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Abstract

Background: Cervical Cancer (CC) exhibits highly complex genomic alterations. These include

hemizygous deletions at 4p15.3, 10q24, 5q35, 3p12.3, and 11q24, the chromosomal sites of Slit-Robo

pathway genes. However, no candidate tumor suppressor genes at these regions have been identified so

far. Slit family of secreted proteins modulates chemokine-induced cell migration of distinct somatic cell

types. Slit genes mediate their effect by binding to its receptor Roundabout (Robo). These genes have

shown to be inactivated by promoter hypermethylation in a number of human cancers.

Results: To test whether Slit-Robo pathway genes are targets of inactivation at these sites of deletion,

we examined promoter hypermethylation of SLIT1, SLIT2, SLIT3, ROBO1, and ROBO3 genes in invasive CC

and its precursor lesions. We identified a high frequency of promoter hypermethylation in all the Slit-Robo

genes resulting in down regulated gene expression in invasive CC, but the inhibitors of DNA methylation

and histone deacetylases (HDACs) in CC cell lines failed to effectively reactivate the down-regulated

expression. These results suggest a complex mechanism of inactivation in the Slit-Robo pathway in CC. By

analysis of cervical precancerous lesions, we further show that promoter hypermethylation of Slit-Robo

pathway occurs early in tumor progression.

Conclusion: Taken together, these findings suggest that epigenetic alterations of Slit-Robo pathway genes

(i) play a role in CC development, (ii) further delineation of molecular basis of promoter methylation-

mediated gene regulation provides a potential basis for epigenetic-based therapy in advanced stage CC,

and (iii) form epigenetic signatures to identify precancerous lesions at risk to progression.
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Background
Metastasis and treatment failure is a significant cause of
death in invasive Cervical Cancer (CC). Although combi-
nation chemotherapy with cisplatin as a primary agent
has been commonly used in CC, the overall survival rate
did not significantly improve [1]. Despite the obvious role
of invasion and metastasis in treatment failure of CC, the
molecular mechanisms remain poorly understood. A
wide number of genes implicated in metastasis that play
role in the migration of tumor cells have been identified
[2]. In particular, chemokines that contribute to tumor
cell invasion and growth plays a major role in metastasis
[3]. Recently, a regulatory molecular pathway involving
proteins of Slit-Robo genes has been shown to modulate
chemokine-induced leukocyte migration [4,5]. The Slit
family of secreted proteins has been identified as molecu-
lar guidance cues including cell migration. Slit genes
mediate their effect by binding to its receptor Roundabout
(Robo) and by an intracellular signal transduction path-
way that includes the Abelson kinase, the Enabled pro-
tein, GTPase activating proteins, and the Rho family of
small GTPases [6]. Interestingly, Slit also appears to use
Roundabout to control leukocyte chemotaxis besides neu-
ronal migration, suggesting a fundamental conservation
of mechanisms guiding the migration of distinct types of
somatic cells [6].

Recent studies show that Slit-Robo pathway genes are
inactivated by promoter hypermethylation in a number of
tumor types [7-11]. The chromosomal regions that map
Slit-Robo pathway genes have been shown to be fre-
quently deleted in CC [12,13]. We hypothesize that the
Slit-Robo pathway genes may be targets of inactivation by
a combination of deletion and epigenetic mechanisms in
CC. In order to test this, we have investigated five genes in
this pathway for epigenetic changes during CC progres-
sion.

