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Most psychiatric disorders are associated with subtle alterations in brain function and 
are subject to large interindividual differences. Typically, the diagnosis of these disorders 
requires time-consuming behavioral assessments administered by a multidisciplinary 
team with extensive experience. While the application of Machine Learning classification 
methods (ML classifiers) to neuroimaging data has the potential to speed and simplify 
diagnosis of psychiatric disorders, the methods, assumptions, and analytical steps are 
currently opaque and not accessible to researchers and clinicians outside the field. In 
this paper, we describe potential classification pipelines for autism spectrum disorder, as 
an example of a psychiatric disorder. The analyses are based on resting-state fMRI data 
derived from a multisite data repository (ABIDE). We compare several popular ML clas-
sifiers such as support vector machines, neural networks, and regression approaches, 
among others. In a tutorial style, written to be equally accessible for researchers and 
clinicians, we explain the rationale of each classification approach, clarify the underlying 
assumptions, and discuss possible pitfalls and challenges. We also provide the data as 
well as the MATLAB code we used to achieve our results. We show that out-of-the-box 
ML classifiers can yield classification accuracies of about 60–70%. Finally, we discuss 
how classification accuracy can be further improved, and we mention methodological 
developments that are needed to pave the way for the use of ML classifiers in clinical 
practice.

Keywords: ABIde, classification, autism spectrum disorder, psychiatric disorders, machine learning, Rs-fMRI

INtRodUCtIoN

Neuroimaging has substantially advanced our understanding of the perturbed neural mechanisms 
underpinning psychiatric disorders. However, the integration of neuroimaging tools into clinical 
practice has so far been limited, partly because it is unclear which information revealed by these tools 
is relevant for diagnosis and treatment decisions. To date, diagnosis focuses on behavioral manifesta-
tions, even though this approach is often time consuming, requires extensive experience and needs to 
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be performed by a multidisciplinary team of specialists trained in 
the use of behavioral assessment instruments (1). Taking autism 
spectrum disorder (ASD) as an example of a psychiatric disorder, 
its current gold standard diagnosis is based on behavioral assess-
ment instruments such as the Autism Diagnostic Interview-
Revised [ADI-R; (2)] and the Autism Diagnostic Observation 
Schedule [ADOS; (3)].

Applying classification methods from modern statistics and 
Machine Learning to neuroimaging and/or behavioral data 
might increase diagnostic accuracy and speed up the diagnostic 
process. The datasets encountered in neuroimaging settings are 
often high-dimensional (large number of variables), and sample 
sizes are relatively small even if data repositories are used (4). 
Therefore, many ML approaches incorporate feature selection 
strategies (either based on expert knowledge or applying auto-
matic feature-engineering methods), which allow them to reduce 
dimensionality (see Feature Calculation and Feature Selection 
for a more detailed discussion of variable selection techniques). 
Moreover, ML classifiers can detect biomarkers for the disorder, 
subtypes of the disorder, and comorbidities. Hence, ML classifiers 
have the potential to aid the integration of neuroimaging data 
into clinical practice.

ML classifiers are algorithms that predict for each subject 
to which class [here ASD versus typically developed (TD)] it 
belongs, based on data (here neuroimaging information). ML 
classifiers first learn how to separate the classes based on data 
where the class labels (here ASD and TD) are provided to the clas-
sifiers. This is called the training stage. Subsequently, the trained 
classifiers can apply the learned separation rule to unseen data to 
predict the corresponding labels. In our setting, this means that 
the classifier is applied to neuroimaging data of new subjects to 
predict whether or not they have ASD.

We will present the entire classification pipeline using 
multisite resting-state fMRI (RS-fMRI) data from the Autism 
Brain Imaging Data Exchange (ABIDE) repository (5). Even 
though much current knowledge about the pathophysiology of 
psychiatric disorders was derived via task-based neuroimaging 
paradigms, spontaneous or resting-state fluctuations in the 
blood oxygenation level-dependent (BOLD) signal are increas-
ingly employed to investigate neural connectivity and identify 
biomarkers of psychiatric disorders. The underlying hypothesis is 
that ASD and TD subjects can be distinguished by differences in 
functional connectivity, measured as correlations between these 
spontaneous signal fluctuations (5). RS-fMRI is promising as a 
clinical tool, because it is relatively fast to acquire (6, 7), task-free 
(thus requiring minimal cooperation of the patient), and data can 
be easily combined across multiple scanning centers to generate 
large databases such as ABIDE. Basing classification on such a 
large, multicenter database helps to capture the heterogeneity 
of the psychiatric disease and generalize results across multiple 
fMRI setups. Furthermore, it is well established that networks 
of correlated brain activity can be identified during rest, and 
that the principle anatomy of these networks is preserved across 
individuals, which is advantageous for dimensionality reduction, 
as desirable for classification (8). Finally, RS-fMRI can be used 
for the prediction of a variety of diseases such as depression, 
schizophrenia, or Parkinson’s disease (9, 10).

Site-specific effects, however, might introduce variability into 
the data that makes prediction of the disorder more difficult. 
Previous RS-fMRI ASD classification studies have seen a con-
siderable drop in classification accuracy when switching from 
single-site to multisite data (11, 12). Nevertheless, recent mul-
tisite ASD classification studies based on RS-fMRI have shown 
that the disorder can be predicted with accuracies between 60 
and 79% (12–14).

Using ASD as an example, the objective of the present article 
is to provide a lucid and praxis-oriented tutorial that enables a 
wider audience to use publicly available ML classifiers for the 
prediction of psychiatric diseases. We begin by introducing basic 
concepts and discussing important methodological choices that 
can impact classification accuracy or sensitivity. We then present 
and compare the classification results for several classifiers, based 
on RS-fMRI data of 154 subjects from the ABIDE database. The 
presented classifiers are commonly used for the classification of 
neuroimaging data (4). Furthermore, their implementation is 
provided by MATLAB, such that they can be easily employed by 
the reader. Finally, we highlight potential pitfalls and challenges 
that can occur at different stages of the classification process. We 
also provide the data and the MATLAB code for all discussed 
pipelines. Although this tutorial focuses on ASD classification, it 
can also be used for the classification of other psychiatric disor-
ders based on RS-fMRI data.

dAtA

We illustrate all methods in this paper on connectivity matrices 
computed from the ABIDE dataset (5). In this section, we explain 
how the connectivity matrices are obtained from the raw data.

