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This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive
literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis,
and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for
ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal
populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food
supplies has been derived by BMAA’s discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic
lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that
recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte
misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus,
norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and
skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the
marine environment.

1. Introduction

The health and welfare of humans residing in the coastal
zone and in island communities are inextricably linked
to the oceans and its foodwebs. The multitude of rela-
tionships between human societies and the oceans has
led to many human dimensions of ocean issues and pro-
cesses. The effects of climate change, pollution, popula-
tion increases, and the myriad of anthropogenic effects
attendant increasing population are all related in various

ways to the microbial organisms that are at the base of
marine ecosystems. In 2004, the National Science Founda-
tion and the National Institutes of Environmental Health
Sciences initiated collaborative funding of four centers
for oceans and human health, and in the same year,
the National Oceanic and Atmospheric Administration
launched its Oceans and Human Health Initiative. One of
the important accomplishments of these centers has been
the cross-discipline synergistic collaboration of scientists
within and between centers. This paper summarizes five
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areas of this research focusing on the oceans and human
health.

2. Gambierdiscus spp. and Ciguatera
Fish Poisoning

Gambierdiscus spp., a genus of dinoflagellates (division
Phyrophyta), produce natural toxins that cause ciguatera fish
poisoning (CFP) in humans. In contrast to other noxious
dinoflagellates known for their dense “red tide” aggre-
gations, Gambierdiscus do not form conspicuous blooms
that color the water. These dinoflagellates normally grow
epiphytically on various macroalgae in coral reef ecosystems
within the 35◦N–35◦S latitudinal band. The dinoflagellates
are consumed by herbivorous fish, beginning processes of
bioaccumulation and biomodification through the reef food
web, as the herbivores are consumed by carnivores and
ultimately by humans. Several informative reviews on CFP
may be found in Bienfang et al. [1], Dickey [2], and Dickey
and Plakas [3] and references cited therein.

Ciguatera is a food-borne disease that has affected coastal
populations and travelers in tropical and subtropical regions
throughout the world for centuries. Ship logs as far back as
the 16th century mention clinical symptomologies consistent
with CFP [4, 5], and during WWII, CFP was a serious
problem for military troops stationed in many Pacific island
locals. There are at least 50,000 reported cases of CFP cases
per year [6, 7], but due to the high degree of misdiagnosis
and underreporting, it is estimated that the actual frequency
of CFP cases is closer to 500,000 per year [8, 9]. It is
estimated that >50% of the populations of small islands in
the Caribbean and South Pacific have suffered from CFP;
see reviews by Lewis [10], Lange [11], and Fleming et al.
[12, 13].

Ciguatoxin produces gastrointestinal, neurological, and
cardiovascular symptoms. These normally develop within
12–24 hours of eating contaminated fish. Gastrointestinal
effects may disappear in four days. The normal pro-
gression of symptoms is gastrointestinal symptoms (e.g.,
diarrhea, abdominal pain, nausea, and vomiting), followed
by neurological symptoms (e.g., numbness and tingling
of hands and feet, dizziness, altered hot/cold perception,
muscle aches, low heart rates, and low blood pressure).
Symptoms may persist in some forms for weeks, months,
or even years [9, 14–16]. Generally, feelings of weakness
last ∼1 week, and neurosensory manifestations (e.g., muscle
aches, tingling extremities, and thermal reversals) com-
monly represent the most prolonged discomfort. The key
pathonuemonic symptom is the neurological malady of
reversal of hot/cold sensation. Fortunately, death is rare (i.e.,
<0.1%) and is most commonly the result of respiratory
failure due to cardiovascular shock induced by severe
dehydration. An interesting feature is that CFP intoxication
does not confer any immunity in its victims, and to the
contrary, its frequency results in heightened sensitivity to
ciguatoxin.

The etiology of CFP was advanced when work in
the Gambier Islands of French Polynesia by Yasumoto
et al. [17–19] revealed that the guts of toxic (herbivorous)

fish contained significant numbers of a dinoflagellate that
was designated as a new genus and species known as
Gambierdiscus toxicus [20]. Since then several new species
have been added to the genus [21–23], and recent works
using refined morphological and molecular sequencing
techniques have caused substantial changes to the taxonomy
of this genus [24, 25]. Derived from gambiertoxins produced
by the dinoflagellates, ciguatoxin is a polar, lipid-soluble
polyether. The toxin is heat stable, tasteless, odorless, and
effective at extremely low (i.e., sub-ppb) concentrations; the
severe analytical challenges presented by these properties
have been central to the slow progress in detection of
ciguatoxin for prevention and/or research purposes.

A CDC report for a period in the 70’s indicted that
reported CFP incidences accounted for 25% of all food-
borne outbreaks, which was five times the reported incidence
for paralytic shellfish poisoning and neurological shellfish
poisoning combined [26]. Kite-Powell [27] concluded that
the economic impact from CFP exceeded that from any
other form of hazardous algae bloom. Additionally, CFP
is associated with societal/public health impacts in island
communities due to dietary changes in response to concerns
over the quality of local seafood. Chateau-Degat et al. [28]
showed correlations of Gambierdiscus abundance and CFP
with sea surface temperature in the South Pacific. This
has attracted particular concern because warming oceans
would expand the range of Gambierdiscus into higher
latitudes where population density is generally greater.
Though potentially influenced by improved awareness, the
recognition of CFP in new geographic areas [29–31] has
been suggested as evidence of an expanded range for CFP.
Because of the underreporting artifact, it is difficult to
ascertain whether CFP incidence is increasing over time,
though expansion of international trade in seafood from
tropical regions and climatic warming make this a distinct
probability.

