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Promoting the Use of End-to-End Congestion 
Control in the Internet 
Sally Floyd, Senior Member, IEEE, and Kevin Fall 

Abstract-This paper considers the potentially negative impacts 
of an increasing deployment of non-congestion-controlled best- 
effort traffic on the Internet.’ These negative impacts range from 
extreme unfairness against competing TCP traffic to the potential 
for congestion collapse. To promote the inclusion of end-to-end 
congestion control in the design of future protocols using best- 
effort traffic, we argue that router mechanisms are needed to 
identify and restrict the bandwidth of selected high-bandwidth 
best-effort flows in times of congestion. The paper discusses 
several general approaches for identifying those flows suitable for 
bandwidth regulation. These approaches are to identify a high- 
bandwidth flow in times of congestion as unresponsive, “not TCP- 
friendly, ” or simply using disproportionate bandwidth. A flow 
that is not “TCP-friendly” is one whose long-term arrival rate 
exceeds that of any conformant TCP in the same circumstances. 
An unresponsive flow is one failing to reduce its offered load 
at a router in response to an increased packet drop rate, and 
a disproportionate-bandwidth flow is one that uses considerably 
more bandwidth than other flows in a time of congestion. 

I. INTRODUCTION 

T HE end-to-end congestion control mechanisms of TCP 
have been a critical factor in the robustness of the 

Internet. However, the Internet is no longer a small, closely 
knit user community, and it is no longer practical to rely on 
all end-nodes to use end-to-end congestion control for best- 
effort traffic. Similarly, it is no longer possible to rely on 
all developers to incorporate end-to-end congestion control 
in their Internet applications. The network itself must now 
participate in controlling its own resource utilization. 

Assuming the Internet will continue to become congested 
due to a scarcity of bandwidth, this proposition leads to 
several possible approaches for controlling best-effort traffic. 
One approach involves the deployment of packet scheduling 
disciplines in routers that isolate each flow, as much as 
possible, from the effects of other flows [30]. This approach 
suggests the deployment of per-flow scheduling mechanisms 
that separately regulate the bandwidth used by each best-effort 
flow, usually in an effort to approximate max-min fairness. 
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‘This is a revised version of a technical report, “Router Mechanisms to 
Support End-to-End Congestion Control”, from February 1997. This paper 
expands on Sections 2, 4, and 7 of that paper; other sections of that paper 
will be broken out into separate documents. 

A second approach, outlined in this paper, is for routers to 
support the continued use of end-to-end congestion control as 

the primary mechanism for best-effort traffic to share scarce 
bandwidth, and to deploy incentives for its continued use. 
These incentives would be in the form of router mechanisms 
to restrict the bandwidth of best-effort flows using a dispro- 
portionate share of the bandwidth in times of congestion. 
These mechanisms would give a concrete incentive to end 

users, application developers, and protocol designers to use 
end-to-end congestion control for best-effort traffic. 

A third approach would be to rely on financial incen&. or 
“%ii. pricing mechanisms to control sharing. Relying exclusively +.‘-c 

financial incentives would result in a risky gamble that network 
providers will be able to provision additional bandwidth and 
deploy effective pricing structures fast enough to keep up with 
the growth in unresponsive best-effort traffic in the Internet. 

These three approaches to sharing, of per-flow schedul- 
ing, incentives for end-to-end congestion control, and pricing 
mechanisms, are not necessarily mutually exclusive. Given 
the fundamental heterogeneity of the Internet, there is no 
requirement that all routers or all service providers follow 
precisely the same approach. 

However, these three approaches can lead to different con- 
clusions about the role of end-to-end congestion control for 
best-effort traffic, and different consequences in terms of the 
increasing deployment of such traffic in the Internet. The 
Internet is now at a cross-roads in terms of the use of 
end-to-end congestion control for best-effort traffic. It is in 
a position to actively welcome the widespread deployment 
of non-congestion-controlled best-effort traffic, to actively 
discourage such a widespread deployment, or, by taking no 

action, to allow such a widespread deployment to become a 
simple fact of life. We argue in this paper that recognizing the 
essential role of end-to-end congestion control for best-effort 
traffic and strengthening incentives for using it are critical 
issues as the Internet expands to an even larger community. 

