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Abstract

Efforts are being directed to systematically analyse the non-coding genome for cancer-driving 

mutations1–6. Cis-regulatory elements (CREs) represent a highly enriched subset of the non-

coding genome in which to search for such mutations. We use capture Hi-C for 19,023 promoter 

fragments to catalogue the regulatory landscape of colorectal cancer (CRC) in cell lines, mapping 

CREs and integrating these with TCGA whole genome sequence and expression data7,8. We 

identify a recurrently mutated CRE interacting with the ETV1 promoter affecting gene expression. 

ETV1 expression influences cell viability and is associated with patient survival. We further refine 

our understanding of the regulatory effects of copy-number variations (CNVs), showing 

RASL11A to be targeted by a previously identified enhancer amplification1. This study reveals 
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new insights into the complex genetic alterations driving tumour development, providing a 

paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant 

to cancer biology.

The identification of driver mutations as distinguished from passenger mutations is 

fundamental to understanding cancer and its response to therapy. With the large number of 

exome-sequenced tumours, all genes with coding changes that contribute substantially to 

tumourigenesis are likely to be catalogued shortly. Motivated by the identification of 

recurrent mutations in regulatory elements in genes associated with oncogenesis, such as the 

TERT promoter9,10, and TAL111 and PAX512 enhancers, efforts are now being directed to 

systematically analyse non-coding regions of cancer genomes for driver mutations1–6.

Although regional excess of somatic mutations is suggestive of positive selection in tumours, 

the size of the non-coding genome places a high burden on robustly establishing statistical 

significance. Coding regions provide obvious, discrete intervals in which to search for 

mutations, and it would be highly propitious to define similar functional elements for non-

coding regions. CREs modulating gene expression represent a highly-enriched subset of the 

non-coding genome in which to search for driver mutations. These CREs however, can be 

highly tissue-specific, are often dispersed over long ranges, and only a small fraction of 

distal enhancers target the nearest transcript8,13. The recent development of high-

throughput chromosome conformation capture techniques (Hi-C) has allowed researchers to 

map such regulatory regions, and importantly, link these to their respective target genes8,14–

16.

Here we have used capture Hi-C (CHi-C) for 19,023 promoter fragments to catalogue the 

CRE landscape of CRC, identifying putative enhancers8,16. Using these data in conjunction 

with TCGA whole genome sequencing (WGS), RNA sequencing (RNAseq) and CNV data7, 

we report the identification of novel non-coding driver mutations for CRC (Fig. 1, 

Supplementary Fig. 1, Supplementary Note).

We prepared in situ HindIII-digested Hi-C libraries from CRC HT29 and LoVo cell lines, 

which represent the two major molecular subtypes of CRC – microsatellite stable (MSS) and 

microsatellite instable (MSI), respectively. To examine the interactions underlying CREs in 

CRC, we generated a biotinylated RNA bait library, specifically targeting 19,023 promoter-

encompassing HindIII fragments representing 2.3% of all HindIII fragments. We hybridised 

in situ Hi-C libraries to the RNA baits to capture promoter-associated di-tags and sequenced 

the resulting libraries, from which we identified 96,458 and 118,758 significant contacts in 

LoVo and HT29 respectively (Supplementary Tables 1-3). In both cell lines, the majority of 

interactions were within topologically associated domains (TADs) (74% and 83% in HT29 

and LoVo, respectively; Supplementary Tables 4 and 5, Supplementary Note). Across 127 

cell lines and tissues17 the LoVo and HT29 CREs showed strong enrichment of histone 

marks identified in colonic tissue (Supplementary Table 6).

The CREs identified by CHi-C were evolutionally conserved (P<1.0×10-3) and enriched for 

transcription factor (TF) binding as compared to a random set of genomic fragments (3-fold 

and 2-fold enrichment for HT29 and LoVo respectively, P<1.0×10-3; Supplementary Fig. 2). 
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Based on the level of gene expression using RNAseq for respective target genes we 

classified interactions as either active or inactive. As previously documented8, a higher 

frequency of interactions and shorter contact distances typified promoters of active genes 

(Supplementary Fig. 3). For genes that were actively transcribed, both promoters and their 

respective CREs had a higher number of bound TFs (P<2.2×10-16; Supplementary Fig. 4). 

Moreover, a relationship between elevated gene expression and higher proportion of TFs 

bound to CREs was shown, consistent with the functional role of identified CREs 

(Supplementary Fig. 5).

To investigate the frequency of single nucleotide variants (SNVs) in CREs delineated by 

CHi-C we analysed colon and rectal adenocarcinoma WGS data from TCGA7. After 

applying stringent quality control and filtering, we retained data on 50 MSS and 12 MSI 

cancers. The frequencies of SNV base changes were consistent with those previously 

documented for CRC18,19 (Supplementary Fig. 6, Supplementary Table 7). Both promoters 

and CREs showed a significantly lower rate of mutation compared to the genome rate in 

MSS and MSI cancers (Fig. 2). This property was also seen after taking into account 

mutational-signature-derived substitution probabilities (Fig. 2). This is consistent with 

previous reports that have shown that functional regulatory regions are less likely to be 

mutated than non-functional regions of the genome, either as a consequence of selective 

evolutionary pressure or chromatin accessibility9,20. Since MSI cancers exhibit a 

significantly higher mutational rate to MSS cancers (median mutations 92,968 and 14,290, 

respectively) reflective of mismatch repair deficiency19 (Supplementary Table 8), we 

analysed the two CRC subtypes separately.