3. Karenia brevis and Neurotoxic
Shellfish Poisoning

Karenia brevis is an unarmored photosynthetic dinoflagellate
that lives primarily in the Gulf of Mexico and produces a
suite of neurotoxins called “brevetoxins”. When K. brevis
occurs at concentrations above ∼100,000 cells/L, humans
become aware of its presence of primarily as a result of
three effects. At such concentrations, brevetoxins can cause:
(1) fish kills, (2) filter-feeding shellfish to become extremely
toxic to humans, and (3) respiratory distress, coughing, and
eye irritation in humans due to aerosolization. Such impacts
were experienced long before K. brevis was known to be the
causative agent. Spanish explorers as early as the 15th century
recorded fish kills in the Gulf of Mexico that were probably
caused by K. brevis. Explorers also noticed that the native
Americans were aware that shellfish could be toxic [32–34].
Davis [34] was the first to demonstrate that K. brevis was in
fact the causative organism of fish kills and toxic shellfish.
When first identified, it was named Gymnodinium breve. It
was later renamed Ptychodiscus brevis and is currently known
as Karenia brevis.
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K. brevis is an unarmored dinoflagellate with a flat-
tened shape, approximately 10–15 microns thick and 25–35
microns in diameter. It tends to swim up to the light during
the day and disperse throughout the water column at night
[35, 36]. It typically reproduces by binary fission every 2–5
days [37]. It is suspected to have a resting stage, perhaps in
the benthos, but this is not firmly established at the present
time [38].

Under typical nonbloom conditions, K. brevis concen-
trations are usually <10 cells/L offshore and ∼1000 cells/L
inshore [39]. For reasons that are still not well understood,
it occasionally forms blooms with concentrations of one to
tens millions of cells per liter. K. brevis has been observed
sporadically throughout the Gulf of Mexico, but the largest
and most frequent blooms occur along the west coast of
Florida [32, 33, 40]. Although not as frequent, blooms also
occur along the coast of Texas and Mexico [32]. About once
a decade, conditions allow the Loop Current in the Gulf
of Mexico to pick up blooms of K. brevis and transport it
through the Straits of Florida and along the east coast of
North America [32, 41]. As a result, blooms of K. brevis have
been found as far north as North Carolina [41]. Currently,
there is no evidence that these blooms along the east coast
were generated locally, but rather were transported there
from the Gulf of Mexico.

Along the west coast of Florida, where records have been
kept for a half century, blooms of K. brevis are statistically
more likely during the fall months, a month or two after the
heaviest freshwater runoff from land [40] although they can
occur at any time of the year. Huge year-to-year variations in
bloom concentrations and/or duration are evident. In some
years, essentially no blooms are observed, some years have
short sporadic blooms, and some years large blooms may
persist throughout the entire year.

Understanding the causes for the spatial and temporal
occurrence/variability of K. brevis blooms is an area of
active research. Factors that promote initiation of blooms
may well be different from those that determine its extent
and/or duration. Physical aggregation due the interaction
of complex hydrography and the swimming behavior of K.
brevis is probably also important. Olascoaga et al. [42] have
argued that areas of low mixing due to certain hydrographic
features along the west coast of Florida allow the slow
growing K. brevis to accumulate large populations without
being dispersed by mixing and dilution rates larger than its
growth rate.

A variety of hypotheses have been proposed for the
sources of nutrients that would ultimately influence the
concentrations and spatial extent of K. brevis blooms. Gunter
et al. [43], Rounsefell and Nelson [44], Dixon and Steidinger
[45], and Brand and Compton [40] have argued that
nutrients in land runoff could be an important source. Lenes
et al. [46], Walsh and Steidinger [47], and Walsh et al. [48]
have argued that iron-rich atmospheric dust stimulation of
nitrogen-fixing Trichodesmium in phosphorus-rich waters
is an important nutrient source that can stimulate blooms
of K. brevis. Hu et al. [49] have argued that nutrient-rich
groundwater could be important. Vargo et al. [50] have
argued that, along with other sources, fish that have died in

blooms of K. brevis could be an important source of nutrients
as they decompose. A perusal of the data on the spatial
and temporal distribution of K. brevis blooms suggests
that no one hypothesis will provide a simple explanation
for its distribution. A variety of nutrient sources probably
contribute to varying degrees to blooms of K. brevis.

K. brevis produces a suite of around 12 brevetoxins that
activate the sodium channel of neurons [51]. At concentra-
tions >100,0000 cells/L, blooms of K. brevis can kill many
marine animals, including fish, turtles, sea birds, manatees,
and dolphins [52]. Because brevetoxins are large lipid-
soluble molecules, they tend to accumulate in fatty tissues
and are not easily broken down or excreted. As a result, filter-
feeding shellfish can accumulate high concentrations in their
tissues. Brevetoxins are heat and acid stable, thus remain
toxic after cooking. Human ingestion of toxic shellfish
can lead to a variety of neurological and gastrointestinal
symptoms [53], giving the general term “neurotoxic shellfish
poisoning” (NSP). Because of this, government agencies in
Florida monitor for K. brevis blooms and close shellfish beds
to harvesting at times of blooms [53]. As a result, NSP is now
rare, usually the result of illegal or uninformed harvesting of
toxic shellfish.

Because the brevetoxins are lipid soluble, they also
have the potential to accumulate and biomagnify up the
food chain [54]. As a result, sublethal concentrations of
K. brevis can still have lethal consequences [40]. Sublethal
concentrations of K. brevis that do not kill nevertheless
release brevetoxins that accumulate in organisms; thus
higher level predators can accumulate high concentrations
in their tissues. This may explain why dolphins and manatees
have been found dead with high concentrations of brevetoxin
in their stomachs and tissues in areas where no obvious
blooms of K. brevis were observed [55]. Naar et al. [56] have
found brevetoxins in the tissues of many fish species many
months after the occurrence of a K. brevis bloom. These
recent data suggest that brevetoxins may be more widespread
in seafood than previously thought.

