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Abstract

Motivation: Computational identification of promoters is notoriously difficult as human genes often have

unique promoter sequences that provide regulation of transcription and interaction with transcription

initiation complex. While there are many attempts to develop computational promoter identification

methods, we have no reliable tool to analyze long genomic sequences.

Results: In this work we further develop our deep learning approach that was relatively successful

to discriminate short promoter and non-promoter sequences. Instead of focusing on the classification

accuracy, in this work we predict the exact positions of the TSS inside the genomic sequences testing

every possible location. We studied human promoters to find effective regions for discrimination and

built corresponding deep learning models. These models use adaptively constructed negative set, which

iteratively improves the model’s discriminative ability. Our method significantly outperforms the previously

developed promoter prediction programs by considerably reducing the number of false positive predictions.

We have achieved error-per-1000-bp rate of 0.02 and have 0.31 errors per correct prediction, which is

significantly better than the results of other human promoter predictors.

Availability: The developed method is available as a web server at http://www.cbrc.kaust.edu.sa/PromID/.

Contact: Victor Solovyev Email: solovictor@gmail.com; Xin Gao Email:xin.gao@kaust.edu.sa.

1 Introduction

The high fidelity of the RNA polymerase II (pol II) transcription system

is necessary for precise spatiotemporal regulation of endogenous protein

expression and essential to proper development and homeostasis in

eukaryotes. Among the key cis-regulatory modules for RNA pol II-

mediated transcription is the core promoter, which is typically situated

within a DNA segment spanning from -40 bp to +40 bp relative to the

transcription start site (TSS) at position +1 (Kadonaga, 2012; Danino et al.,

2015; Vo Ngoc et al., 2017a). This stretch of DNA serves as a platform

on which RNA pol II and a number of auxiliary factors assemble into the

transcription machinery, which is capable of integrating a range of intrinsic

and extrinsic signals, to ultimately determine the proper initiation of

transcription (Lodish et al., 2000; Butler and Kadonaga, 2002; Morris et al.,

2004; Juven-Gershon et al., 2008; Kadonaga, 2012; Roy and Singer, 2015;

Zabidi et al., 2015; Vo Ngoc et al., 2017b). Thus, the characterization of the

structure-function relation of the core promoter is crucial to unraveling the

complex molecular control mechanisms underlying not just the constitutive

basal expression but also the regulated expression in the RNA pol II

transcription system.

Decades of in vitro research has identified a number of functional

sequence motifs for the RNA pol II core promoter (Butler and Kadonaga,

2002; Smale and Kadonaga, 2003; Roy and Singer, 2015; Vo Ngoc et al.,

2017b). Among such functional core promoter elements, perhaps, the
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Fig. 1. Deep learning model architecture that was used in building promoter models of DeeReCT-PromID (see text for its description).

most well-known is the TATA-box, which was, in the past, thought to be

universally present in RNA pol II core promoters (Vo Ngoc et al., 2017b).

However, the advent in genome-wide TSS detections based on high-

throughput sequencing revealed that the core promoter structure is highly

diverse and complex, and there are no universal core promoter elements

(Lenhard et al., 2012; Kadonaga, 2012; Roy and Singer, 2015; Zabidi et al.,

2015; Arnold et al., 2017; Vo Ngoc et al., 2017b). Indeed, recent estimates

showed that only about 17% of eukaryotic core promoters contain the

TATA-box (Yella and Bansal, 2017). More surprisingly, genome-wide

structural analysis found that many core promoters do not possess any of

the known core promoter elements. Such structural heterogeneity permits

the core promoter to expand its functional repertories so as to serve as gene-

and cell-type-specific transcription regulator that responds to a range of

conditions; however, because of this large diversity, the design principle

of the core promoter still remains largely elusive (Roy and Singer, 2015;

Arnold et al., 2017; Garieri et al., 2017; Vo Ngoc et al., 2017b).

