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Promoting Creative Design in Interactive

Evolutionary Computation
Taras Kowaliw, Alan Dorin, Jon McCormack

Abstract—We use a new measure of creativity as a guide in
an interactive evolutionary art task and tie the results to natural
language usage of the term “creative”. Following previous work,
we explore a tractable definition of creativity, one emphasizing the
novelty of systems, and its addition to an interactive application.
We next introduce a generative ecosystemic art system, EvoEco,
an agent-based pixel-level means of generating images. EvoEco
is used as a component of an online survey which asks users
to evolve a pleasing image and then rank the success of the
process and its output. Evolutionary search is augmented with the
creativity measure, and compared with control groups augmented
with either random search or a measure of phenotypic distance.
We show that users consistently rate the creativity measure-
enhanced version as more “creative” and “novel” than other
search techniques. We further derive additional insights into
appropriate forms of genetic representation and pattern space-
traversal in an interactive evolutionary algorithm.

Index Terms—Interactive Evolution, Computational Creativity,
Electronic Art, Artificial Ecosystem

I. INTRODUCTION

Interactive evolutionary computation (IEC) is the use of a

human-computer interface as a component of an evolutionary

optimization task. An interactive evolutionary algorithm (IEA,

including interactive genetic algorithms) typically uses a hu-

man’s opinion as some component of the objective function:

a powerful means of approaching design, allowing for a com-

bination of the search capacities of evolutionary computation

with a user’s expert knowledge or aesthetic criteria [30]. It

is an active research area, used in many diverse domains

(summarized in [30], [35]). More recent work includes the
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design of ergonomic chairs [5], building layouts [33], and

hearing aids [36].

IEC has a close relationship with electronic art, with many

seminal works realized via IEAs. Indeed, arguably the first

example of an IEA1 was an art task, undertaken by hand rather

than on computer: artist William Latham utilized a large piece

of paper, a die, and a methodical drawing procedure to explore

a generative space of sculptural forms, a precursor to his later

machine-based work [37]. IEC has been intimately involved

in the electronic arts (reviewed in [20]), and remains an active

area of research [15], [29], [32].

There have been several attempts to evolve art without

interactivity as well, where the subjective opinion of the

human operator is replaced with a fitness function designed to

emulate human aesthetic preference. These attempts include

the training of neural networks on successful examples of art

[3]; the use of mathematics based on the complexity and com-

pressibility of the images [23]; and the use of co-evolutionary

techniques [13]. While some success has been attained by

these systems, we generally believe that it is necessary, at

least given the current state-of-the-art, to keep a human-in-

the-loop. Indeed, this was an explicit recommendation of two

of the aforementioned papers.

There are, however, several obstacles to the use of inter-

active evolution, a significant example being user fatigue:

evolutionary computation works via the evaluation of many

potential patterns, and often the number of evaluations re-

quired by certain domains or representations can overwhelm

a human operator [9], [27]. There have been several ap-

proaches to ameliorating user fatigue, including: using meta-

feature clustering to gradually learn and predict a user’s

judgement [25]; using a partial ordering and an SVM to

synthesize a subjective fitness function [21]; transforming the

representation to reflect a value-based model [17]; training a

1Latham’s work was approximately contemporaneous with Dawkins’
Biomorphs [6], also often cited as the first example of an IEA.
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neural network on a database of externally-collected, highly fit

examples to automatically define an iterative fitness function

[24]; and expanding the role of the artist during evolution

by allowing the artist several means of access to the system,

including direct manipulation of the genotypes [22]. Here

we look at a different strategy for reducing user fatigue by

attempting to automatically detect and emphasize creative

designs. Unlike approaches that require modification of the

design space representation, our approach is applicable in

cases where the relationship between representation and final

design is complex and nonlinear (e.g., generative systems);

It does, however, require a collection of features adept at

describing the design space.

In this paper, we consider the use of an IEA in an evolu-

tionary art task. Specifically, we develop an artistic engine we

believe capable of autonomously generating a wide array of

novel images, and evolve those images via an IEA. To augment

this algorithm, we introduce a measure of creative novelty,

based on a new theoretical definition. Via a user study, we

evaluate our system, comparing the augmented version with

two control versions, and ultimately judging the success of

our approach by considering the natural language responses

of users.

Section II discusses some previous notions of creativity

and their inclusion in automated design tasks. We present a

recent theoretical definition, including our simplified version

thereof, defined using a collection of features over the space

of images. We also present a fast means of approximation.

Section III discusses the use of ecosystem inspired methods

(“ecosystemics”) in generative art. We introduce our ecosys-

temic process for generating images, EvoEco, and define an

IEA using three special search techniques: the first based

on our measure of creativity, a second based on phenotypic

distance, and a third consisting of simple random search.

Finally, Section IV presents and analyzes the user study

through which we evaluate the success of EvoEco.

II. A TRACTABLE THEORY OF CREATIVITY

The literature on creativity is vast. A popular definition of

creativity is that it involves generation of appropriate novelty

[4]. That is, a creative system is reliably able to generate

artefacts or ideas that are new relative to some personal or

historical pretext. Not only are these artefacts or ideas new,

they are also appropriate, useful, or valuable in a particular

context or task.

The possibility exists that some well-chosen formal notion

of creativity can be used to drive automated systems to greater

utility. Indeed, some progress in this regard has already been

made. DiPaola and Gabora incorporated a psychological no-

tion of fluid thinking into a GP-based evolutionary art system,

utilizing an automated fitness function based on some aesthetic

principles of portrait art to produce “abstract portraits” [8].