As we show in Section II, an increasing deployment of 
traffic lacking end-to-end congestion control could lead to 
congestion collapse in the Internet. This form of congestion 
collapse would result from congested links sending packets 
that would only be dropped later in the network. The essential 
factor behind this form of congestion collapse is the absence 
of end-to-end feedback. Per-flow scheduling algorithms supply 
fairness with a cost of increased state, but provide no inherent 
incentive structure for best-effort flows to use strong end-to- 
end congestion control. We argue that routers need to deploy 
mechanisms that provide an incentive structure for flows to 
use end-to-end congestion control. 
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The potential problem of congestion collapse discussed in 
this paper only applies to best-effort traffic that does not 
have end-to-end bandwidth guarantees, or to a differentiated- 
services better-than-best-effort traffic class that also does not 
provide end-to-end bandwidth guarantees. We expect the net- 
work will also deploy “premium services” for flows with 
particular quality-of-service requirements, and that these pre- 
mium services will require explicit admission control and 
preferential scheduling in the network. For such “premium” 
traffic, packets would only enter the network when the network 
is known to have the resources required to deliver the packets 
to their final destination. It seems likely (to us) that premium 
services with end-to-end bandwidth guarantees will apply only 
to a small fraction of future Internet traffic, and that the Internet 
will continue to be dominated by classes of best-effort traffic 
that use end-to-end congestion control. 

Section II discusses the problems of extreme unfairness and 
potential congestion collapse that would result from increasing 
levels of best-effort traffic not using end-to-end congestion 
control. Next, Section III discusses general approaches for 
determining which high-bandwidth flows should be regulated 

by having their bandwidth use restricted at the router. The 
most conservative approach is to identify high-bandwidth 
flows that are not “TCP-friendly” (i.e., that are using more 
bandwidth than would any conformant TCP implementation 
in the same circumstances). A second approach is to identify 
high-bandwidth flows as “unresponsive” when their arrival rate 
at a router is not reduced in response to increased packet 
drops. The third approach is to identify disproportionate- 
bandwidth flows, that is, high-bandwidth flows that may be 
both responsive and TCP-friendly, but nevertheless are using 
excessive bandwidth in a time of high congestion. 

As mentioned above, a different approach would be the use 
of per-flow scheduling mechanisms such as variants of round- 
robin or fair queueing (FQ) to isolate all best-effort flows at 
routers. Most of these per-flow scheduling mechanisms prevent 
a best-effort flow from using a disproportionate amount of 
bandwidth in times of congestion, and therefore might seem 
to require no further mechanisms to identify and restrict the 
bandwidth of particular best-effort flows. Section IV compares 
the approach of identifying unresponsive flows with alternate 
approaches, such as per-flow scheduling or relying on pricing 
structures as incentives toward end-to-end congestion control. 
In addition, Section IV discusses some of the advantages of 
aggregating best-effort traffic in queues using simple FCFS 
scheduling and active queue management along with the mech- 
anisms described in this paper. Section V gives conclusions 
and discusses some of the open questions. 

The simulations in this paper use the NS simulator, available 
at [25]. The scripts to run these simulations are available 
separately [7]. 

II. THE PROBLEM OF UNRESPONSIVE FLOWS 

Unresponsive flows are flows that do not use end-to-end 
congestion control and, in particular, that do not reduce 
their load on the network when subjected to packet drops. 
This unresponsive behavior can result in both unfairness and 

@gf&kJ<@ 
3ms 5ms 

Fig. 1. :3imulation network. 

congestion collapse for the Internet. The unfairness is from 
bandwidth starvation that unresponsive flows can inflict on 
well-behaved responsive traffic. The danger of congestion 
collapse stems from a network busy transmitting packets 
that will simply be discarded before reaching their final 
destinations. We discuss these two dangers separately below. 