As an unarmored dinoflagellate, K. brevis is delicate
compared to most toxic dinoflagellate species. As a result,
cells can be broken apart by turbulence due to wave
action at the sea surface and along beaches. This results
in aerosolization of brevetoxins that may be inhaled by
humans and resulting in respiratory distress, coughing,
and eye irritation in humans [57–60]. Hospital emergency
room admittances for respiratory distress increase 50%
when blooms of K. brevis occur [61] and is particularly
acute in people with asthma [59, 62]. Beaches along
the west coast of Florida are major recreational areas
for Florida residents, including many elderly retirees and
tourists. When large blooms of K. brevis develop, dead fish
wash up on the beaches and/or brevetoxin aerosolization
occurs and the tourism suffers considerable economic loss
[63].

4. BMAA-Containing Cyanobacteria

Cyanobacteria have been a part of the human diet pri-
marily in non-Western civilizations for centuries. Today,
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cyanobacteria are produced in mass, controlled cultivation
processes and/or harvested from natural habitats and mar-
keted as food supplements around the world. Historical and
current uses of cyanobacteria and their derivative products
are thoroughly reviewed by [64]. The amino acid β-N-
methylamino-L-alanine (BMAA) is one of a number of bio-
logically active natural compounds produced by cyanobac-
teria, and its potential importance in species of marine
cyanobacteria has attracted considerable research attention
recently.

BMAA was originally discovered in cycad seeds [67],
and later implicated the etiology of Amyotrophic Lateral
Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) that
occurs among the Chamorro people of Guam [68]; see
TemaNord [69] for an exhaustive review on this subject.
BMAA is biomagnified in the Guam ecosystem and occurs
in the brain tissues of Chamorros who died of ALS/PDC
[70]. Axenic cultures of the endosymbiont cyanobacterium,
Nostoc sp., isolated from the coralloid roots of the cycad
palm, Cycas micronesica Hill, produce free BMAA at a
concentration of 0.3 µg g−1. Following up on this work,
Cox et al. [71] examined BMAA production in free-
living and symbiotic clones representing the five morpho-
types of cyanobacteria (cf. Rippka et al. [72].) A wide
range of cyanobacterial strains were screened, including
strains maintained at the University of Dundee in Scot-
land, Stockholm University in Sweden, and the University
of Hawaii in the United States. Liquid chromatography-
mass spectrometry (LC/MS) and high-performance liquid
chromatography (HPLC) were employed to identify and
quantify free and protein-associated BMAA for each sample.
For free-living cyanobacteria, Cox et al. [71] found that
BMAA was produced by members of all five cyanobacterial
morphotypes as well as 95% of the genera and 97% of
the strains that were screened. Analysis of Nostoc strains
isolated from symbiotic relationships with fungi and host
plants of broad taxonomic diversity indicated that 73% of
these strains produced BMAA. The ubiquity of cyanobacteria
in diverse terrestrial and aquatic environments suggests that
ingestion of BMAA may occur through even less esoteric
routes, including direct consumption of cyanobacteria or
cyanobacterial hosts, bioaccumulation in additional food
chains, or exposure to cyanobacteria-contaminated water
supplies. Cox et al. [71] recommended that BMAA concen-
trations should be monitored in invertebrates, fish, and/or
grazing animals used for human consumption that either
directly consume cyanobacteria or forage on plants or prey
that may have accumulated cyanobacteria-produced BMAA.
This conclusion was reinforced by subsequent articles pub-
lished in the Journal of the American Medical Association
[73, 74] and Neuropathology and Applied Neurobiology
[75].

The amino acid, β-N-methylamino-L-alanine (BMAA),
is an excitotoxic neurotoxin that functions as a glutamate
agonist. By virtue of its unique structural characteristics,
BMMA reacts with CO2 at physiological pH to form
α- and β-carbamate adducts [65, 66, 76] that are struc-
turally similar to the neurotransmitter glutamate and its
selective agonist N-methyl-d-aspartate (NMDA) (Figure 1).

Rao et al. [77] have demonstrated that in the presence
of 5% CO2, BMAA causes selective motor neuron loss
in dissociated mixed spinal cord cultures at concentra-
tions of ∼30 µM. These investigators also reported that
the glutamate receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4-
tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) pre-
vented BMAA-induced death, implicating BMAA in the
excitotoxic activation of receptors for α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and kainic acid,
and that BMAA selectively induced the production of
reactive oxygen species (ROS) in motor neurons. More
recently, Lobner et al. [78] demonstrated that BMAA also
functions as an agonist for the NMDA and mGluR5 receptors
in mouse cortical cell cultures. In addition to AMPA/kainate,
NMDA and mGluR5 receptor activation and oxidative stress,
BMAA may also induce toxicity by inhibiting the reuptake
of glutamate. Furthermore, BMAA may be misidentified
by transfer RNAs, resulting in its misincorporation into
proteins.