It is important to note a subtle, but important distinction,

between aesthetically pleasing and creative systems. The

latter does not preclude the former, but they are in general,

independent (i.e. it is possible for a machine or algorithm

to generate aesthetically pleasing images without that system

being creative). In the case of the work presented here, we

introduce a creative system that assists the human aesthetic

selection process to generate “aesthetically pleasing” images.

Dorin and Korb have recently introduced a new and tractable

definition: “Creativity is the introduction and use of a frame-

work that has a relatively high probability of producing

representations of patterns that can arise only with a smaller

probability in previously existing frameworks” [11]. Hence, a

framework can be creative, based on its ability — according

to some measure — of reliably generating novel patterns.

The Dorin / Korb notion of creativity is at odds with

several popular notions. For instance, this definition considers

creativity as independent of notions of value and appropri-

ateness. According to Dorin and Korb, this eliminates the

contradictions inherent in tying the perception of novelty

and its perceived importance to the definition of the act of

generating creative ideas. This allows for the association of

creativity with an act or artifact independently of the opinions

of domain experts. Thus, this definition permits acts or artifacts

that break with the traditions established by existing practice,

as is often later recognized to be the case where creativity is

concerned. Dorin and Korb provide several further motivations

for their definition and respond to some obvious criticisms.

In this section, we summarize our previously explored

simplified version of the Dorin / Korb definition [18]. First,

we define a suitable feature space. These features will also be

used in a measure of phenotypic distance. Next, we discuss

what it means for a system to have some reliable additional

capacity relative to another system. Finally, we will discuss a

fast approximate measure of our creativity definition, which

we call creativity lite.

Our notion of creativity, including the approximate cre-

ativity lite, operates on some domain of patterns P = {p},

(here, finite-sized colour images), as described by a small set

of features. We consider the creativity of systems: generators

which accept some seed and (possibly stochastically) generate

some pattern p. Our notion of creativity considers the capacity

of a system S2 to reliably generate patterns which system S1

cannot. One can interpret S1 as the cognitive worldview of an

audience when presented with the work of a new artist, for

instance, or as a memory of systems already explored in an

interactive design task. Under this perspective, we make nearly

no assumptions regarding the distribution of system outputs,

save that non-trivially similar patterns lie in some small but

minimally sized interval in feature space. Notably, we will

make no other assumptions about the relationship between

distance and dissimilarity.

Note that in an evolutionary computation task, any indi-

vidual, along with the genetic operators, can be considered a

system. That is, assume we have an individual with genotype

g ∈ G, generative process δ, phenotype p = δ(g) ∈ P , and

some stochastic genetic operator, say mutate : G → G. Then,

we can consider (g, δ,mutate) a system which generates

output δ(mutate(g)). That is, individual g is viewed as a

system for producing child patterns.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR’S PREPRINT, 2011 3

A. Feature Space

In previous work [18], we have explored the use of a variety

of image features for the description of a space of artistic

images. We considered a collection of features independently

developed for use in image processing [14], [34] and content-

based image retrieval [16], [38]. Since these features were

developed for roles in specific tasks involving human visual

perception, we have good empirical reason to believe that they

approximate significant aspects of human vision. Hence, we

believe this collection of mass, histogram, edge, and texture

features to be an appropriate choice for measuring aspects of

discernability by the human visual system.

In this same previous work, several of these features were

explored for their capacity to be used in an evolutionary art

system, where they were partially evaluated on their ability

to identify interesting regions of phenotypic space. Here, we

select three which showed potential for identifying changes

we intuitively consider non-trivial, adapted for colour images.

We have elected to use: var(H(f)), var(S(f)), and E(B(f)),
where f is a colour image of any dimensions, var is a measure

of the variance, H , S and B are the hue, saturation and

brightness channels, and E is the entropy of the histogram.

Despite success in previous applications, we do not use spatial

moments, since growth in our image space — a torus — shows

little respect for image regions.

Given two images, f and g, we will also define the pheno-

typic distance between them:

d(f, g) = ((var(H(f))− var(H(g)))2 (1)

+(var(S(f))− var(S(g)))2

+(E(B(f))− E(B(g)))2

i.e., a function monotone increasing with Euclidean distance

in our feature space. Thus, our measure of phenotypic distance

is expected to be an approximation of some significant aspects

of human vision.

B. A Creative System

Let S1 and S2 be systems which map from a space of input,

x ∈ X , to the space of patterns P . We wish to claim that S2

is creative (or not) relative to S1 on the basis of what can

be reliably produced by the systems in question. We interpret

this as the capacity to find an interval in feature space that can

be reliably populated by system S2 but not by system S1. An

illustration of the concept of a creative region is illustrated in

Figure 1.

More formally, we assume an error-tolerance τ and con-

fidence c. We will write that an interval of feature space is

r = (r1 ± δ1, ..., rk ± δk), (where k = 3 in the current work),

and that a point p is contained in r, p ∈ r, if it is contained

within the bounds for all feature-space dimension. We aim to

estimate the true probability of Sj generating a point in interval

r, P [Sj(X) ∈ r], via the frequency of sample points, written

P̂ . Assuming our sample is representative, the (conservatively

estimated) margin of error associated with this frequency is

m.e.(P̂ [Sj(X) ∈ r]) =
z
√
n

(2)

Pr[S  ]

pr
ob

ab
ili

ty

feature space r

creative
region

    + m.e.(S  )

m.e.(S  )

1

2

Pr[S  ]

1

2

Fig. 1. An illustration of the concept of a creative region. Two hypothetical
distributions are shown, S1 in light grey, S2 in medium grey, with their
intersection highlighted in dark grey. A single “hump” exists in which
Pr[S2(x) ∈ r] > τ + m.e.(S2) and Pr[S1(x) ∈ r] = 0, so r, drawn
between dotted lines, is a creative region.

where z is the upper critical value for confidence-level c, and

n is the sample size. Let us assume that τ > z
√

n
, that is, that

our margin of error does not dominate our error tolerance.

