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Abstract

Gene expression is a fundamental cellular process. Its stochastic fluctuations due to
intrinsic and extrinsic sources, known generically as ’gene expression noise’, trigger both
beneficial and harmful consequences for the cell behavior.

Controlling gene expression noise is of interest in many applications in biotechnology,
biomedicine and others. Yet, control of the mean expression level is an equally desirable
goal. Here, we analyze a gene synthetic network designed to reduce gene expression
noise while achieving a desired mean expression level. The circuit combines a negative
feedback loop over the gene of interest, and a cell-to-cell communication mechanism
based on quorum sensing. We analyze the ability of the circuit to reduce noise as a
function of parameters that can be tuned in the wet-lab, and the role quorum sensing
plays. Intrinsic noise is generated by the inherent stochasticity of biochemical reactions.
On the other hand, extrinsic noise is due to variability in the cell environment and the
amounts of cellular components that affect gene expression. We develop a realistic
model of the gene synthetic circuit over the population of cells using mass action
kinetics and the stochastic Chemical Langevin Equation to include intrinsic noise, with
parameters drawn from a distribution to account for extrinsic noise. Stochastic
simulations allow us to quantify the mean expression level and noise strength of all
species under different scenarios, showing good agreement with system-wide available
experimental data of protein abundance and noise in E. coli. Our in silico experiments
reveal significant noise attenuation in gene expression through the interplay between
quorum sensing and the negative feedback, allowing control of the mean expression and
variance of the protein of interest. These in silico conclusions are validated by
preliminary experimental results. This gene network could have important implications
as a robust protein production system in industrial biotechnology.

Author Summary

Controlling gene expression level is of interest in many applications in biotechnology,
biomedicine and others. Yet, the stochastic nature of biochemical reactions plays an
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important role in biological systems, and cannot be disregarded. Gene expression noise
resulting from this stochasticity has been studied over the past years both in vivo, and
in silico using mathematical models. Nowadays, synthetic biology approaches allow to
design novel biological circuits, drawing on principles elucidated from biology and
engineering, for the purpose of decoupled control of mean gene expression and its
variance. We propose a gene synthetic circuit with these characteristics, using negative
feedback and quorum sensing based cell-to-cell communication to induce population
consensus. Our in silico analysis using stochastic simulations with a realistic model
reveal significant noise attenuation in gene expression through the interplay between
quorum sensing and the negative feedback, allowing control of the mean expression and
variance of the protein of interest. Preliminary in vivo results fully agree with the
computational ones.

Introduction

Noise due to stochastic phenomena is pervasive in the cellular mechanisms underlying
gene expression [1, 2]. Its consequences can trigger both detrimental and advantageous
effects, and may determine the fate of individual cells and that of a whole population of
cells [3–6]. The fluctuations in gene expression of single cells propagate to generate
fluctuations in downstream genes affecting stress response, metabolism, development,
cell cycle, etc. [5–7], and eventually are the cause of phenotypic noise, that is, variation
within an isogenic population.

Experimental measurements of individual genes show that protein production occurs
in bursts [4, 8–10] that can be traced back to two main sources: intrinsic, and extrinsic
noise. Intrinsic noise is due to stochastic fluctuations in the transcription and translation
steps of a particular gene [11]. Thus, intrinsic noise in a gene is correlated with the
characteristics of the gene promoter, ribosome binding site (RBS), and the stability of
the mRNA and the expressed protein [12, 13]. Transcription dominates the intrinsic
noise as the burst size, i.e. the average number of proteins made per mRNA transcript,
increases [14]. On the other hand, extrinsic noise corresponds to gene independent
fluctuations in protein expression due to external factors like gene copy numbers,
transcription factor and ribosome abundance, and/or environmental stimuli [11]. When
the gene is encoded on a low-copy plasmid, variability in the gene copy number is a
major source of extrinsic noise [15]. This may dominate in eukaryotes [16], while in
prokaryotes seems only contribute increasing the noise floor [17].

To minimize the deleterious effects of noise, cells use specific biochemical networks.
At the most basic level, cells have evolved different transcription and translation
efficiency so as to reduce translation burst rates in key genes [2, 9, 18]. More elaborated
strategies, such as negative feedback regulation, may reduce noise by shifting the noise
spectrum to a higher frequency region [1, 19]. Ultrasensitive switches and feedforward
loops are able to attenuate noise in input signals [20]. These strategies operate at the
single-cell level. Yet, cells live in communities, forming a population. At this level,
extracellular signaling propagates intracellular stochastic fluctuations across the
population [21]. Thus, bacteria have adapted their communication mechanisms in order
to improve the signal-to-noise ratio [22]. One of such communication mechanisms is
quorum sensing (QS).

Quorum sensing is a cell-to-cell communication mechanism initially discovered in V.

fisheri and P. putida [23, 24]. Bacteria release chemical signaling molecules, called
autoinducers, whose external concentration increases as a function of the cell population
density. Cells detect a threshold concentration of these autoinducers and alter gene
expression accordingly [25–27]. This strategy makes the population as a whole to
achieve a desired gene expression level despite the individual noise of each member of
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the population. It is known that synchronization and consensus protect from noise [28].
Cells consensus induced by diffusion of the signaling autoinducer reduces extrinsic noise
by reducing the transmission of fluctuating signals (including noise) in the
low-frequency domain [20], and enhances intrinsic stochastic fluctuations [21]. Moreover,
quorum sensing allows entrainment of a noisy population when faced to environmental
changing signals [29]. Therefore QS seems an effective tool to control the phenotypic
variability in a population of cells [30].

Phenotypic variability has important practical relevance in many applications in the
areas of biomedicine, biotechnology and other branches of biological science [31]. In
particular, the presence of heterogeneous subpopulations may have significant impact on
the yield and productivity of industrial cultures [32–34]. Thus, improving homogeneity
of protein expression in industrial cultures is a goal of economic relevance for microbial
cell factory processes.

Improving homogeneity of protein expression has traditionally been attempted either
by optimizing environmental conditions in the culture or by careful selection of the
strain. Yet, there is an ever-growing appreciation that biological complexity requires
new bioprocess design principles. Synthetic biology, sometimes defined as the
engineering of biology, has the potential to engineer genetic circuits to perform new
functions for useful purposes in a systematic, predictable, robust, and efficient
way [35,36]. In the last years, several synthetic circuits have been proposed with the
ultimate goal of dealing with gene expression noise [20, 22,37–40].