The structure of the human promoter is notoriously complex and

diverse. One explanation for this is that such complex and diverse

structures must be “designed” to properly control expression of ∼25,000

protein coding genes based on interactions with only ∼1,850 transcription

factors in the human genome (Maston et al., 2006). Another explanation

comes from a molecular evolution study which discovered substantially

accelerated rates of evolution in primate promoters compared with other

mammalian promoters (Taylor et al., 2006). This rapid primate promoter

evolution was found to be comparable to the neutral substitution rate,

suggesting that primate promoters have weak selective constraints, and

this suggestion can also explain highly complex and diverse structures in

the human promoter. In any case, a better understanding of the structure-

function relation of the human promoter has particularly important

implications as some genetic variants in such noncoding regions are

associated with rare Mendelian diseases (Edwards et al., 2013; Rojano

et al., 2018). Furthermore, some cancer cells are associated with somatic

mutations in promoter regions (Vinagre et al., 2013; Fredriksson et al.,

2017). In order to gain insights into what types of genetic variations

can cause aberrant expression leading to human diseases, it is crucial to

accurately predict the locations of human promoters and to understand

their structural patterns.

Here, we introduce DeeReCT-PromID, a novel machine learning-

based approach for the prediction of human RNA pol II core promoters.

Taking advantage of the big promoter collection with experimentally

validated TSSs (Dreos et al., 2016) generated by modern high-throughput

techniques, we build a deep learning model using sequence data as an

input. To avoid bias based on prior knowledge about promoter loci (e.g,

sequences with known core promoter elements and high density of CpG

dinucleotides), we do not use predefined features; but rather attempt

to discover sequence features and learn salient patterns of the human

promoter solely from the training set. This is important especially in

the prediction of human promoters since the structural features of many

promoters are still unknown (Maston et al., 2006; Roy and Singer, 2015).

We previously developed a similar convolutional neural network-based

algorithm for the prediction of core promoter locations in several model

organisms (Umarov and Solovyev, 2017). While this method was able to

outperform previously developed promoter prediction methods (Umarov

and Solovyev, 2017), its false positive rate was not adequate enough to

ensure the accurate detection of promoters on long genomic sequences.

DeeReCT-PromID was developed to chiefly alleviate this limitation and

to focus on the promoter prediction on longer sequences. Specifically,

to reduce the false positive rate, we adaptively and iteratively train the

predictor by changing the distribution of samples in the training set

based on the false-positive errors it made in the previous iteration. By

including difficult non-promoter sequences in the training set, we can

force the predictor to learn promoter patterns to rule out such sequences.

To evaluate the performance of the new method, we compared our method

with publicly available tools for the human promoter prediction task.

We found that DeeReCT-PromID outperformed the other predictors and

achieved a much smaller error-per-1000-bp rate. Our results demonstrate

the usefulness of the proposed method for the human promoter prediction

on long genomic sequences and suggest its potential value as a tool to gain

insights into the design principle for the human core promoters.

2 MATERIALS AND METHODS

2.1 Datasets

Our models are trained using human promoter sequences extracted from

the EPDnew database (Dreos et al., 2016). The EPD database is an

annotated non-redundant collection of eukaryotic POL II promoters, for

which the transcription start site has been determined experimentally. The
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Promoter prediction in the human genome 3

(a) Promoters with the TATA-box. Corresponding genes from left are COCH_1 and CCL5_1.

(b) Promoters without the TATA-box. Corresponding genes from left are FAM135A_1 and ASCC3_1.

Fig. 2. Scoring landscapes constructed by our models. True TSS is at position +1.

authors of the EPDnew database have demonstrated its higher quality over

the ENSEMBL-derived (Aken et al., 2016) human promoter set (Dreos

et al., 2012).

In this study we downloaded 16455 genomic sequences (from -5000 bp

to +5000 bp, where +1 is a TSS position) containing human promoters from

the EPD database. We used 90% of the sequences for training and 10% for

testing. Positive and negative sets were extracted from the training set. A

promoter region of a given size around the known TSS is considered to be

a positive sequence. A negative sequence is the one outside the promoter

region, which does not contain a known TSS. Initially, the negative set

had the same size as the positive one and consisted of randomly picked

negative sequences.

2.2 Deep neural network model

We use deep neural networks to identify promoter regions. The data is

read in the fasta format and then transformed using one hot encoding. This

encoding uses a vector of size 4 to represent each nucleotide. A is encoded

as (1 0 0 0), T is encoded as (0 1 0 0), G is encoded as (0 0 1 0), and C is

encoded as (0 0 0 1).

