allow the following elements to appear: individual
users, groups of users identified by labels, application name to allow access to
certain applications no matter which user runs them, and number of social hops
the requesting users must be within. To verify the access rights, Prometheus may
call its inference functions. For example, to detect whether the originator of the
request is within a certain number of hops, the originator is checked against the
result of a two-hop neighborhood function. ACPs also allow for blacklisted users
to provide convenience in the case that a user wants to provide access to a large
set of users and exclude a small number of members of that set.

Relations, labels, and weights allow fine-grained control over access to users’
social graphs. Setting the relations field would prevent any user not allowed
access from completing an inference that asks whether the user is connected
with some other user, which accounts for most social inferences. Social inference
functions which make use of labels as a filter provide an increased amount of
data about a user; hence, it is likely that users will set this field more restrictively
than the relations field. Prometheus allows users to set restrictions for any label

Prometheus: User-Controlled P2P Social Data Management 223

relations: hops-2

hiking-label: lbl-hiking

work-label: lbl-work

general-label:

weights:

location: hops-1

blacklist: user-Eve

Fig. 3. Example of an access control policy in Prometheus

in their social graph in their ACP. Upon an inference request, Prometheus will
first check to see if the specific label has any restrictions, and if not, check the
“general-label” category for restrictions on all labels. Weights provide even more
detail about user social graphs. Users can set additional restrictions upon social
inferences that request weighted data. Finally, location governs access to any
inference function which asks for a user’s location.

Figure 3 shows an example ACP for Alice that disallows any social inference
that makes use of the social graph (through the relations field) originating from
a user outside of two social hops, with an additional restriction that only those
connected to her with a “hiking” label can request social inferences for her “hik-
ing” information, excluding the user Eve. Social inferences which use location
are restricted to those she is directly connected with. If a “hiking” neighbor-
hood inference is submitted to Alice, Prometheus checks her ACP in the order
relations→hiking-label→weights.

5 Experimental Evaluation

We implemented Prometheus on top of the FreePastry Java implementation of
Pastry DHT which also provides API support for Scribe and Past. The social
graph management is implemented in Python. The Prometheus prototype was
deployed and evaluated on PlanetLab.

Our evaluation had three goals: (1) measure Prometheus performance over a
large scale worldwide distributed network using realistic workloads with a large
number of users, created based on previous studies of social media user behavior;
(2) assess the effect of socially-aware trusted peer selection on the system’s overall
performance; and (3) validate Prometheus with a social application developed
on mobile phones and measure the performance of this application. An implicit
goal was to identify potential performance optimizations, as we focused so far
on building a robust end-to-end system. The two metrics used in this evaluation
were end-to-end response time to quantify the user-perceived performance and
number of network messages to quantify the service overhead.

In the first set of experiments, we used 100 peers deployed on PlanetLab,
and each peer submitted workload on behalf of 1000 users. The number of users
trusting each peer was varied from 10 to 30, i.e., each user trusted 1 and 3 peers

224 N. Kourtellis et al.

respectively. The user distribution across peers was varied using two methods:
i) random — users randomly trust peers, and ii) social – socially connected
users trust the same peer. We limit the number of users assigned on a peer
to 30, based on sociological studies [10] that claim that, on average, an urban
person has meaningful social relationships with about 30 other individuals.

The second set of experiments was designed to assess Prometheus performance
when used with a real application and on a real social graph. We implemented a
mobile application, CallCensor, that silences the phone ring based on the social
context of the callee and the relationship with the caller.

In the experiments, we used a timeout of 15 seconds for every social hop in
the graph traversed by Prometheus to fulfill a request. After this timeout, a
Prometheus peer handling either the initial request or subsequent secondary re-
quests responded with the results it had at that point. Applications could modify
the timeout parameter to trade waiting time for more information returned by
social inferences.

5.1 Synthetic Workloads and Social Graph

We evaluated the operation of Prometheus with a large user base. We emulated
the workload of two socially-aware applications and one social sensor based on
previous system characterizations [39,20,14].

Workload for Social Sensor: We emulated a Facebook social sensor based on a
Facebook trace analysis [39]. The workload was characterized by the probability
distribution function for users to post comments on walls and photos. Users were
ranked into groups based on their social degree and each group was mapped
onto a probability class using the cumulative distribution function from Figure
8 in [39]. To emulate a social interaction from ego to alter, a group was selected
based on its associated probability, and a user ego from the group (who was not
selected yet) was picked as the source of input. Alter was randomly selected from
the ego’s direct social connections. The weight of each input was kept constant
to a small value for all users. Since users were picked based on their social degree,
the users with higher social degree probabilistically produced more input, leading
to higher weights on their corresponding edges in the social graph.