Since the initial report of the widespread distribution
of BMAA in representatives of all five cyanobacteria mor-
photypes by Cox et al. [71], there have been a number
of conflicting studies published regarding the detection
and quantification of BMAA in cyanobacteria (including
blue green algae nutritional supplements). Eleven studies
have confirmed the presence of BMAA in a wide range of
marine, brackish, and freshwater cyanobacteria via LC/MS,
LC/MS/MS or GC/MS methods that identify and detect
underivatized [79, 80] and derivatized [75, 81–88] BMAA. By
comparison, four studies were not able to detect the presence
of BMAA in a wide range of cyanobacteria via HPLC,
LC/MS, or LC/MS/MS that identify and detect derivatized
[89] and underivatized BMAA [90–92]. These disparate
findings are likely caused by analyte misidentification [91,
92] and/or differences in methodological sensitivities [88].
Because of potential coelution artifacts, we recommend
that that BMAA identification and quantification be based
on the LC/MS analysis of BMAA-specific fragments (m/z
88) [91] or AQC-derivatized BMAA (m/z 258) [88] in
order to minimize the possibility of reporting false positive
data [88, 91]. Based on this criterion, only four studies at
the time of this writing have confirmed the presence of
BMAA in cyanobacteria [79, 80, 87, 88]. Due to the serious
implications of BMAA and neurodegenerative disease, it is
further recommended that NMR analysis be used for the
unequivocal identification of BMAA in biological samples.
It should be noted that two studies employing LC/MS
analysis of BMAA-specific fragments failed to detect BMAA
in a wide range of cyanobacteria samples [91, 92]. We
conclude that BMAA was either absent or below the limit
of detection in these samples. Spáčil et al. [88] recommend
subjecting samples to a pretreatment protocol to both
remove impurities and to concentrate BMAA prior to LC/MS
analysis. Finally, we recommend that future studies should
monitor BMAA concentrations using only BMAA-specific
LC/MS methods in animals used for human consumption
that either directly consume cyanobacteria or forage on
plants or prey that may have accumulated cyanobacteria-
produced BMAA.
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Figure 1: Reaction of the α- and β-amino groups of BMAA with CO2 to form the corresponding carbamate adducts (after [65, 66]).

5. Alexandrium fundyense and Paralytic
Shellfish Poisoning

Paralytic shellfish poisoning (PSP) has been recognized in
the Pacific Northwest of the United States for centuries [93].
Human poisonings have been recorded primarily in North
America, Asia, and Europe [94], but outbreaks have been
reported worldwide [93, 95, 96]. PSP is caused by eating
bivalve shellfish (clams, mussels, scallops, etc.) contaminated
with one or more of a group of structurally related congeners
of saxitoxin [97]. Filter-feeding fish can sometimes be vectors
for the toxins as well.

Saxitoxins are produced by dinoflagellates of the genera
Gymnodinium [101], Alexandrium [95, 96], and Pyrodinium
[97, 101]. These toxins act to selectively block the voltage-
gated sodium channel of excitable membranes, thus blocking
the generation and propagation of action potentials in nerve
axons and skeletal muscle fibers. Mammals, birds, and fish
can be affected by PSP toxins; however, humans are the most
sensitive—the fatal oral dose of saxitoxin is 1–4 mg [102].

PSP symptoms begin to occur within 30 minutes to
three hours of eating contaminated seafood. The initial
symptoms include paresthesia and numbness around the lips
and mouth [93]. These sensations then spread to the face and
neck. Victims may also experience nausea and vomiting. In
moderately severe poisonings, paresthesia progresses to the
arms and legs. Victims may experience giddiness, incoherent
speech, and light-headedness. In severe poisonings, death
can result from respiratory failure and hypoxia. Historically,
the fatality rate from PSP varies from no deaths in recent
outbreaks in the U.S. or Europe to rates of 2%–14% in other
parts of the world [93]. The frequency of mortalities is related
to the availability of emergency hospital care, past experience

with PSP outbreaks, and whether or not effective monitoring
programs are in place to prevent contaminated shellfish from
entering commercial markets. However, despite warning
signs and other outreach efforts, recreational harvesters still
become victims of PSP. For example, in June 2010, five cases
of suspected PSP, including two fatalities, were reported in
Anchorage Daily News due to shellfish collected from waters
in Alaska, US. The victims had eaten personally harvested
shellfish and crabs, including those from areas normally
avoided because of historically high levels of contamination.

The causative organism in New England PSP outbreaks
is Alexandrium fundyense. Although the Bay of Fundy and
northeastern Canadian waters have a long history of PSP, in
the U.S., toxicity was restricted to far-eastern Maine (ME)
until 1972, when a massive, visible red tide of A. fundyense
stretched from ME to Massachusetts (MA), causing toxicity
in some southern areas for the first time. Virtually every
year since 1972, western ME has experienced PSP outbreaks,
and for the first 20 years of that interval, MA did as well.
That pattern was a direct result of A. fundyense cysts being
retained in western GOM waters after the 1972 bloom and
subsequent events [103]. Between 1994 and 2004, toxicity
was infrequent in MA and the southern GOM. Then in 2005,
another massive bloom occurred [98], leading to closure of
shellfish beds from ME to southern MA and 40,000 km2 of
offshore federal waters as well. Economic losses in 2005 were
estimated to be $50 million for the MA shellfish industry
alone.

A. fundyense has a complex life cycle includes a resting
cyst, a phase of vegetative growth, sexual reproduction, and
re-encystment (Figure 2(a)). Observations indicate several
salient characteristics of the vegetative cell distributions:
patterns of abundance are gulf-wide in geographic scope;
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Figure 2: Upper left: life cycle of A. fundyense. Upper middle: distribution of cysts (number of cysts cm−3) in the upper 3cm of sediment
derived from a 1997 survey of the Gulf of Maine [98] and surveys of the Bay of Fundy in 1981 (White and Lewis, 1982), 1982, and 1983
(data provided by Jennifer Martin, DFO). Upper right: schematic of the Maine Coastal Current, reprinted from McGillicuddy et al. [99].
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the distributions are associated with the Maine Coastal
Current, and the center of mass of the distribution is from
west to east during the April-to-August growing season
[104]. This latter aspect is particularly notable given the
coastal current flows in the opposite direction (Figure 2(b)).
A model based on the seasonal mean flow that includes
germination, growth, mortality, and nutrient limitation can
produce simulations that are qualitatively consistent with the
observations (Figure 2(c); [99]. In general, cells germinated
from the major cyst beds in the Bay of Fundy and near
Penobscot and Casco Bays (Figure 2(d)) are advected in
the alongshore direction from east to west in the coastal
current. Growth of the vegetative cells is limited primarily
by temperature from April through June throughout the
gulf whereas nutrient limitation occurs in July and August
in the western gulf. Thus, the seasonal shift in the center
of mass of cells from west to east can be explained by
changing growth conditions: growth is more rapid in the
western gulf early in the season due to warmer temperatures
whereas growth is more rapid in the eastern gulf later in the
season due to severe nutrient limitation in the western gulf
during that time period. Hydrodynamic transport of these
offshore populations to inshore shellfish beds is a key aspect
regulating the PSP threat to human health [100, 105, 106].