To identify non-coding driver mutations in CREs, we integrated results from three driver 

discovery methods (Supplementary Fig. 7a). First, we assessed the transcriptional affects of 

CRE mutations by comparing the expression levels of respective target genes in mutated and 

non-mutated cancers9,10,21. To avoid confounding, cancers in which either the CRE or 

target gene were subject to CNVs were excluded from the analysis. Second, we tested for 

regional excess of mutations to provide evidence of positive selection6,9,21,22. Third, we 

assessed the clustering of CRE mutations, as this can be suggestive of events in specific TF 

binding sites21. In MSS cancers this integrated analysis yielded a CRE interacting with the 

ETV1 promoter, associated with differential target gene expression and an excess of 

clustered mutations (Fig. 3a-b, Supplementary Tables 9 and 10). Conversely, no CREs were 

identified in MSI cancers, and we therefore restricted further SNV analysis to MSS cancers.

We demonstrated the benefit of using CHi-C data to discover non-coding driver mutations 

by comparing the number of CREs identified by the integrated driver discovery analysis 

using real and randomised CHi-C data. Specifically, we randomised the CHi-C data by 

changing the HindIII fragments contacting each gene, sampling from non-interacting 

fragments within 1Mb of the gene, whilst maintaining the number of fragment contacts 

(Supplementary Fig. 7b), and applied the integrated driver discovery analysis in full to each 

randomised CHi-C data set. Through this procedure we estimated the empirical false 

discovery rate (FDR) for the ETV1 CRE to be 0.023 (Supplementary Table 9, 

Supplementary Fig. 8).
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ETV1, an oncogene encoding an ETS TF, is altered in several cancers by translocations in 

Ewing's sarcoma23 and prostate cancer24,25, amplification in melanoma26, and oncogenic 

dysregulation in gastrointestinal stromal tumours27,28. The ETV1 interaction was 

confirmed in a panel of MSS CRC cell lines (Supplementary Fig. 9). Considering only the 

five cancers without a structural variation (SV) within 1 Mb from ETV1 (Supplementary 

Table 11), CRE mutations were associated with a 4-fold increased expression of ETV1 

compared to non-mutated samples (Fig. 3b). Additionally, increased ETV1 expression was 

also seen in two cancer samples without CRE mutations but with ETV1 amplifications 

(P=4.1×10-3; Supplementary Fig. 10a). Four of the six mutations map proximally to an 

evolutionary conserved region (Fig. 3a), and in HT29 each was associated with a 3-fold 

increase in luciferase activity, consistent with regulatory impact (Fig. 3c, Supplementary 

Figure 10b). The ETV1 CRE, which is proximal to an enhancer H3K4me1 chromatin mark, 

uniquely interacts with the ETV1 promoter, and the contact is not present in LoVo or 17 

blood-specific CHi-C data (Fig. 3a, Supplementary Fig. 11). While the putative enhancer 

maps within the intron of DGKB, there was no relationship between CRE mutation and 

DGKB expression (Supplementary Fig. 12). Although no TF was bound to the CRE on the 

basis of HT29 cell line ChIPseq data, in silico analysis identified numerous potential 

disrupted TF binding sites29–31 including those for BCL6, HNF1A, HNF1B and MAFK, all 

of which are expressed in colonic tissue32 (Supplementary Table 12 and 13, Supplementary 

Fig. 13, Supplementary Note).

We made use of Affymetrix SNP Array 6.0 data from 615 TCGA CRC samples to identify 

CREs subject to somatic CNVs. CNV-positive CREs were assessed for correlation with 

expression of their interacting gene, where it was not encompassed by the same CNV, using 

matched RNAseq data. The RASL11A promoter showed interactions with a putative 

enhancer characterised by H3K4me1 marks in both HT29 and LoVo cell lines (Fig. 4a, 

Supplementary Fig. 14). While a role for RASL11A in tumourigenesis has yet to be defined, 

it is reported to be a GTPase chromatin-associated modulator of pre-ribosomal RNA 

synthesis, acting to facilitate initiation of transcription by RNA polymerase 133. The 

RASL11A interaction was confirmed in a panel of MSS CRC cell lines (Supplementary Fig. 

9). This CRE was amplified in 12 cancer samples and these had significantly higher 

RASL11A expression (P=2.96×10-11; Fig. 4b, Supplementary Table 14). Using CRISPR-

mediated genome editing, disruption of the interacting CRE was shown to reduce RASL11A 

expression (Fig. 4c and 4d, Supplementary Fig. 15). USP12 has previously been implicated 

as a target of this specific CRE1. However, after exclusion of samples in which CNVs 

overlay the gene itself, amplification of the CRE was not associated with differential 

expression of USP12 or any other gene in the proximity of the CNV segments (Fig. 4e, 

Supplementary Table 15).