Synthetic biology makes extensive use of mathematical models and computational
simulation to aid the genetic circuit design. They allow the generation of new testable
hypotheses and novel ways of intervention, and offer mechanistic explanations of
experimental results. The dynamics of the reactions involved in gene expression have
been traditionally described using continuous deterministic mathematical models [41,42].
These equations can be easily obtained from the reactions using the law of mass action
kinetics [43]. However, this continuous deterministic approach fails to capture the
consequences of stochasticity in gene expression. Hence, there is an extensive literature
on rigorous modeling of gene expression noise and determination of its sources [44].

The most accurate way to represent the stochasticity originated from intrinsic
sources is by means of the Chemical Master Equation (CME). The CME determines the
probability that each species will have a specified number of molecules at each time
instant [44,45]. Though the CME can be solved analytically for small systems [46,47], it
is in general not a tractable problem, or even possible, for systems of medium to large
size. Not even numerically. Several alternatives have been derived with a broad range of
computational cost and precision. Some numerical schemes like those in [48, 49] provide
a solution of the CME in a truncated state-space. However, long-term predictions are
not always possible, specially for bimolecular reactions. In [50] the authors present a
modified CME based on the partition of a system into reactions with low and high
propensity, thus providing approximations at different levels of accuracy and
computational cost. The Gillespie SSA algorithm [51] is a widely used Monte
Carlo-based approach that provides exact samples from the probability distribution that
results from solving the CME. However, having an interconnected population of cells, as
in our proposed gene synthetic circuit, jeopardizes the possibility of employing SSA for
several reasons. First there are different volumes involved, extracellular and intracellular.
The diffusion through the membrane of the autoinducer molecule used for cell-to-cell
communication depends on its concentration in both of them, making the account for
the probability of reaction more complicated. Second, when using SSA, several
realizations or trajectories of the system are needed in order to obtain an accurate
estimation of the statistical moments of the species in the circuit, making the use of
SSA in a population of interconnected cells a computationally very demanding task. At
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the opposite extreme the linear noise approximation (LNA) allows to get the decoupled
dynamics of the mean and variance of gene expression [19,52,53] using a first order
approximation (i.e. a linearization) of the difference between the actual noisy trajectory,
and the mean deterministic one. An intermediate practical alternative to model gene
expression intrinsic noise is the use of the Chemical Langevin Equation (CLE).

The CLE is a stochastic differential equation (SDE) driven by zero-mean Gaussian
noise that describes the system when the molecules of reactants into a cell population
are sufficiently large [54, 55]. It approximates the CME by a system of stochastic
differential equations of order equal to the number of species –cf. order equal to the
possible number of molecules of all the species in the CME. Extrinsic noise can be
modeled by randomizing values of the model parameters [16, 56], an approach that can
easily be integrated within the CLE framework. The CLE has also been used to study
intrinsic noise in synthetic systems involving QS mechanisms in [20] though the authors
considered an averaged cell, thus not taking into account single cell contributions to the
noise in the population.

In this work we analyze a gene synthetic network designed to reduce gene expression
noise while achieving a desired mean expression level. The circuit combines a negative
feedback loop over the gene of interest, and a cell-to-cell communication mechanism
based on quorum sensing. In the Materials and Methods Section, we develop a realistic
model of the gene synthetic network over the population of cells using mass action
kinetics. Then, stochastic simulations using the Chemical Langevin Equation allow us
to quantify the noise strength of all species under different scenarios. In particular, in
the Results Section we analyze the ability of the circuit to reduce noise as a function of
parameters that can be tuned in the wet-lab, and the role quorum sensing plays. We
show preliminary experimental data validating our in silico results, and finally we draw
some conclusions in the Discussion Section.

Materials and Methods

Description of the synthetic gene network.

Reducing gene expression noise at the level of an individual cell can be attempted in
several ways. Open loop strategies as based on sensitivity analysis providing guides as
to how properly tune transcriptional and translational parameters so that the noise
levels can be controlled while the mean values can be simultaneously adjusted to desired
values [57]. While sensitivity analysis gives very valuable insights, open loop control is
not robust against system uncertainty and/or variations. On the other hand, closed
loop control can be implemented by using a negative feedback loop over the gene of
interest and appropriately tuning it. Though negative feedback has been proved to
decrease gene expression noise [37], a single-cell intracellular feedback loops do not take
into account that in practice one is interested in controlling gene expression mean value
and noise across a population of cells. Feedback across a population of cells can be
implemented by means of quorum sensing-based strategies, and has been shown to
reduce noise effects [20,22,30]. Indeed, cell-to-cell communication by means of quorum
sensing induces consensus among cells [58], that is contributes to reduce the difference
of internal state among cells in a population. This, in turn, contributes to protect from
noise [28]. Thus, the idea of joining both intracellular negative feedback and
extracellular feedback via quorum sensing is a natural one, that has been suggested
in [38,39].

Here we analyze the gene synthetic network proposed in [38], designed to reduce
gene expression noise while achieving a desired mean expression level. The circuit
combines a negative feedback loop over the gene of interest, and a cell-to-cell
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communication mechanism based on quorum sensing. For that purpose, the circuit
employs two functional subsystems already implemented in E. coli (see Fig 1A).
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Figure 1. Synthetic gene network. A. Intracellular and extracellular system with
negative feedback control and quorum sensing mechanism. B. Biochemical reactions
and diffusion process. C. Methodological procedure to obtain the statistical moments
from stochastic simulations of the circuit. C1) Temporal evolution of one species in the
population of cells. C2) Distribution of the number of molecules across the population
at each time instant. C3) Acquisition of the long-term distribution for each species. C4)
Noise strength map for varying model parameters.

The first subsystem implements a cell-to-cell communication mechanism via quorum
sensing, based on exchange of the small signaling autoinducer molecule
N-acyl-L-homoserine lactone (AHL) [25,26]. This autoinducer molecule passively
diffuses across the cellular membrane to and from the external environment.
Intracellular AHL is synthesized by the protein LuxI expressed by an homolog of the
gene luxI of V. fisheri [59].