Feature Calculation
Data sets from fMRI studies often possess a large number of pre-
dictors (or features) relative to the number of data samples (4). 
For our particular data set we are left with time series for circa 
50,000 voxels per subject after removal of signals of no interest 
such as head movement, respiration, and scanner-related artifacts 
(see Preprocessing of the fMRI Data in Appendix A1). A subject’s 
connectivity pattern can be estimated by calculating correlations 
between the time series for all its pairs of voxels. These correla-
tions can be used as predictors (“features” in Machine Learning 
jargon) for the classifiers. Due to the large number of voxels 
per subject, fMRI studies often possess such a large number of 
predictors (or features) relative to the number of data samples 
(4). This can cause classifiers to adapt to peculiarities of a spe-
cific dataset (“overfitting”) and results in poor generalizability. 
Hence, reducing data dimensionality for alleviating the problem 
of overfitting is crucial, especially in settings where restricted 
amount of data are available. Various dimensionality reduction 
techniques are applicable to RS-fMRI data sets, and they will 
be discussed in detail in Section “Feature Selection.” Out of 
these various options, we chose to perform an initial dimension 
reduction by averaging time series of voxels within regions of 
interests (ROIs), since time series of voxels within a ROI tend to 
be highly correlated. Craddock et al. (15) showed that partition-
ing the cerebral cortex into 200 or 1000 spheres provided more 
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FIGURe 1 | Calculating connectivity features. Two hundred ROIs are determined from the Craddock atlas (15) (A). For each subject, the time series of voxel 
intensities are averaged over voxels with an ROI, and Pearson correlation coefficients are computed for all pairs of averaged time series (B), resulting in a 200 × 200 
correlation matrix (C). Each entry in the correlation matrix is transformed with Fisher’s z-transform to obtain connectivity values (d).

3

Kassraian-Fard et al. Classification of Psychiatric Imaging Data 

Frontiers in Psychiatry | www.frontiersin.org December 2016 | Volume 7 | Article 177

homogeneous time series within ROIs than using parcellations 
offered by gross anatomical atlases. Based on this, we work with 
200 ROIs from the Craddock atlas. We compute the average time 
series for each ROI, and then compute the correlations between 
all pairs of averaged time series, yielding a 200 × 200 correlation 
matrix. Next, we apply Fisher’s z-transformation (16) to each 
entry in this matrix, yielding a 200 × 200 connectivity matrix. 
Since this matrix is symmetric, this leaves us with 19,900 unique 
features per subject. Figure 1 gives a schematic overview of the 
described procedure.

subject selection
We exclude underrepresented subjects including: female sub-
jects (12%), subjects older than 40 years (8%), and those with 
an intelligence quotient (IQ) below 80 (8%). This also reduces 
the complexity in our data set; however, it might be worthwhile 
to investigate the entire spectrum in future classification 
approaches. We also exclude subjects with strong artifacts due 
to head movements (see Preprocessing of the fMRI Data in 
Appendix A1).

We balance the data per site, meaning that we take the same 
number of ASD subjects as TD subjects per site. Furthermore, 
we ensure that the 2 resulting classes (TD and ASD) with 77 
subjects each are similar on average with respect to IQ, age, and 
head movements. This prevents the classifier from separating 
classes based on these variables instead of the class labels. If one 
of the classes for instance contains many more low-IQ subjects 
than the other class, the classifier could deliver optimal results 

by learning to separate between low and higher IQ values. The 
application of this classifier in a clinical setting could potentially 
produce false positives (FPs) by labeling low-IQ individuals 
without ASD as having ASD, or false negatives (FNs) by labe-
ling high IQ individuals with ASD as TD. Therefore, while it is 
important to build classifiers using heterogeneous datasets that 
reflect real-world populations, it is also important at this early 
stage to match datasets in order to confirm that classifiers are 
not distinguishing class labels using variables other than RS-fMRI 
connectivity. In the future, it might be important to classify ASD 
not only in comparison to TD but also in comparison to other 
neurodevelopmental pathologies. Female subjects were excluded 
from our data set because the underlying neuropathology might 
differ dramatically between the sexes causing highly deviating rs-
FMRI connectivity (17). Thus, females might potentially represent 
an independent subclass of ASD, but we had too few data points 
in our sample to investigate this issue and, therefore, focused on 
males only. For an in-depth analysis of the connection between 
classification accuracy, sample size, and data heterogeneity in 
classification studies of neuroimaging data, we refer the reader 
to Schnack and Kahn (18). Schnack and Kahn conclude that in 
general classification studies with smaller data sets might display 
higher classification accuracies due to the higher heterogeneity of 
the larger data set and point to the importance of taking sample 
sizes into account when comparing the classification results of 
different studies.

The balancing is achieved by under-sampling (i.e., including 
fewer subjects than available in the original dataset), leaving 
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us with a total of 154 data samples, 77 for ASD and 77 for TD. 
Working with balanced classes has the advantage that the classi-
fier’s performance can be assessed easily by classification accuracy 
– the number of correctly classified data samples over all data 
samples.