In HT29, reduction of endogenous ETV1 and RASL11A levels using siRNA was associated 

with decreased cell viability and cell proliferation (Fig. 5, Supplementary Fig. 16, 

Supplementary Note). Using patient outcome data from three independent series totalling 

1,282 CRC cases7,34,35, high levels of ETV1 expression were associated with worse 

relapse-free and overall survival in a multivariate analysis. Respective meta-analysis hazard 

ratios associated with elevated expression were 1.32 (95% confidence interval [CI]: 

1.06-1.64, P=1.5×10-2) and 1.14 (95% CI: 1.03-1.27, P=9.9×10-3) (Supplementary Fig. 17, 
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Supplementary Table 16, Supplementary Note). No significant association was shown 

between RASL11A expression and patient outcome, although data were not available for all 

series (Supplementary Table 16).

It is arguable that despite high-profile, genuine successes, the number of new driver genes 

from exome sequencing projects has been disappointingly small compared with 

expectations. Many cancers have no observable driver mutation, and the full complement of 

molecular lesions that are individually necessary, and together sufficient, to cause 

malignancy are still unknown. The Encyclopedia of DNA Elements (ENCODE) project has 

proposed that around 80% of the genome contains elements linked to biochemical 

functionality36, however others have estimated that the percentage of the human genome 

that is functional may actually be 10-fold lower37. Hence, rather than exploiting the 

epigenomic landscape we identified physical contacts between promoters and the interacting 

CREs, thereby reducing the genomic space in which to search for non-coding driver 

mutations.

In our analysis, we identified a CRE whose mutation was associated with altered expression 

in CRC. This CRE, interacting with the ETV1 promoter, was mutated in 12% of MSS 

cancers with mutation being associated with significant upregulation of ETV1 expression. 

While not previously assessed as a determinant of CRC outcome38, upregulation of ETV1 

was seen to be associated with poor patient prognosis in CRC (Supplementary Fig. 17, 

Supplementary Table 16). The fact that upregulation of ETV1 has previously been linked to 

reduced survival in other cancers, including gastric cancer, is therefore entirely consistent 

with increased ETV1 expression inducing aberrant activation of transcriptional programs 

that generically governs multiple facets of tumourigenesis. In addition to SNVs having a role 

in dysregulation of gene expression, we have provided evidence that implicates RASL11A, 

through amplification of an interacting CRE, in CRC oncogenesis.

We acknowledge that the present analysis has limitations. Firstly, we have used a cellular 

model to map the CREs, which is unlikely to fully recapitulate the spectrum of pathogenic 

SNVs and CNVs seen in CRC. Secondly, the low-resolution of the defined CNVs has not 

permitted the study of smaller structural changes, potentially affecting the discovery of 

deleted or amplified CREs. Thirdly, inevitably as our WGS dataset is modest, this has 

restricted the study power to identify non-coding drivers. Fourthly, our strategy may not 

identify genes that are up or down regulated in most cancers, either when driven by the same 

or alternative mechanisms.

Accepting these caveats, the generation of a genome-wide promoter-CRE map of CRC using 

in situ CHi-C has allowed us to perform a highly focused search for functional non-coding 

mutations. As sequencing costs are significantly reduced, this will afford the opportunity to 

perform CHi-C directly on respective WGS samples, thereby providing the opportunities to 

define individualised networks.

In conclusion, our work supports the existence of non-coding drivers for CRC, and more 

broadly provides a paradigm for employing chromosome conformation capture to decode 

disease-specific regulatory elements. Such discoveries facilitate the identification of novel 
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therapeutic and chemoprevention agents, and classification of patients into molecular 

subgroups to personalise therapy. For example, it allows for the repositioning of ETV1 

inhibitors, one of which has been employed in a clinical trial for gastrointestinal stromal 

tumours28,39.

Online Methods

Cell culture

HT115 and SW948 were obtained from ECACC, and all other cell lines were obtained from 

ATCC. All cell lines were cultured at 37°C; LoVo was cultured in Ham's F-12 Nutrient Mix, 

HT29 was cultured in McCoy's 5A (Modified) medium, SW480 and SW1116 were both 

cultured in DMEM, SW948 were cultured in Leibovitz’s L-15, all supplemented with 10% 

FBS. Caco2 was cultured in MEM supplemented with 20% FBS, HT115 was cultured in 

DMEM supplemented with 15% FBS. Cell line identity was confirmed by STR-profiling. 

Cells were regularly tested for mycoplasma contamination (PromoCell, PK-CA91).