The second subsystem uses the synthetic repressible promoter PluxR designed in [60]
to control transcription of gene luxI. This promoter is repressed by the transcription
factor (LuxR.AHL)2. Protein LuxR is expressed by gene luxR under the constitutive
promoter Pc. Proteins LuxR and AHL bind forming the heterodimer (LuxR.AHL),
which subsequently dimerizes forming the heterotetramer (LuxR.AHL)2. This way a
negative feedback control of the LuxI expression is effectively implemented [38].

The circuit acts as a closed loop controller of the mean and variance of a protein of
interest. This protein can be either fused to protein LuxI, or coexpressed with it. In the
first case, a linker is inserted between the fused proteins allowing intracellular
self-cleavage using a TEV protease [61–63]. Alternatively, if the protein of interest is
coexpressed with LuxI, the controller will only act at the transcriptional level. In cases
where transcriptional noise dominates translational one, e.g. when the average number
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of proteins made per mRNA transcript is larger than two [14], coexpressing LuxI with
the protein of interest is a simple yet effective approach.

Note: Henceforth, and for the sake of simplicity, we will call monomer the
heterodimer (LuxR ·AHL), and dimer the heterotetramer transcription factor
(LuxR ·AHL)2.

Mathematical model.

In order to analyze how our genetic circuit affects intrinsic and extrinsic noise we need
an appropriate model, and a computationally efficient method. Both aspects are
intertwined. We use the Chemical Langevin Equation approach. Though
computationally much more efficient than the CME or even the Gillespie algorithm, the
CLE is still computationally demanding when the goal is to simulate a whole population
of cells. Since the CLE approximates the CME by a system of stochastic differential
equations of order equal to the number of species, a reduced model with as few species
per cell as possible is desirable. Thus, in a first step we use the mass-action kinetics
formalism [42,43] to get a deterministic model of the full reactions network
corresponding to the genetic circuit. We then get a reduced order model by applying
the Quasi Steady-State Approximation (QSSA) on the fast chemical reactions and
taking into account invariant moieties [53, 64, 65]. We aim at obtaining a reduced model
more amenable for computational analysis, but avoiding excessive reduction that would
lead to lack of biological relevance. In particular, the species we obtain in the reduced
are not lumped ones. Reduced models accounting for total mRNA and total
transcription factor have been proposed to match modeled species with measurable
ones [66]. In our case we explicitly model bound and unbound forms of the transcription
factor, but the model accounts for the total LuxI protein. For our circuit this is a good
proxy of the amount of protein of interest if both are co-expressed, and transcriptional
noise dominates. In the best case, when the protein of interest is in self-cleavable
tandem fusion with LuxI, both will express in 1:1 stoichiometric ratio [62]. Moreover,
the resulting lumped parameters in the reduced model are easy to associate to tuning
knobs available in the wet-lab implementation in the relevant cases [67], and their values
are amenable to be obtained experimentally.

In a second step we use the deterministic reduced model to infer a stochastic
CLE-based model whose mean corresponds to that of the deterministic one.

Reduced deterministic model. We start from considering the relevant biochemical
reactions in the circuit. We consider the gene expression sets of reactions on the one
hand, and the induction ones on the other. In the gene expression block, the main
processes considered for each of the proteins are transcription, translation, mRNA
degradation and protein degradation. In the induction block, the reactions considered
are reversible binding between the protein LuxR and the inducer AHL to form the
monomer (LuxR.AHL), monomer degradation, reversible dimer (LuxR.AHL)2 formation
and its degradation, diffusion of the inducer across the cell membrane, extracellular and
intracellular inducer degradation, and reversible binding of the dimer to the repressible
promoter PluxR. We assumed the promoter PluxR is leaky.

From the resulting set of reactions, and based on mass-action kinetics we derived a
complete deterministic model using ordinary differential equations (ODE) for number of
molecules of each species. We considered the net effective transcription rates of genes
luxI and luxR, and took into account the basal transcription rate (leakage) of the
repressible promoter PluxR. Besides, the dilution effect due to the cells growth rate was
added to every degradation rate. This complete model was then reduced using QSSA,
conservation of moieties, and assuming that translation, diffusion across the cell
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Table 1. Parameters of the gene synthetic circuit model.
Parameter Description Value Unit Reference
CR Plasmid copy number times LuxR transcription rate 7.9† molecules/min [68]
CI Plasmid copy number times LuxI transcription rate 17.5† molecules/min [68]
α Basal expression of luxI 0.01 estimated
pR Translation rate of mRNALuxR 2.38‡ min−1 [42, 69]
pI Translation rate of mRNALuxI 3.09‡ min−1 [42, 69]
kA Synthesis rate of AHL by LuxI 0.04 min−1 [38]
k−1 Dissociation rate of (LuxR ·AHL) 10 min−1 [30]
k−2 Dissociation rate of dimer (LuxR ·AHL)2 1 min−1 estimated
kd1 Dissociation constant of (LuxR ·AHL) 100 molecules [70]
kd2 Dissociation constant of (LuxR ·AHL)2 20 molecules [71]
kdlux Dissociation constant of (LuxR ·AHL)2 to the lux promoter 100 molecules [72] and refs. therein

dI Degradation rate of LuxI 0.027♭ min−1 [69, 73]

dR Degradation rate of LuxR 0.156♭ min−1 [74] and refs. therein

dA Degradation rate of AHL 0.057♭ min−1 [59, 75]
dAe

Degradation rate AHL in culture medium 0.04 min−1 [25, 59, 75]

dRA Degradation rate of (LuxR ·AHL) 0.156♭ min−1 [72] and refs. therein
dRA2

Degradation rate of (LuxR ·AHL)2 0.017 min−1 estimated

dmI Degradation rate of mRNALuxI 0.247♭ min−1 [76, 77]

dmR Degradation rate of mRNALuxR 0.247♭ min−1 [69, 77]
D Diffusion rate of AHL through the cell membrane 2¶ min−1 [78, 79]
Vcell Typical volume of E. coli. 1.1e−9 µL/cell [69]
Vext Typical volume of microfluidic device 1e−3 µL estimated
† The parameters CR and CI can be tuned by selecting the strength of the promoter and/or using plasmids with different copy
number. We used the typical transcription rate in E. coli. ≈ 10-100 bp/sec [80], and considered the number of base pairs of the
coding sequences for genes luxI and luxR. The resulting rate was multiplied by the plasmid copy number. We assumed a low plasmid
copy number in the interval 10–20 [69,81].
‡ The translation rate can be tuned using ribosome-binding site (RBS) of different strengths. In bacteria, the translation rate is ≈
30-60 bp/sec and the average number of ribosomes per cell (in the exponential phase) to translate one mRNA is ≈ 9 units.
♭ These degradation rates include the dilution effect due to the specific growth rate µspe = 0.017 min−1 corresponding to a cell
doubling time ≈ 40 min. The degradation rate dRA2