We state that r intersects the reliable-support of Sj iff

P̂ [Sj(X) ∈ r] > τ +
z
√
n

(3)

Additionally, r is not in the reliable-support of Sj iff

P̂ [Sj(X) ∈ r] = 0, with no conclusions being drawn on

the region in between. In the former case, we have greater

than c confidence that the probability of generating samples

in the region r is greater than τ , and in the latter, greater than

c confidence that the probability is less than our margin of

error.

Hence, provided with values for reliability τ and c, we seek

to find a region r which intersects the reliable-support of S2,

but not the reliable-support of S1.

1) Discovering Creative Intervals: We attempt to find inter-

vals in feature space that exist in the reliable support of system

S2, but not in the reliable-support of system S1. Using a

confidence interval of c = 95%, an error tolerance of τ = 0.03,

and a sample size of n = 500, we need to find regions with

at least n(τ + z
√

n
) = 59 samples from system S2, and none

from system S1. It is natural to base the minimal size of an

interval on the standard deviation of the sample. Rather than

include any such interval capable of supporting the mass of

points required, we will instead require that a minimal length2

of interval be β = σ

5 .

An attempt is made to find intervals surrounding each

sample point provided. If our sample pattern is p =
(F1(p), ..., Fk(p)), then we initially define our interval about

p as

b(p) =

(

F1(p)±
β

2
σ
j
1, ..., Fk(p)±

β

2
σ
j
k

)

(4)

where Sj is the system from whence sample p was drawn,

2This number was chosen such that during a search of possible values
it led to less than 1% of random genomes being declared creative. That is,
using a smaller value we risked declaring regions resulting from a particularly
impotent application of mutation (i.e., mutations which had no noticeable
effect on phenotype) as creative.
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and σ
j
i is the standard deviation of the system Sj in the i-th

dimension.

For each such created interval, we ask if it does not contain

points from S1 (as we know it contains at least one point from

S2). If so, we attempt to generalize it. For each dimension in

turn, we widen the width of the interval by a factor of 2.

If we successfully define a new interval containing equal or

greater points from S2 and none from S1, we retain this new

interval. Once we have traversed all dimensions, if our new

interval is an improvement on the original, we traverse the

dimensions again. This process will terminate either when a

locally maximal interval is found, or when the interval covers

the entirety of all dimensions. Finally, the best interval found

is tested to see if it is in the reliable-support of S2.

If we can find such an interval, then we declare S2 creative

relative to S1. Alas, in cases where this technique is unable to

find a creative interval, we cannot conclude that S2 is not

creative relative to S1, since the possibility of an interval

discoverable through some other means, although unlikely,

cannot be excluded3.

2) Creativity Lite: Since searching for the formally defined

creativity is a slow process, we also consider a multi-valued

procedure for estimating relative creativity quickly. Creativity

lite will take a smaller sample, and return the maximum

number of samples from set S2 that can be found in some

region containing no samples from S1. We use a sample of

1,200 points from S1 and 10 points from S2. Intervals are

constructed using the technique described above. The more

points from S2 that are returned, the more creative lite the

generator. We have previously shown that use of creativity lite

in an IEA tends to push the optimization toward individuals

considered creative by our formal definition [18].

These measures, including creativity lite, are somewhat ex-

pensive computationally, depending on many searches through

a potentially large memory. Since we desire the memory to

describe a distribution over a feature space, we can expect

the curse of dimensionality to be a factor. We note, however,

that in many IEA applications the computational bottle-neck

is the human user, and hence that often computational time is

available.

III. EVOECO

Generative art is often concerned with increasing the (vi-

sually perceived) complexity of the design space. Via an

embryogenic stage, the richness of expression of a simple

seed can be increased. This increased capacity, however,

comes at the expense of prediction, and necessarily involves

the introduction of model biases [1]. Here our generative

procedure is an artificial ecosystem.

Biological ecosystems are known to be an integral com-

ponent of evolutionary diversity, where niche construction is

known to support stable polymorphisms and unusual evolu-

tionary dynamics, relative to non-niche enabled models [19].

Artificial ecosystems are believed to be capable of supporting

3Generally, expending additional effort to make such a guarantee is of
dubious value, since there is already a possibility of missing creativity in the
choice of features to describe the space, i.e., that some other significant but
unconsidered feature might exist that separates S2 from S1.

a rich array of emergent dynamics quite independent of

evolutionary pressures. That is, in a simple particle-based en-

vironment using only static agent rules, the resulting dynamics

alone are capable of generating complex patterns and life-like

properties [31].

Our image generation system is based on metaphors from

biological ecosystems. “Ecosystemic” models have become

popular in generative art over recent years due to their abil-

ity to generate complex structures and interactions through

carefully coupled feedback components [7], [10], [26], [28].

Our primary concern is their ability to generate novel and

multi-scale patterns autonomously. Driessens and Verstappen’s

E-volver, for example, is an interactive evolutionary artwork

based on ecosystemic principles, one which often displays

unexpected and aesthetically rich behaviours. This system is

driven by user-guided aesthetic rejection of the least preferable

of a population of animations; The animations are produced by

a collection of cellular automaton-like agents operating on a

grid of coloured pixels, which form the environment. Agents’

behaviours are coupled via their mutual modification of this

environment [12].