Workload for Neighborhood Inference: We used an analysis of Twitter
traces [20] to associate a tweet with a neighborhood request (centered at the
leader of the tweet) in Prometheus. Thus, we extracted the probability distri-
bution function of submitted requests. Users were ranked into groups based on
their social degree ratio (the number of incoming edges divided by the number
of outgoing edges). Based on Figure 4 in [20], each group was mapped onto a
particular probability to be selected for a neighborhood request. Once the group
was selected, a user from the group (who was not selected yet) was picked to
be the source of the request. The number of hops for the request was randomly
picked from 1, 2 or 3 hops.

Workload for Social Strength Inference: We used an analysis of BitTorrent
traces to emulate the workload of a battery-aware BitTorrent application [18] on

Prometheus: User-Controlled P2P Social Data Management 225

(a) 10 users per peer (b) 30 users per peer

Fig. 4. CDF for the average end-to-end response time of neighborhood inference for
two types of user-to-peer mapping (Random and Social) and two numbers of users per
peer (10 or 30)

mobile devices: a user may rely on social incentives to be allowed to temporarily
“free ride” the system when low on battery. Members of the same swarm check
their social strength with the needy leecher to see if they want to contribute by
uploading on her behalf.

We assumed that users participated at random in swarms. Two users were
randomly selected as the source and destination of the social strength inference
request. The user selected as the source was associated with a total number of re-
quests she would submit throughout the experiment. This number was extracted
from an analysis of BitTorrent traces (Figure 9b in [14]).

Social Graph: We used a graph of 1000 users created with a synthetic social
graph generator described in [33]. The generator consistently produces graphs
with properties such as degree distribution and clustering coefficient similar to
real social graphs. We used this graph as a bidirectional graph and applied a low
weight threshold on the inference requests to produce a high-stress load.

5.2 Results from Synthetic Workload Experiments

For every run of the experiments, more than 200,000 social strength and neigh-
borhood requests and more than 32,000 social inputs were submitted from the
emulated applications and social sensors. Figure 4 shows the end-to-end average
response time for the neighborhood inference. We learn four lessons from these
experiments.

First, the social-based mapping of users onto peers leads to significant im-
provements, especially for the 30 users/peer case. For this case, we have as much
as 15% of the invocations finishing faster when compared to the random case
(some invocations can finish in half the time). Additionally, the benefits com-
pound as the number of hops increases. Of course, the difference is visible only
for 2 and 3 hops, as the 1 hop function is computed locally. While we do not
plot the number of messages in the system for the sake of brevity, we notice that
the social-based mapping reduces the communication overhead by more than an
order of magnitude.

226 N. Kourtellis et al.

(a) 10 users per peer (b) 30 users per peer

Fig. 5. CDF for the average end-to-end response time of social inference function social
strength (Socs) for two types of user-to-peer mapping (Random and Social) and two
levels for number of users per peer (10 and 30 users per peer)

Second, the results show that a three-fold improvement in service availability
can be achieved with minimum performance degradation. This is because the
graph on the right side has three times more trusted peers per user and its
overall response time is only marginally inferior compared with the graph on
the left. Therefore, Prometheus design for availability (i.e., replicating the social
graph on all trusted peers) is proven to work well in a realistic scenario.

Third, the absolute values of the response time are relatively high, especially
for 2 and 3 hops. This is mostly due to the communication delay introduced
by the P2P network. In our testbed, the average RTT is 200-300 msec. This
value is multiplied by the number of hops traveled by a request/response. For
example, for 10 users/peer, an average of 67 peers have to be contacted to collect
neighborhood data from users located 3 social hops away (the number of users
is 350). To improve these results, we plan to implement caching of recently
computed results as well as pre-computing results in the background. These
methods are expected to work well because the social graph changes rarely.
Therefore, the cost associated with maintaining consistency should be low.

Fourth, creating the trusted peer list can be an expensive operation. Let us
recall that a request can arrive at a random node, which has to first acquire the
list of trusted peers for the user, and then forward the request to one of these
trusted peers. This operation involves several lookups in the DHT, which result
in multiple peer traversals. To solve this problem, Prometheus caches the list of
trusted peers after the first access. The two graphs show the performance using
this caching mechanism. The overhead associated with the cold start of creating
the trusted peer list is as much as 10 sec for 3 hops.

Figure 5 shows the end-to-end average response time for the social strength
inference. The performance is almost identical to the one for neighborhood for
2 hops because this function has to verify all possible paths between two users,
but is limited to users located 2 social hops away.