= µspe assuming the dimer is much more stable than the other species [72, 82].
¶ The diffusion coefficient D = SPn

Vcell

min−1 depends on the cell surface area S = 4πr2 (spherical area with r=10 µm), the membrane

permeability Pn = 3e−3µm/min and the cell volume Vcell.

membrane, and dimerization are the dominant dynamics. With this assumptions we got
the dynamic ODE model:
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(2)

where ni
1 is the number of molecules of protein LuxI in the i-th cell, ni

2 that of LuxR, ni
3

is the dimer repressor (LuxR.AHL)2, n
i
4 is the intracellular amount of inducer AHL, n5

is the external one, and ni
6 is the amount of monomer (LuxR.AHL) molecules. Notice

this is given as an algebraic equation obtained assuming that monomerization is faster
than dimerization, and can be assumed to be at quasi-steady state, as confirmed by the
comparison between the complete and the reduced model dynamics. Table 1 describes
the parameters in the model and its nominal values.
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From the deterministic ODE model to the stochastic CLE one. To model
gene expression intrinsic noise we derive a stochastic CLE-based model whose mean
corresponds to that of the deterministic model (1)-(2). This can be done by considering
an equivalent set of pseudo-reactions for the deterministic model. From these, one can
set model (3), corresponding to the Euler-Maruyama discretization of the CLE for a
system with a population of N cells:

n(t+ δt) = n(t) + S · a(n)δt+ S · N ·
√

a(n)
√
δt, (3)

where n(t) = [n(t)i, . . . n(t)N, n5]
T are the number of molecules of each species in the

population, being n(t)i the vector of species LuxI, LuxR, (LuxR.AHL)2, and
intracellular AHL for the ith cell, and n5 the extracellular one AHLext. The
stoichiometry matrix S, whose elements are the stoichiometric matrices of each cell Scell

and the external stoichiometry Sext, has structure:

S =

[

Scell ⊗ IN 0N×1

Sext ⊗ 11×N −1

]

, (4)

where ⊗ is the Kronecker product, IN the identity matrix of dimension N ×N , 0N×1

and 11×N are vectors of zeroes and ones respectively, and matrices Scell and Sext are
expressed by equations (5).

Scell =









1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 1 −1 −1 1









Sext =
[

0 0 0 0 0 0 0 0 0 0 0 1 −1
]

.

(5)

The coefficients in the stoichiometric matrices (5) were obtained from the equivalent
set of pseudo-reactions for the deterministic model, and the term a(n) in model (3) is
the associated vector of reaction propensities for the whole population of cells, with:

a(n) =















a(n)
1

a(n)
2

...

a(n)
N

dAe
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(7)

where f(n3) ,
CIpI

dmI

(

kdlux+αni

3

kdlux+ni

3

)

is the Hill-like function associated to LuxI repression.

Finally, N(JN+1)×(JN+1), where J = 13 is the number of reactions for the ith cell, i.e.
the dimension of (7), is a diagonal matrix with continuous normal random variables of
zero mean and unit variance as elements.

Notice we use lumped propensity functions in (7) derived from the reduced model,
like the f(n3) Hill-like function associated to LuxI repression. This approach has
already been used in [83]. We validated it for our model by simulating the
pseudo-reaction associated to f(n3) using CLE, and comparing the result with that
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obtained by simulating the set of corresponding original reactions using Gillespie’s
direct method SSA.

Extrinsic noise can be modeled by randomizing the values of the model
parameters [16, 56], an approach that can easily be integrated within the CLE
framework. In particular, we assumed a normal distribution in the model parameters to
account for the extrinsic noise.

Computational analysis.

We use the stochastic model (3) of the proposed circuit, hereafter denoted as circuit
Qs/Fb, to explore the impact of some key circuit parameters on noise. As control circuit
to compare with, we consider a second circuit which removes both QS and the feedback
loop, denoted as NoQs/NoFb. For the computational analysis, this accounts to setting
the synthesis of AHL to zero (kA = 0[1/min]) in model (3). This condition is achieved
in the lab experimental implementation by taking out the gene coding for LuxI (see ).
To asses the effect of cell-to-cell communication, we also considered a hypothetical
circuit with feedback but without quorum sensing (NoQS/Fb, D = 0). Notice the
circuit NoQS/Fb cannot actually be implemented for it assumes there is no diffusion of
the autoinducer molecule across the cell membrane. Yet, it is useful as a computational
thought experiment to account for the contribution of the cell-to-cell communication.

Gene expression noise is evaluated using the squared coefficient of variation, i.e. the
noise strength measure (η2 = (σ/µ)2). The noise strength measure η2 properly captures
the contributions of both intrinsic and extrinsic noise [84], and allows comparisons for
different expression rates.

We followed the general procedure depicted in (Fig 1C). First, for different
combinations of the model parameters, we performed simulations of the temporal
evolution of the number of molecules of each species in the circuit for each cell in the
population involved in our system (Fig 1C1). Extrinsic noise was modeled by
randomizing the values of the model parameters using a normal distribution with a
variance of 15%. The models were implemented using OpenFPM1, a C++ version of
the Parallel Particle Mesh (PPM) library allowing efficient computational particle-mesh
simulations [85]. In all simulations we used a population of N = 240 cells in a culture
volume of 10−3µl, corresponding to an optical cell density OD600 = 0.3. Cell density
variations did not appreciably change the results, confirming the results in [20].

Then, we obtained the first two statistical moments µ and σ2 for each species in the
cell population at every time tk (Fig 1C2). We used the laws of total expectation and
total variance. Using these moments, we calculated long-term distributions to infer the
noise strength of each species (Fig 1C3). To this end, we checked with our models that
one realization of the population of N cells is enough to obtain unbiased values of the
long-term moments of the population, provided there is enough time to perform the
time average.