FeAtURe seLeCtIoN

Feature selection refers to the selection of a subset of the 
available features (here connectivity values, i.e., entries of the 
connectivity matrix) for classification. Proper feature selection 
can enhance classification accuracy, facilitate visualization of the 
data, and lead to faster classification (19, 20). An alternative to 
feature selection is feature extraction. Feature extraction meth-
ods transform the original features into a lower dimensional 
feature space (19), using for example principal component 
analysis. Thus, rather than selecting certain features, one works 
with selected combinations of the original features. Changing 
the feature space however can complicate the interpretation of 
results. Hence, feature selection might be preferable if interpret-
ability is pivotal.

In fMRI-based analyses, feature selection or extraction is 
especially critical, since the data are usually very high dimen-
sional, even after voxels are summarized to ROIs. After having 
performed feature extraction by summarizing voxels to ROIs 
(see Feature Calculation), we perform feature selection to further 
reduce the dimensionality of the data and increase classification 
accuracy. Methods for feature selection are typically divided into 
filter methods and wrapper methods (21).

Filter Methods
Filter methods select features based on a given statistical criterion, 
and only features with high scores for the criterion are retained. 
An example of such a criterion is the t-statistic from a two-sample 
t-test, where high scores indicate that the given feature effectively 
separates the classes (11).

Filter methods are usually computationally inexpensive 
(19, 22). However, most filter methods are univariate, meaning 
that they assess each feature individually. Hence, they do not 
account for feature dependencies (22). Moreover, they do not 
take interactions with the classifier into account. In other words, 
classifier performance is not part of the selection criterion (22).

Wrapper Methods
Wrapper methods employ the classifier to determine an optimal 
feature subset (23). In particular, the classifier is applied and 
evaluated using different feature subsets, and the best perform-
ing feature subset is selected. An example of such a procedure is 
recursive feature elimination (RFE). RFE first applies the classifier 
using the full feature set, and in each following step the least use-
ful features are discarded.

Wrapper methods have a higher computational cost due to 
their iterative approach, but they account for dependencies 
between different features and are naturally tailored to the clas-
sifier they are combined with. Plitt et al. (13) report a successful 
application of RFE combined with linear support vector machines 

(SVMs) to determine which features are most predictive for ASD 
classification.

A recommendable practice consists of an initial feature reduc-
tion with a filter method, followed by a wrapper method on the 
reduced feature set (22). More details on feature selection can be 
found in Guyon and Elisseeff (19).

PeRFoRMANCe AssessMeNt

Classifiers can be assessed by different assessment measures, such 
as accuracy, sensitivity, and specificity. Crucially, they should 
be assessed on different data than the data on which they were 
trained. We start by explaining the important distinction between 
test accuracies and training accuracies [see also James et al. (24), 
Chapter 2.2].

test Accuracy versus training Accuracy
We randomly divide the data into two parts, a training set and a 
test set, each consisting of a subset of the samples. The classifier 
is trained on the training set, meaning that the classifier learns to 
separate the classes optimally, based on the features and labels of 
the training set.

Applying this learned classification rule to the features of the 
training set, pretending we forgot the labels, results in predicted 
labels for all samples in the training set. These predictions can 
be compared to the true labels of these samples. The training 
accuracy measures the percentage of correct predictions on the 
training set, i.e., the number of correctly predicted labels over the 
number of samples in the training set.

It is important to note that this training accuracy is overly 
optimistic, since it evaluates the classifier on the same data on 
which it was trained. In practice, however, we are interested in 
the performance of the classifier on new and unseen data. For 
instance, we would be interested in a classifier’s performance for 
incoming patients and not for already diagnosed patients. To 
mimic this situation, we can apply the classifier that was trained 
on the training data to the features of the test set. Comparing the 
resulting predicted labels to the true labels of the test set leads 
to the notion of test accuracy (as opposed to training accuracy 
mentioned above), which is the percentage of correct predictions 
on the test set. Since the test set is from the same distribution 
as the training set, but independent from it, this allows a fair 
estimation of the classifiers’ generalization performance on 
unseen data from the same distribution.

Accuracy, specificity, and sensitivity
The accuracy summarizes the overall performance of the classi-
fier by measuring the percentage of correct predictions among 
all samples that have been classified. To describe more detailed 
performance measures, the following terminology is needed.

Samples that are correctly classified as having a condition (here 
ASD) are called true positives (TPs). Samples that are correctly 
identified as not having the condition (here TD) are called true 
negatives (TNs). Classification errors can occur in two ways. If a 
sample without the condition is classified as having the condition, 
it is called an FP. If a sample with the condition is classified as not 
having the condition, it is called a FN.
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FIGURe 2 | k-fold cross-validation. In k-fold cross-validation, the data are 
randomly split into k folds (here eightfolds). Each fold is used once as test 
set, while the remaining data are used for training.
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Using the notation #TP, #TN, #FP, and #FN for 
the number of TPs, TNs, FPs, and FNs, it follows that 

accuracy TP TN
TP FP TN FN

=
+

+ + +
# #

# # # #
. The so-called sensitivity or 

TP rate is the ratio of correctly classified subjects with the condition 

over all subjects with the condition, i.e., sensitivity TP
TP FN

.=
+

#
# #

 
The so-called specificity or TN rate is the ratio of correctly clas-
sified subjects without the condition over all subjects without 

the condition, i.e., Specificity TN
TN FP

=
+

#
# #

. A common way to 
summarize the absolute number of TPs, TNs, FPs, and FNs is a 
contingency table (25).