Similarly, the system used to generate images in this paper,

EvoEco, is an evolutionary platform which evolves multi-agent

ecosystemic generative art. It is influenced by E-volver in that

we have borrowed the concept of a collection of distinct pixel-

sized agents altering a shared HSB-defined world4. Otherwise,

all algorithms are our own. We break the description of

EvoEco into two parts: the ecosystemic (generative) stage,

through which a genome is transformed into a phenotype

(image); and the evolutionary stage, during which particular

individuals are selected and evolved.

A. Ecosystemic Development in EvoEco

An “individual” is an ecosystem: a collection of agents

on a toroidal grid. Over discrete time, the agents and their

interactions on the grid will produce an image, referred to as

a phenotype. An individual’s grid is of size w × h of HSB

values5, initialized as a field of colour (indH , indS , indB),
an individual’s genetically specified preferred colour.

Each individual is a collection of k agents, placed in one

of six-by-six equally spaced grid positions. Each agent then

executes its program for 2wh time steps, sufficient time for

each agent to (theoretically) visit every pixel in the image.

The final state of the image is its phenotype. The mapping

between individual and grid to phenotype is deterministic,

however different grid sizes lead to different phenotypes.

Agent actions are executed serially, according to their

priority in the genome. In practice, given the small number

of agents in a large space, there is little to no difference

between this and buffered parallel execution. Development

4There is also some similarity to ant-based painting (e.g., [2]), which also
relies on the interactions of agents in a shared colour-world. The primary
difference is that EvoEco agent behaviours are more general than pheromone-
based motion, and that EvoEco agent behaviours do not necessarily relate to
other agents’. We instead supply heuristics through the agent input-output
mappings.

5Typically we use a size of 224× 168, chosen for a 4:3 aspect ratio, and
such that a square of 4× 4 individuals can be displayed easily on a monitor
of resolution 1024× 768.
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can be viewed as an animation, proceeding from a simple flat

colour to the final image.

1) Agents: An agent is the size of a single pixel, located

somewhere in the image. At every time step, it: (a) queries

its local neighbourhood, collecting a description as input;

(b) queries its genome, mapping the input to some output

variables; (c) colours the current pixel according to those

output variables; and (d) moves by a single pixel in the

direction specified by its output. Each agent has a distinct

genome, meaning each executes different behaviours in a

shared world.

An agent can be written:

a = (g, t1, t2, sD, delay, stop, (aH , aS , aB), adir)

where

• sD ∈ {0, ..., 8}, is a starting direction.

• delay ∈ [0, 0.5], and stop ∈ [0.5, 1], which indicate when

an agent should start or stop execution during its lifespan.

• (aH , aS , aB), and adir, four GP-trees, described below.

These four trees are used to determine the colour that

an agent draws in the current pixel, and the direction it

travels next.

• g, t1, and t2 are floating values ∈ [0, 1]. The former is

a general-purpose agent-specific constant value, usable

for any purpose, and the latter two are time periods,

used in looping functions, allowing individuals to execute

periodic behaviour.

2 43

8 67

1 50

Fig. 2. Moore
neighbourhood with
directions.

An agent’s first step is to collect a de-

scription of its Moore neighbourhood (see

Figure 2). An agent will collect twenty-

six variables, each normalized to a value

in [0, 1]. These are listed in Table I.

An agent’s internal state variables are the

colour triple (aH , aS , aB) and the direction

adir. All are represented by a floating point number in [0, 1],
adir being linearly scaled to a direction in {0, ..., 8}. At each

time step, (aH , aS , aB) will determine the colour the agent

draws in the current pixel, and adir the direction it travels

next.

Each of these internal state variables is determined through

a function of the aforementioned 26 inputs. A natural choice

for doing so is tree-based genetic programming. Expecting

relatively simple agent behaviours to be sufficient, and desiring

to encourage evolvability and avoid bloat, we elected to use

a static tree size and topology. The mapping is accomplished

through four complete binary trees of depth four. The leaves of

all four trees are mapped to input variables. The non-leaf nodes

contain an integer specifying a function type, and a floating

point number specifying a constant value. The function set

used is shown in Table II. Other choices of function, including

exponentiation, absolute value, and some conditionals were

excluded due to infrequent use or because they exhibited

erratic behaviour in early tests. All arithmetic is done on the

toroidal number space [0, 1], meaning that the space is treated

as a ring.

An example of an agent’s state variable trees is shown in

Figure 3. Some redundancy (i.e., neutral code, or “junk DNA”)

TABLE II
A LISTING OF THE FUNCTION SET USED IN THE GP TREES.

function action (on two inputs, x and y)

add x+ y

sub x− y

mult xy

const Returns the associated constant value.

max max{x, y}
min min{x, y}
sin sin(x)
id x

div x
y

, or 1, if y < 0.0001.

incdec x+ 1

8
if y > 0.5, x−

1

8
ow.

mean
x+y

2

has been removed (e.g., the second child of sine functions,

unreferenced constant values, etc.).

















 



   

   



   

Fig. 3. An example of an agent’s trees, with redundancy removed, vi-
sualized as a tree. This same individual can be written in mathematical
notation as:

aH = 0.191

aS = sin(sin(Hmean)Bmean)

aB = (0.046− Smean) +

max{Smax,max{Bnext, Hmean}}

adir = sin(Hprev)−

max{sin(dBmax
), 0.47}

The generation of individuals via random initialization or

genetic operators is detailed in Appendix A. Figure 4 shows

the phenotypes produced by a sample of randomly generated

individuals. We may also describe the behaviour of random

initialization of such an individual in feature space: they have

mean values (and standard deviations) for var(H) of 0.1043

(0.1108); for var(S) of 0.1007 (0.1087); and for E(B) of

0.2241 (0.2622).