A. Problems of Unfairness 

A first problem caused by the absence of end-to-end conges- 
tion control is illustrated by the drastic unfairness that results 
from TCP flows competing with unresponsive UDP flows for 
scarce bandwidth. The TCP flows reduce their sending rates in 
response to congestion, leaving the uncooperative UDP flows 
to use the available bandwidth. 

Fig. 2 graphically illustrates what happens when UDP and 
TCP flows compete for bandwidth, given routers with FCFS 
scheduling. The simulations use the scenario in Fig. 1, with 
the bandwidth of the R2-S4 link set to 10 Mb/s. The traffic 
consists of several TCP connections from node Sl to node 
S3, each with unlimited data to send, and a single constant- 
rate UDP flow from node S2 to S4. The routers have a single 
output queue for each attached link, and use FCFS scheduling. 

The sending rate for the UDP flow ranges up to 2 Mb/s. 
Definition: goodput. We define the “goodput” of a flow as 

the bandwidth delivered to the receiver, excluding duplicate 
packets. 

Each simulation is represented in Fig. 2 by three marks, 
one for the UDP arrival rate at router Rl, another for UDP 
goodput, and a third for TCP goodput. The z-axis shows the 
UDP sending rate, as a fraction of the bandwidth on the Rl- 
R2 link. The dashed line shows the UDP arrival rate at the 
router for the entire simulation set, the dotted line shows the 
UDP goodput, and the solid line shows the TCP goodput, all 
expressed as a fraction of the available bandwidth on the Rl- 
R2 link. (Because there is no congestion on the first link, the 
UDP arrival rate at the first router is the same as the UDP 
sending rate.) The bold line (at the top of the graph) shows 
the aggregate goodput. 

As Fig. 2 shows, when the sending rate of the UDP flow 
is small, the TCP flows have high goodput, and use almost 
all of the bandwidth on the Rl-R2 link. When the sending 
rate of the UDP flow is larger, the UDP flow receives a 
correspondingly large fraction of the bandwidth on the Rl-R2 
link, while the TCP flows back off in response to packet drops. 
This unfairness results from responsive and unresponsive flows 
competing for bandwidth under FCFS scheduling. The UDP 
flow effectively “shuts out” the responsive TCP traffic. 

Even if all of the flows were using the exact same TCP 
congestion control mechanisms, with FCFS scheduling the 
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X-axis: UDP Arrival Rate (% of FWR2). Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput: 
Solid Line: TCP Goodput; Bold line: Aggregate Goodput 

Fig. 2. Simulations showing extreme unfairness with three TCP flows and one UDP flow, with FCFS scheduling. 
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X-axis: UDP Arrival Rate (% of RI-R2). Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput; 
Solid Line: TCP Goodput; Bold line: Aggregate Goodput 

Fig. 3. Simulations with three TCP flows and one UJIP flow, with WRR scheduling. There is no unfairness. 

bandwidth would not necessarily be distributed equally among 
those TCP flows with sufficient demand. [8] discusses the 
relative distribution of bandwidth between two competing TCP 
connections with different round-trip times. [ 111 analyzes this 
difference, and goes on to discuss the relative distribution of 
bandwidth between two competing TCP connections on paths 
with different numbers of congested gateways. For example, 
[11] shows how, as a result of TCP’s congestion control 
algorithms, a connection’s throughput varies as the inverse 
of the connection’s round-trip time. For paths with multiple 
congested gateways, [ 111 further shows how a connection’s 
throughput varies as the inverse of the square root of the 
number of congested gateways. 

Fig. 3 shows that per-flow scheduling mechanisms at the 
router can explicitly control the allocation of bandwidth among 
a set of competing flows. The simulations in Fig. 3 use the 
same scenario as in Fig. 2, except that the FCFS scheduling 
has been replaced with weighted round-robin (WRR) sched- 
uling, with each flow assigned an equal weight in units of 
bytes/s. As Fig. 3 shows, with WRR scheduling, the UDP flow 
is restricted to roughly 25% of the link bandwidth. The results 
would be similar with variants of FQ scheduling. 