Hi-C analysis

In situ Hi-C library preparation—In situ Hi-C libraries were prepared as previously 

described14,16. Briefly, 25 million cells were fixed in 1% formaldehyde for 10 min. Cross-

linked DNA was digested by restriction enzyme HindIII (NEB, R0104). Digested chromatin 

ends were filled and marked with biotin-14-dATP (ThermoFisher, 19524-016). The resulting 

blunted ended fragments were ligated at 16°C in the nucleus with T4 DNA ligase (NEB, 

M0202) to minimise random ligation. DNA purified after crosslinking was reversed by 

proteinase K (Ambion, AM2546) treatment. DNA was sheared by sonication (Covaris, 

M220) and 200-650bp fragments selected. Biotin tag DNA was pulled down with 

streptavidin beads and ligated with Illumina paired end adapters (Illumina). Six cycles of 

PCR were performed to amplify libraries before capture.

Promoter capture Hi-C library—Promoter capture was based on 32,313 biotinylated 

120-mer RNA baits (Agilent Technologies) targeting both ends of HindIII restriction 

fragments that overlap Ensembl promoters of protein-coding, non-coding, antisense, snRNA, 

miRNA and snoRNA transcripts8 (Supplementary Table 17). After library enrichment, a 

post-capture PCR amplification step was carried out using 5 amplification cycles. Hi-C and 

CHi-C libraries were sequenced using HiSeq 2000 technology16 (Illumina).

Interaction calling—Reads were aligned to the GRCh37 build using Bowtie2 v2.2.640 

and identification of valid di-tags was performed using HiCUP v0.5.941. To declare 

significant contacts, HiCUP output was processed using CHiCAGO v1.1.842. For each cell 

line, data from three independent biological replicates were combined to obtain a definitive 

set of contacts. As previously advocated, interactions with a score ≥5.0 were considered to 

be statistically significant42.
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ChIPseq analysis

ChIPseq was performed on H3K4me1, H3K9me3, H3K27me3 and H3K36me3 for LoVo, 

and H3K4me1 and H3K9me3 for HT29. Description of the procedures performed can be 

found in the Supplementary Note.

Gene expression in LoVo and HT29

Analysis of RNAseq data on LoVo and HT29 cell lines was performed as previously 

described7. Briefly, RNAseq BAM files were downloaded from the Broad Institute Cancer 

Genomics Hub and analysed using Cufflinks43. Gene-level FPKM read counts were derived 

using GENCODE v7 annotated mRNA transcripts. Genes with FPKM >0 were divided into 

quartiles based on their expression levels, with genes with either 0 FPKM or in Q1 

considered to be inactive, and genes in Q2-Q4 considered to be active8,44. For promoter 

fragments associated with multiple genes, we excluded those with discordant expression.

Annotation of cis-regulatory elements in LoVo and HT29

Reads that did not align uniquely were removed by HiCUP as they are liable to result in 

false positive contacts. The detection of duplicate regions is dictated by genomic build. 

Therefore, an additional filtering step was performed to remove contacts between fragments 

mapping to regions that did not map to unique locations in hg38. Briefly, hg19/GRCh37 was 

split into windows of 100bp before being aligned to hg38 using BWA. A base was 

considered to be poorly mapped if the majority of reads containing it could be mapped 

elsewhere in the genome with at most one mismatch or gap, as described in SNPable (see 
URLs). A contact region was kept if 95% of its constituent bases were not poorly mapped 

imposing this metric. Conservation was measured using PhastCons 100way, considering the 

average conservation score in 100bp windows centred on each mutation45. The proportion 

of CREs, not overlapping any coding regions, containing runs of at least 8 conserved sites 

(defined by PhastCons score >0.5) was compared for the set of LoVo and HT29 CREs to 

sets of randomly generated fragments. For enrichment calculations, random non-coding 

regions of the genome were selected matching the identified CREs in fragment size and 

number, restricting start positions to HindIII sites. Random fragments not overlapping 

coding regions were resampled 1,000 times. Significance was determined by permutation. 

We annotated each CHi-C contact identified in LoVo and HT29 cells with chromatin 

features and TF binding information. HindIII interacting fragments were overlaid with 

histone marks from 127 tissues and cell lines from the ROADMAP Epigenomics project17 

and ChIPseq experiments46 (198 and 29 experiments in LoVo and HT29 respectively). 

Enrichment calculations were performed as described above. The activity of each promoter 

on its corresponding gene was defined as active or inactive based on the analysis of the 

matching RNAseq data. To assess whether there was a relationship between TF binding and 

expression, we selected only the fragments that interact with promoters of genes belonging 

to the same expression quartile and allocated TF counts to each CRE as previously 

described8. For promoter fragments associated with multiple genes, all genes’ expression 

URLs
SNPable, http://bit.ly/snpable; NCI Genomic Data Commons Data Portal, https://portal.gdc.cancer.gov/; UCSC Genome Browser, 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/; GTex portal, https://gtexportal.org/.
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was required to be in the same expression quartile. For each expression class, we calculated 

the proportion of CREs bound by the TF divided by the proportion of all the CREs bound by 

the same TF. Corresponding values were log2 transformed8,44.