In the wake of the historic bloom of 2005 in the
western GOM, a suite of models was used to diagnose
the underlying causes. Anderson et al. [98] described three
factors to explain the 2005 bloom: (1) high abundance of
resting cysts in fall 2004 that provided a large inoculums, (2)
storms with strong northeast winds that carried toxic cells
towards and along the coast, and (3) abundant fresh water
runoff, providing macro- and micronutrients, a stratified
water column, and an alongshore (towards the southwest)
transport mechanism. These factors were evaluated using
a sensitivity analysis that utilized field observations and
a model of A. fundyense population dynamics [99, 107,
108], coupled to a regional circulation model to hindcast
the 2005 bloom [109, 110]. Initial conditions of the three
sensitivity experiments are identical to the central hindcast
(an animated version of the central hindcast is available
at http://science.whoi.edu/users/ruoying/Redtide 05/Papers/
avg fields.avi) in all respects except: experiment 1 utilizes
the 1997 cyst map instead of 2004; experiment 2 is forced
by winds from a more typical year (2004) instead of the
strong downwelling-favorable winds of 2005; experiment 3
uses riverine discharge from a typical year (2004) instead
of the anomalously large discharge of 2005. This sensitivity
analysis suggests that high cyst abundance in the WGOM
was the main cause of the 2005 bloom. Wind forcing
was an important regulator, in the form of both episodic
bursts of northeast winds and the downwelling-favorable
mean condition, causing onshore advection of offshore
populations. The anomalously high river runoff enhanced
alongshore transport near the coast, but had limited impact
on the gulf-wide bloom distribution.

Model initial conditions are dependent on maps of A.
fundyense cyst abundance obtained on an annual basis.
Mathematical representations of laboratory-derived germi-
nation and growth data are used with these maps to drive the

inoculation and development of the bloom. At this point, it
is not yet possible to model the formation and deposition
of new cysts from these blooms, though work is ongoing in
this direction. This is an area where our lack of knowledge is
evident—the termination of blooms remains poorly under-
stood, and in particular, the relationship between bloom size
and the size of the resulting cyst seedbed is not established,
nor indeed is it intuitive. For example, some of the largest
regional blooms (e.g., in 2005 [98]) were followed by very
low cyst abundance on a regional basis whereas more modest
bloom years (e.g., 2007) led to widespread and high density
cyst accumulations {D.M. Anderson, unpub. data}.

Modeling results to date suggest that simulations initi-
ated from A. fundyense cyst distributions can capture large-
scale seasonal patterns in the distribution and abundance of
vegetative cells. To the extent that cyst abundance is a first-
order predictor of regional bloom magnitude the following
year in the WGOM (even though the converse is not true),
that information can be used in a seasonal forecast of PSP
on a regional basis. Near-real-time nowcasts and forecasts of
harmful algal blooms (HABs) in the Gulf of Maine have been
run routinely each year since 2006 (2006: http://science.whoi
.edu/users/ruoying/Redtide 06/, 2007: http://omgrhe.meas
.ncsu.edu/Redtide/Redtide 07/, 2008: http://omglnx3.meas
.ncsu.edu/yli/08forecast/, 2009: http://omglnx3.meas.ncsu
.edu/yli/09forecast/). During the bloom season, weekly
updates have been made available to more than 150 managers
and other officials and scientists involved with PSP outbreaks
in the northeastern US. Web interfaces provide the latest
model simulations, with one-week forecasts driven by mete-
orological predictions. At present, this kind of early warning
appears to be the most practical approach to mitigating
the impacts of these blooms, insofar as available direct
intervention strategies are not practical by virtue of the fact
that even in bloom conditions, A. fundyense is typically a
small fraction of the total phytoplankton biomass.

6. Infectious Microbes

Waterborne infectious microbes normally include viruses,
bacteria, and protozoa that can be transmitted through
recreational exposure to seawater or consumption of seafood.
Other groups of infectious microbes that are less commonly
considered include the helminthes and yeasts. The infectious
microbes differ from harmful algal species in that disease
is caused by the growth of the microbes within humans.
Thus, exposure to even low levels of infectious microbes
can cause illness. Upon consumption, inhalation, or contact
with the infectious microbe it then multiplies within the
gastrointestinal system, respiratory tract, or within exposed
skin resulting in human disease. Harmful algae, on the
other hand, grow outside humans within external water
bodies and release toxins that cause disease when the
toxin-contaminated water is ingested or inhaled [62, 111].
Typically, the numbers of infectious microbes that are needed
to cause disease are low; the precise number depends
upon the virulence of the particular strain of the microbe
[112] and also the immune status of the infected host.
Risks to humans from infectious microbes are evaluated
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by considering human exposure to seawater or seafood in
addition to the concentration of infectious microbes therein.
Infectious microbes in seawater can be separated into two
groups, those which are introduced from outside sources
and those which are indigenous, hereafter referred to as
allochthonous and autochthonous, respectively [113].