2) Environmental Size: Since the system is ecosystemic,

changing the size of the environment will have potentially

large consequences on the developed phenotype. This re-

development is shown for some select randomly generated

genotypes in Figure 4. Speaking informally, the redevelopment

of the phenotype at a smaller size usually generates an image

that resembles a sub-image of the larger original (examples

A). In some cases, the smaller image resembles a scaled-down

version of the original (B). In some few cases, there exist some

completely new patterns at some environmental size that do

not exist at another (C).

To test this more formally, we generated 10,000 random
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TABLE I
A LISTING OF THE 26 INPUTS COLLECTED AT EVERY TIME STEP BY ANY GIVEN AGENT.

input name(s) description

(HC , SC , BC) The H , S and B values of pixel at the agent’s current location.

(HP , SP , BP ) The H , S and B values of the pixel previously visited by the agent.

(Hmean, Smean, Bmean) The mean H , S and B values in the agent’s neighbourhood.

Bmax, Bmin The maximum and minimum B values in the agent’s neighbourhood.

dBmax
, and dBmin

The directions in which Bmax, Bmin occur.

ag A genetically-specified parameter.

dP The agent’s previous direction.

dmD
The direction of maximum distance (Euclidean distance in HSB space) between the current
pixel and all neighbours.

rand A random number chosen uniformly in [0, 1].

loop(t, at1 ), loop(t, at2 )
Where t is the agent’s development time, ati is a genetically specified parameter, and
loop(t, r) = t mod (r · 2wh).

(indH , indS , indB) The individual’s genetically-specified initial image colour.

drB and drW
A randomly chosen direction pointing at a black and white pixel, respectively, or -1 if none
exists.

dWBN and dBWN

A randomly chosen direction pointing at a white pixel with at least one black neighbour,
and a randomly chosen direction pointing at a black pixel with at least one white neighbour,
respectively. In either case if no such pixel exists, a random direction is returned.

  

Fig. 4. Examples of select randomly-generated genotypes grown at two different sizes.

genotypes, and computed the phenotypes in environments of

size 224×168 (large) and 60×54 (small). The phenotypes were

contrasted using our measure of phenotypic distance. Between

unrelated genotypes developed in the large environments, we

computed a mean distance of 0.479 (s.d. 0.310). Between

phenotypes of the same genotype developed at large and small

environments, we computed a mean distance of 0.082 (s.d.

0.111). It is clear that there is significant relation between the

phenotypes of the same genotype, which we interpret to mean

that smaller phenotypes can be used as a stand-in for larger

phenotypes in our statistical tests for creativity.

B. Evolution

In designing our IEA, we were motivated by three con-

straints. Firstly, since the intermingling of agents from pre-

ceding individuals is an intuitive means of defining a new in-

dividual, we expected that crossover was an important genetic

operator. Secondly, we desired a simple, single-click interface

to make the survey accessible to a broad audience. Finally, we

hoped to allow the user to devote their focus on their preferred

individuals, rather than on the least favoured, as seems to

be demanded by aesthetic rejection. To that end, we chose a

model in which users selected their preferred individual from

a population — i.e., one single user-interaction per generation

— from which any next generation individual was generated

through mutation or crossover with the preceding individual

in its place. Below, we describe such an IEA.

Our system is initialized with two background structures.

Firstly, a memory consisting of 12,000 points in feature space.

These points correspond to pre-computed randomly generated

individuals. Secondly, a database consisting of 75 pre-evolved

individuals selected by the authors. These were included to

help generate appealing individuals in the initial generations.

Our GA consists of a two-part interface: a population

of sixteen individuals, and a history, initially empty. The

population is initialized randomly, and at any generation, a

user may choose to select an individual from the population,

select an individual from the history, or respawn the entire

population. A selected individual from the population or the
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history will be referred to as the Khan6.

Once a generation is completed (i.e., a user selects an

individual or “respawn”), every population member is added to

the memory. Each is slotted into a random location, replacing

a previous entry. Hence, the memory size is constant.

Given the selection of a Khan, the next population is

generated as follows: First, the Khan is added as the top item

of the history; Next, a single individual (i.e., a proportion

of 1
16 of the population) is added to the population via one

of three special search techniques, discussed below; Next,

the remainder of the population is generated via crossover,

with probability 0.33, or otherwise, via mutation of the Khan

(hence, we expect 0.6075 of the population to be mutations of

the Khan).

The crossover operation typically utilizes the Khan and

the original member of the population being replaced (with

probability 0.6). Also possible is a crossover between the

original population member and a randomly chosen member

of the history (with probability 0.2) or with a randomly chosen

member from a database of pre-evolved individuals (with

probability 0.2).

C. Search Types

We explored three search strategies, random-search

(RAND), creativity-search (CS), and phenotypic distance-

search (PD). In each case, one of the sixteen children in the

population was generated by the search mechanism. Every user

of EvoEco was randomly assigned a search technique at the

beginning of their run.

In the case of creative search, sixteen individuals were

generated from the preceding population (or randomly, in the

first generation). For each of those generated potential indi-

viduals, ten children were created via mutation. The potential

individual with the maximal creativity lite score over its ten

children was selected for inclusion in the new population.

In the case of phenotypic distance-search, 160 individuals

were generated via mutation from the current population. The

one which maximized phenotypic distance to the memory was

chosen.

In the case of random search, a completely new individual

was initialized and added to the population. 160 individuals

were still computed in the background and ignored to ensure

that the running time was consistent between the search tech-

niques, i.e., that users would not select the RAND technique

simply because it was faster.