For unbalanced datasets, accuracy may be misleading. For 
instance, suppose that a classification of two-class data is per-
formed on a 9:1 class-size ratio (i.e., 9 ASD to 1 TD). Then, the 
performance of the classifier on the larger set will count nine 
times as much as the performance on the smaller set. Hence, 
high classification accuracy can simply mean that the classifier is 
by default predicting the larger class (26). For binary classifiers, 
this problem can be alleviated by combining the classification 
with sampling techniques for creating classes of equal size. 
Under-sampling techniques for instance create classes of equal 
size by sampling from the larger class as many data samples as 
the smaller class possesses, while over-sampling methods sample 
from the smaller class until the size of the larger class is attained 
(27). Another option is to use performance measures based on 
sensitivity and specificity, such as for instance a comparison of 
the TP and FP rates as functions of classifier parameters in a 
receiver operating characteristic (ROC) curve (26, 28, 29). The 
curve graphically illustrates the TP rates (y-axis) and the FP rates 
(x-axis) as a function of the classifiers parameters – an ideal clas-
sification would yield a TP rate of 1 and a FP rate of 0, whereas 
random guessing should yield points representing an equal rate 
of TP and FP, respectively. Brodersen et al. (30) also introduce 
the concept of a “balanced classification accuracy”: this balanced 
accuracy is the average of the TPs over the positives (here: ASD) 
and the TNs over the negatives (here: TD). Alternatively, accuracy 
measurements for unbalanced datasets can also be embedded in 
a probabilistic framework, where a confidence interval for the 
accuracy is calculated.

Cross-Validation
To determine the test accuracy, sensitivity, or specificity, the data 
are usually split not only once into a training set and a test set, 
but repeatedly. In particular, the data are randomly split into k 
disjoint sets of approximately equal size, called folds. Each fold is 
used once as a test set, while all other folds combined then serve 
as the training set. This procedure is called k-fold cross-validation 
[(24), Chapter 5.1]. Cross-validation is the method of choice for 
assessing the classifier’s performance on previously unobserved 
data. Figure 2 visualizes eightfold cross-validation as an example.

The most common cross-validation schemes are leave-one-
out cross-validation (LOO cross-validation), where k equals the 
number of data samples, and 10-fold cross-validation (k = 10). 
For most data sets, 10-fold cross-validation is a good compromise 
with regard to bias (the expected difference of the classifier’s 

prediction as compared to the true class-membership) and vari-
ance (the variability of the classifier’s prediction for one data 
samples), and is hence widely used (31).

Cross-validation can also be used in combination with 
feature selection or the selection of tuning parameters like the 
penalization parameter in lasso-regularized logistic regression 
(see Lasso-Regularized Logistic Regression). In this case, nested 
cross-validation must be used to avoid optimistically biased 
performance estimates (32). The idea is to start with a regular 
k-fold cross-validation, called the outer loop, to assess the final 
classifier performance. As before, each fold is used once as the 
test set, while all other folds are then used as the training set. Each 
training set is then randomly split again into several folds, in the 
so-called inner cross-validation loop, which is used for feature 
selection or tuning parameter selection. Thus, the training and 
test sets from the inner loop are used to try out different feature 
subsets or classifier tuning parameters, and the best performing 
classifier from this level is then applied to the test set from the 
outer loop. The process of nested cross-validation is shown in 
Figure 3.

Ideally, after cross-validation the optimized classifier is applied 
to an entirely new and independent data set (the so-called valida-
tion set). Classification performance on the fresh data from the 
validation set is a better measure for how well the classifiers 
generalize [(24), Chapter 5], and hence of how well it diagnoses 
yet unseen subjects. However, performing this step assumes the 
availability of enough data.

CLAssIFIeRs

ML classifiers allow the multivariate analysis of many features 
together, thereby allowing for good predictive performance 
(33–35). This stands in contrast with most of the traditional fMRI 
analysis approaches (so-called mass univariate methods), which 
rely on single features (35).

A classifier uses the available data to determine a decision 
boundary to separate classes (here ASD and TD) within the 
multidimensional feature space. Classifiers are called linear or 
non-linear, depending on the decision boundary being linear or 
not. In linear classification (Figure 4A), each feature is associated 
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FIGURe 4 | Linear versus non-linear classification. Illustration of the 
separation of data samples of a two-class problem by fitted decision 
boundaries. Depending on the shape of the decision boundary, classifiers are 
categorized as linear (A) or non-linear (B).

FIGURe 3 | Nested cross-validation. In nested cross-validation, the data 
are split twice into several folds. In this figure, we have eightfold outer 
cross-validation to determine the classifier performance. In the inner twofold 
cross-validation, the training set is divided again for feature selection or to 
determine optimal tuning parameters for the classifier.
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with a particular weight, which reflects its relevance for the 
prediction (21), allowing for a straightforward interpretation of 
results. Due to their lower complexity, linear classifiers are also 
less prone to overfitting than some non-linear classifiers. This 
might explain the success of linear classifiers for RS-fMRI-based 
ASD prediction (13, 14, 36). In the remainder of this section, we 
discuss several linear classifiers [(regularized) logistic regression, 
linear SVMs, and linear discriminant analysis (LDA)], as well as 
several non-linear classifiers (Figure  4B), including Gaussian 
naïve Bayes (GNB), kernel SVMs, and probabilistic neural 
networks.

The choice of a well-suited classifier depends on various 
factors, including the dimensions of the dataset, the feature 
selection method, the required classification speed, and the sta-
tistical properties of the data. For example, if the dataset contains 
strongly correlated features, the performance of some classifiers 
such as GNB can degrade. However, a suitable feature selection 
method can alleviate this problem (21). Other classifiers, such as 
for instance SVMs, tend to perform well even without any previ-
ous feature selection and when the features are strongly correlated 
[(20, 24), Section 9.2.2].

In high-dimensional settings, better classification performance 
and a lower risk of overfitting can also be achieved by imposing 
constraints on the statistical model. This is called regularization 
[(24), Chapter 6.2]. In the case of regression, we might for instance 

want to restrict the magnitude of the regression coefficients to 
avoid overfitting to noisy data (37). This can serve as an inbuilt 
feature selection procedure where uninformative features are 
removed from the classification process by setting the associated 
regression coefficients to zero (as in Section “Lasso-Regularized 
Logistic Regression”).