B. The Danger of Congestion Collapse 

This section discusses congestion collapse from undelivered 
packets, and shows how unresponsive flows could contribute 
to congestion collapse in the Internet. 

Informally, congestion collapse occurs when an increase in 
the network load results in a decrease in the useful work done 
by the network. Congestion collapse was first reported in the 

mid 1980’s [24], and was largely due to TCP connections 
unnecessarily retransmitting packets that were either in transit 

or that had already been received at the receiver. We call 

the congestion collapse that results from the unnecessary re- 
transmission of packets classical congestion collapse. Classical 
congestion collapse is a stable condition that can result in 

goodput that is a small fraction of normal [24]. Problems with 

classical congestion collapse have generally been corrected by 

the timer improvements and congestion-control mechanisms 
in modem implementations of TCP [14]. 

A second form of potential congestion collapse, congestion 

collapse from undelivered packets, is the form of interest 
to us in this paper. Congestion collapse from undelivered 

packets arises when bandwidth is wasted by delivering packets 

through the network that are dropped before reaching their 
ultimate destination. We believe this is the largest unresolved 

danger with respect to congestion collapse in the Internet 
today. The danger of congestion collapse from undelivered 
packets is due primarily to the increasing deployment of open- 
loop applications not using end-to-end congestion control. 

Even more destructive would be best-effort applications that 
increased their sending rate in response to an increased packet 

drop rate [e.g., using an increased level of forward error 
correction (FEC)]. 

We note that congestion collapse from undelivered pack- 
ets and other forms of congestion collapse discussed in the 
following section differ from classical congestion collapse in 
that the degraded condition is not stable, but returns to normal 
once the load is reduced. This does not necessarily mean 
that the dangers are less severe. Different scenarios can result 
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X-axis: UDP Arrival Rate (% of RlR2). Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput; 
Solid Line: TCP Goodput; Bold line: Aggregate Goodput 

Fig. 4. Simulations showing congestion collapse with three TCP flows and one UDP flow, with FCFS scheduling. 

X-axis: UDP Arrival Rate (“3 of Rl-R2). Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput; 
Solid Line: TCP Goodput; Bold line: Aggregate Goodput 

Fig. 5. Simulations with three TCP flows and one UDP flow, with WRR scheduling. There is no congestion collapse. 

X-axis: UDP Arrival Rate (% of Rl-R2). Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput; 
Solid Line: TCP Goodput; Sold line: Aggregate Goodput 

Fig. 6. Simulations with one TCP flow and three UDP flows, showing congestion collapse with FCFS scheduling. 

in different degrees of congestion collapse, in terms of the 

fraction of the congested links’ bandwidth used for productive 
work. 

Fig. 4 illustrates congestion collapse from undelivered pack- 
ets, where scarce bandwidth is wasted by packets that never 
reach their destination. The simulation in Fig. 4 uses the 
scenario in Fig. 1, with the bandwidth of the R2-S4 link set to 

128 kb/s, 9% of the bandwidth of the Rl-R2 link. Because the 
final link in the path for the UDP traffic (R2-S4) is of smaller 
bandwidth compared to the others, most of the UDP packets 
will be dropped at R2, at the output port to the R2-S4 link, 
when the UDP source rate exceeds 128 kb/s. 

As illustrated in Fig. 4, as the UDP source rate increases 

linearly, the TCP goodput decreases roughly linearly, and 
the UDP goodput is nearly constant. Thus, as the UDP flow 
increases its offered load, its only effect is to hurt the TCP 
(and aggregate) goodput. On the Rl-R2 link, the UDP flow 

ultimately “wastes” the bandwidth that could have been used 
by the TCP flow, and reduces the goodput in the network as 

a whole down to a small fraction of the bandwidth of the 
R 1 -R2 link. 