Prometheus: User-Controlled P2P Social Data Management 227

5.3 CallCensor: A Real-Time Mobile Socially-Aware Application

The CallCensor application leverages social information received from
Prometheus to decide whether to allow incoming calls to go through. In addi-
tion to the social information from Prometheus, this application uses the phone
location to infer whether the user is in a meeting (e.g., in the office). For each in-
coming call, the application queries Prometheus with a social strength or neigh-
borhood inference request to assess the type of social connection between the
caller and the phone owner. Based on the owner settings (e.g., allow calls from
the spouse anytime), the application decides if the phone should ring, vibrate or
silence upon receiving the call. The application was written in Java for mobile
devices running the Google Android OS and was tested on a Nexus One mobile
phone from HTC (1GHz processor, 512MB RAM).

We tested three scenarios in which a caller can be connected to the callee:
directly connected within 1 social hop, indirectly connect by 2 social hops, and
connected with a high social strength (independent of the number of hops). We
tested each of these scenarios 50 times on 3 PlanetLab peers. We measured the
end-to-end response time of an inference request submitted to Prometheus. This
experiment introduced additional overhead due to the communication between
the mobile application and Prometheus.

The social graph used in these experiments was based on data collected at
NJIT. The graph has two types of edges, representing Facebook friends and
Bluetooth collocation. Mobile phones were distributed to students and colloca-
tion data (determined via Bluetooth addresses discovered periodically by each
mobile device) were sent to a server. The same set of subjects installed a Face-
book application to participate in a survey, and they gave us permission to collect
their friend lists. The user set was small (100 users) compared to the size of the
student body (9000), therefore resulting in a somewhat sparse graph. About half
of the subjects reported less than 24 hours of data over the span of a month.
The collocation data have two thresholds of 45 and 90 minutes for users to have
spent together; thus, the 90 minute collocations comprise of a subgraph of the
45 minute collocations.

While the edges on the graph were not initially weighted, we applied synthetic
weights of 0.1 for “facebook” edges, 0.1 for “collocation” of 45 minutes and 0.2 for
“collocation” of 90 minutes. For the experiments, we consider the “collocation”
edges to represent a work relationship, while the “facebook” edges represent a
personal relationship. The user (ego) was assumed to be in a work environment
when another user (alter) called. Figure 6(a) illustrates this graph and demon-
strates one of the features of Prometheus: using multi-edge graphs provides for
better social inferences. Neither the “facebook” nor the “collocation” graph is
connected, but the graph containing both types of edges is.

The users were assigned to trust 3 PlanetLab peers using a social-based distri-
bution. For each of the scenarios tested, the ego and alter were randomly chosen,
and the inference request was sent to a random peer.

Figure 6(b) presents the end-to-end average response time for the requests
sent by CallCensor for the three cases mentioned above. The results also show

228 N. Kourtellis et al.

(a) Input social graph (b) Average response time

Fig. 6. The input social graph (a) has two types of edges: black dashed lines are Face-
book edges, and red continuous lines are collocation edges. Line thickness demonstrates
the weight of the edge. The results (b) show the CDF for the average end-to-end re-
sponse time of CallCensor on 3 PlanetLab nodes for neighborhood for 1 and 2 hops and
social strength (SocS). We show the time needed by Prometheus to produce a response
and also the overall time needed by CallCensor to request and handle this response.

the time spent by the requests only in Prometheus. We first observe that the re-
sults are acceptable for the real-time constraint of the application: the response
must arrive before the call is forwarded to the voice-mail of the callee. Second, we
notice that the application itself introduced a significant overhead: for example,
50% in the 2-hop neighborhood and social strength cases due to both communi-
cation overhead and relatively slow execution on the mobile phone. Third, we
observe the similarity of the social strength results with the neighborhood for 2
social hops, as found in the previous experiments.

6 Conclusions and Future Work

This paper presented Prometheus, a P2P service that enables socially-aware ap-
plications by providing decentralized, user-controlled social data management.
Its decentralized, multi-edged, directed and weighted graph offers a fine-grained
representation of the users’ social state. Since Prometheus provides good pri-
vacy and availability, we expect users to provide a significant amount of so-
cial information, well beyond what is available today. We built and evaluated
Prometheus using a large scale distributed testbed and a realistic workload.
Additionally, we implemented a proof-of-concept mobile social application that
utilizes Prometheus functionalities.

The performance results can certainly be optimized as we focused only on
functionality so far. As mentioned in the previous section, we plan to cache
and pre-compute results benefiting from the slow changes that occur in social

Prometheus: User-Controlled P2P Social Data Management 229

graphs. A possible solution for ensuring consistency in such a case is to use the
DHT storage to store “dirty bits” for each user. These bits would show if users’
information has been updated by social sensors, thereby informing peers that
their cached results are stale and that they should rerun the inferences.