In the remainder of this section, we present several well-
known classifiers and discuss their assumptions and properties. 
All presented classifiers are pre-implemented, easy-to-use, and 
commonly used for the classification of RS-fMRI data (13, 14, 36). 
We refer to James et al. (24), Hastie et al. (38), and Bishop (39) 
for more details on the presented classifiers. For an excellent brief 
introduction to the formal background of these algorithms and a 
subsequent discussion of their application to brain imaging data, 
we refer the reader to Lemm et al. (40).

Logistic Regression
Logistic regression is a type of regression where the predicted 
class variable is binary. This fits our setting, since our classes 
can be labeled as 1 and 0 (ASD and TD). Logistic regression can 
be viewed as a special case of a generalized linear model, where 
the log odds is modeled as a linear function of the predictors. 
A convenient property of this model is that the sizes and signs of 
the estimated coefficients have a clear interpretation. Please see 
Chapter 4.3 of James et al. (24) for details.

Lasso-Regularized Logistic Regression
Important regularized variants of logistic regression are ridge 
logistic regression and lasso-regularized logistic regression. Due 
to our high-dimensional data set, we focus here on lasso since as 
mentioned this method removes uninformative features by setting 
the associated regression coefficients to zero. Computationally, 
regularization is performed by introducing a regularization 
parameter, which can be optimally chosen via cross-validation.

support Vector Machines
The basic idea of linear SVMs is to construct an optimal linear 
decision boundary that is maximally far from the data samples 
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FIGURe 5 | example of a kernel mapping. The left hand side shows a dataset that cannot be separated linearly in the two feature dimensional space. The right 
hand side shows a three-dimensional embedding, where linear separation is possible.

FIGURe 6 | Probabilistic neural network. The left hand side (A) shows the network architecture. Each feature is represented by an input node. Each sample in 
the training set is represented by a node in the hidden layer. The nodes of the hidden layer evaluate the density value of a new, yet to classify data sample. The 
nodes in the summation layer sum up the density values for each class. Finally, the output layer outputs the class with the highest estimated membership probability. 
On the right side (B), a one-dimensional example data set is shown. The blue and the red dots represent training data from two different classes. A chosen 
probability distribution, in our example a Gaussian distribution, is centered at each of the data points of the training set. The green dot (x = 1.4) is a new data point 
we want to classify. In our example, the density values of the Gaussians from the blue class are small at the location of the green dot, whereas the density values of 
the red class are higher, indicating that the green dot is more likely to belong to this class.
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of the two classes. SVMs belong to the category of regularized 
predictors – a regularization term determines to what extent 
misclassification of data samples is accepted. Not allowing for 
any misclassification might lead to poor generalization of the 
classifier, due to overfitting to a particular data set [(24), Chapter 
9.2.2].

It is well-known that SVMs can handle noisy, correlated 
features and high-dimensional data sets well [(24), Chapter 
9.2.2; (41)]. Hence, they have become one of the most successful 
classifiers of the recent years, also for the classification of fMRI 
data (13, 21). If the data are not linearly separable in the original 
feature space, one can map them with a so-called kernel function 
into a higher dimensional space to achieve separability [(24), 
Chapter 9.3.2]. The resulting classifier is then called kernel SVM. 
An illustration of this approach is given in Figure 5. Linear SVMs, 
however, have so far been more successful for the classification of 
ASD based on RS-fMRI data than kernel SVMs (13).

Probabilistic Neural Networks
The term neural network comes from the fact that the structure of 
these classifiers (depicted in Figure 6A) is thought to somewhat 
resemble biological neuronal networks. A probabilistic neural 
network consists of various layers, each containing a number of 
nodes (42, 43). We explain the basics of the classification algorithm 
with the one-dimensional example data depicted in Figure 6B. 
Nodes in the first layer of the probabilistic neural network are 
called input nodes. This layer contains as many nodes as there 
are features. A one-dimensional example data set is shown in the 
right panel (corresponding to one input node). The blue and the 
red dots represent training data from two different classes. The 
number of these data samples determines how many nodes the 
next “hidden” layer contains. A chosen probability distribution, 
in our example a Gaussian distribution, is centered at each of the 
data points of the training set. The green dot (x = 1.4) is a new 
data point we want to classify. Each of the hidden nodes evaluates 
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tABLe 1 | overview of classifier performances.

Classifier Accuracy specificity sensitivity p-Value

LR 0.58 0.59 0.57 0.009
LassoLR 0.58 0.57 0.56 0.009
SVM 0.63 0.64 0.62 0.007
PNN 0.58 0.57 0.59 0.009
LDA 0.57 0.58 0.56 0.009
GNB 0.61 0.63 0.62 0.008

LR, logistic regression; LassoLR, lasso-regularized logistic regression; SVM, linear 
support vector machine; PNN, probabilistic neural network; LDA, linear discriminant 
analysis; GNB, Gaussian naïve Bayes.
This table provides an overview of the performances of the classifiers discussed in 
Section “Classifiers.” Listed are the test accuracy, specificity, and sensitivity. Nested 
cross-validation was performed for all classifiers, with 10-folds for both the outer and 
the inner loops.
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the density value of its Gaussian for the green dot. In our example, 
the density values of the Gaussians from the blue class are small 
at the location of the green dot, whereas the density values of the 
red class are higher, indicating that the green dot is more likely to 
belong to this class. Next, the summation layer outputs the sum 
of these density values for each class. The last layer then consists 
of a single node that outputs the label of the class with the highest 
membership probability. Probabilistic neural networks are known 
to be relatively fast and have been used previously to predict ASD 
based on ABIDE RS-fMRI data (44).

Linear discriminant Analysis
Linear discriminant analysis assumes that the features (in our 
case entries of the connectivity matrix) within each class (in our 
case TD or ASD) follow a multivariate normal distribution, with a 
common covariance matrix and different mean vectors. The class 
means and the common covariance matrix can then be estimated 
from the data, leading to two estimated multivariate normal 
densities. Then, for a new data sample x, the estimated densities 
are evaluated, and the sample is assigned to the class with the 
highest estimated density.