Our architecture consists of two Convolutional Neural Networks

(CNN) which are in parallel (Figure 1). This means that they both have

access to the original input. One CNN has an average pooling layer, while

the other does not have any pooling layer. CNN with an average pooling

layer has filter length one, while the other one uses filter length 15 and both

have two convolutional layers. Average pooling is well suited to capture

GC content of the sequence, which is known to be higher in a promoter

region (Fenouil et al., 2012), since we only care about the count of G

and C nucleotides, not their positions inside a promoter. However, usage

of a pooling layer deteriorates positional information which is important

for some promoter elements that are located at a specific location in the

promoter region, for example the initiator. Using two CNNs in parallel, we

solved this conflict and were able to capture various significant promoter

features. The outputs of the CNNs are concatenated, flattened and fed into

a softmax layer which predicts the probability that an input sequence is a

promoter.

Weight decay and dropout (Srivastava et al., 2014) are used to improve

the generalization capability of our model. Weight decay effectively limits

the number of free parameters in the model to avoid overfitting. Introducing

weight decay makes it possible to regularize the cost function by penalizing

large weights. The main idea of dropout is to randomly set some nodes

of the neural network to zero during training to prevent co-dependency

among them. During the training we use dropout for the feature vector

with keep probability of 0.5. Adam optimization algorithm is used to train

the weights (Kingma and Ba, 2014), which is an improved version of

stochastic gradient descent. We use TensorFlow (Abadi et al., 2016) as

the framework to construct the deep neural network. The training was

performed on a workstation with two 980 GTX GPUs and took on average

7 hours.

2.3 Classification procedure

We train the model using positive and negative sets which consist of

relatively short sequences with a fixed length. As our model accepts

sequences of certain length as input we apply a sliding window approach

to analyze long genomic sequences. This window is moved across the

sequence and at each position the subsequence is fed into our model. The

model gives us a score from 0 to 1 that represents the likelihood that a

subsequence is a promoter region. If we plot these promoter scores, we

will receive a scoring landscape of our model, see Figure 2.

If the value of the score of a sliding window is above the threshold it is

predicted as a start of a promoter region. In practice, we construct two deep

learning models - one is for identification of promoter sequences with the

TATA-box and one for promoters without it. Promoters can be predicted

much more accurately if they have the TATA-box, that is why we firstly

apply the model trained specifically for the promoters with the TATA-

box (TATA+ model). Next, we apply the model trained with the promoter

sequences without the TATA-box (TATA- model). We account the second

model predictions that are not too close to the first model predictions.

Their output is combined to make the final decision about promoter region

position. TSS is then considered to be at a certain position inside the

promoter region. For example, if our sliding window has length 600 bp

and the positive set was extracted from -200 bp to +400 bp, then the TSS

will be located at position 201 inside the predicted promoter region.

2.4 Negative set construction

When constructing the prediction model to classify promoters we need to

choose what sequences to use for non-promoters. This problem is very

important because it affects what features our model will use to separate

the two classes. For example, suppose we choose random DNA sequences

for the negative set. In this case, a very small number of them will have

TATA motif at the specific position. Then the neural network model will

just use this one feature to achieve almost perfect separation between the

two classes. When applying such a model to real world data, the sensitivity

will be high however there will be a lot of false positives. Any sequence

with a TATA motif at the specific position will most likely be classified

as a promoter. Simply increasing the negative set size is not an effective
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Fig. 3. Diagram of our iterative training procedure. See text for the description of each

step.

solution as well, because firstly our data becomes unbalanced and secondly,

there will be a big chance that neural networks will be stuck at some local

minimum as in the case considered above. There are not many sequences

in the negative set that will have a good scoring TATA motif, which makes

our network likely to derive its recognition model heavily based on this

single discriminating feature.

To resolve these issues we propose an iterative approach described

below. Firstly, we choose a negative set randomly. Then we repeat the

following steps:

1. We train a model with the current negative set.

2. The model is applied to the dataset with long genomic sequences and

false positives are recorded.

3. A subset of false positives with the highest scores given to them by

the model (the ones that are most similar to the true promoters) from

each long sequence are chosen for the new negative set.

4. A new negative set is then constructed by merging the previous one

with the new false positives.

This procedure is repeated until there are only a few false positives found

processing the training set in step 2. These steps are illustrated in Figure

3. Such a procedure constructs a difficult negative set which helps to force

our neural network to learn deeper and less obvious features to recognize

a promoter sequence.