IV. USER STUDY

A. Methodology

The EvoEco system was instantiated as a Java applet, and

linked from a webpage. The webpage was advertized via

email, flyers, and postings on the authors’ websites. The applet

was also installed as a part of a group gallery exhibit, Biotope,

at the Guilford Lane Gallery in Melbourne, where it ran for

6Named in honour of Genghis Khan, who geneticists believe to be a direct
male-lineage ancestor of approximately 0.5% of the world’s population [39].
It’s good to be the Khan!

approximately three weeks. Little attempt was made to ensure

a representative sample. Indeed, our advertising was aimed at

reaching an artistically-literate audience.

Users were presented with a screen of the sixteen individu-

als, developing over time, along with a history panel showing

individuals previously chosen. The history panel allows users

to potentially revisit earlier, potentially successful images from

the evolutionary tree, allowing the possibility of escaping from

an “evolutionary dead end” at any stage in the evolutionary

process. Users could select any of the sixteen or more options

as the Khan, possibly before animation of the phenotype was

complete. In these cases, the state of the phenotype at the time

of clicking was used as the evaluated image for the individual.

Users were allowed to perform interactive evolution for as long

as desired.
Once the user finished, they were taken to a survey, a

series of close-ended multiple choice questions regarding their
gender, age, education level, residence, involvement with elec-
tronic arts, and whether or not they had previously encountered
EvoEco. These questions were included as a measure of how
representative our sample was. Next, the survey included six
five-point Likert-style scales:

The software used your selections to generate a final image
(shown at the top left). That final image was:

1. Appealing . . . 5. Unappealing
1. Creative . . . 5. Not creative
1. Interesting . . . 5. Dull

As the program proceeded, the software generated sets of images
for your consideration. The suggested images were:

1. Appealing . . . 5. Unappealing
1. Creative . . . 5. Not creative
1. Novel . . . 5. Repetitive

Users were next asked the yes/no/uncertain question “did

you feel that you could control the quality of the images

through your selections?” Finally, they were asked if any

technical difficulties interfered with their enjoyment of the

system.

These survey results were logged, along with the genome

of the final individual and some summary statistics of usage.

B. Results

Approximately 40% of respondents who started the EvoEco

applet did not complete the survey (although more visited

the website without starting the applet at all). Users who

answered “no” to the question of whether they were encoun-

tering EvoEco for the first time were excluded. Additionally,

approximately 5% of responses were excluded out of hand7.

As expected, the sample was not representative of the

population as a whole. The users were largely young (appr.

50% were aged 18 – 35), male (66%), urban (70%), and

overwhelmingly well educated (91% indicating college or

professional training). Approximately half indicated some

involvement with the electronic arts. Many of these biases

are consistent with the placement of the survey in a gallery

in a highly urban centre, and its advertisement via academic

forums.

7A few of these were excluded because users explicitly said they experi-
enced technical difficulties. Others were excluded on the basis that the user
undertook less than three generations (often zero generations) and filled out
the survey. We are uncertain why this behaviour occurred, but a theory is
that some users tried the system, exited without completing the survey, then
returned later to complete it.
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Fig. 5. A screenshot of the EvoEco Applet. On the left is the population of sixteen individuals; towards the right is the history, showing the previous eight
choices of Khan; on the far right are the user controls.
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We obtained a total of 96 usable responses, consisting of

30 RAND responses, 41 CS responses, and 25 PD responses.

User responses to the Likert-scales, overall, are summarized in

Figure 6. Some examples of resulting phenotypes are shown

in Figure 8.

Figure 7 shows a histogram of the number of generations

(i.e., how long users were willing to play with the system

before clicking “done”). The median number was 9.5, and the

mean 12.95 (s.d. 9.44). It is evident that the majority of users’

runs lasted for approximately the median time length, while

a sizeable minority used the system for substantially longer.

There is no strong correlation between the reported appeal,

creativity, or novelty of either the final nor suggested images

with the number of generations, in all cases, the absolute value

of the Spearman correlation is less than 0.1.
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Fig. 7. Histogram of the number of generations undertaken by users.

1) Selection Method: We tracked the selections made by

each user, including the means by which the selected individ-

ual was generated. Hence, we have a measure of the popularity

of the modes of generating new population members. How-

ever, as in most evolutionary algorithms, the various means

have differing probabilities of selection. Additionally, users

have the option of generating a population via population

spawn (i.e., complete re-initialization) or by selecting an indi-
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Fig. 8. Select examples produced by the authors and ninety-six anonymous users. Some images, here and throughout the paper, have been subjected to
minor colour modifications to encourage visibility during grayscale printing. See http://www.csse.monash.edu.au/˜cema/evoeco for original and high-quality
colour examples.
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vidual from the history. Hence, we expect completely random

selection to choose crossover, mutation, and other genetic

operators with slightly less probability than 0.33, 0.6075, and

0.0625, respectively. These values are marked with reference

lines in the following plots.

An important note regarding creativity-search is that the

measure does not select for a novel individual directly, but

instead selects for an individual which has the capacity to gen-

erate novel children. Hence, individuals selected by creativity

search need not be particularly interesting on their own, but

their addition to the population can still have beneficial effects,

via the children they spawn.

Figure 9 shows the various proportions of selected individ-

ual generation methods over runs organized by search type.

From this figure a few trends emerge.

Firstly, we note that selection of individuals generated

by crossover is approximately at expected level, indicating

that crossover generates popular children. Mutation, on the

other hand, is selected significantly less than is presented in

populations.

Secondly, we note that of the special search types, only the

RAND technique is selected with any noticeable frequency.

This lack of selection indicates that both techniques generate

unpopular outputs, at least in the immediate generation.

Finally, we note that users rarely select from the history

panel, however, given that the UI separates the history panel

from the main population, we cannot exclude UI-based factors

in this result.