Finally, we generated noise strength maps for different sets of varying model
parameters (Fig 1C4). We explored the effect of variations in parameters associated to
expression of LuxI and LuxR, as they are as key parameters in our circuit. For LuxI we
considered the dissociation constant kdlux between the transcription factor
(LuxR ·AHL)2 and the repressible Plux promoter, the translation rate pI, and the basal
expression αI of the Plux promoter. We sampled in the ranges kdlux = [10− 2000],
α = [0.01− 0.1], and pI = [0.2− 10] selected from the literature [86–88] and
experimentally achievable in the lab. As for LuxR, we considered two values for the the
translation rate pR: a strong RBS (pR = 10), and a medium-weak one (pR = 2). In

1Git repository available at https://github.com/incardon
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addition, we analyzed the effect of different degradation rates dR in the range
[0.02− 0.2].

Notice from model (1) that although we only considered variations in the translation
rates pI and pR, these are tantamount to considering variations in the lumped values
CIpI

dmI
, CRpR

dmR
corresponding to the products of protein burst size, transcription rate and

gene copy number. We assumed variations in translation rates just because they are
relatively simple to modify in a graded way by tuning the RBS [86], though also
transcription rates could be easily tuned [89].

Plasmids and experimental conditions.

To validate the in silico computational results, we implemented the Qs/Fb and
NQs/NFb circuits in vivo. We used components from the iGEM Registry of Standard
Biological Parts (http://parts.igem.org). All parts were cloned using the Biobrick’s
foundation 3 Antibiotic Assembly method. All coding sequences have the
double-terminator BBa B0015, and were confirmed by sequencing.

The circuit Qs/Fb integrating both the QS-based cell-to-cell communication and the
negative feedback subsystems, was split in two subunits integrated in different plasmids.
On the one hand, plasmid pCB2tc contains the gene luxR (part BBa C0062) coding for
the protein LuxR constitutively expressed under the control of a medium strength
promoter (part BBa J23106) and a strong RBS (part BBa B0034). This insert was
cloned into the pACYC184 plasmid cloning vector (p15A origin,
chloramphenicol/tetracycline). On the other hand, plasmid pYB06ta contains gene luxI

(part BBa C0161) under control of the pLuxR repressible promoter (part BBa R0062)
and a strong RBS (part BBa B0034). The strong RBS BBa B0034 and the green
fluorescent protein (GFP, part BBa E0040) were inserted using GIBSON assembly
(NEB Catalog♯ E2611S) upstream of luxI, right after the pLuxR promoter. This way,
GFP, used as protein of interest (PoI in Fig 1 ) is co-expressed with LuxI. They were
inserted into the pBR322 plasmid cloning vector (pMB1 origin, ampicillin/tetracycline).
Finally, both plasmids pCB2tc and pYB06ta were co-transformed in competent cells
(DH-5α, Invitrogen).

As control circuit, we implemented the circuit NQs/NFb which removes both QS
and the feedback loop. To this end, the plasmid pCB2tc above was co-transformed with
the plasmid pAV02ta (pMB1 origin, ampicillin/tetracycline) containing only GFP
downstream the pLuxR repressible promoter (part BBa R0062) and the the strong RBS
(part BBa B0034). Both were cloned in the pBR322 plasmid cloning vector.

For the experimental validation of the circuit (see protocol details in Supplementary
Text S3), two sets of E. coli cells (cloning strain DH-5α) carrying the Qs/Fb and
NoQs/NoFb circuits respectively were inoculated from -80oC stocks into 3 mL of LB
with appropriate antibiotics, followed by an overnight incubation at 37 oC and 250 rpm
in 14 ml culture tubes. When the cultures reached an optical density (OD) of 4 (600
nm, Eppendorf BioPhotometer D30), the overnight cultures were diluted 500-fold (OD
of 0.02) into M9 medium with appropriate antibiotics. These were used to inoculate
new cultures, which were incubated for 7 hours (37oC , 250 rpm,14 ml culture tubes)
until they reached an OD between 0.2–0.3. At this point, cell growth and protein
expression were interrupted by transferring the culture into an ice-water bath for 10
min. Next, 50 µL of each tube were transferred into 1 ml of phosphate-buffered saline
with 500 µg/mL of the transcription inhibitor rifampicin (PBS + Rif) in one 5 mL
cytometer tube, and incubated during 1 hour in a water bath at 37oC, so that
transcription kept blocked and GFP had time to mature and fold properly. Samples
were measured at different time points using the BD FACSCalibur flow cytometer
(original default configuration parameters), with and without adding AHLe as external
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Figure 2. LuxI noise strength under presence/absence of quorum sensing
and negative feedback. A. Circuits topologies: NoQS/NoFb (top) and QS/Fb
(bottom). B. Representative computational population histograms of LuxI noise
strength for QS/Fb (orange) presenting a narrower gaussian-like distribution as
compared to the Poisson-like one of NoQS/NoFb (purple). C. Sampled combinations of
LuxI expression characteristics for fixed LuxR ones show larger values of LuxI noise
strength versus mean for NoQS/NoFb (purple dots) than for QS/Fb (orange dots) D.
The QS/Fb circuit significantly reduces the average noise strength for the sampled
parameters space by 41%, from 〈η2NoQS/NoFb〉 = 0.1263 down to 〈η2QS/Fb〉 = 0.0744. E.
For varying LuxR parameters the average reduction of noise strength in LuxI ranges
from 30 % up to 60 % and shows dependence on the mean expression level.

disturbance (10nM N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Biotecnology
Catalog Number SC205396).

Results

Quorum sensing and negative feedback attenuate gene

expression noise.

We first addressed the question whether the proposed QS/Fb circuit effectively reduces
noise strength with respect to the circuit NoQS/NoFb. Recall the last one consists of
the LuxR expression on the one hand, and the protein of interest (PoI) downstream the
pLuxR repressible promoter, without the luxI gene coding for LuxI protein, on the other
(see Fig 2A). Since no autoinducer AHL is neither produced nor externally introduced,
there is no repression, so expression of PoI is essentially a constitutive one. This
corresponds to the Poisson distribution observed in the population histograms in Fig 2B.
Contrarily, the QS/Fb histogram departs from the Poisson distribution to become a
narrow Gaussian-like one. This fact, and the reduction in the mean expression value,
indicate the strong presence of regulation. In both cases we used the nominal
parameters (see Table 1).