2.5 Selecting length and location of input

We need to chose what part of a promoter region to feed into our model

for training. In our previous work on promoter identification we used

region from -200 bp to +50 bp to extract promoter features. Since multiple

transcription start points (Wang et al., 2017; Dreos et al., 2016) often

significantly enlarge potential gene promoter regions, in this work we

decided to create a promoter model using a much wider region from -

1000 bp to +500 bp and then apply random substitution procedure to

Fig. 4. Influence of different regions inside the promoter on the final score produced by the

deep learning model. Blue color represents decrease of the score after random substitution

and red color shows its increase.

study the location of sequence elements affecting the promoter prediction

performance and potentially narrow the region down. The random

substitution procedure works as follows. We have a window of size 100,

which we move along each sequence with step size 100. At each position

we replace the nucleotides with random 100 nucleotides and calculate new

promoter score for the modified sequence. The difference between the

original score and the new one is recorded and reported for each position

(Figure 4). We noticed that the region from -200 bp to +400 bp has the

most significant effect on the score predicted by our model and this is why

it was used to train our final model.

2.6 Performance measures

In order to evaluate our method and to objectively compare predictions by

our models and the other promoter identification methods, we measured

performance using recall, precision, and F1 score:

Recall = TP

TP+FN
,

P recision =
TP

TP+FP
,

F1 score = 2×
Precision×Recall

Precision+Recall
.

If we predict a promoter with the TSS which is closer to the known

TSS than the allowed margin for error (500 bp) then this prediction is

counted as a TP. If there is no prediction in the area from -500 bp to +500

bp of the known TSS then we count this case as a FN. Any prediction

outside the region from -500 bp to +500 bp of some TSS is counted as a

FP. The same rule is applied for performance evaluation of all the tested

promoter prediction programs. Also, we used two accuracy measures

that are useful to evaluate the performance of promoter prediction tools

when analyzing long genomic sequences: the average prediction error per

correctly predicted TSS and the average prediction error per 1000 bp.

3 RESULTS AND DISCUSSION

3.1 Comparison of predictive performance

We compared our method to all the promoter identification tools we could

obtain. A number of promoter prediction methods have been proposed.

TSSW (Salamov and Solovyev, 1997) uses a linear discriminant function

combining a TATA-box score, triplet preferences around the TSS, hexamer

preferences and potential transcription factor binding sites. It has shown

good results in a review paper by Fickett (Fickett and Hatzigeorgiou,

1997). FPROM was created by extending the TSSW program feature set,

which resulted in significant improvement over TSSW and other promoter
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Promoter prediction in the human genome 5

Table 1. Comparison of the performance of the different promoter prediction methods on the test set. Results without marginal predictions (not counting original

promoter predictions with low probability) are marked with asterisk.

DeeReCT-PromID PromCNN PromCNN* FPROM FPROM* TSSW Promoter 2.0

Recall

TATA+ 0.715 0.884 0.700 0.908 0.647 0.691 0.845

TATA- 0.745 0.948 0.889 0.868 0.764 0.775 0.810

BOTH 0.741 0.940 0.865 0.873 0.749 0.764 0.814

Precision

TATA+ 0.783 0.118 0.242 0.236 0.491 0.252 0.107

TATA- 0.758 0.127 0.320 0.227 0.476 0.259 0.104

BOTH 0.761 0.126 0.310 0.228 0.478 0.258 0.105

F1 score

TATA+ 0.747 0.208 0.360 0.375 0.558 0.369 0.190

TATA- 0.751 0.224 0.471 0.360 0.587 0.388 0.184

BOTH 0.751 0.222 0.456 0.362 0.584 0.386 0.186

Error per
correct

TATA+ 0.277 7.464 3.138 3.234 1.037 2.965 8.349

TATA- 0.320 6.885 2.121 3.403 1.099 2.857 8.581

BOTH 0.314 6.953 2.225 3.381 1.092 2.869 8.551

Error per
1000 bp

TATA+ 0.020 0.660 0.220 0.294 0.067 0.205 0.706

TATA- 0.024 0.653 0.189 0.295 0.084 0.221 0.695

BOTH 0.023 0.654 0.192 0.295 0.082 0.219 0.696

recognition software (Solovyev and Shahmuradov, 2003). Promoter2.0

(Knudsen, 1999) extracted promoter elements from DNA sequences and

used ANN to distinguish promoters from non-promoters based on these

features. DragonGSF (Bajic and Seah, 2003) also used ANN as a part of

its design and considered GC content and the concept of CpG islands for

promoter recognition.