Results and discussion
The chromosomal bands 4p15.3 (SLIT2), 10q24 (SLIT1),
5q35 (SLIT3), 3p12.3 (ROBO1 and ROBO2), and
11q24.2 (ROBO3 and ROBO4) that Slit-Robo pathway
genes are located have been previously shown to be fre-
quent targets of LOH in CC [12,13]. To identify if the Slit-
Robo pathway genes are targets of chromosomal dele-
tions, we chose to examine loss of heterozygosity (LOH)
in the vicinity of SLIT2 at 4p15.3 and ROBO1/ROBO2 at
3p12.3 regions, the two most critical genes in the path-
way. We performed LOH in 30 primary tumors using STS
markers (D4S1593, D4S1562, D4S2946, D4S1525,
D3S1542, D3S3681, D3S3031, and D3S3508) mapped
close to these genes. This analysis found hemizygous dele-
tions of one or more of these loci in only 9% and 10% of
CC at 4p15.3 and 3p12.3, respectively (data not shown).
This data, thus, suggests that genomic regions spanning

SLIT2 and ROBO1/ROBO2 genes are not frequent targets
of LOH in CC. Because of the recent reports of promoter
hypermethylation of SLIT2 and ROBO1 genes in multiple
tumor types [7-9,11,14], we reasoned that this family of
genes may be targets of epigenetic inactivation in CC. To
test this hypothesis, we examined the status of hypermeth-
ylation of SLIT1, SLIT2, SLIT3, ROBO1, and ROBO3 genes
that harbor CpG islands in their promoters in CC progres-
sion.

Slit-Robo pathway genes are concomitantly 

hypermethylated in invasive CC

To evaluate the methylation status of SLIT1, SLIT2, SLIT3,
ROBO1, and ROBO3 gene promoters, we employed the
methylation-specific PCR (MSP) method that qualita-
tively assess the presence or absence of hypermethylation
of a small number of CpG sites within the promoter [15].
Primers used for this analysis are shown in Table 1. Such
an analysis on 51 specimens obtained from normal cervi-
cal epithelia did not show any evidence of promoter
hypermethylation in SLIT1, SLIT2, SLIT3, ROBO1, and
ROBO3 genes. These data, thus, suggest that Slit-Robo
pathway genes are in unmethylated state in normal squa-
mous epithelium of cervix. However, our analysis of 119
DNAs derived from CC (9 cell lines and 110 primary
tumors) identified a high frequency of promoter hyper-
methylation of these genes ranging between 35.6–63.9%
tumors (Figures 1 and 2). SLIT2 was the most frequently
(76 of 119 tumors; 63.9%) methylated gene. Promoter
hypermethylation of SLIT1 in 52.9% (63 of 119 tumors),
SLIT3 in 49.2% (58 of 118 tumors), ROBO1 in 46.2% (55
of 119 tumors), and ROBO3 in 35.6% (42 of 118 tumors)
cases was found.

Promoter hypermethylation of SLIT2 ranging in fre-
quency between 25–72% has been reported in a broad
spectrum of tumors such as colon, glioma, lung, breast,
renal cell cancer, Wilms tumor, and neuroblastoma
[8,9,11,16]. Promoter hypermethylation of other Slit-
Robo pathway genes has not been extensively studied in
cancer. SLIT3 gene promoter hypermethylation ranging
from 7–41% has been shown in tumors arising from car-
cinomas of lung, breast, colon, and glioma [16]. Promoter
hypermethylation of SLIT1 gene reported to be present in
10% of gliomas [16]. The ROBO1 gene promoter methyl-
ation has been found in 4–19% in lung, breast, and renal
cell carcinomas [7]. ROBO3 gene promoter methylation
has not been reported in cancer so far. In the present
study, we identified promoter hypermethylation in all five
Slit-Robo pathway genes examined and the observed fre-
quency of methylation is the highest in any tumor type
reported thus far. One or more genes in this pathway
exhibited promoter hypermethylation in 85% of CC cases
suggesting a major role for the Slit-Robo pathway in this
cancer. Three or more genes showed promoter hyper-
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methylation in 53% of the tumors studied. Among the
101 tumors with promoter hypermethylation, 16 (13%)
showed methylation of all five genes (Fig. 2A and 2B). To
further confirm MSP results and to assess the extent of
methylation of CpG sites, we performed sequence analy-
sis on representative tumors either by direct sequencing of
PCR products or sequencing followed by cloning PCR
products. We found consistent results by both methods in
all tested cases (Fig. 2C). Furthermore, the sequencing
data provided a qualitative estimate of methylation of
CpG sites in all five genes examined. The extent of CpG