Infectious microbes in coastal waters impact the health
of a large number of people globally. Worldwide, up to 170
million enteric and respiratory illnesses attributed to swim-
ming in and consuming shellfish from infectious microbes
in coastal waters [114]. In the US, 20,300 recreational beach
advisories were reported in 2008 due to contamination with
fecal bacteria, up from 6,200 in 1999 [115]. In the US,
33% of shellfish harvesting waters are impaired by infectious
microbes [116]. In southern California alone, it is estimated
that 1.5 million excess enteric illnesses occur per year from
swimming in waters with infectious microbes, at a cost of
$50 million per year [117]. One of the challenges of assessing
the impact of infectious microbes on human health is that
most illnesses associated with these infectious microbes are
self-limiting, so medical advice is not always sought. In
addition, identifying the etiologies of the illnesses can be
challenging even in the most modern diagnostic laboratories.
Most of the illnesses are also not reportable, so they are
not tracked by a central agency. Yoder et al. [118] report
Cryptosporidium as the most common etiology of freshwater
recreational waterborne illness, and also reports Vibrio spp.
as an important etiology for seawater-acquired recreational
waterborne illness. A review of the epidemiology of seafood-
associated illness in the United States between 1973 and 2006
[119] identifies Vibrio parahaemolyticus as being responsible
for the most seafood illnesses (35%), norovirus and hepatitis
A together responsible for the second highest number
of illnesses (32%), and Salmonella and Shigella together
responsible for the third highest number of illnesses (19%).

Introduced or allochthonous infectious microbes can
come from human sewage, stormwater, feces of animals, and
skin from infected humans during bathing. Allochthonous
infectious microbes (from the virus, bacteria, and protozoan
groups) include enterovirus, norovirus, Salmonella, Campy-
lobacter, Shigella, Cryptosporidium, Giardia, Legionella sp.
and Staphylococcus aureus. All of these microbes cause
gastrointestinal disease with the exception of Legionella sp.,
which causes respiratory disease and S. aureus which causes
skin disease. Transmission of helminthes via recreational
contact with seawater is generally limited to developing
countries and includes incidental ingestion of infective eggs
or through contact with contaminated waters for forms that
can penetrate skin [120]. In addition to infectious microbes
from the virus, bacteria, and protozoan groups [121], coastal
beach sands have also been implicated as a means of
potentially transmitting pathogenic helminthes [122] and
yeasts [123]. There are a number of excellent reviews on the
occurrence of allochthonous infectious microbes, particu-
larly bacteria, viruses, and protozoa, in coastal waters [124–
126] and in shellfish [127, 128]. Table 1 provides examples
of studies that report allochthonous pathogen occurrence in
coastal waters. There are a limited number of studies that
describe the fate and transport of allochthonous pathogens

in the environment. These studies have generally highlighted
the importance of pathogens associated with sediments [129]
and show a positive correlation between the occurrence of
pathogens and rainfall [130]. More research is clearly needed
to understand the dynamics of pathogens once release to the
environment.

Vibrio spp. represent the classic example of indigenous
or autochthonous infectious microbes [144]. Other notable
autochthonous infectious microbes include helminthes
which are indigenous to fish populations which can be
transmitted to humans via ingestion of undercooked fish
[145] and amoeba which can enter the nasal cavity [118].
Common disease-causing Vibrio spp. include V. cholerae
(toxigenic and nontoxigenic), V. mimicus, V. parahaemolyti-
cus, V. vulnificus, and V. alginolyticus. V. cholerae and V.
mimicus are closely related species, both of which cause
gastroenteritis, V. parahaemolyticus causes gastroenteritis as
well as wound infections, V. vulnificus can cause septis and
wound infections, and V. alginolyticus can cause wound
infections [119]. A number of studies have examined the
environmental factors that control the occurrence of Vibrio
spp. in coastal waters or within shellfish [146–149]. Common
correlates to Vibrio concentrations include salinity and
temperature; warmer temperatures typically correlate to
higher Vibrio concentrations; salinity and Vibrio densities
covary, but the direction depends on the organism. Vibrio
have been shown in some cases to adsorb to zooplankton or
phytoplankton and be associated with sediment [146, 150,
151]. Further information in V. cholerae, V. parahaemolyticus,
and V. vulnificus can be found in excellent reviews on the
organisms [152–154].

In order to protect human health and provide warnings
for unsafe conditions, the presence of infectious microbes
in coastal waters is evaluated through the use of “indicator”
microbes. Indicator microbes are commensal inhabitants of
the gastrointestinal tract of humans and are present in large
numbers in fecal releases, especially releases from humans
and warm blooded animals [155]. Indicator microbes are
not necessarily pathogenic but are used as a surrogate for
the presence of pathogenic microbes. For marine recreational
waters, enterococci are the indicators recommended by the
U.S. Environmental Protection Agency [156]. For freshwater
recreational waters, both enterococci or E. coli are recom-
mended [156]. The use of these microbes as indicators is
supported by their correlation to measured, adverse, human
health outcomes during epidemiology studies focused on
illness during exposure to waters impacted by point sources
of treated wastewater [157]. For shellfisheries in the US,
fecal coliform are recommended to assess risk of exposure
to pathogens through shellfish consumption [158].

Five basic dilemmas are associated with the use of indi-
cator microbes to establish the safety of recreational waters.
First, as enterococci and E. coli are natural inhabitants of the
digestive tract of humans, the disease endpoint associated
with these microbes is gastrointestinal disease. Although,
gastrointestinal illness can be transmitted through water use
[159], other types of illnesses can be transmitted during
swimming including ear-, eye-, respiratory-, and skin-related
diseases [160–162]. Second, studies have shown that in many
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Table 1: Examples of allothchonous human pathogens detected in coastal waters.

Viruses Concentration/Occurrence Reference

enteroviruses
Present in 9 of 72 1-liter samples using RT-PCR at Avalon Beach, CA∗. Present in 1 of 18, 220-liter
samples using culture based methods for brackish water in St. Lucie River Estuary, FL.