TCGA colorectal cancer whole genome sequencing data

Whole-genome sequencing (WGS) data on 50 MSS (36 colon adenocarcinoma [COAD] and 

14 rectal adenocarcinoma [READ]) and 12 MSI were obtained from TCGA. Description of 

these data and mutation calling can be found in the Supplementary Note.

Mapping non-coding mutations to chromatin-looping interactions

We mapped non-coding mutations to CREs defined by promoter CHi-C generated on CRC 

cell lines, LoVo and HT29. We annotated only cis-interactions involving a promoter and 

CRE, excluding trans-interactions and promoter-promoter contacts.

Genome-wide analysis of non-coding mutations

Mutations were allocated to promoters or CREs, and the mutation rates for each fragment 

class were calculated. Mutation rates were determined as the number of mutations in each 

fragment class, divided by the size of all the fragments in that class, minus all regions 

overlapping ORFs, 3’ UTRs, 5’ UTRs and regions with poor mappability (Supplementary 

Note). Mutational signatures have however been shown to be critical for estimating 

purifying selection pressures in cancer somatic mutation data47. Taking this into account the 

expected mutation rates were estimated considering the sample-specific occurrence of 

mutations of each of the 96 substitution types defined by Alexandrov et al.18, and the 

trinucleotide composition of the fragment class.

Expected mutation rate =
∑i

u
i
w

i v
i

y

i ∈ (A[C > A]A, …, T[T > G]T)

where i is each of the possible mutation substitutions, ui is the genome-wide number of 

mutations of type i, vi is the genome-wide number of positions at which mutations of type i 

can occur, wi is the number of positions in the considered fragment class at which mutations 

of type i can occur, and y is the size of all fragments in the class. Excluded regions as 

defined above were not considered.

Integrated analysis of non-coding mutations in CREs

To identify potential non-coding driver mutations we integrated three driver discovery 

methods (Supplementary Fig. 7a). In this integrated analysis, we (i) assessed the 

transcriptional effects of non-coding mutations in CREs, and (ii) tested for an excess of non-

coding mutations in CREs. P-values computed in these two analyses were adjusted for 

multiple testing using the Benjamini-Hochberg procedure and CREs excluded if Q≥0.05 in 

either analysis. Finally we (iii) assessed the clustering of non-coding mutations in the 

remaining CREs. P-values computed in this clustering analysis were adjusted for multiple 
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testing using the Benjamini-Hochberg procedure and CREs excluded if Q≥0.05. These three 

driver discovery methods are outlined below.

Testing the transcriptional effects of non-coding mutations in CREs—Gene 

expression profiles were based on RNA sequencing of 12 MSI and 50 MSS CRC cases 

obtained from TCGA that had matched WGS data (normalised gene-level values, accessed 

20 January 2017). Differences between samples analysed on Genome Analyzer and HiSeq 

were batch-corrected using the ComBat method48. To reduce spurious long distance 

contacts, interactions were filtered such that the distance between the promoter and CRE 

was <1Mb49. For each CRE, samples were divided between non-mutated and mutated based 

on the presence of non-coding mutations in the corresponding CRE. We tested for 

differential gene expression between mutated and non-mutated groups using a negative 

binomial model9, implemented in edgeR50. Samples with copy number alterations at either 

the gene or the related CRE were excluded9. CREs were not tested if gene expression data 

were not available for the interacting gene, or if the CRE was mutated in fewer than two 

samples, after the removal of samples with overlapping copy number alterations. CREs 

observed to interact with the promoters of multiple genes were tested multiple times. Only 

CREs interacting with protein-coding genes were tested.

Testing for an excess of non-coding mutations in CREs—We tested regions for an 

excess of non-coding mutations using a global approach, as per Weinhold et al9. This 

assumes that the observed number of tumour samples mutated in any specific region follows 

the binomial distribution, under the null hypothesis that mutations in the region are not 

under positive selection. As replication timing affects the nucleotide mutation rate, we 

estimated the mutation rate using data from HeLa, K562, HEPG2, MCF7 and SKNSH cell 

lines51. Again as per Weinhold et al.9, we subsetted the genome into 100kb bins and derived 

mean replication times for each cell line across each bin. For each interacting region, we 

then computed a single replication time for each cell line by taking the replication time of 

the 100kb bin in which the region is located, or the average replication time if the region 

spanned multiple 100kb bins. For each interacting region, we then identified the top 5% of 

interacting regions with the most similar replication times across cell lines, measured using 

the Euclidian distance between the vectors of times. The background nucleotide mutation 

rate qi could then be estimated by dividing the number of mutations in this 5% of interacting 

regions across all samples by the total number of samples with mutation data and the total 

effective length of the regions. These results are robust to the percentage of interacting 

regions considered (Supplementary Table 18). We excluded the areas of the interacting 

regions overlapping ORFs, 3’ UTRs, 5’ UTRs and areas with poor mappability 

(Supplementary Note). The removal of these areas is incorporated into the effective lengths 

of the regions. The estimated sample mutation rate si is dependent on the estimated 