We plan to expand the set of social inferences as well as to allow different
sensors to provide input for the same label. Additionally, we will explore ac-
tivity ontologies, provided to social sensors by Prometheus, to support label
consistency across multiple sensors.

Prometheus peers have been assumed trusted and cooperative. Due to its
distributed nature, Prometheus is harder to be completely compromised than
centralized solutions. Similarly, it is more resilient to DoS attacks. Nevertheless,
we plan to examine the implications of malicious users and peers in the near
future. Of special concern is the case where a (previously) trusted peer becomes
malicious. While this newly malicious peer can certainly be removed from a user’s
trusted peer group, it still retains previously acquired social knowledge, and thus,
the ability to subvert the service experienced by the user-owner of the social data.
Also, a trusted peer can become faulty and provide inaccurate results. We plan
to investigate Byzantine fault-tolerance protocols to guarantee the validity of
the results. Finally, while our default access control policies prevent any single
user from gaining knowledge of the entire graph, we have yet to ascertain what
level of collusion between users would expose the entire graph.

Acknowledgments. This research was supported by the NSF under Grants
No. CNS 0952420, CNS 0831785 and CNS 0831753. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the sponsors. We thank Daniel
Boston, Juan Pan, and Steve Mardenfeld from NJIT for collecting the Bluetooth
collocation traces.

References

1. Graph api - facebook developers, http://developers.facebook.com/docs/api
2. Anderson, P., Kourtellis, N., Finnis, J., Iamnitchi, A.: On managing social data

for enabling socially-aware applications and services. In: 3th Workshop on Social
Network Systems (2010)

3. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: An
online social network with user-defined privacy. ACM Computer Communication
Review 39(4), 135–146 (2009)

4. Borcea, C., Iamnitchi, A.: P2P systems meet mobile computing: A community-
oriented software infrastructure for mobile social applications. In: 2nd Int. Conf.
on Self-Adaptive and Self-Organizing Systems Workshops, pp. 242–247 (2008)

5. Buchegger, S., Schiöberg, D., Vu, L., Datta, A.: PeerSoN: P2P social networking:
early experiences and insights. In: 2nd Workshop on Social Network Systems, pp.
46–52 (2009)

6. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20(8), 1489–1499 (2002)

http://developers.facebook.com/docs/api

230 N. Kourtellis et al.

7. Cutillo, L., Molva, R., Strufe, T.: Privacy preserving social networking through
decentralization. In: 6th Int. Conf. on Wireless On-Demand Network Systems and
Services, pp. 133–140 (2009)

8. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Personal
and Ubiquitous Computing 10(4), 255–268 (2006)

9. Friedkin, N.E.: Horizons of observability and limits of informal control in organi-
zations. Social Forces 62(1), 57–77 (1983)

10. Friedkin, N.E.: The development of structure in random networks: an analysis
of the effects of increasing network density on five measures of structure. Social
Networks 3(1), 41–52 (1981)

11. Garriss, S., Kaminsky, M., Freedman, M.J., Karp, B., Mazières, D., Yu, H.: Re:
reliable email. In: 3rd Conf. on Networked Systems Design and Implementation
(2006)

12. Golder, S.A., Wilkinson, D., Huberman, B.A.: Rhythms of social interaction: Mes-
saging within a massive online network. In: 3rd Int. Conf. on Communities and
Technologies (2007)

13. Gummadi, K.P., Mislove, A., Druschel, P.: Exploiting social networks for internet
search. In: 5th Workshop on Hot Topics in Networks, pp. 79–84 (2006)

14. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurements, analysis,
and modeling of bittorrent-like systems. In: 5th Conf. on Internet Measurement
(2005)

15. Gupta, A., Kalra, A., Boston, D., Borcea, C.: MobiSoC: a middleware for mo-
bile social computing applications. Mobile Networks and Applications 14(1), 35–52
(2009)

16. Guy, I., Jacovi, M., Shahar, E., Meshulam, N., Soroka, V., Farrell, S.: Harvesting
with SONAR: the value of aggregating social network information. In: 26th Conf.
on Human Factors in Computing Systems, pp. 1017–1026 (2008)

17. Kahanda, I., Neville, J.: Using transactional information to predict link strength
in online social networks. In: 3rd AAAI Int. Conf. on Weblogs and Social Media
(2009)

18. King, Z., Blackburn, J., Iamnitchi, A.: BatTorrent: A battery-aware bittorrent for
mobile devices. In: 11th Int. Conf. on Ubiquitous Computing, Poster Session (2009)