methylation varied among the genes tested in invasive
cancer and precancerous lesions. SLIT1 gene showed
87.5–93.8% methylated CpG sites, SLIT2 exhibited 100%
CpG site methylation, SLIT3 showed 40.7–100%, ROBO1
showed 41.7–100%, and ROBO3 showed 87.5% CpG site
methylation. We did not notice any substantial differ-
ences in the number of CpG sites methylated between
invasive cancer and precancerous lesions. Thus, this data
provide evidence for Slit-Robo pathway genes as targets of
promoter hypermethylation in CC and the concomitant
methylation of multiple genes further suggest a complex
mechanism of inactivation of this pathway in CC tumori-
genesis.

In order to further examine the role of Slit-Robo genes in
CC, we performed a correlative analysis of hypermethyla-
tion with clinico-pathologic features such as age, tumor
stage and size of the tumor, clinical outcome, and HPV
type in primary tumors. No significant differences were
found when individual genes were examined (data not
shown). No significant differences in promoter hyper-
methylation between cell lines and primary tumors were
found (data not shown). However, we found that advance
stage tumors (stages III and IV) exhibit a significantly (p <
0.025) higher frequency of promoter methylation in 2 or
more Slit-Robo family genes compared to early stage
(stages I and II) tumors (Fig. 2D). These data therefore
suggest that concomitant promoter hypermethylation and
inactivation of multiple Slit-Robo pathway genes play a
role in progression of CC.

The presence of concordant high frequency of promoter
hypermethylation of Slit-Robo pathway genes in CC is
reminiscent of the CpG Island Methylator Phenotype
(CIMP) in cancer [17]. The CIMP phenotype can be
caused by exposure to epimutagens, which potentially tar-
get gene-specific methylation in a cancer-specific manner
[18,19]. Infection of high-risk human papillomavirus
(HPV) is known to be primary cause of CC [20]. In the
present study, we did not find any significant correlation
between methylation frequency and various HPV types in
CC. However, a controlled study comprising a large
number of HPV-negative tumors is required to completely
rule out the role for HPV in Slit-Robo pathway gene meth-
ylation. Although the causes of CIMP remain poorly
understood, a significant correlation of DNA methyltrans-
ferases (DNMTs) expression with DNA hypermethylation
of multiple CpG islands has been shown [21]. DNMTs
have been also shown to be generally over express in can-
cer and play a role in aberrant DNA methylation [17,22].
To examine the role of DNMT expression in Slit-Robo
pathway gene methylation, we examined the expression
levels of DNMT1, DNMT3a, and DNMT3b by semi-quan-
titative RT-PCR analysis. We identified over expression of
all three tested DNMTs in CC. DNMT1 over expression

Table 1: Primers used for MSP, RT-PCR, and cloning and 

sequencing.

MSP primers:

SLIT1-MF2 5'-TtcgTtcgcgagTTagacg-3' 19 bp

SLIT1-MR2 5'-aAAcgccgtcgcttAAaAA-3' 19 bp

SLIT1-UF2 5'-TgggTttgTgTgTggTgTTT-3' 20 bp

SLIT1-UR2 5'-ttttcctcctcAcaAcaAtcaA-3' 22 bp

SLIT2-MF 5'-gggaggcgggattgTTTag-3' 19 bp

SLIT2-MR 5'-catAAcgcgcgAAAAtAcac-3' 20 bp

SLIT2-UF 5'-gTgggaggTgggattgTTTa-3' 20 bp

SLIT2-UR 5'-AcctctccctcAccctcAac-3' 20 bp

SLIT3-MF 5'-ggtttcgtcgatggagttgt-3' 20 bp

SLIT3-MR 5'-aaacgcgtaaaacccgaaa-3' 19 bp

SLIT3-UF 5'-TGTGggTTagTGgggTTagg-3' 20 bp

SLIT3-UR 5'-cacaaacaaaacaaaacactcca-3' 23 bp

ROBO1-MF2 5'-cggcggcgatagTagTTaaa-3' 20 bp

ROBO1-MR2 5'-cgAAActAAAAAcgcccaAa-3' 20 bp

ROBO1-MF3 5'-cggcgtgcgTTTTTaTaatg-3' 20 bp

ROBO1-MR3 5'-gccAcgAAtAAcccgctAct-3' 20 bp

ROBO1-UF 5'-TggTggTaaagttggggtgt-3' 20 bp

ROBO1-UR 5'-ccAaAcccttcctccAAaAc-3' 20 bp

ROBO3-MF 5'-gcgggaTtTtTagTcggTTT-3' 20 bp

ROBO3-MR 5'-gAcctctccgcaAActAAcg-3' 20 bp

ROBO3-UF 5'-TggTgggaTtTtTagTTggTTT-3' 22 bp

ROBO3-UR 5'-ccAcaActtccccAcAAcAc-3' 20 bp

RT-PCR primers:

SLIT1-F 5'-ctggaactcaatggcaacaa-3' 20 bp

SLIT1-R 5'-acaaagcctggttgttctgg-3' 20 bp

SLIT2-F 5'-tcagctgtttcctgagttgc-3' 20 bp

SLIT2-R 5'-tggttgaaacttgccacaga-3' 20 bp

SLIT3-F 5'-gcgcctgaacaagaataagc-3' 20 bp

SLIT3-R 5'-ggatgcgactgatgttgttg-3' 20 bp

ROBO1-F1 5'-tgtttctggcccagcttatt-3' 20 bp

ROBO1-R1 5'-gtgttcaacaatgcgaggtg-3' 20 bp

ROBO1-F2 5'-aaatatggtgggcaaagctg-3' 20 bp

ROBO1-R2 5'-ctggatgactgtggtggttg-3' 20 bp

ROBO3-F 5'-gcagtcctccgtgatgattt-3' 20 bp

ROBO3-R 5'-ttggaggctacgcacacata-3' 20 bp

Cloning Primers:

SLIT2-cl-F 5'-gaattTaaagTTtgggaaaagttg-3' 24 bp

SLIT2-cl-R 5'-cttccaacaactactaaaatacaaaaa-3' 27 bp

SLIT2-cl-F3 5'-agtgTtgaTtagtggatatttTtgTT-3' 26 bp

SLIT2-cl-R3 5'-tcttctAtctcccaaAAatAaactt-3' 25 bp

Nucleotides shown in upper case represent converted bases; MF and 
MR, methylation-specific forward and reverse primers; UF and UR, 
unmethylated forward and reverse primers; F and R, forward and 
reverse primers; cl-F and cl-R, cloning forward and reverse primers
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was found in all CC cases (100%), whereas the DNMT3a

(73.7%) and DNMT3b (78.9%) genes were over expressed
to a lesser extent in CC cases (Fig. 4). However, this over
expression of DNMTs showed no significant correlation
with promoter hypermethylation of Slit-Robo pathway
genes (data not shown), and therefore no relationship
between these molecular alterations could be established.

Slit2 inhibits chemotaxis and chemoinvasion by down-
modulating down-stream signaling molecules CXCR4/
CXCL12 and CXCL12-induced phosphatidylinositol 3
kinase [23] and Slit-2 protein can inhibit the migration of
endothelial cells lacking Slit-2 [5]. Therefore, the epige-
netic silencing of multiple Slit-Robo pathway genes may
play a role in invasive potential of CC cells. Based on the
functions of Slit-Robo family genes and our observations
raise a number of questions: i) what is the role of inactiva-
tion of both receptor and ligand in CC tumorigenesis? ii)
Is there an upstream regulator of promoter methylation of

Slit-Robo pathway genes in CC? iii) Are there any down-
stream effectors of Slit-Robo methylation that affect inva-
sion and migration of CC cells?