nucleotide mutation rate qi of the region under the null hypothesis, and the effective size of 

the region Li:

s
i

= 1 − (1 − q
i
)
L

i .
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Mutational excess P-values follow discreet distributions and we therefore computed 

randomised P-values for each region i using the right tail masses, as per Imielinski et al22:

a
i

= P(X ≥ k) = 1 − ∑
j = 0

k − 1
n

j
s
i
j(1 − s

i
)n − j

b
i

= P(X ≥ k + 1) = 1 − ∑
j = 0

k
n

j
s
i
j(1 − s

i
)n − j

p
i

∼ Uni f orm(b
i
, a

i
)

where n is the total number of cancers, k the number of cancers with ≥ 1 mutation in region i 

and pi is the corresponding randomised P-value. Inflation factor estimation was conducted 

with the regression method implemented in the GenABEL R-package52. Using all P-values 

indicated that the statistics generated under this model are weakly inflated (λ100%=1.08; 

Supplementary Fig. 18).

Testing for clustering of non-coding mutations in CREs—We evaluated whether 

CRE mutations cluster using the weighted average proximity (WAP) method21:

WAP = ∑
i ≠ j

e

−(
d

i, j
2

2t
2

)

where d is the linear genomic distance between mutations i and j, and t is a weighting 

constant. As per Rheinbay et al.21, we used t=6, as this reflects the typical size of the core of 

TF binding motifs. Statistical significance of each WAP score was determined by permuting 

mutation positions 10,000 times, whilst maintaining the size of the CRE and excluding 

regions overlapping ORFs, 3’ UTRs, 5’ UTRs and regions with poor mappability 

(Supplementary Note). Empirical P-values were calculated as the proportion of mutation 

permutations with WAP scores at least as great as the WAP score computed using the 

observed mutation positions.

Empirical FDR estimation

We estimate an empirical FDR for the identified CRE by comparing the number of results 

yielded by the integrated driver discovery analysis when using real and randomised CHi-C 

data (Supplementary Fig. 7b). CHi-C data were randomised by changing the HindIII 

fragments contacting each gene, by sampling from non-interacting fragments (CHiCAGO 

score <1) within 1Mb of the gene, whilst maintaining the number of fragment contacts. The 

integrated driver discovery analysis was then applied in full to each randomised CHi-C data 

set. The expected number of false discoveries was estimated as the mean number of CREs 

yielded by the integrated driver discovery analysis across 1,000 randomised CHi-C data sets. 

The empirical FDR was estimated as the ratio of false discoveries to the total number of 

CREs detected when the real CHi-C data were used53.
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Relationship between gene expression and CNV at CREs

To identify CNVs overlapping CREs, we utilised Affymetrix Genome-Wide Human SNP 

Array 6.0 copy number data from the TCGA COAD study of 450 cancers and the READ 

study of 165 cancers. Focal deletions and amplifications were defined as abs(log2ratio) 

≥0.354 and size <3Mb55. We analysed matched RSEM RNAseq and CNV data from the 

TCGA COAD and READ studies (n=606). To identify cancers with deleted or amplified 

CREs correlated with expression of an interacting gene, we applied the following filters to 

each CRE-promoter interaction: (i) we identified cancers with a focal amplification or 

deletion of the CRE; (ii) we excluded cancers with evidence of a CNV at the interacting 

gene (a GISTIC2 score ≠0); (iii) we restricted our analysis to CREs affected in ≥7 samples 

(representing 1% of samples). We compared gene expression between affected and 

unaffected samples using edgeR50 with default parameters. Samples were considered 

unaffected if there was no evidence of a CNV at the CRE (a GISTIC2 score =0). Genes that 

showed differential expression between affected and unaffected samples and an absolute 

correlation coefficient ≥0.4 between GISTIC2 score and gene expression value were taken 

forward for further analysis.

Relationship between CRE mutation and translocations and inversions

Since translocations and inversions can dysregulate gene expression we examined for 

translocations and inversions in the proximity of mutated CRE target genes. Translocation 

and inversion breakpoints, called using dRanger56, were downloaded from the International 

Cancer Genomic Consortium Data Portal (accessed 30 July 2017).

Genomic DNA extraction

Cells were collected, washed twice in PBS and genomic DNA was extracted using QIAamp 

DNA Blood Mini Kit (Qiagen). DNA concentration was measured using Qubit dsDNA BR 

Assay (ThermoFisher Scientific).