[131, 132]

adenoviruses Present in 15 of 30 250-liter samples using PCR at Silver Beach, MI∗ [133]

hepatitis A 105 to 30,771 viral particles/liter using Q-RTPCR at Imperial Beach, CA∗ [134]

norovirus 2 of 19 samples in 110-liters using RT-PCR at Key West sites (FL)∗ [135]

rotavirus (reovirus) 2 of 19 sites with 2–5 MPN/L at Italian coastline [136]

Bacteria

Campylobacter
Detected in 25 of 192 100–1000 mL Spanish marine recreational water samples using culture based
methods

[137]

Salmonella
Detected in 70%–100% of samples from a lagoon in Brazil using culture-based methods, volume
assayed not reported

[138]

Staphylococcus
60%–70% of approx. 100 mL seawater samples from Doheny and Avalon Beach, CA using
culture-based methods. 37% of 668, 50 mL seawater samples from Hobie Cat Beach, FL using
culture-based methods and confirmation by PCR

[139, 140]

Pathogenic E. coli
2 of 377 E. coli isolates from North Carolina and Southern California coastal waters using combined
culture and PCR methods

[141]

Shigella 100% of algal mat samples from Lake Michigan near Burns Ditch by PCR [142]

Legionella sp. Found in 35 of 72 samples from Lake Pontchartrain with 1 of 72 positive for L. pneumophila [140]

Protozoa

Cryptosporidium 13.7± 1.7 oocysts/L on weekends at Chesapeake Bay beach, MD [143]

Giardia 9.1± 1.1 cysts/L on weekends at Chesapeake Bay beach, MD [143]
∗

Volumes reported do not account for the fact that a fraction of water sample was used during polymerase chain reaction (PCR), reverse-transcriptase- (RT-)
PCR, or quantitative (Q) PCR.

cases indicator microbes do not track pathogenic microbes
on a one-to-one basis [163, 164]. Ortega et al. [131] have
shown that sites subject to sporadic increases in indicator
levels are also characterized by detectable levels of pathogens,
although the time that the pathogens are detected do not
necessarily coincide with the time that the indicator microbe
levels exceed regulatory guideline levels. Abdelzaher et al.
[165] found that indicators and pathogens are generally
elevated during similar environmental conditions (low solar
radiation, after rainfall, and during a particular tidal period),
but this correspondence was not always consistent. The third
dilemma associated with the use of indicator microbes is the
time required to measure indicator bacteria using traditional
culture methods. Traditional culture methods require an 18
to 24 hours incubation period before detection of the bacte-
ria. As a result, contaminated beaches can remain open for a
significant period of time before levels are known, thereby
resulting in exposures to human populations. Conversely,
as contamination tends to be highly variable [166], beaches
can also be closed during times when they are safe. The
fourth dilemma is that the use of E. coli and enterococci
to assess risk was established using data from epidemiology
studies conducted at beaches polluted by point sources of
treated wastewater. At the present time, most point sources
of pollution in the developed world are well regulated and
controlled to minimize human health impacts. Nonpoint
sources, including urban and agricultural runoff, wildlife
feces, bather shedding, and other “environmental reservoirs”
are leading contributors of E. coli and enterococci to coastal

waters. There is some evidence that there is a human health
risk upon exposure to indicators from nonpoint pollution
sources [167], but there still exists a great deal of debate on
the topic [132]. Finally, fecal indicator bacteria cannot be
used to protect individuals from exposure to autochthonous
pathogens, like Vibrio. Significant risk of Vibrio infections
could be present when there are no fecal bacteria.

In the future, safety from infectious microbes in recre-
ational waters and in seafood should consider multiple
lines of evidence where indicator microbe measurements
are supplemented with direct measures of a cluster of
pathogenic targets that are relevant to the pollution sources
and pathogens affecting the study area [168]. In addition,
more work should be done to understand the ecology
of allochthonous infectious microbes in the environment.
Although these organisms are historically viewed as transient
members of the microbial community of coastal waters,
the coastal environment may serve as an important niche
for these organisms to persist, exchange genetic material
(for bacteria), and grow. Indeed, some researchers have
found allochthonous pathogenic bacteria to be widespread in
macroalgae of the Great Lakes [142]. Research is also needed
to develop more rapid analyses methods for both indicators
and pathogens [169], so that the time between measures
and warnings can be reduced. Method detection limits also
need to be improved if direct pathogen presence is to be
considered for future monitoring purposes, as pathogens
are typically present in very low numbers [169]. Currently,
the procedures for measuring pathogens in environmental
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waters are time consuming, in part due to detection limit
issues, and thus data on the environmental occurrence of
infectious microbes is lacking.

Ideally, the public should be warned prior to adverse
water quality events. Given the current limitations in
microbial measurements with respect to labor and time,
early warning systems will likely rely on models [170,
171] designed to predict health risks based upon read-
ily measureable environmental parameters and impending
environmental conditions. Such models will require direct
measures of microbial water quality for calibration and
verification purposes.
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[64] M. Gantar and Z. Svirčev, “Microalgae and cyanobacteria:
food for thought,” Journal of Phycology, vol. 44, no. 2, pp.
260–268, 2008.

[65] P. B. Nunn and P. O’Brien, “The interaction of β-
N-methylamino-L-alanine with bicarbonate: an 1H-NMR
study,” FEBS Letters, vol. 251, no. 1-2, pp. 31–35, 1989.

[66] T. G. Myers and S. D. Nelson, “Neuroactive carbamate
adducts of β-N-methylamino-L-alanine and ethylenedi-
amine. Detection and quantitation under physiological con-
ditions by 13C NMR,” Journal of Biological Chemistry, vol.
265, no. 18, pp. 10193–10195, 1990.

[67] A. Vega and E. A. Bell, “α-amino-β-methylaminopropionic
acid, a new amino acid from seeds of Cycas circinalis,”
Phytochemistry, vol. 6, no. 5, pp. 759–762, 1967.

[68] P. S. Spencer, P. B. Nunn, and J. Hugon, “Guam amyotrophic
lateral sclerosis-Parkinsonism-dementia linked to a plant
excitant neurotoxin,” Science, vol. 237, no. 4814, pp. 517–522,
1987.