2) Genetic Programs: At the end of every run the frequency

of the function and input types present in the population

was recorded. Below, we present the frequencies of these

various inputs and functions, where an increase in frequency

shows that that particular gene type has been selected for

by subjective evolution. Since our data comes from many

independent runs, we generally make the assumption that

the relative presence of particular inputs or GP functions in

the population implies active selection, namely, that functions

which are components of pleasing results will be relatively

well represented, and that functions which do not contribute

to the generation of pleasing results (or worse, which inhibit

pleasing results) will be relatively poorly represented (We note,

however, that the contribution of any particular GP function or

input is likely indirect, and hence epistatic effects might affect

the generalizability of these results to other systems where

other sub-components have been excluded). Due to mutation

and random search, we do not expect any values to ever fall

entirely to zero.

Figure 10 shows the proportions of input types present

in the final generations. We have split the input types into

two groups, those which we expect to be useful in the

generation of the colour, and those expected to be useful in

the generation of the direction. Since there are three trees

for colour (aH , aS , aB) and only one for direction (adir), we

naturally expect colour-related inputs to be referenced more.

The most widely used inputs utilized the H and S colour

dimensions. Surprisingly, the genetically-defined individual

colour was rarely used. We also note that the edge-following

behaviours dWBN and dBWN are the most frequently used
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Fig. 11. Absolute proportions of GP-functions in the final population.

direction inputs.

Figure 11 shows the proportions of function types present

in the final generations. Note that due to the distribution

used in initialization and mutation, we would expect pure

chance to return probabilities of approximately 0.07 for each

function save id, with probability 0.23. The id function is

used substantially, unsurprisingly given its role as a structural

component in the trees. Both the mean and incdec functions

are represented significantly more than would be expected

via random chance, however, indicating their role in popular

individuals. Of the remaining functions, none are significantly

less represented than the median. We consider this indication

that all were at least partially selected for, indicating that our

informal choices during the design phase were generally well

founded.

3) User Preferences by Search Type: Our primary question

concerned users’ stated preferences for the system conditioned

by search type. In Table III we show the scores on the

questions broken down by the search mechanism. To the right,

we show the significance by which the mean responses differ,

as determined by Welsch’s t-test. We will consider a p-value

of less than 0.05 as highly significant, and 0.1 as somewhat

significant.

Our first note is that phenotypic distance, generally, is an

impediment to evolutionary success. The PD technique was

ranked somewhat worse than the RAND technique in terms of

the novelty of the suggested images, and significantly worse

than the CS technique in three of six scales. This is intuitive,

since the phenotypic distance measure serves largely to push

populations away from the direction selected by the users,

effectively undoing the effects of evolution.

As noted, the CS technique significantly outperforms the

PD technique. Additionally, it is ranked better than the RAND

technique in both the novelty of the final image, and the cre-
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TABLE III
BREAKDOWN OF USER RESPONSES ORGANIZED BY SEARCH TYPE. LOWER IS BETTER.

mean p-value

question RAND CS PD CS vs RAND CS vs PD RAND vs PD

Final image:
appealing 2.31 2.10 2.40 0.43 0.26 0.77

creative 2.76 2.58 2.86 0.92 0.23 0.61
novel 2.34 1.89 2.58 0.09 0.02 0.47

Suggested images:
appealing 2.73 2.40 2.67 0.26 0.32 0.83

creative 2.77 2.23 3.13 0.08 <0.01 0.27
novel 2.72 2.42 3.43 0.41 <0.01 0.06
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ativity of the suggested images. We further note an abundance

of more informal evidence supporting the use of creativity-

search. The mean value for all responses was minimized for

the CS technique. Further, the proportion of users who an-

swered positively to the question “did you feel that you could

control the quality of the images through your selections” was

higher for CS (55%) than for the other two techniques (31%

for RAND and 40% for PD).

Hence, we conclude that the use of the creativity lite

measure has improved the performance of our IEA with

respect to natural language notions of novelty and creativity.

4) Comparison between Creativity Definition and User

Responses: We next chose to investigate the correlation be-

tween users’ stated responses and the formal Dorin / Korb

creativity definition. To do so, we contrasted user responses

on evolved individuals (in the context of the evolutionary run

that produced them) against the computed creativity of those

same individuals against a randomly generated memory. The

comparison of an individual against a random memory is a

comparison of the level of specialization of that individual’s

children, as opposed to the sorts of behaviour generated by

trivial genomes. Our hypothesis is that users are capable of

discerning the difference, either due to their developed famil-

iarity with the behaviours of randomly generated individuals

via the preceding exploration of the system, or, perhaps, by a

more universal familiarity of the sorts of behaviours that are

likely output by simple machines.

For each survey response, the final individual was extracted.

Five hundred mutated children were computed and compared

to a memory of 15,000 randomly generated individuals. If

a creative region is found via the technique detailed in

Section II-B1, then the individual was labelled creative by

our definition. Figure 12 shows an example of an individual

deemed creative by both the user and the definition.

We next computed the Spearman correlation ρ between

these labels and the user-stated rankings. For most rankings,

we did not obtain significant relation (p-values associated with

the correlations were high). In the case of the correlation with

the novelty of the suggested images, we obtained ρ = 0.253
with a p-value of 0.05. In the case of the correlation with

the creativity of the final image, we obtained a weaker result:

ρ = 0.144 with a p-value of 0.2.

We interpret these results to mean that there exists a

weak relation between users’ stated opinion of the creativity

and novelty of discovered individuals and the score by our

technical definition.

We must note that the survey itself left the ratings of

creativity and interest as purposefully ambiguous: creative

relative to the starting point? To a user’s intuition with the

tool at hand? To web-based art more generally? To even more

universal standards? Our measurements are based relative to

other users under similar ambiguity, and hence useful as a

guide to performance in a generative art task. To tie this to

a more unambiguously universal natural language notion of

“creativity”, however, requires more research.