Our previous promoter recognition software, PromCNN achieved good

classification performance in discriminating between short promoter and

non-promoter sequences (Umarov and Solovyev, 2017). Very recently

PromCNN was outperformed by (Qian et al., 2018) improving accuracy

by about 7%. However, as in (Umarov and Solovyev, 2017), they focused

on the classification performance of short sequences, instead of promoter

identification given a long genomic sequence. The latter is a much more

difficult problem to tackle because of the high risk of having a large number

of false positives. We could not compare our new method to theirs because

they did not provide a web server or a tool that would accept long genomic

sequences as inputs.

Some of the tools we came across are not available anymore. There

are also tools that require extra information besides sequence data as an

input. Thus here we compared our method with the following methods:

PromCNN, TSSW, FPROM, and Promoter 2.0. The results are shown

in Table 1. Regardless of the parameters tested, DeeReCT-PromID

significantly outperforms the competitors that were examined, which

showed relatively good performance in previously published papers (Bajic

et al., 2006; Fickett and Hatzigeorgiou, 1997). Our method has F1 score

higher than the best competing tool, FPROM, by 0.153. Figure 5 shows

an example of the predictions made by the different promoter prediction

programs on the sequence containing the promoter of the UBE3D_1 gene.

We can see that our method makes no false positive predictions while still

successfully finding the true TSS.

3.2 Analyzing the learned model

It is well-known that the models trained by neural networks are difficult

to interpret. We tried to overcome this limitation by visualizing the

trained convolutional filters. The maximum filter length we used is

15, thus we decided to find the most important 15-mers identified

by our model. We found the top 1000 most influential 15-mers and

built a sequence logo for them (see Figure 6). The top three most

important motifs were CCCAGGACCATGTCT, GCTAGGTTGTTATGT,

GTTCCCGGCCGGTGC, which all contain GC rich subsequences that

are well known characteristics of eukaryotic promoters (Fenouil et al.,

2012).

Fig. 5. Promoters predicted by the tested promoter identification programs in the DNA

sequence of the UBE3D_1 gene. The true TSS is at position +1.

Fig. 6. Sequence logo of the most important 15-mers identified by our model.

To see the contributions of different nucleotides in different positions

of promoter sequences we employed a modification of so called feature

mutation map for all sequences in our test set. The mutation maps

for TATA+ and TATA- promoters are shown in Subfigures 7a and 7b

respectively. To build these maps we took a set of genomic non-promoter

sequences with sizes equal to the input sequences used in our promoter

models and studied how nucleotide substitutions will change the promoter

score computed by our TATA+ and TATA- models. At each position of the

tested sequences we replaced a nucleotide with a different one in all these

sequences and computed their average promoter score. The rows in Figure

7 represent nucleotides that are used for replacement and the columns

show different positions inside the promoter regions. If the new score on

average increases it is represented by a red colored square. Decrease of

the score is shown by using a blue colored square. The intensity of color is

proportional to the effect of substitution on the score. These maps clearly

illustrate significant difference of sequence features of TATA+ and TATA-

promoters and location of their most conserved elements.

We can see that the largest effect on the score in TATA+ model

comes from T /A-rich TATA-box region. The most significant element of

TATA- promoters is the initiator element, which is very similar to the new
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6 Umarov et al.

(a) Model trained on the promoters with the TATA-box.

(b) Model trained on the promoters without the TATA-box.

Fig. 7. Mutation map for the TSS regions from -200 bp to +400 bp. Red color represents increase of the score and blue color shows decrease.

consensus sequence for the human initiator (Inr) core promoter element

BBCABW (where, B = C/G/T, W = A/T ) described recently in (Huang

et al., 2017). Such initiator element typically directs the positioning of the

transcription initiation start sites representing so called focused promoters

in which transcription initiates at a single site or a narrow cluster of sites

(Huang et al., 2017). The initiator element contains a conserved motif that

is observed in both (TATA+ and TATA-) data sets (see Figure 8).