19. Kong, J.S., Rezaei, B.A., Sarshar, N., Roychowdhury, V.P., Boykin, P.O.: Collab-
orative spam filtering using e-mail networks. Computer 39(8), 67–73 (2006)

20. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: 1st Workshop
on Online Social Networks, pp. 19–24 (2008)

21. Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., Christakis, N.: Tastes, ties, and
time: A new social network dataset using Facebook.com. Social Networks 30(4),
330–342 (2008)

22. Li, J., Dabek, F.: F2F: reliable storage in open networks. In: 5th Int. Workshop on
Peer-to-Peer Systems (2006)

23. Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal, D.S.H., Baker, M.:
The LOCKSS peer-to-peer digital preservation system. ACM Trans. Comput.
Syst. 23(1), 2–50 (2005)

24. Matsuo, Y., Mori, J., Hamasaki, M., Ishida, K., Nishimura, T., Takeda, H., Hasida,
K., Ishizuka, M.: Polyphonet: an advanced social network extraction system from
the web. In: 15th Int. Conf. on World Wide Web, pp. 397–406 (2006)

25. Mislove, A., Post, A., Druschel, P., Gummadi, K.P.: Ostra: leveraging trust to
thwart unwanted communication. In: 5th Symposium on Networked Systems De-
sign and Implementation, pp. 15–30 (2008)

Prometheus: User-Controlled P2P Social Data Management 231

26. Mokhtar, S.B., McNamara, L., Capra, L.: A middleware service for pervasive so-
cial networking. In: 1st Int. Workshop on Middleware for Pervasive Mobile and
Embedded Computing, pp. 1–6 (2009)

27. Pietiläinen, A.K., Oliver, E., LeBrun, J., Varghese, G., Diot, C.: MobiClique: Mid-
dleware for mobile social networking. In: 2nd Workshop on Online Social Networks,
pp. 49–54 (2009)

28. Popescu, B., Crispo, B., Tanenbaum, A.: Safe and private data sharing with Tur-
tle: Friends team-up and beat the system. In: Christianson, B., Crispo, B., Mal-
colm, J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 213–220.
Springer, Heidelberg (2006)

29. Pouwelse, J., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,
D.H.J., Reinders, M., van Steen, M., Sips, H.: Tribler: A social-based peer-to-
peer system. Concurrency and Computation: Practice and Experience 20, 127–138
(2008)

30. Ramachandran, A.V., Feamster, N.: Authenticated out-of-band communication
over social links. In: 1st Workshop on Online Social Networks, pp. 61–66 (2008)

31. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

32. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: 18th Symposium on Operating
Systems Principles, pp. 188–201 (2001)

33. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-
calibrated graph models for social network experiments. In: 19th Int. Conf. on the
World Wide Web, pp. 861–870 (2010)

34. Sarigol, E., Riva, O., Alonso, G.: A tuple space for social networking on mobile
phones. In: 26th Int. Conf. on Data Engineering (2010)

35. Shakimov, A., Varshavsky, A., Cox, L., Cáceres, R.: Privacy, cost, and availability
tradeoffs in decentralized OSNs. In: 2nd Workshop on Online Social Networks, pp.
13–18 (2009)

36. Toninelli, A., Pathak, A., Seyedi, A., Sepicys Cardoso, R., Issarny, V.: Middle-
ware support for mobile social ecosystems. In: 2nd Int. Workshop on Middleware
Engineering (2010)

37. Tran, D.N., Chiang, F., Li, J.: Friendstore: cooperative online backup using trusted
nodes. In: 1st Workshop on Social Network Systems, pp. 37–42 (2008)

38. Wellman, B.: Structural analysis: From method and metaphor to theory and sub-
stance. Social structures: A network approach, 19–61 (1988)

39. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions
in social networks and their implications. In: 4th European Conf. on Computer
Systems, pp. 205–218 (2009)

40. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social
networks. In: 19th Int. Conf. on World Wide Web, pp. 981–990 (2010)

41. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: defending against
sybil attacks via social networks. In: Conf. on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, pp. 267–278 (2006)

	Prometheus: User-Controlled P2P Social Data Management for Socially-Aware Applications
	Introduction
	Prometheus Overview
	Related Work
	Prometheus Design
	User Registration
	Trusted Peer Group Management
	Geo-social Graph Representation
	Social Sensors
	Social State Maintenance
	Service Interface
	Access Control Policies

	Experimental Evaluation
	Synthetic Workloads and Social Graph
	Results from Synthetic Workload Experiments
	CallCensor: A Real-Time Mobile Socially-Aware Application

	Conclusions and Future Work
	References