Reduction in noise strength was not due to a particular choice of the circuit
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parameters, but a property of the proposed topology. Fig 2C depicts LuxI noise
strength versus mean expression for 60 different combinations of the pLuxR repressible
promoter characteristics (see methods section) for both Qs/Fb (orange points) and
NoQs/NoFb (purple points). The points in the figure correspond to the mean values
across the cells population for each parameters combination. The magnitude of the
noise strength reduction was larger for medium values of mean protein expression. Noise
strength levels were similar for all mean expression values in the case of the NoQs/NoFb
circuit. Mean expression values in this case depend only on the translation rate pI for
which five discrete values were used, inducing the five mean values seen in the figure.
On the contrary, the Qs/Fb circuit showed lower values of noise strength and more
graded values of the mean expression level, for it depends on the combination of all
three parameters varied.

More importantly, the noise strength was consistently lower for the Qs/Fb circuit.
Taking together all the different combinations of promoter parameters for each circuit,
the average noise strength was significantly reduced by 41% in the presence of quorum
sensing and negative feedback, decreasing from η2NoQS/NoFb = 0.1263 down to

η2QS/Fb = 0.0744, as shown in Fig 2D.
For given fixed LuxR expression parameters, the noise strength reduction in LuxI

showed a clear dependence on its mean expression level. To elucidate if this dependence
was only due to the choice of the pLuxR promoter parameters we evaluated, for each
mean expression level, the ratio between the noise strength of the Qs/Fb circuit for all
the range of pLuxR promoter parameters, and that of the NoQs/NoFb circuit. With
this, we obtained the results plotted in Fig 2E showing the minimum and maximum
values of LuxI noise variance reduction as a function of its mean value. In the range
between between 600 and 6000 LuxI molecules it was possible to reduce the noise
variance at least in 35% in the worst case scenario, with a maximum reduction of
around 70% for means between 2000 and 3000 molecules.

Feedback pays-off when extrinsic noise dominates.

At this point the question arises as to what are the roles of quorum sensing and that of
feedback in noise strength reduction, and what are their effect in view of both intrinsic
and extrinsic noise.

To answer this question we first contextualized the computational results using
available experimental data of noise strength and protein abundance in E. coli. We used
experimental data taken from [90], and plotted it against our computational results in
three scenarios: base control circuit with no quorum sensing nor feedback (NoQS/NoFb,
kA = 0), our circuit with both quorum sensing and feedback (QS/Fb), and the
hypothetical circuit with feedback but without quorum sensing (NoQS/Fb, D = 0). For
each scenario we considered different combinations of parameters under the same
conditions as in section , with values of the mean protein number in the range 100 − 105.

Fig 3A shows the experimental data plotted as black dots. The dashed red and blue
lines are the intrinsic and extrinsic noise limits respectively, taken from the same
reference. Simulations including both intrinsic and extrinsic noise are plotted as purple
dots (NoQS/NoFb), green (NoQS/Fb) and orange ones (QS/Fb) using the same data as
in Fig 2C. Our computational results fully agreed with the experimental data and
derived limits in [90]. The results corresponding to the base control circuit NoQS/NoFb
clearly were over the noise limits.

Unexpectedly, noise strength of both circuits QS/Fb and NoQS/Fb integrating
feedback showed very similar behavior. As shown in Fig 3B the QS/Fb and NoQS/Fb
points lay in the same region. For medium and high mean protein expression values
noise strength in QS/Fb and NoQS/Fb decreased just below the reported extrinsic noise
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Figure 3. Comparison between experimental data and different scenarios
evaluated computationally. A. Experimental data of protein abundance and noise
in E. coli taken from [90] is plotted as black dots. The dashed red and blue lines are the
intrinsic noise limit and the extrinsic noise limits respectively, taken from the same
reference. Simulations of the gene circuits in our study, including both intrinsic and
extrinsic noise, are plotted using purple dots (NoQS/NoFb), green (NoQS/Fb) and
orange ones (QS/Fb). Simulations including only intrinsic noise are plotted as crosses:
violet (NoQS/NoFb), green (NoQS/Fb) and orange (QS/Fb). B. Zoom of the scenarios
considering both intrinsic and extrinsic noise (top) and only intrinsic noise (bottom).

limit, and well below the noise strength for the base NoQS/NoFb circuit. Though high
protein expression are of main interest for the intended application of our circuit in an
industrial biotechnological context of heterologous protein production, we were
interested in the performance of the circuits at low mean protein numbers. Interestingly,
the situation in the region was reversed. The open loop circuit NoQS/NoFb showed
consistent lower noise strength values than QS/Fb and NoQS/Fb. Therefore, feedback
contributed to reducing noise strength for medium-high protein expression where
extrinsic noise dominates.

Quorum sensing helps feedback to cope with intrinsic noise.

The last result was inconclusive about the contribution of quorum sensing to reduce
noise strength. To settle this issue we concentrated our analysis in the medium-high
protein expression region where feedback contributed to reduce noise strength and
extrinsic noise dominates.

We first wanted to elucidate whether QS mainly contributed reducing the intrinsic
component of noise. If this was the case, its effect could be masked by the dominant
extrinsic noise. To that end we carried out simulations for the same combinations of
parameters as before, but suppressing extrinsic noise, and considering the three
scenarios NoQS/NoFb, QS/Fb, and NoQS/Fb. The results are shown in Fig 3A, plotted
as violet (NoQS/NoFb, kA = 0), green (NoQS/Fb, D = 0) and orange crosses (QS/Fb).
Fig 3B shows a zoom into the relevant region. Introducing either feedback alone or
feedback plus quorum sensing increased noise strength values with respect to the
minimal base control circuit representing plain constitutive protein expression. The
results for this base NoQS/NoFb circuit were along the experimental intrinsic noise
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limit derived in [90]. These results were consistent with the findings at low mean
protein values where intrinsic noise dominates. The circuit NoQS/Fb with feedback and
no cell-to-cell communication showed higher values of noise strength, specially for lower
values of mean protein number. Finally, reintroducing quorum sensing (QS/Fb) was
able to slightly improve noise strength.