For the TSS position (+1), the most preferred nucleotides are A and G .

If a promoter has the initiator element then A is the most frequent nucleotide

at position +1, otherwise it is G. This explains why A and G are preferred

by our model at position +1 in Figure 7. The sequences at positions -1 to +3

are the most important for setting levels of basal transcription (Kugel and

Goodrich, 2017). Changing nucleotides in region -30 bp to -23 bp from the

original ones to G or C reduces the score considerably. While promoter

regions in general have more G and C nucleotides, the mentioned region

contains TATA-box in TATA+ and tends to have T /A nucleotides in TATA-

promoters that is why setting nucleotides to G or C there has a negative

effect on the score. In TATA- promoters we also observe occurrence of

GC reach elements (Figure 7b) that is in agreement with found GC-reach

most significant promoter 15-mers described above.

3.3 Accuracy of predictions

As we have shown before, promoters with the TATA-box can be predicted

with a very small positional error; often the predicted TSS is exactly at the

position of the true TSS. Figure 9 shows distributions of the predictions

computed by our method for the test set. High positional accuracy of the

TATA promoters is the result of the conserved position of several TATA

promoter functional motifs relative to their TSS. However, it is not the case

for promoters without the TATA-box for which the predicted positions have

a normal distribution around the true TSS. For about 15% of sequences

in our test set, predicted TSSs are further than 100 bp from a true TSS.

This situation can be partially explained by occurrence of multiple TSSs in

non-TATA promoters. Such promoters generate alternative gene isoforms

that have tissue or time specific expression. It was shown in (Vo Ngoc

et al., 2017b) that animal promoters have focused, dispersed, and mixed

transcription. In dispersed transcription, there are many weak TSSs located

at the region from -50 bp to +50 bp. These multiple transcription start

sites might be responsible for a wide promoter score peak (Figure 2)

for non-TATA promoters generated by our deep learning model. Many

of such multiple TSSs as well as some distant alternative TSSs are not

annotated in the promoter databases and currently they are considered

Fig. 8. Sequence logo of the region from -40 bp to +40 bp around the known TSS. The

logo demonstrates sequence conservation in the promoter initiator region as well as in two

GC rich regions upstream and downstream of TSS.

as false positives predictions while their actual status requires further

experimental verification.

4 CONCLUSION

All computational promoter prediction approaches face complex

organization of transcription regulation where a gene may frequently

have several promoters, and within one promoter several alternative TSS

locations that often are not annotated in promoter databases. All these

aspects considerably complicate the development and evaluation of general

promoter prediction algorithms. While previously developed promoter

prediction methods can relatively accurately classify promoter and non-

promoter sequences, they fail to provide good results when applied to

study long genomic sequences. Due to potentially huge amount of tested

locations they all have very low precision and generate a lot of false

positives, which limits their usage in genome-scale studies.

In this work we have proposed a novel training technique to overcome

this issue. We used iterative training that focuses on instances that were

misclassified by previous iterations and builds our deep learning model

that is able to eliminate the huge number of false positives. We analyzed

different promoter regions to use as input for feature extraction and chose

optimal input location for our tool. Evaluation of our program performance

and comparing it to the available promoter prediction tools demonstrated

that DeeReCT-PromID significantly outperforms other promoter finding

programs.

Many genes have non-coding exons and gene-finders can not provide

the actual gene start and promoter position. Therefore programs for

accurate computational identification of promoters are important for

revealing the gene structure and studying gene regulation. This work is
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(a) Promoters with the TATA-box.

(b) Promoters without the TATA-box.

Fig. 9. Distributions of predicted TSS positions relative to the annotated TSS for the test

set.

a step towards this goal while we understand that this topic is open for

further investigations on structure and functioning promoter regions.

5 ACKNOWLEDGEMENTS

This work was supported by the King Abdullah University of Science

and Technology (KAUST) Office of Sponsored Research (OSR) under

Awards No. FCC/1/1976-17-01, FCC/1/1976-18-01, FCC/1/1976-23-01,

FCC/1/1976-25-01, FCC/1/1976-26-01, and URF/1/3412-01.

Conflict of Interest: none declared.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: a system for large-scale machine
learning. In OSDI , volume 16, pages 265–283.