Fig. 5 shows the same scenario as Fig. 4, except the router 
uses WRR scheduling instead of FCFS scheduling. With the 
UDP flow restricted to 25% of the link bandwidth, there is 
a minimal reduction in the aggregate goodput. In this case, 
where a single flow is responsible for almost all of the wasted 
bandwidth at a link, per-how scheduling mechanisms are 
reasonably successful at preventing congestion collapse as well 
as unfairness. However, per-flow scheduling mechanisms at 
the router can not be relied upon to eliminate this form of 
congestion collapse in all scenarios. 

In Figs. 6 and 7, where a number of unresponsive flows are 
contributing to the congestion collapse, per-flow scheduling 
does not completely solve the problem. In these scenarios, a 
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Solid Line: TCP Goodput; Bold line: Aggregate Goodput 

Fig. 7. Simulations with one TCP flow and three UDP flows, showing congestion collapse with WRR scheduling. 

Number of UDP Flows (as a Fraction of Total Flows). 
Dotted Line: FIFO Scheduling: Solid Line: WRR Scheduling 

Fig. 8. Congestion collapse as the number of UDP flows increases 

different traffic mix illustrates how some congestion collapse 
can occur for a network of routers using either FCFS or WRR 
scheduling. In these scenarios, there is one TCP connection 
from node Sl to node S3, and three constant-rate UDP con- 
nections from node S2 to S4. Fig. 6 shows FCFS scheduling, 
and Fig. 7 shows WRR scheduling. In Fig. 6 (high load) the 
aggregate goodput of the R 1 -R2 link is only 10% of maximum, 
and in Fig. 7, the aggregate goodput of the Rl-R2 link is 35% 
of maximum. 

Fig. 8 shows that the limiting case of a very large number of 

very small bandwidth flows without congestion control could 
threaten congestion collapse in a highly-congested Internet 
regardless of the scheduling discipline at the router. For the 
simulations in Fig. 8, there are ten flows, with the TCP flows 
all from node Sl to node S3, and the constant-rate UDP flows 

all from node S2 to S4. The z-axis shows the number of UDP 
flows in the simulation, ranging from one to nine. The y axis 
shows the aggregate goodput, as a fraction of the bandwidth 
on the Rl-R2 link, for two simulation sets: one with FCFS 

scheduling, and the other with WRR scheduling. 
For the simulations with WRR scheduling, each flow is 

assigned an equal weight, and congestion collapse is created by 
increasing the number of UDP flows going to the R2-S4 link. 
For scheduling partitions based on source-destination pairs, 
congestion collapse would be created by increasing the number 
of UDP flows traversing the Rl-R2 and R2-S4 links that had 
separate source-destination pairs. 

The essential factor behind this form of congestion col- 
lapse is not the scheduling algorithm at the router, or the 
bandwidth used by a single UDPJEow, but the absence of end- 

to-end congestion control for the UDP traffic. The congestion 
collapse would be essentially the same if the UDP traffic 
(somewhat stupidly) reserved and paid for more than 128 kb/s 
of bandwidth on the Rl-R2 link, in spite of the bandwidth 
limitations of the R2-S4 link. In a datagram network, end- 
to-end congestion control is needed to prevent flows from 
continuing to send when a large fraction of their packets are 
dropped in the network before reaching their destination. We 
note that congestion collapse from undelivered packets would 
not be an issue in a circuit-switched network where a sender 
is only allowed to send when there is an end-to-end path with 
the appropriate bandwidth. 

C. Other Forms of Congestion Collapse 

In addition to classical congestion collapse and congestion 
collapse from undelivered packets, other potential forms of 
congestion collapse include fragmentation-based congestion 
collapse, congestion collapse from increased control traffic, 
and congestion collapse from stale packets. We discuss these 
other forms of congestion collapse briefly in this section. 