To confirm this result we evaluated the difference between the noise strength in LuxI
between the circuits QS/Fb and NoQS/Fb when only intrinsic noise is present as a
function of circuit parameters associated to LuxI expression. Fig 4(A) shows the noise
strength map difference for different combinations of the dissociation constant kdlux vs.
the LuxI translation rate pI when we consider a tight promoter Plux, α = 0.01 or a
leaky one α = 0.1 in both noise scenarios. The noise strength reduction when QS was
added reached a 200% for low values of pI. Increasing the dissociation constant
improved the reduction, specially for a leaky promoter.

The previous result suggested that the results reported in the literature showing a
reduction in noise strength when QS was used were a result of modeling extrinsic noise
as an additive signal. This hypothesis was confirmed when besides intrinsic noise we
introduced an additive extrinsic noise to our system, with variance independent of the
system states. Fig 4(B) shows that in this case there also was a generalized noise
strength reduction for most parameter combinations.

Finally, in case we restored extrinsic noise as parametric variability the results
showed that adding QS may increase or decrease noise strength (Fig 4(C)) strongly
depending on the values of the circuits parameters, and suggesting that getting benefit
of QS for medium-large mean expression values requires optimizing the circuit
parameters tuning.

Tuning LuxI expression allows minimising noise-strength.

Dependence of mean expression and noise strength on the Qs/Fb circuit parameters is a
key factor to understand for it to be of potential practical usage. To this end we
performed thorough in silico experiments to estimate the noise strength and mean
expression value of LuxI, as a proxy of the protein of interest, for different sets of the
circuit parameters associated to LuxI expression as described in the methods section .
We only evaluated two values for the basal expression, corresponding to a tight Plux

promoter (α = 0.01), and a leaky one (α = 0.1). As for LuxR, we also considered two
values: a strong RBS (pR = 10), and a medium-weak one (pR = 2). We kept all other
parameters to their nominal values described in table 1. Recall that although we
considered variations in the translation rates pI and pR, these are tantamount to
considering equivalent variations in the lumped values of the corresponding products of
protein burst size, transcription rate and gene copy number.

Fig 5 shows the noise strength map for different combinations of the dissociation
constant kdlux vs. the LuxI translation rate pI when we consider both a tight promoter
Plux, α = 0.01 (Fig 5A) and or a leaky one α = 0.1 (Fig 5B). The means of LuxI protein
number are shown as contour lines.

The mean expression levels of LuxI followed general monotonous trends in all cases.
It increased for simultaneous increasing of the dissociation constant and the LuxI
translation rate. On the other hand, increasing leakiness of the LuxI promoter did tend
to lower mean expression levels of LuxI for low values of the dissociation constant.
Finally, using a weaker RBS controlling the translation of LuxR (Fig 5B) produced a
steeper increasing of the mean expression level as the dissociation constant and the LuxI
translation rate increase.

Noise strength did not show simple patters as a function of the circuit parameters.
Larger variations between high and low noise strength values were observed for stronger
LuxR RBS (Fig 5A) independent of the leakiness of the promoter Plux. In this case, the
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Figure 4. LuxI noise strength reduction as a function of circuit parameters.
Color map of the reduction of LuxI noise strength when QS is added to Fb w.r.t. the
dissociation constant kdlux and the LuxI translation rate pI. All other parameters were
set to their nominal values. Left) Tight promoter α = 0.01. Right) Leaky promoter
α = 0.1. A) Only intrinsic noise is present. B) Intrinsic noise is present incorporating
also additive extrinsic noise. C) Intrinsic and extrinsic noise present.

lowest values of noise strength were achieved for values of the dissociation constant kdlux
in the range [100− 500], and values of LuxI translation rate pI in the range [2− 10].
The mean expression levels in this region were between 2 · 103 and 4 · 103 proteins, in
agreement with the results shown in Fig 2. Decreasing the LuxR RBS strength kept the
the values of minimal noise strength essentially in the same region, but with higher
values (Fig 5B). The same trend towards higher values of noise strength was observed
when the tight promoter Plux was changed for a leaky one. This was more evident when
a stronger LuxR RBS was used (Fig 5A).

Fast LuxR turnover reduces LuxI noise strength.

Next we analyzed in more detail the effect of LuxR expression parameters on LuxI
mean expression level and noise strength. In particular, we were interested in the effect
of the LuxR translation rate pR, as main tuning knob of the LuxI mean expression level,
and the one of the degradation rate dR, as it has been suggested that fast LuxR
turnover can reduce the extrinsic noise. We fixed the LuxI traslation rate to two values
pI = 2 and pI = 2 [min−1] around its nominal value, and again considered both a tight
pLux promoter (α = 0.01) and a a leaky one (α = 0.1). We kept all other parameters to
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Figure 5. LuxI noise strength and mean as a function of circuit parameters.
Color map of LuxI noise strength w.r.t. the dissociation constant kdlux and the LuxI
translation rate pI. The level curves correspond to the mean number of LuxI molecules.
A) Strong LuxR RBS with pR = 10 [1/min]. B) Medium-weak LuxR RBS with pR = 2
[1/min].

their nominal values described in table 1.
Fig 6 shows the LuxI noise strength maps and mean expression level curves as a

function of values of the LuxR translation rate in the range 0.2 to 10 1/min, and LuxR
degradation rate in the range 0.02 to 0.2 1/min. The mean expression level did depend
little on the LuxR degradation rate, with a slight increase for large ones. LuxR
translation rates or, tantamount, LuxR synthesis rates, proved to be a good sensitive
tool to tune the desired LuxI mean expression rate, with larger values of the last as the
former decreased.

Interestingly, LuxI noise strength decreased as LuxR degradation rate increased,
with optimal values in the range 0.07 to 0.2 1/min (cf. nominal value in table 1). It did
not show a clear dependence on LuxR translation rate, but for an interesting region, for
values of LuxR around its nominal value, where it tended to decrease for all values of
the degradation rate.

Experimental results confirm computational predictions.