Alternatively, LDA can be viewed as seeking a one-dimensional 
projection vector that maximizes the ratio of between class 
variance over within class variance. In this sense, the multivari-
ate normal assumption is not necessary. For further reading, we 
recommend Duda et al. (45).

Gaussian Naïve Bayes
The GNB classifier assumes that the features of each class follow 
a multivariate normal distribution with an arbitrary mean vector 
and a diagonal covariance matrix (with arbitrary entries on its 
diagonal). The diagonal covariance matrix entails the assumption 
that the features within each class are independent, and that they 
can have arbitrary variances. During training, the means and vari-
ances are estimated. Subsequently, like for LDA, a new data point 
is assigned to the class that is most likely to have generated it.

It has been shown that GNB classifiers can operate reasonably 
well even if the independent features’ assumption is not fulfilled, 
but its performance degenerates when the correlations are very 
strong (46). GNB classifiers are easy to implement, as well as fast.

APPLYING the CLAssIFIeRs to the 
ABIde dAtAset

We now apply feature selection and several classifiers to our 
multisite ABIDE dataset. The inputs to the classification pipeline 
are the 77 ASD and 77 TD connectivity matrices (hence 154 data 
samples in total), where each connectivity matrix consists of 
19,900 features.

With the exception of lasso-regularized logistic regression, we 
perform feature selection to reduce the number of features and 
hence the risk of overfitting. Out of many different possibilities 
for feature selection, we use a simple and fast filter method called 
thresholding. For each feature (i.e., each connectivity value), we 
calculate the absolute difference between the class means (ASD 
versus TD means). The feature is selected if this absolute differ-
ence is larger than a threshold value t. The assessed range of t 

values is between 0 (resulting in all 19,900 features selected) and 
0.18 (resulting in about 7 features selected). Mostly, a t value of 
around 0.15 was selected, corresponding to around 40 features.

The performance of each classifier is assessed by nested cross-
validation: 10-folds are used in the outer cross-validation loop for 
the performance estimation, and 10-folds are used in the inner 
cross-validation loop to determine the optimal threshold value 
t for feature selection, or the optimal regularization parameter 
for lasso-regularized logistic regression. For all other classifiers, 
MATLAB’s default setting is used for the tuning parameters.

We also assess statistical significance of each classification 
procedure with respect to the null hypothesis of random guess-
ing, by means of permutation testing (47). The importance of 
significance testing is further elaborated in Section “Comparison 
of Classification Accuracy to Chance Level.” Permutation testing 
is detailed in Section “Tests for Classification Significance” in 
Appendix A2.

Table 1 summarizes the performance of the classifiers in terms 
of test accuracy, sensitivity, and specificity. We will see in Section 
“Building Classifiers for Multisite Data” that removing site effects 
will lead to even higher classification accuracies. All classifiers 
were better than random guessing p < 0.001.

PItFALLs ANd ChALLeNGes

Cross-Validation and Feature selection: 
the Peeking Problem
Even when applying out-of-the-box classifiers for the classifica-
tion of psychiatric disorders, important challenges and pitfalls 
in the analysis pipeline remain. One pitfall is given when feature 
selection or selection of tuning parameters is performed on the full 
data, i.e., on data samples from both the training and the test set.

To illustrate this, we simulated high-dimensional data as 
follows. We generated 80 data samples for each of 2 classes, by 
randomly sampling 20,000 features from independent standard 
normal distributions for each data sample. Since the labels are 
not associated to the features, the true test accuracy of a method 
is at best 50%. If, however, we use the entire dataset to select the 
features with a mean difference above a threshold value t = 0.10, 
classification with a linear SVM yields a test accuracy of 91%. If 
the feature selection is correctly applied using only the training 
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set, the classification accuracy is between 45 and 56%. This pitfall 
is referred to as peeking or double-dipping. Our simulation 
illustrates that peeking is a serious problem that can result in 
severely biased accuracies. Assuming a binomial distribution 
(see Tests for Classification Significance in Appendix A2), a 
classification accuracy of above 62.5% is deemed significant for 
a p-value below 0.01.

Systematic reviews of research articles show that double-dip-
ping is still common. Kriegeskorte et al. (48) report that at least 
42% of fMRI studies published in high impact journals during 
2008 were affected (48, 49). The bias caused by double-dipping 
is especially large for data sets with few data samples and a large 
number of features (50), as is often the case for neuroimaging 
data sets.

It has to be noted that if cross-validation is performed to 
find optimal tuning parameters for the classifier, the perfor-
mance of the optimized classifier has to be evaluated on a new 
data set (nested cross-validation). Otherwise, the performance 
evaluation can again be optimistically biased (32). Since different 
performance estimation procedures can have a large impact on 
the classification results, including a detailed description of these 
should be standard procedure in publications.

Building Classifiers for Multisite data
The use of multisite data poses a challenge for the classification 
of ASD, since site-specific variability makes it more difficult for 
classifiers to detect information that is important for the predic-
tion of the disorder. Previous ASD classifiers that were tailored 
to RS-fMRI data from a single site (11) degraded markedly in 
performance when applied to multisite data (12). The classifica-
tion accuracy dropped from roughly 80 to 60% (12).

To reduce site-induced variability in the data set, a first step is to 
take linear site effects into account. Accounting for linear site effects 
can be done by using a z-transform within each site. Thus, for a sub-
ject k from a given site, we compute the standardized i-th feature as 

follows: i k i-th feature of subject mean -th feature of site
stan

( ) − ( )
ddard deviation -th feature of sitei( )

.

We took the so far best performing classifier – the support 
vector machine – and applied it to the data set after this stand-
ardization was performed. The resulting classification accuracy 
increased from 63 to 68%. Note that the double-dipping problem 
has to be considered for standardization as well: standardization 
must be done for training and test set independently, and in both 
cases, the mean and the SD from the training set have to be used 
in order to avoid double-dipping.