Promoter hypermethylation of Slit-Robo pathway genes is 

an early event in tumor progression

To identify the role of promoter hypermethylation of Slit-
Robo genes in CC progression, we studied DNA obtained
from 110 cytological smears diagnosed as low-grade squa-
mous intraepithelial lesions (LSIL) in 62 and high-grade
SIL (HSIL) in 48 cases by MSP. We found evidence of pro-
moter hypermethylation in at least one gene in 11 of 62
(17.7%) LSIL and 15 of 48 (31.3%) HSIL, which suggests
that Silt-Robo pathway genes are methylated early in CC
progression. Among the LSILs, a low frequency of hyper-
methylation occurs in SLIT2, SLIT3, ROBO1, whereas
SLIT1 and ROBO3 showed no methylation. While the
promoter hypermethylation of SLIT1, SLIT3, ROBO1, and
ROBO3 genes were low in HSIL, the SLIT2 gene showed

Frequency of promoter hypermethylation of Slit-Robo pathway genes in cervical cancer progressionFigure 1
Frequency of promoter hypermethylation of Slit-Robo pathway genes in cervical cancer progression. High molecular weight 
DNA isolated from pap smears and tissue sections was converted by sodium bisulphite [15]. MS-PCR was performed on con-
verted DNA using primers specific to methylated and umethylated templates of each gene (Table 1). PCR products were sepa-
rated on 2% agarose gels and visualized after ethidium bromide staining. Promoter methylation was scored on gels in the 
presence of positive and negative controls in each experiment. LSIL, low-grade squamous intraepithelial lesion; HSIL, high-
grade squamous intraepithelial lesion. The total number of specimens analyzed in each type of tissue and gene are shown in 
parenthesis in the table below.
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Analysis of methylation of Slit-Robo pathway genes in cervical cancer cell lines and primary tumorsFigure 2
Analysis of methylation of Slit-Robo pathway genes in cervical cancer cell lines and primary tumors. A. MSP analysis. U, 
unmethylated; M, methylated. T, tumor. B. Concomitant hypermethylation of more than one Slit-Robo genes in primary cervi-
cal cancer. Frequency of number of genes methylated is shown. C. Sequence analysis of MSP products of SLIT1 and SLIT2 genes. 
SLIT2 sequences were derived from cloning of PCR products and SLIT1 was direct sequencing of MSP products. T, tumor; pap, 
cytologic smear. CpG sites are underlined. Unconverted sequence is shown above chromatogram for each gene. D. Number 
of Slit-Robo genes methylated in various stages of invasive cervical cancer.
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Analysis of Slit-Robo pathway gene expression by RT-PCR in cervical cancer cell lines and primary tumorsFigure 3
Analysis of Slit-Robo pathway gene expression by RT-PCR in cervical cancer cell lines and primary tumors. A. Expression of 
SLIT1, SLIT2, SLIT3, and ROBO1 genes. Note the high-levels of expression in normal cervix, complete loss or down-regulated 
expression in the cell lines (CaSki, HT-3, SiHa, SW756, ME-180, and HeLa) and primary tumors (shown by prefix "T" for 
tumor). B-C. Effect of demethylation and acetylation on SLIT2, ROBO1, SLIT1, and SLIT3 genes. FANCF gene is shown as a con-
trol for reactivation of expression in SiHa and ME-180 in panel B [31]. Lanes 1, untreated; 2, 5-aza-CdR-treated (5 or 10 µM 
for 5 days); 3, TSA treated (100 nM for the last 24 hours); 4, 5-aza-CdR and TSA treated. Note that SLIT2 promoters were 
methylated in all three-cell lines but only ME-180 showed reactivation, while HT-3 showed minimal reactivation only in com-
bined 5-aza-CdR and TSA treated cells but not with other treatments. SiHa failed to reactivate. For ROBO1 gene, ME-180 had 
methylated promoter and showed reactivated expression with all treatments. No reactivation of SLIT1 and SLIT3 genes in pro-
moter methylated CaSki cell line was found. Beta actin (empty arrow) used as an internal control; Filled arrows indicate specific 
genes used for RT-PCR. Promoter methylation status of each gene is shown below the panels.
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higher frequency of hypermethylation in 12 of 48 (25%)
cases (Fig. 1). This data suggest that SLIT2 inactivation is
an early and a primary event, while the methylation of the
other genes in the pathway occur later in the progression.
The natural history of cervical precancerous lesions varies
with approximately 1% of low-grade and 15% of high-
grade Cervical Intraepithelial Neoplastic lesions progress
to invasive cancer [24], and therefore, the epigenetic
changes documented here may form potential signatures
to identify precancerous lesions at high-risk to progress to
invasive cancer. However, analysis of a larger cohort of
precancerous and cancerous lesions is needed to validate
such a hypothesis.