[69] U. Beckman Sundh, C. Andersson, J. Rosén, F. Fonnum, I.
Knudsen, and S. Sippola, “Analysis, occurrence, and toxicity
of β-methylaminoalanine (BMAA): a risk for the consumer?”
TemaNord, vol. 516, p. 128, 2007.

[70] P. A. Cox, S. A. Banack, and S. J. Murch, “Biomagnification
of cyanobacterial neurotoxins and neurodegenerative disease
among the Chamorro people of Guam,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 23, pp. 13380–13383, 2003.

[71] P. A. Cox, S. A. Banack, S. J. Murch et al., “Diverse taxa
of cyanobacteria produce β-N-methylamino-L-alanine, a
neurotoxic amino acid,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 102, no. 14, pp.
5074–5078, 2005.

[72] R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and
R. Y. Stanier, “Generic assignments, strain histories and
properties of pure cultures of cyanobacteria,” Journal of
General Microbiology, vol. 111, no. 1, pp. 1–61, 1979.

[73] B. M. Kuehn, “Environmental neurotoxin may pose health
threat,” Journal of the American Medical Association, vol. 293,
no. 20, pp. 2460–2462, 2005.

[74] P. G. Ince and G. A. Codd, “Return of the cycad hypothesis—
does the amyotrophic lateral sclerosis/parkinsonism demen-
tia complex (ALS/PDC) of Guam have new implications
for global health?” Neuropathology and Applied Neurobiology,
vol. 31, no. 4, pp. 345–353, 2005.

[75] M. Esterhuizen and T. G. Downing, “β-N-methylamino-
l-alanine (BMAA) in novel South African cyanobacterial
isolates,” Ecotoxicology and Environmental Safety, vol. 71, no.
2, pp. 309–313, 2008.

[76] J. H. Weiss and D. W. Choi, “β-N-methylamino-L-alanine
neurotoxicity: requirement for bicarbonate as a cofactor,”
Science, vol. 241, no. 4868, pp. 973–975, 1988.

[77] S. D. Rao, S. A. Banack, P. A. Cox, and J. H. Weiss, “BMAA
selectively injures motor neurons via AMPA/kainate receptor
activation,” Experimental Neurology, vol. 201, no. 1, pp. 244–
252, 2006.

[78] D. Lobner, P. M. T. Piana, A. K. Salous, and R. W. Peoples, “β-
N-methylamino-l-alanine enhances neurotoxicity through
multiple mechanisms,” Neurobiology of Disease, vol. 25, no.
2, pp. 360–366, 2007.

[79] R. R. Bidigare, S. J. Christensen, S. B. Wilde, and S. A. Banack,
“Cyanobacteria and BMAA: possible linkage with avian
vacuolar myelinopathy (AVM) in the south-eastern United
States,” Amyotrophic Lateral Sclerosis, vol. 10, supplement 2,
pp. 71–73, 2009.

[80] E. J. Faassen, F. Gillissen, H. A. J. Zweers, and M.
Lrling, “Determination of the neurotoxins BMAA (β-
N-methylamino-L-alanine) and DAB (α-,γ-diaminobutyric
acid) by LC-MSMS in Dutch urban waters with cyanobac-
terial blooms,” Amyotrophic Lateral Sclerosis, vol. 10, supple-
ment 2, pp. 79–84, 2009.

[81] H. E. Johnson, S. R. King, S. A. Banack, C. Webster,
W. J. Callanaupa, and P. A. Cox, “Cyanobacteria (Nostoc
commune) used as a dietary item in the Peruvian highlands
produce the neurotoxic amino acid BMAA,” Journal of
Ethnopharmacology, vol. 118, no. 1, pp. 159–165, 2008.

[82] J. S. Metcalf, S. A. Banack, J. Lindsay, L. F. Morrison, P. A.
Cox, and G. A. Codd, “Co-occurrence of β-N-methylamino-
l-alanine, a neurotoxic amino acid with other cyanobacterial
toxins in British waterbodies, 1990–2004,” Environmental
Microbiology, vol. 10, no. 3, pp. 702–708, 2008.

[83] T. A. Caller, J. W. Doolin, J. F. Haney et al., “A cluster of
amyotrophic lateral sclerosis in New Hampshire: a possible
role for toxic cyanobacteria blooms,” Amyotrophic Lateral
Sclerosis, vol. 10, supplement 2, pp. 101–108, 2009.

[84] P. A. Cox, R. Richer, J. S. Metcalf, S. A. Banack, G. A. Codd,
and W. G. Bradley, “Cyanobacteria and BMAA exposure
from desert dust: a possible link to sporadic ALS among
Gulf War veterans,” Amyotrophic Lateral Sclerosis, vol. 10,
supplement 2, pp. 109–117, 2009.

[85] D. Craighead, J. S. Metcalf, S. A. Banack, L. Amgalan, H. V.
Reynolds, and M. Batmunkh, “Presence of the neurotoxic
amino acids β-N-methylamino-L-alanine (BMAA) and 2,4-
diamino-butyric acid (DAB) in shallow springs from the
Gobi Desert,” Amyotrophic Lateral Sclerosis, vol. 10, supple-
ment 2, pp. 96–117, 2009.

[86] B. R. Roney, L. Renhui, S. A. Banack, S. Murch, R. Honegger,
and P. A. Cox, “Consumption of fa cai Nostoc soup: a
Potential for BMAA exposure from Nostoc cyanobacteria in
China?” Amyotrophic Lateral Sclerosis, vol. 10, supplement 2,
pp. 44–49, 2009.

[87] S. Jonasson, J. Eriksson, L. Berntzon et al., “Transfer of a
cyanobacterial neurotoxin within a temperate aquatic ecosys-
tem suggests pathways for human exposure,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 107, no. 20, pp. 9252–9257, 2010.
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