3C-PCR validation

3C was used to validate ETV1 and RASL11A interactions in a panel of colon derived MSS 

CRC cell lines. Two cell culture replicates of in situ 3C libraries were prepared using HT29, 

SW480, SW1116, Caco2, HT115 and SW948 cells. Cell pellets were cross-linked, digested 

with HindIII, and ligated using the same conditions described in the Hi-C section, excluding 

the biotin step. Digestion and ligation efficiency were assessed on agarose gel before 

proceeding to phenol-chloroform purification. Ligation primer pairs were designed to 

amplify ligation junctions between the promoter and interacting HindIII fragment (promoter-

CRE) (Supplementary Table 19). Genomic DNA was used as control for the possibility that 

amplification across ligation junctions could be the result of structural variations. To prove 

fidelity of genomic DNA as template, primer pairs were also designed to amplify the 

genomic region around each of the ligation primers (Supplementary Table 19). All primers 

were designed using Primer3. Regions were amplified using Multiplex PCR Kit (Qiagen); 

100ng template DNA amplified using the following procedure: initial 15 min denaturation at 

95°C followed by 38 cycles of 95°C for 30 seconds, 60°C for 90 seconds, 72°C for 45 

seconds. 5μl of each PCR reaction was visualised on 2% agarose gels stained with ethidium 
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bromide. Identity of fragments visualised on agarose gels was confirmed by Sanger 

sequencing (Supplementary Fig. 9).

Plasmid construction and luciferase assays

The length of the full region spanning the six mutations is over 1.2kb and therefore a 1.6kb 

fragment would have been required to ensure that all mutations mapped centrally within the 

fragment. In view of this we decided to clone the two fragments separately, so as to have 

cloned inserts <1kb. A 946bp and a 738bp genomic region within the ETV1 CRE were 

amplified from human genomic DNA using primers detailed in Supplementary Table 19. 

Gel-purified PCR products (Qiagen) were A-tailed using 2U Thermoprime DNA polymerase 

(ThermoFisher Scientific) and 200μM dATP for 30 min at 70°C. The products were cloned 

into the PCR8/GW/TOPO vector and single bacterial colonies containing the vector were 

cultured and purified (Qiagen Mini-prep Kit). The six somatic mutations were generated 

with site-directed mutagenesis (SDM) (Agilent Quick Change XL kit) using primers detailed 

in Supplementary Table 19. SDM changes were confirmed by Sanger-sequencing. 

Regulatory regions with both non-mutated and mutated sequences were cloned into pGL3 

luc2-promoter vector (Promega) using Gateway LR Clonase II technology (ThermoFisher 

Scientific). The reporter constructs were transfected into HT29 using Lipofectamine 2000 

(ThermoFisher Scientific). Briefly, 7.5×105 cells were seeded and transfected the following 

day with 3μg reporter constructs and 150ng of internal control plasmid (pRL-TK). 

Transiently transfected cells were cultured for 24 hours, following which the luciferase assay 

was performed using the Dual-Luciferase Reporter Assay System (Promega) as per 

manufacturer's recommendations. Firefly and Renilla luciferase luminescence were 

measured in triplicate on a Fluoroskan Ascent FL plate reader (ThermoFisher Scientific). 

The ratio of luminescence from the experimental reporter to the luminescence from the 

control reporter was calculated for each sample, defined as the relative luciferase activity.

CRISPR-Cas9-mediated enhancer disruption

Two set of guide RNAs (gRNAs) were designed to target the CRE interacting with the 

RASL11A promoter using E-CRISP57. To check that the required PAM sequence was not 

altered in the HT29 cell line, the region where the gRNAs were mapped was Sanger-

sequenced using genomic DNA. Each set of gRNAs was designed to target upstream and 

downstream of the enhancer region, and cloned in one plasmid expressing the Cas9 gene and 

the RFP-marker. A control plasmid was generated containing all the elements of the 

targeting plasmids other than the gRNAs. Custom plasmids were obtained from ATUM. 

gRNA sequences are reported in Supplementary Table 19. HT29 were seeded at 7.5x105 

density in 6-well plates and transfected the following day with 10μl of Lipofectamine 2000 

(ThermoFisher Scientific) and 2μg of the respective plasmids. 48 hours post-transfection 

cells expressing RFP were selected and seeded into using FACSAriaIIμ cell sorter (BD 

Biosciences) in a 24-well plate. After 2-3 weeks cells were harvested to extract either 

genomic DNA to confirm the enhancer deletion, or total RNA to assess gene expression. 

Primers used to assess the deletion are listed in Supplementary Table 19.
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Cell viability assays

In 96-well plates, cells were transfected with siRNAs and incubated with Cell Titer Glo 

reagent according to the manufacturer's protocol (Cell Titer Glo Luminescent Cell Viability 

Assay kit, Promega). For each experiment, luminescence was measured in triplicate at 0, 24, 

48 and 72 hours post-transfection using a Fluoroskan Ascent FL plate reader (ThermoFisher 

Scientific) (Supplementary Fig. 16).

Real-time cell proliferation assays

After RNAi transfection, 96-well plates were introduced into an Incucyte Zoom imaging 

system (Essen BioScience) enclosed in an incubator at 37°C and 5% CO2 humidified air. 

Each well was imaged by phase contrast every four hours for 92 hours. Images were 

collected and the percentage of confluence determined using software provided by the 

manufacturer. Confluence was averaged over four fields of view per well. Data were 

normalised to the first scan to account for differences in seeding across individual samples 

and across replicates.