Another possibility to assess the generalizability of the clas-
sifier to data from different sites is to form training and test sets 
from different sites. An example of this approach is leave-one-
site-out cross-validation, where the test set contains data from a 
site that has not been used in the training set (36). The suggested 
z-transformation to remove linear effects is only a first step in 
the removal of site effects. In a next step, it will be worthwhile to 
balance the data from each site for variables such as sex, age, or 
IQ. Furthermore, we would like to point the reader to elaborated 
methods to remove even complex site effects, developed in micro-
array studies where data stems commonly from many different 
sites. Gagnon-Bartsch et al. (51) and Leek and Storey (52) both 

provide methods in which unwanted factors (as, for instance, site) 
are estimated from the data, and subsequently included into the 
design matrix of a regression model, or unwanted variation is 
modeled as part of an error term.

small sample size
Several challenges can emerge when the number of features 
strongly exceeds the number of data samples, as is the case in 
the given setting. A first problem is the high risk of overfitting. A 
small but possibly complex data set can evoke an idiosyncratic fit 
with poor generalizability.

A second pitfall concerns the detection of the most predictive 
features. Detecting such features can be desirable to determine 
the functional networks associated with them. Highly predictive 
features can also be correlated with behavioral assessments of 
autism [as, for instance, the Social Responsiveness Scale (13)]. 
This correlation can be employed to assess if the classification 
delivers medically interpretable results and accounts for continu-
ous symptom manifestation beyond binary separation (13). The 
difficulty, however, is that different cross-validation rounds and 
different classification methods will rank other sets of features 
as most predictive. This variability is especially high in the case 
of small-sized data sets and requires careful neuroscientific 
interpretation. In these instances, it is recommended to use stable 
feature selection methods for small data sets to guarantee such 
robustness (22).

Comparison of Classification Accuracy 
to Chance Level
It is common for neuroscientific studies to compare classification 
accuracies to chance level. Chance level is thereby the accuracy 
achieved assuming that it is equally likely for a data sample to fall 
in any of the existing classes. In the case of a balanced two-class 
problem, chance level classification accuracy would equal 50%, 
and for a balanced five-class problem it would amount to a clas-
sification accuracy of 20%. However, chance level accuracies are 
theoretical values derived for random guessing on data sets of 
infinite size. Although random guessing will approximate chance 
level accuracies if the data set is large enough, for small data sets 
as often encountered in neuroscientific studies, random clas-
sification can deliver accuracies strongly deviating from chance 
level. Combrisson and Jerbi (53) show that when applied to small 
data sets, various classifiers can achieve accuracies as high as 
70% for a two-class problem where labels are uninformative and 
chance level is 50%.

Instead of comparing classification results to a theoretical 
chance level, parametric or non-parametric statistical tests can 
be applied where data size is taken into account (53). Parametric 
tests assume an underlying distribution for the data set, whereas 
non-parametric statistical tests work with minimal statistical 
assumptions (47). Appendix A2 explains these tests in more detail.

sUMMARY ANd CoNCLUdING ReMARKs

In this tutorial, we presented several standard Machine Learning 
classifiers and their advantages and disadvantages for the clas-
sification of ASD, based on multisite neuroimaging data. The 
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presented classification pipeline for ASD served as an example for 
the classification pipeline of psychiatric disorders in general. The 
presented classifiers reached peak accuracies of around 60–70%. 
Given that the information used for classification was retrieved 
from neuroimaging data and not from the established behavioral 
markers, and that straightforward methods were used for the 
prediction, this prediction approach is worthwhile pursuing with 
more elaborated methods.

One reason for the nevertheless relatively low classification 
accuracies could be the variability in RS-fMRI data introduced 
from data collection at different sites. We saw that accounting 
for linear site effects can improve the accuracy. Accounting for 
non-linear site effects might increase accuracies further.

Several other steps in the classification pipeline could be 
enhanced as well. First, variations of these classifiers tailored for 
small but high-dimensional data sets might deliver better classi-
fication accuracies [see, for instance, the LDA classifier developed 
by Qiao et al. (54)]. Second, more sophisticated feature selection 
methods than simple thresholding might further boost clas-
sification accuracy. One may also consider alternative atlases to 
determine the ROIs (13). Furthermore, the use of structural brain 
data for the ML-based prediction of psychiatric diseases such as 
schizophrenia, ASD, or the classification between unipolar and 
bipolar depression based on such features has been shown to be 
fruitful (10, 55–58). Wolfers et al. (59) provide a literature survey 
on ML-based methods in psychiatric research and investigate the 
current state of translating these methods into clinical practice. In 
their review, they also investigate the imaging modalities used for 
classification and conclude that useful features can be extracted 
across different imaging modalities, and that different imaging 
modalities can achieve similar classification accuracies. Hence, in 
a next step, combining RS-fMRI data with data gained from other 
techniques might be beneficial.

It is also important to note that the labels (patient or control) 
used in the classification pipeline are attained through behavioral 
assessments. This means that the labels are noisy, i.e., we cannot 
be certain that the label is correct in every case, and hence clas-
sification accuracy is limited by the accuracy of behavioral assess-
ments. Employing classification approaches that account for the 
noisy labeling might deliver superior results (60). An alternative 
is to apply unsupervised methods that do not require any class 
labels [(24), Chapter 10]. Clustering methods, for instance, can 
pool data samples into groups according to some notion of simi-
larity. Deep learning offers the possibility of unsupervised feature 
selection: simple features are extracted by the algorithm in the 
lower layers and combined to more complex features in the later 
layers. Plis et al. (61) have shown that neuroscientifically mean-
ingful features can be extracted with deep learning methods, and 
that these features can be successfully used for the classification 
of patients and controls.