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S.,
Fernandez Banet, J., Billis, K., García Girón, C., Hourlier, T., et al. (2016). The
ensembl gene annotation system. Database, 2016.

Arnold, C. D., Zabidi, M. A., Pagani, M., Rath, M., Schernhuber, K., Kazmar, T.,
and Stark, A. (2017). Genome-wide assessment of sequence-intrinsic enhancer
responsiveness at single-base-pair resolution. Nature biotechnology, 35, 136–144.

Bajic, V. B. and Seah, S. H. (2003). Dragon gene start finder: an advanced system for
finding approximate locations of the start of gene transcriptional units. Genome

research, 13(8), 1923–1929.
Bajic, V. B., Brent, M. R., Brown, R. H., Frankish, A., Harrow, J., Ohler, U.,

Solovyev, V. V., and Tan, S. L. (2006). Performance assessment of promoter
predictions on encode regions in the egasp experiment. Genome biology, 7(1), S3.

Butler, J. E. and Kadonaga, J. T. (2002). The rna polymerase ii core promoter: a key
component in the regulation of gene expression. Genes & development, 16(20),
2583–2592.

Danino, Y. M., Even, D., Ideses, D., and Juven-Gershon, T. (2015). The core
promoter: At the heart of gene expression. Biochimica et biophysica acta, 1849,
1116–1131.

Dreos, R., Ambrosini, G., Cavin Périer, R., and Bucher, P. (2012). Epd and epdnew,
high-quality promoter resources in the next-generation sequencing era. Nucleic

acids research, 41(D1), D157–D164.
Dreos, R., Ambrosini, G., Groux, R., Cavin Périer, R., and Bucher, P. (2016). The

eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms.
Nucleic acids research, 45(D1), D51–D55.

Edwards, S. L., Beesley, J., French, J. D., and Dunning, A. M. (2013). Beyond gwass:
illuminating the dark road from association to function. The American Journal of

Human Genetics, 93(5), 779–797.
Fenouil, R., Cauchy, P., Koch, F., Descostes, N., Cabeza, J. Z., Innocenti, C., Ferrier,

P., Spicuglia, S., Gut, M., Gut, I., et al. (2012). Cpg islands and gc content
dictate nucleosome depletion in a transcription-independent manner at mammalian
promoters. Genome research.

Fickett, J. W. and Hatzigeorgiou, A. G. (1997). Eukaryotic promoter recognition.
Genome research, 7(9), 861–878.

Fredriksson, N. J., Elliott, K., Filges, S., Van den Eynden, J., StÃ¥hlberg, A., and
Larsson, E. (2017). Recurrent promoter mutations in melanoma are defined by an
extended context-specific mutational signature. PLoS genetics, 13, e1006773.

Garieri, M., Delaneau, O., Santoni, F., Fish, R. J., Mull, D., Carninci, P., Dermitzakis,
E. T., Antonarakis, S. E., and Fort, A. (2017). The effect of genetic variation on
promoter usage and enhancer activity. Nature communications, 8, 1358.

Huang, C. Y., Duttke, S. H., Kadonaga, J. T., et al. (2017). The human initiator
is a distinct and abundant element that is precisely positioned in focused core
promoters. Genes & development.

Juven-Gershon, T., Hsu, J.-Y., Theisen, J. W., and Kadonaga, J. T. (2008). The RNA
polymerase II core promoter – the gateway to transcription. Current opinion in

cell biology, 20, 253–259.
Kadonaga, J. T. (2012). Perspectives on the RNA polymerase II core promoter. Wiley

interdisciplinary reviews. Developmental biology, 1, 40–51.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.
Knudsen, S. (1999). Promoter2. 0: for the recognition of polii promoter sequences.

Bioinformatics (Oxford, England), 15(5), 356–361.
Kugel, J. F. and Goodrich, J. A. (2017). Finding the start site: redefining the human

initiator element. Genes & development, 31(1), 1–2.
Lenhard, B., Sandelin, A., and Carninci, P. (2012). Metazoan promoters: emerging

characteristics and insights into transcriptional regulation. Nat Rev Genet, 13(4),
233–245.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J.
(2000). Molecular cell biology. 4th, volume 33. WH Freeman New York.

Maston, G. A., Evans, S. K., and Green, M. R. (2006). Transcriptional regulatory
elements in the human genome. Annu Rev Genomics Hum Genet, 7, 29–59.