Statistical analyses

The observed and expected mutation rates in promoters and CREs were compared using 

two-sided paired Wilcoxon tests. CHi-C interactions involving promoters of active and 

inactive genes were compared using two-sided Wilcoxon tests8. For luciferase, cell viability 

and real-time cell proliferation assays, statistical significance was calculated using two-

tailed t-tests over three independent experiments. The Benjamini-Hochberg procedure was 

used to adjust for multiple testing, unless otherwise specified.

Reporting summary

Further information on our experimental design is available in the Nature Research 

Reporting Summary document linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow for the identification of mutated cis-regulatory elements in colorectal cancer.
CRE, cis-regulatory element; SNV, single nucleotide polymorphism; CNV, copy-number 

variation.
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Figure 2. Non-coding mutations in cis-regulatory elements.
Mutation rates in promoters, CREs and genome-wide in MSI (n=12) and MSS (n=50) 

cancers. Shown are both the mutation rates observed in promoters and CREs, and the 

mutation rates expected considering the sample-specific occurrence of mutations of each of 

the 96 substitution types, and the trinucleotide composition of the fragment classes. Box-

plots denote quartiles. Whiskers correspond to the 10th and 90th percentiles. Difference 

assessed using a two-sided paired Wilcoxon test.
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Figure 3. Cis-regulatory element mutation affects ETV1 expression.
(a) Chromatin looping interactions between the ETV1 promoter and CREs in HT29. Also 

detailed are the relative positions of SNVs for the significantly mutated CRE and the 

evolutionary conservation of the region, as measured using PhastCons 100-way smoothed 

scores and track. (b) Relationship between mutation status and ETV1 expression in MSS 

cancers. One sample containing a CNV overlapping ETV1 was excluded. Box-plots denote 

quartiles. Whiskers correspond to the 10th and 90th percentiles. Difference between samples 

in which the CRE is mutated (mut, n=5) and not mutated (non-mut, n=41) assessed by 

negative binomial test. (c) A 946bp and a 738bp putative regulatory regions containing the 

six mutations were cloned upstream of the SV40 promoter in the pGL3-promoter vector. 

The resultant reporter constructs were transiently transfected into HT29 for 24 hours and the 
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relative luciferase activity was measured for each reporter gene construct. The luminescence 

ratio of the experimental vector to the Renilla internal control, pRL-TK, was normalised to 

the backbone pGL3-SV40 promoter vector. Data shown are mean ± SEM relative to the non-

mutated (Non MUT) samples from three independent experiments and assessed by two-

tailed t-test, n.s., non-significant.
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Figure 4. Amplification of cis-regulatory element upregulates RASL11A expression.
(a) The amplification of the CRE interacting with the RASL11A promoter; upper track, 

CNVs overlapping the CRE in 12 samples; middle track, H3K4me1 mark in HT29 and 

LoVo; lower track, CHi-C interactions in HT29 and LoVo. (b) RASL11A expression in CRC 

stratified by CRE amplification status (samples with CNV overlapping RASL11A 

excluded). Box-plots denote quartiles. Whiskers correspond to the 10th and 90th percentiles. 

Difference between samples in which the CRE is affected (CRE aff, n=12) and unaffected 

(CRE unf, n=522) by a CNV amplification assessed by negative binomial test. (c) Schematic 
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representation of the CRISPR/Cas9-mediated deletion using two plasmids expressing 

different sets of gRNAs. (d) Barplots showing RASL11A mRNA levels relative to GAPDH 

in control (CTR) and CRISPR-edited cells (CRISPR-1 and CRISPR-2). Differences assessed 

by two-tailed t-test from three independent experiments, mean ± SEM. (e) Expression levels 

of six genes in the proximity of the CRE in the samples where the CRE is affected (aff) or 

unaffected (unf) by CNV amplification (RASL11A unf n=522, RASL11A aff n=12, USP12 

unf n=524, USP12 aff n=7, RPL21 unf n=522, RPL12 aff n=12, WASF3 unf n=523, WASF3 

aff n=14, GTF3A unf n=521, GTF3A aff n=12, GPR12 unf n=523, GPR12 aff n=13). 

Samples containing CNVs overlapping the respective gene are excluded from each 

comparison. Box-plots denote quartiles. Whiskers correspond to the 10th and 90th 

percentiles. Differences assessed by negative binomial test, n.s., non-significant.
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Figure 5. ETV1 and RASL11A levels are associated with differential cell growth.
(a) Relative luminescence of ETV1, RASL11A and control (CTR) knockdowns. Differences 

assessed 72 hours post-transfection by two-tailed t-test using three independent experiments, 

mean ± SEM. (b) Relative confluence of ETV1, RASL11A and control treated cells. Values 

normalised to the 0 hour time-point confluence. Differences assessed 96 hours post-

transfection by two-tailed t-test using three independent experiments, mean ± SEM. (c) 

Barplots showing ETV1 and RASL11A mRNA levels, normalised to GAPDH, after siRNA 

treatment. Differences assessed by two-tailed t-test using three independent experiments, 

mean ± SEM.
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