Fragmentation-based congestion collapse [ 161, [29], con- 
sists of the network transmitting fragments or cells of packets 
that will be discarded at the receiver because they cannot be 
reassembled into a valid packet. Fragmentation-based conges- 
tion collapse can result when some of the cells or fragments 
of a network-layer packet are discarded (e.g. at the link layer), 
while the rest are delivered to the receiver, thus wasting 
bandwidth on a congested path. The danger of fragmentation- 
based congestion collapse comes from a mismatch between 
link-level transmission units (e.g., cells or fragments) and 
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higher layer retransmission units (datagrams or packets), and 
can be prevented by mechanisms aimed at providing network- 
layer knowledge to the link-layer or vice versa. One such 
mechanism is Early Packet Discard [28], which arranges that 
when an ATM switch drops cells, it will drop a complete 
frame’s worth of cells. Another mechanism is Path MTU 
discovery [ 171, which helps to minimize packet fragmentation. 

A variant of fragmentation-based congestion collapse con- 
cerns the network transmitting packets received correctly by 
the transport-level at the end node, but subsequently discarded 
by the end-node before they can be of use to the end user [32]. 
This can occur when web users abort partially completed TCP 
transfers because of delays in the network and then re-request 
the same data. This form of fragmentation-based congestion 
collapse could result from a persistent high packet drop rate 
in the network, and could be ameliorated by mechanisms 
that allow end nodes to save and re-use data from partially 
completed transfers. 

Another form of possible congestion collapse, congestion 
collapse from increased control trafic, has also been dis- 
cussed in the research community. In this case, as a result 
of increasing load and therefore increasing congestion, an 
increasingly-large fraction of the bytes transmitted on the 
congested links belong to control traffic (packet headers for 
small data packets, routing updates, multicast join and prune 
messages, session messages for reliable multicast sessions, 
DNS messages, etc.), and an increasingly-small fraction of 
the bytes transmitted correspond to data actually delivered to 
network applications. 

A final form of congestion collapse, congestion collapse 
from stale or unwantedpackets, could occur even in a scenario 
with infinite buffers and no packet drops. Congestion collapse 
from stale packets would occur if the congested links in 
the network were busy carrying packets that were no longer 
wanted by the user. This could happen, for example, if data 
transfers took sufficiently long, due to high delays waiting 
in large queues, that the users were no longer interested in 
the data when it finally arrived. Congestion collapse from 
unwanted packets could occur if, in a time of increasing load, 
an increasing fraction of the link bandwidth was being used 
by push web data that was never requested by the user. 

D. Building in the Right Incentives 

Given that the essential factor behind congestion collapse 
from undelivered packets is the absence of end-to-end conges- 
tion control, one question is how to build the right incentives 
into the network. What is needed is for the network architec- 
ture as a whole to include incentives for applications to use 
end-to-end congestion control. 

In the current architecture, there are no concrete incentives 
for individual users to use end-to-end congestion control, and 
there are, in some cases, “rewards” for users that do not use it 
(i.e. they might receive a larger fraction of the link bandwidth 
than they would otherwise). Given a growing consensus among 
the Internet community that end-to-end congestion control 
is fundamental to the health of the Internet, there are some 
unquantifiable social incentives for protocol designers and 

software vendors not to release products for the Internet that 
do not use end-to-end congestion control. However, it is not 
sufficient to depend only on social incentives such as these. 

Axelrod in “The Evolution of Cooperation” [l] discusses 
some of the conditions required if cooperation is to be main- 
tained in a system as a stable state. One way to view congestion 
control in the Internet is as TCP connections cooperating to 
share the scarce bandwidth in times of congestion. The benefits 
of this cooperation are that cooperating TCP connections can 
share handwidth in a FIFO queue, using simple scheduling 
and accounting mechanisms, and can reap the benefits in that 
short bursts of packets from a connection can be transmitted 
in a burst. (FIFO queueing’s tolerance of short bursts reduces 
the worst-case packet delay for packets that arrive at the 
router in a burst, compared to the worst-case delays from per- 
flow scheduling algorithms [3]). This cooperative behavior in 
sharing scarce bandwidth is the foundation of TCP congestion 
control in the global Internet. 