Morris, J. R., Petrov, D. A., Lee, A. M., and Wu, C.-T. (2004). Enhancer choice in
cis and in trans in Drosophila melanogaster: role of the promoter. Genetics, 167,
1739–1747.

Qian, Y., Zhang, Y., Guo, B., Ye, S., Wu, Y., and Zhang, J. (2018). An improved
promoter recognition model using convolutional neural network. In 2018 IEEE

42nd Annual Computer Software and Applications Conference (COMPSAC), pages
471–476. IEEE.

Rojano, E., Seoane, P., Ranea, J. A. G., and Perkins, J. R. (2018). Regulatory variants:
from detection to predicting impact. Briefings in bioinformatics.

Roy, A. L. and Singer, D. S. (2015). Core promoters in transcription: old problem,
new insights. Trends in biochemical sciences, 40, 165–171.

Salamov, A. and Solovyev, V. (1997). The gene-finder computer tools for analysis
of human and model organisms genome sequences. In Proceedings of the Fifth

International Conference on Intelligent Systems for Molecular Biology, AAAI

Press, Halkidiki, Greece, pages 294–302.
Smale, S. T. and Kadonaga, J. T. (2003). The RNA polymerase II core promoter.

Annu Rev Biochem, 72, 449–479.
Solovyev, V. V. and Shahmuradov, I. A. (2003). Promh: promoters identification using

orthologous genomic sequences. Nucleic acids research, 31(13), 3540–3545.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1), 1929–1958.
Taylor, M. S., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., and Semple, C. A. M.

(2006). Heterotachy in mammalian promoter evolution. PLoS genetics, 2, e30.
Umarov, R. K. and Solovyev, V. V. (2017). Recognition of prokaryotic and eukaryotic

promoters using convolutional deep learning neural networks. PloS one, 12,
e0171410.

Vinagre, J., Almeida, A., PÃ³pulo, H., Batista, R., Lyra, J., Pinto, V., Coelho,
R., Celestino, R., Prazeres, H., Lima, L., Melo, M., da Rocha, A. G., Preto,
A., Castro, P., Castro, L., Pardal, F., Lopes, J. M., Santos, L. L., Reis, R. M.,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

io
in

fo
rm

a
tic

s
/b

ty
1
0
6
8
/5

2
7
0
6
6
3
 b

y
 K

in
g
 A

b
d
u
lla

h
 U

n
iv

e
rs

ity
 o

f S
c
ie

n
c
e
 a

n
d
 T

e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

9
 J

a
n
u
a
ry

 2
0
1
9



8 Umarov et al.

Cameselle-Teijeiro, J., Sobrinho-SimÃµes, M., Lima, J., MÃ¡ximo, V., and
Soares, P. (2013). Frequency of TERT promoter mutations in human cancers.
Nature communications, 4, 2185.

Vo Ngoc, L., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C., and Kadonaga, J. T.
(2017a). The human initiator is a distinct and abundant element that is precisely
positioned in focused core promoters. Genes & development, 31, 6–11.

Vo Ngoc, L., Wang, Y.-L., Kassavetis, G. A., and Kadonaga, J. T. (2017b). The
punctilious RNA polymerase II core promoter. Genes & development, 31, 1289–
1301.

Wang, Y.-L., Kassavetis, G. A., Kadonaga, J. T., et al. (2017). The punctilious rna
polymerase ii core promoter. Genes & development, 31(13), 1289–1301.

Yella, V. R. and Bansal, M. (2017). DNA structural features of eukaryotic TATA-
containing and TATA-less promoters. FEBS open bio, 7, 324–334.

Zabidi, M. A., Arnold, C. D., Schernhuber, K., Pagani, M., Rath, M., Frank, O., and
Stark, A. (2015). Enhancer-core-promoter specificity separates developmental and
housekeeping gene regulation. Nature, 518, 556–559.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

io
in

fo
rm

a
tic

s
/b

ty
1
0
6
8
/5

2
7
0
6
6
3
 b

y
 K

in
g
 A

b
d
u
lla

h
 U

n
iv

e
rs

ity
 o

f S
c
ie

n
c
e
 a

n
d
 T

e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

9
 J

a
n
u
a
ry

 2
0
1
9