V. SUMMARY

In this paper, we have analyzed users’ stated impressions

of the “creativity” and “novelty” of art produced via an

ecosystemic IEA.

We have provided several results that likely extend to the

design of interactive electronic art systems generally, includ-

ing: (a) that crossover is a useful operator in ecosystemic

systems; (b) that the GP functions mean and incdec are popular

choices in an GP-based task; and (c) that in a pixel-based

local neighbourhood, edge-following behaviours and inputs

based on the H and S channels are important choices. In

the case of the use of particular GP functions and inputs, we

cannot exclude the possibility of epistatic effects, meaning that

change of context may change the usefulness of the functions

in question.

We also analyzed the use of three strategies to augment the

evolutionary search, reaching strong conclusions. Firstly, that

the introduction of a phenotypic distance function is a liability

in evolutionary art tasks. In this case, phenotypic distance

significantly worsened the performance of the system relative

to our other techniques, including a random search. Secondly,

that the inclusion of a simplified Dorin / Korb measure of

creativity significantly improves a user’s stated opinion of the

“creativity” and “novelty” of the system. We have provided

additional informal evidence to suggest that it results in a

better outcome generally.

Finally, we have shown that there exists a weak correlation

between our technical definition of creativity and users’ stated

opinions. This may be unambiguously read as saying that an

interpreted version of the Dorin and Korb definition captures

some aspect of the natural language usage of the term in a

generative art task — this is an important matter for a value-

free definition!

APPENDIX

A. Individual Initialization

We recall that an individual is the (k + 4)-tuple:

I = (k, (indH , indS , indB), a
1, ..., ak)

Let urand be a function which chooses with a uniform random

selection from its arguments. We initialize an individual by

setting k = urand{2, ..., 6}, indX = urand([0, 1]), and then

generating k randomly initialized agents.

An agent, recall, can be written

a = (g, t1, t2, sD, delay, stop, (aH , aS , aB), adir)

An agent can be randomly initialized by generating

g, t1, t2, sD all as urand([0, 1]), delay = urand([0, 0.5]),
stop = urand([0.5, 1]), and then randomly generating the four

action trees.

The trees (aH , aS , aB), and adir are each represented by a

list of numbers:

• 2d−1 input nodes, each represented by an integer ∈
{0, ..., 26}.

• 2d−1−1 non-leaf nodes representing functions in the tree,

represented by integers ∈ {0, ..., 11}.
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Fig. 12. Example of an individual deemed creative by both the user and the Dorin / Korb definition, along with an illustration of (two-dimensional projections
of) feature space. The memory data points are drawn in light grey, the children of the individual in black, and the creative region is overlaid as a medium-grey
rectangle.

• 2d−1 − 1 floating-point constant values in [0, 1]

Tree connectivity is complete. All of the values are initialized

uniformly and randomly, save the functions in the non-leaf

nodes. In these cases, each function has a probability of being

chosen of 0.07, save the id function, chosen with probability

0.23. We purposefully increased the frequency of id nodes as

we expected them to be used as structural nodes, and hence

to be of greater importance.

B. Genetic Operators

We can apply mutation to an agent by applying it to the

variables comprising the collection of trees. For each variable,

each element has a probMut chance of being mutated, inde-

pendently. If selected, its value is replaced by a new uniform

randomly selected value.

We can apply crossover to a pair of agents, a1 and a2,

by performing sub-tree crossover on a particular tree. We

initially define child agent a3 to be an exact copy of agent

a1. Next, for each of the aH , aS , aB , adir trees, we randomly,

uniformly, and independently select an index in the range

i ∈ {0, ..., 2d − 1}. For each index and tree, we replace the

node value referenced by that index, and all children, with the

appropriate values from agent a2. We use the same index and

children to swap the constant values associated with the chosen

tree as well. Finally, we randomly choose values from either

parent for the new variables g, t1, t2, sD, start and delay.

Given some individual I1 = (k1, (ind1H , ind1S , ind
1
B),

a11, ..., a
1
k) and a probability of mutation probMut,

we can generate a new individual I2 via muta-

tion:

k2 = k1

ind2X = ind1X
if (rand < probMut) then

ind2X = ind2X + ε(0.2)
end if

for i ∈ {1, ..., k2} do

a2i = mutate(a1i , probMut)
end for

if (rand < probMut ∧ k2 < 15) then

k2 = k2 + 1
a2
k2 = new random agent

else if (rand < probMut ∧ k2 < 15) then

k2 = k2 + 1

a2
k2 = clone(a1

urand({1,...,k1}))

else if (rand < 2 · probMut ∧ k2 > 2) then

k2 = k2 − 1
delete a2

urand({1,...,k1}) and re-index

end if

where ε(z) is a function that generates Gaussian noise with

variance z. Increase and decrease of size are equally likely

by this operator, but we note that the smaller initialization

maximum (six) compared to overall maximum number of

agents (fifteen) implies growth in the number of agents over

time independent of selection pressures. Two forms of agent

addition were included to encourage both duplication of de-

sirable properties and increase in complexity.

Given two individuals, I1 = (k1, (ind1H , ind1S , ind
1
B),

a11, ..., a
1
k1) and I2 = (k2, (ind2H , ind2S , ind

2
B),

a21, ..., a
2
k2), we can generate a new individual I3 via

crossover:

k3 = urand(k1, k2)
ind3X = urand(ind1X , ind2X)
for m ∈ {1, ..., k3} do

i = urand(1, ..., k1), j = urand(1, ..., k2)
a3m = urand(a1i , a

2
j , crossover(a

1
i , a

2
j ))

end for
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