Down regulated expression of Slit-Robo pathway genes in 

relation to promoter hypermethylation and inefficient 

reactivation after exposure to inhibitors of methylation 

and histone deacetylases

Although the Slit-Robo family proteins primarily express
in the developing nervous system, they also widely
express outside the nervous system in adult tissues sug-
gesting roles outside the developing embryo [25]. Con-
sistent to this, we found that all three Slit genes and
ROBO1 are ubiquitously expressed in normal cervical tis-
sues (Fig. 3A). However, no detectable expression of
ROBO3 in normal cervix or in CC cell lines by RT-PCR was
found and thus this gene was not studied for expression.
To further test the role of promoter hypermethyation of
SLIT1, SLIT2, SLIT3, and ROBO1 genes in CC, we studied
the expression by semi-quantitative RT-PCR analyses in

nine CC cell lines and 10 primary tumors. A complete loss
of or down regulated expression was found in the major-
ity of cases with promoter hypermethylation of SLIT2 (9
of 11; 81.8%), SLIT1 (8 of 11; 72.7%), SLIT3 (11 of 11;
100%), and ROBO1 (6 of 7; 87.5%) genes compared to
normal cervices (Fig. 3A). Overall, the down-regulated
expression correlate with promoter hypermethylation and
these results suggest that epigenetic promoter methylation
play a role in inactivating Slit-Robo pathway genes in CC.

DNA hypermethylation-mediated gene silencing is closely
associated with histone modifications such as methyl-H3-
K9. In this regard, the DNA demethylating agent 5-aza-2'-
deoxycytidine (5-aza-CdR) and the HDAC inhibitor TSA
reactivates expression of epigenetically silenced genes
[26]. We examined the expression of these genes in cell
lines after treatment with 5-aza-CdR, TSA, or both to test
if the promoter hypermethylation-mediated down modu-
lated gene expression can be reversed by demethylation
and inhibition of HDACs. Of the five cell lines with SLIT2

promoter hypermethylation two (C-4I and SiHa) failed to
induce reactivation after 5-aza-CdR or TSA treatments.
Two other cell lines (SW756 and HT-3) showed minimal
reactivation after treatment with one or the other drug.
ME-180 is the only cell line that showed reactivation com-
parable to normal expression (Fig. 3B). None of the four
cell lines (CaSki, HT-3, SW756, and SiHa) with SLIT1

methylated promoters showed reactivation (Fig. 3C). The
SLIT3 gene failed to reactivate in two (CaSki and SiHa) of
four methylated cell lines. The other two (SW756 and

Analysis of expression of DNMT genes in normal cervix, cervical cancer cell lines, and primary tumorsFigure 4
Analysis of expression of DNMT genes in normal cervix, cervical cancer cell lines, and primary tumors. A. Multiplex RT-PCR 
analysis of DNMT1, DNMT3a, and DNMT3b genes. Prefix "T" indicates primary tumor. Beta actin (empty arrow) used as an 
internal control; Filled arrows indicate specific genes used for RT-PCR. B. Table showing the frequency of over expression of 
each of the genes based on semi-quantitative analysis.
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HeLa) cell lines showed only minimal reactivation after 5-
aza-CdR treatment but not with TSA (Fig. 3C). The
ROBO1 gene showed reactivated expression only in one
of two (CaSki and ME-180) methylated cell lines (Fig.
3B). Thus, these data indicate that the demethylation of
promoters of Slit-Robo pathway genes do not effectively
reactivate gene expression. This failure or inappropriate
reactivation of gene expression after 5-aza-CdR or HDAC
treatments can be due to number of experimental prob-
lems such as aged buffered 5-aza-CdR or inadequate peri-
ods and concentrations of drug exposure. We ruled out
these possibilities by using fresh 5-aza-CdR, varying drug
concentrations (5 µg and 10 µg) and period of exposure
(5 to 10 days), and in triplicate assays. The effect of drug
treatment on demethylation was also confirmed by MSP
in which the amplification of methylated allele was either
completely absent or highly decreased and a reappearance
of unmethylated alleles in a biallelically methylated cell
lines (Fig. 5). Our cloning and sequencing analysis of 5-
aza-CdR treated and bisulphate-converted DNAs also
showed a rate of 33–65% demethylated CpG sites of
SLIT2 gene (data not shown).