For clinical practice, it would also be very useful to indicate for 
each classified subject the uncertainty of the classification. Related 
to this, one can consider predicting a scale rather than simply 
two classes, which would also better reflect the fact that many 
psychiatric disorders (including ASD) describe a spectrum rather 
than a binary diagnosis. Furthermore, ML methods can also be 
used for the prediction treatment responses. Hahn et al. (62), for 

instance, successfully predict treatment responses of patients with 
panic disorders by applying ML classifiers to fMRI data.

We discussed possible pitfalls and challenges that can occur 
during the classification pipeline. One such pitfall is double-
dipping, i.e., the lack of separation of training and test set during 
feature selection. Double-dipping can markedly inflate the accu-
racy, especially for small and high-dimensional data sets.

Other challenges are more specific to the data sets commonly 
present when analyzing psychiatric disorders based on neuroim-
aging techniques, where the data are from multiple sites and often 
high-dimensional despite the data set being small in size. The 
underlying complexity of the disorder might encompass several 
diverse subtypes, and the high-dimensionality of this relatively 
small data set might easily lead to overfitting. This might explain 
why several of the presented out-of-the-box classifiers trump the 
accuracy of 60% from a proposed classifier specifically tailored for 
multisite ASD prediction (11, 12). Nevertheless, the classification 
results achieved are rather moderate, and it might be worthwhile 
to apply boosting and bagging [(24), Chapter 8]. Both techniques 
combine several weak learners (classifiers with moderate perfor-
mance) to create a strong learner (a model with high classification 
performance). Boosting successively applies classifiers to the data 
set whereby more weight is given to data samples misclassified 
by the previous classifier. Boosting can reduce bias and variance. 
Bagging is the training of several weak learners with bootstrap 
samples of the original data as input for each learner. By taking 
several samples from the original data set and hence providing 
the classifier with more training data, bagging can reduce vari-
ance [(24), Chapter 8].
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APPeNdIX A1

Preprocessing of the fMRI data
Data presented in this study underwent standard fMRI pre-
processing (i.e., realignment, normalization, and smoothing) 
implemented in SPM12b. Data were preprocessed according to 
standard SPM protocols including realignment, normalization 
to a study specific template using DARTEL, smoothing, band-
pass filtering (0.01–0.05 Hz), and scrubbing to account for head 
movements (63). Specifically, structural images were first coreg-
istered to the T1 template before the New Segmentation toolbox 
was used to segment the data into gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF) images ready for input 
to the DARTEL toolbox (64). The DARTEL toolbox was used to 
create a study-specific template for normalization given that the 
average age of participants was in the range [10,14], and as such 
the Montreal Neurological Institute (MNI) template (generated 
using 18- to 30-year-old brains) would not be appropriate (65). 
Functional images were coregistered to the individual structural 
images, realigned, normalized to the MNI template space using 
DARTEL (resliced to 3 mm × 3 mm × 3 mm), and smoothed 
with an 8-mm kernel.

Adequately correcting for head motion artifact has proven to be 
an essential step in RS-fMRI analyses, especially in investigations 
of ASD (66, 67). Power et al. (63) and Van Dijk et al. (68) clearly 
demonstrated that even tiny movements, which are smaller than 
the spatial sampling size of fMRI data (i.e., movements >0.5 mm) 
have a large impact on studies of resting connectivity. In order to 
account for the confounding of micro-movements, an approach 
called scrubbing is applied to the data. Scrubbing involves remov-
ing bad data points where there is >0.5 mm framewise displace-
ment (FD) or a >0.5% differential spatial variance (DVARS). 
We additionally modeled head movement using the Friston 
24-parameter approach (69) to remove potential residual head 
motion signal (6 original regressors generated during realign-
ment, 6 time-shifted regressors, and both of these squared) along 
with the first 3 principle component time series extracted from 
individual WM and CSF masks (70).

There are a number of atlases currently available for data 
reduction, and each atlas makes a different assumption about 
how to partition the cerebral cortex. Anatomical atlases like 
the Automated Anatomical Labeling (AAL) Atlas (71) or 

Harvard–Oxford Cortical Atlas are based either on gross 
 morphological boundaries or on cytoarchitectonic features  
(see http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/
SPMAnatomyToolbox/SPMAnatomyToolbox_node.html). 
However, atlases based on gross anatomy do not appropriately 
represent connectivity patterns seen in RS-fMRI data (72), prob-
ably because distinct functional subregions are grouped together, 
thus reducing sensitivity, and cytoarchitectonic atlases exist only 
for a few parts of the brain. Alternatively connectivity-based par-
cellations [CBP; (72–75)] and independent component analysis 
[ICA; (76, 77)] have been used to partition the cerebral cortex into 
voxels with common connectivity patterns. While, both CBP and 
ICA offer a useful middle ground between parcellations based on 
gross morphology and cytoarchitecture, one issue plaguing both 
methods is selecting how many regions/components to partition 
the data into. The Craddock atlas was chosen because it has been 
shown to outperform atlases based on gross morphology (15) and 
did not require us to arbitrarily choose thresholds necessary for 
CBP or ICA.

APPeNdIX A2

tests for Classification significance
Statistical significance of classification can be assessed by means 
of permutation testing (47). The null hypothesis is that the classes 
do not differ. This can be tested by randomly permuting the labels 
of the data samples. The empirical p-value is then determined by 
the percentage of data sets with permuted labels where the clas-
sification delivers better results than on the original data. Ideally, 
all the data sets resulting from all possible label permutations 
should be used. Since this is usually not feasible due to the large 
number of possible permutations, an approximation of the size 
of randomized samples k necessary for a certain p-value p can be 
determined (78). Significance testing can also be performed with 
parametric tests where probability distributions are assumed, 
for instance, a binomial distribution for classification errors (a 
binomial distribution since a data sample can be either correctly 
classified or not). We refer the reader to Combrisson and Jerbi 
(53) who explain in detail how assuming a binomial distribution 
for the classification error, significant classification accuracies 
can be calculated with pre-implemented MATLAB functions for 
a given sample size.
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