The -inescapable price for this cooperation to remain stable is 
for mechanisms to be put in place so that users do not have an 
incentive to behave uncooperatively in the long term. Because 
users in the Internet do not have information about other users 
against whom they are competing for scarce bandwidth, the 
incentive mechanisms cannot come from the other users, but 
would have to come from the network infrastructure itself. 
This paper explores mechanisms that could be deployed in 
routers to provide a concrete incentive for users to participate 
in cooperative methods of congestion control. Alternative ap- 
proaches such as per-flow scheduling mechanisms and reliance 
on pricing structures are discussed later in the paper. 

Section III focuses on mechanisms for identifying which 
high-bandwidth flows are sufficiently unresponsive that their 
bandwidth should be regulated at routers. The main function of 
such mechanisms would be to reduce the incentive for flows to 
evade end-to-end congestion control. There are no mechanisms 
at a single router that are sufficient to obviate the need for end- 
to-end congestion control, or to prevent congestion collapse in 
an environment that is characterized by the evasion of end-to- 
end congestion control. There are only two ways to prevent 
congestion collapse from undelivered packets: to succeed, 
perhaps through incentives at routers, in maintaining an en- 
vironment characterized by end-to-end congestion control; or 
to maintain a virtual-circuit-style environment where packets 
are prevented from entering the network unless the network 
has sufficient resources to deliver those packets to their final 
destination. 

III. IDENTIFYING FLOWS TO REGULATE 

In this section, we discuss the range of policies a router 
might use to identify which high-bandwidth flows to regulate. 
For a router with active queue management such as BED [9], 
the arrival rates of high-bandwidth flows can be efficiently 
estimated from the recent packet drop history at the router [6]. 
Because the BED packet drop history constitutes a random 
sampling of the arriving packets, a flow with a significant frac- 
tion of the dropped packets is likely to have a correspondingly 
significant fraction of the arriving packets. Thus, for higher 
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bandwidth flows, a flow’s fraction of the dropped packets can 
be used to estimate that flow’s fraction of the arriving packets. 
For the purposes of this discussion, we assume that routers 
already have some mechanism for efficiently estimating the 
arrival rate of high-bandwidth flows. 

The router only needs to consider regulating those best- 
effort flows using significantly more than their “share” of the 
bandwidth in the presence of suppressed demand (as evidenced 
by packet drops) from other best-effort flows. A router can 
“regulate” a flow’s bandwidth by differentially scheduling 
packets from that flow, or by preferentially dropping packets 
from that flow at the router [ 181. When congestion is mild (as 
represented by a low packet drop rate), a router does not need 
to take any steps to identify high-bandwidth flows or further 
check if those flows need to be regulated. 

The first two approaches in this section assume that a 
“flow” is defined on the granularity of source and destination 
IP addresses and port numbers, so each TCP connection is 
a single flow. The approach discussed in Section III-C, of 
identifying flows that use a disproportionate share of the 
bandwidth in times of congestion, could also be used on 
aggregates of flows. This use of aggregation is most likely to 
be attractive for routers in the interior of the network with 
a high degree of statistical multiplexing, where each flow 
uses only a small fraction of the available bandwidth. For 
such a high-bandwidth backbone router, flow identification and 
packet classification on a fine-grained basis is not necessarily 
a viable approach. 

The approaches discussed in this section are designed to 
detect a small number of misbehaving flows in an environment 
characterized by conformant end-to-end congestion control. 
They would not be effective as a substitute for end-to-end 
congestion control, and are only useful as an incentive to limit 
the benefits of evading end-to-end congestion control. The only 
effective substitute for end-to-end congestion control would be 
a virtual-circuit-style mechanism that prevented packets from 
being sent on the first link of a path unless sufficient resources 
were guaranteed to be available for that packet along all hops 
of the end-to-end path. 

Additional issues not addressed further in this paper are 
that practices such as encryption and packet fragmentation 
could make it more difficult for routers to classify packets 
into fine-grained flows. The practice of packet fragmentation 
should decrease with the use of MTU discovery [21]. The 
use of encryption in the IP Security Protocol (IPsec) [ 151 
could prevent routers from using source IP addresses and port 
numbers for identifying some flows; for this traffic, routers 
could use the triple in the packet header that defines the 
Security Association to identify individual flows or aggregates 
of flows. 