Although the role of demethylating drugs that target tran-
scriptional repressor complexes in tumors remains poorly

understood, it is known that the interaction of receptors
and their cognate ligands is critical in mediating gene acti-
vation[27]. The present observation of inefficient reactiva-
tion of Slit-Robo pathway genes after treatment with 5-
aza-CdR in CC may be due to concomitant promoter
hypermethylation of receptors and ligands resulting in
failure of ligand-receptor interactions. Also, it has been
shown that DNMT inhibitor 5-aza-CdR treatment has
been shown to induce reactivation of only a limited
number of genes in a tissue and pathway specific manner
[28]. Based on this, Karpf et al. proposed that the mecha-
nism of transcriptional regulation of 5-aza-CdR-mediated
gene reactivation requires both a reversal of hypermethyl-
ation and the presence of trans-factors that mediate the
activation of hypomethylated target promoters. In the
present study, we show that the reversal of promoter
hypermethylation of Slit-Robo pathway genes could be
achieved after 5-aza-CdR treatment. However, we were
unable to simultaneously achieve the gene re-activation.
These data, thus, suggest that the promoter methylation-
mediated activation of Slit-Robo pathway also requires
critical upstream transcriptional regulators. The identifica-
tion of such promoter specific transcriptional activators of
Slit-Robo genes is essential to understand the role of
hypemethylation of this pathway and to fully realize the
scope of 5-aza-CdR-mediated gene activation. Whether
such a phenomenon of Slit-Robo pathway regulation is
restricted to CC or exists in other tumor types remains
unknown.

Conclusion
The present study identified a high frequency of promoter
hypermethylation of Slit-Robo pathway genes in invasive
CC and the associated precancerous lesions. These data,
thus, suggest that Slit-Robo pathway inactivation signifi-
cantly contribute to the pathogenesis of CC. These results
provide new insights into possible pathogenic mecha-
nisms in CC transformation and may have clinical impli-
cations in designing epigenetic-based therapy in the
treatment of advanced stage CC. The occurrence of pro-
moter hypermethylation in precancerous lesions and their
association with progression to invasive CC suggests that
these alterations may serve as biomarkers of risk predic-
tion in progression.

Methods
Patients, tumor tissues, and cell lines

A total of 119 samples of DNA derived from 110 at-diag-
nosis tumor biopsies from invasive CC and nine cell lines
were used. The tumor biopsies were ascertained from
patients evaluated at the Instituto Nacional de Cancerolo-
gia (Santa Fe de Bogota, Colombia), Department of
Obstetrics and Gynecology of Friedrich Schiller University
(Jena, Germany), and Columbia University Medical
Center (New York) after appropriate informed consent