Experimental implementation of the proposed QS/Fb circuit would not only allow a
preliminary experimental validation of its capability to reduce noise strength, but would
also further validate the model parameters used throughout this study. Recall the
comparison in Fig 3 referred our results to the general landscape of mean protein
abundances and noise strengths in E coli. To this end we experimentally implemented
both the NoQS/NoFb and QS/Fb circuits as described in section , and compared the
experimental results with the ones obtained using the corresponding nominal
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Figure 6. LuxI noise strength versus LuxR parameters. LuxI noise strength
maps and mean expression level curves for a tight pLux promoter (α = 0.01, top) and a
a leaky one (α = 0.1, bottom) with LuxI translation rates pI = 2 (left) and pI = 4
(right) around its nominal value.

Figure 7. Comparison between experimental and computational results.
Population distributions and noise strength for both Qs/Fb and NoQs/NoFb circuits.
The plots in A correspond to the computational models simulation, and the ones in B
correspond to experimental flow cytometry results.
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computational models.
The steady state population histograms of LuxI for the circuits Qs/Fb (orange) and

NoQs/NoFb (purple) under the same experimental conditions are depicted in Fig 7.
The computational predictions for the nominal models are in the panel A, while the B
panel shows flow cytometry experimental results. Both results were qualitatively
comparable without any tuning, fitting or change in the model parameters. We only
required a common scaling factor to convert from relative units of fluorescence to
number of molecules. The experimental results showed LuxI noise strength is reduced by
31.5% (η2Qs/Fb = 0.0896, η2NoQs/NoFb = 0.1308). On the other hand, the computational

simulations predicted a 33.6% reduction (η2Qs/Fb = 0.0835, η2NoQs/NoFb = 0.1259).

As we expected, the mean expression level in the NoQs/NoFb circuit,
µNoQs/NoFb = 1166.46 (a.u.) (simulation µNoQs/NoFb = 1395.65 (molecules)), was
larger than the one in the Qs/Fb circuit, µQs/Fb = 462.63 (a.u.) (simulation
µQs/Fb = 533.67 (molecules)). Indeed, the circuit Qs/Fb incorporates a feedback loop
that changes the location of equilibrium point with respect to the open loop circuit. To
test whether the reduction in noise strength is an effect associated with the reduction in
the mean expression level, we compared both circuits applying an induction of 3nM
AHL to the the open loop NoQs/NoFb circuit. With this induction, GFP fluorescence
mean values of both circuits was comparable.

Discussion

Our results show that gene synthetic circuits benefiting from the interplay between
feedback and cell-to-cell communication allow control of the mean expression level and
noise strength of a protein of interest. A few circuit parameters easy to tune in the
wet-lab can be used to achieve noise strength reductions up to a 60% with respect to
constitutive expression of the protein of interest.

Mean expression level and noise strength are not independent goals. At low mean
values intrinsic noise dominates and sets the minimum noise strength attainable. At
high mean values extrinsic noise dominates. Thus, there is a trade-off between
expression level and noise strength, as revealed both by system-wide experimental data
and theoretical analysis reported in the literature. Our computational results fitted well
in this scenario, and suggest that tuning synthetic gene circuits to minimize noise while
achieving a desired expression level will require a multi-objective optimization approach.

For high mean expression values we observed a clear benefit of having feedback as
compared to constitutive expression. Yet, adding quorum sensing on top of feedback did
not decrease noise strength unless the circuit parameters are tuned. That is, the benefit
from adding cell-to-cell communication is not structural, but depended on proper choice
of the circuit parameters. This result is somewhat counter-intuitive and does not fully
agree with previous works reporting a reduction of extrinsic noise in quorum
sensing-based gene circuits, e.g. [20], that reported a structural benefit. This may be
explained by the different approaches to model extrinsic noise. While we modeled it as
parametric variability, most often extrinsic noise has been modeled as an additive
stochastic signal essentially analogous to the intrinsic noise term. Thus, if we considered
a scenario with intrinsic noise and no extrinsic one while keeping medium-high
expression means, our results also showed an important reduction of noise strength
when quorum sensing was added to feedback. Though the amount of reduction
depended on the circuit parameters, we observed noise reduction for almost any
combination of them. Moreover, if we considered additive extrinsic noise, we got
qualitatively similar results to the ones when only intrinsic noise was present.

In the hypothetical scenario with no extrinsic noise we also found that adding either
feedback or feedback and quorum sensing increased the noise strength with respect to
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the open loop constitutive gene expression circuit. This result might be explained by the
increased complexity introduced by these circuits [91]. Yet, circuit complexity is not the
only factor contributing. On the one hand, the circuit with quorum sensing and feedback
achieved lower average noise strength values than the less complex only-feedback one in
this scenario. On the other, when extrinsic noise was present constitutive expression
was clearly noisier than any of the more complex Qs/Fb and NoQs/Fb circuits for high
protein mean expression values, though not for low ones where intrinsic noise dominates.
Thus, the circuit complexity contribution to noise depends not only on its size, but in
the interplay between size and noise structure. Thus, in the medium-high range of mean
protein expression, of interest for industrial biotechnology, tuning circuit parameters in
the circuit with both quorum sensing and feedback clearly allows coping with both
intrinsic noise and extrinsic one, however its structure.

The experimental results, though preliminary, showed a high concordance the
computational ones and confirmed the capability of the proposed circuit to reduce noise
strength.
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Simulation of gene synthetic network with quorum sensing and feedback in a cell
population. Proceedings 14th annual European Control Conference. 2015;.

69. Milo R, Phillips R, Orme N. Cell Biology by the Numbers. Garland Science; 2016.

70. Urbanowski ML, Lostroh CP, Greenberg EP. Reversible Acyl-Homoserine
Lactone Binding to Purified Vibrio fischeri LuxR Protein. Journal of
Bacteriology. 2004 1;186(3):631–637.

71. Harman JG. Allosteric regulation of the cAMP receptor protein. Biochimica et
Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology.
2001;1547(1):1–17.

72. Buchler NE, Gerland U, Hwa T. Nonlinear protein degradation and the function
of genetic circuits. Proceedings of the National Academy of Sciences of the
United States of America. 2005;102(27):9559–9564.

73. Goryachev AB, Toh DJ, Lee T. Systems analysis of a quorum sensing network:
design constraints imposed by the functional requirements, network topology and
kinetic constants. Biosystems. 2006;83(2-3):178–87.
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