Effect of inhibition of DNA methylation by 5-aza-CdR and TSA-treatment on SLIT3 promoter in SiHa cell lineFigure 5
Effect of inhibition of DNA methylation by 5-aza-CdR and 
TSA-treatment on SLIT3 promoter in SiHa cell line. Bialleli-
cally methylated HIC1 gene was used as control [29]. U, 
unmethylated primer; M, methylated primer; Note the 
absence of methylated allele after treatment with 5-aza-CdR, 
and 5-aza-CdR+TSA of SLIT3 gene (top panel). Note the 
decreased intensity of methylated allele and reappearance of 
unmethylated allele of HIC1 after 5-aza-CdR, and 5-aza-
CdR+TSA treatments (bottom panel).
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and approval of protocols by institutional review boards.
The primary tumors were clinically classified as FIGO
stage IB (27 tumors), IIB (31 tumors), IIIB (47 tumors),
and IV (5 tumors). Histologically, 105 tumors (Age range
27–85 yrs; mean 49 yrs) were classified as squamous cell
carcinoma (SCC) and five as adenocarcinoma (AC). Clin-
ical information was collected from most patients as
described [29]. Cervical swabs from 151 cases were col-
lected in phosphate buffered saline from patients attend-
ing the Gynecologic Oncology Clinic at Columbia
University Medical Center, New York, after appropriate
informed consent. Forty-one of these were diagnosed
cytologically as normal (Age range 16–74 yrs; mean 35.4
yrs) with no previous history of SIL, 62 as low-grade SIL
(Age range 14–66 yrs; mean 29.7 yrs) and 48 as high-
grade SIL (Age range 19–75 yrs; mean 39.2 yrs). In addi-
tion, we utilized 10 normal (Age range 41–64 yrs; mean
51.1 yrs) cervical epithelial cell preparations derived from
hysterectomy specimens as normal controls. The CC cell
lines HeLa, SiHa, SW756, C-4I, CaSki, C-33A, HT-3,
MS751 and ME-180 were obtained from the American
Type Culture Collection (Manassas, VA), and were grown
according to the supplier's recommendations. DNA and/
or RNA were isolated from frozen tumor tissues or cul-
tured cells by standard methods. RNA was obtained from
10-micron sections with H&E staining of adjacent sec-
tions to evaluate tumor content. Specimens that con-
tained more than 70% tumor cells were used for RNA
preparation.

Loss of Heterozygosity (LOH) analysis and HPV detection

LOH analysis was performed using STS primers for
D4S1593, D4S1562, D4S2946, D4S1525, D3S1542,
D3S3681, D3S3031, and D3S3508 obtained from Invit-
rogen (Carlsbad, CA) using standard methods [13,30].
Human papillomavirus types were identified as described
earlier [29].

Methylation Specific PCR (MSP) and sequencing

Genomic DNA was treated with sodium bisulphite as
described [29]. Placental DNA treated in vitro with SssI
methyltransferase (New England BioLabs, Beverly, MA)
and normal lymphocyte DNA converted with sodium
bisulphite was used as methylated and unmethylated con-
trols, respectively. Primers used for amplification of meth-
ylated and unmethylated promoters for each of the genes
are shown in Table 1. PCR products were run on 2% aga-
rose gels and visualized after ethidium bromide staining.
All MSP experiments were performed three times and the
promoter hypermethylation was considered positive only
when confirmed twice. MSP products were either directly
sequenced or sub-cloned into pCR2.1-TOPO (Invitrogen)
followed by sequencing multiple clones using primers
common to both methylated and unmethylated tem-
plates (Table 1).

Drug treatment

Cells in culture were treated with 5 or 10 µM of 5-Aza-
2'deoxycytidine (5-aza-CdR) for 5 to 10 days and 100–
500 nM of Trichostatin A (TSA) for 24 hours as described
[29].

RT-PCR analysis

Total RNA isolated from treated and untreated cell lines,
tumor tissues, and eight normal cervix uteri (three
obtained from different commercial sources and five from
hysterectomy specimens) was reverse transcribed as
described [29]. A multiplex semi-quantitative analysis of
gene expression was performed in replicate in three inde-
pendent experiments as described [29]. A given gene was
considered down regulated in a tumor when the level of
mRNA was less than two standard deviations, except for
ROBO1 in untreated cells, of the values obtained from the
normal cervix. Primers used in the present study are
shown in Table 1.

Statistical analysis

Statistical analysis was performed using a Chi-square test.
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