The policies outlined in this section for regulating high- 
bandwidth flows range in the degree of caution. One policy 
would be to only regulate high-bandwidth flows in times 
of congestion when they are known to be violating the 
expectations of end-to-end congestion control, by being either 
unresponsive to congestion (as described in Section III-B) or 
exceeding the bandwidth used by any conformant TCP flow 
under the same circumstances (as described in Section III-A). 

In this case, an unresponsive flow could either be restricted to 
the same bandwidth as a responsive flow (the more cautious 
approach) or be given less bandwidth than a responsive flow 
(the less cautious but more powerful approach.) The second 
response would provide a concrete incentive for the use of end- 
to-end congestion control, but would also include the danger 
of incorrectly throttling flows that are in fact using conformant 
end-to-end congestion control. 

Another policy would be to regulate any flows determined 
to be using a disproportionate share of the bandwidth in a time 
of congestion (as described in Section III-C). Such flows might 
be unresponsive to congestion, or might simply be using con- 
formant congestion control coupled with a significantly smaller 
round-trip time or larger packet size than other competing 
flows. The most appropriate response to a flow identified as 
using a disproportionate share of the bandwidth is to use the 
more cautious approach of simply restricting that flow to the 
same bandwidth seen by other responsive flows. This response 
essentially constitutes a modified and limited form of per-flow 
scheduling that is only invoked for high-bandwidth flows in 
times of congestion. 

The following sections discuss issues in detecting flows 
that are unresponsive, not TCP-friendly, or simply using 
disproportionate bandwidth in a time of congestion. 

A. Identi&ng Flows That Are Not TCP-Friendly 

Definition: TCP-friendly jlows. We say a flow is TCP- 
friendly if its arrival rate does not exceed the arrival of a 
conformant TCP connection in the same circumstances. The 
test of whether or not a flow is TCP-friendly assumes TCP 
can be characterized by a congestion response of reducing 
its congestion window at least by half upon indications of 
congestion (i.e., windows containing packet drops), and of 
increasing its congestion window by a constant rate of at 
most one packet per round-trip time otherwise. This response 
to congestion leads to a maximum overall sending rate for a 
TCP connection with a given packet loss rate, packet size, and 
round-trip time. Given a packet drop rate of p, the maximum 
sending rate for a TCP connection is T bytes/s, for 

(1) 

for a TCP connection sending packets of B bytes, with a 
fairly constant round-trip time, including queueing delays of R 
seconds. This equation is discussed in more detail in Appendix 
B. To apply this test, for each output link, a router should know 
the maximum packet size B in bytes for packets on that link, 
and a minimum round-trip time R for any flows using that link. 

The router can use its measurement of the aggregate packet 
drop rate for each link output queue over a recent time interval 
to estimate p, the packet drop rate experienced by a particular 
flow. Given the packet drop rate p, the minimum round-trip 
time R, and the maximum packet size B, a router can use (l), 
or the improved form of the equation given in 1271, to easily 
calculate the maximum arrival rate from a conformant TCP 
connection in similar circumstances. Actual TCP connections 
will generally use less than this maximum bandwidth because 
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they have limited demand, a longer round-trip time, a window 
size limitation, a smaller packet size, a less-aggressive TCP 
implementation, a receiver that sends delayed ACK’s, or 
additional packet drops from elsewhere in the network. 

Given R and B, (1) can reduce to a simple table at the 
router: if the aggregate steady-state packet drop rate is “x,” 
then the arrival rate of an individual flow should be at most “y,” 
If a flow’s drop rate (the ratio of a flow’s dropped packets to its 
arriving packets) is lower than the aggregate drop rate for the 
queue, the router will overestimate the flow’s actual drop rate, 
but at the same time will underestimate the flow’s arrival rate 
in bytes/s. These effects tend to cancel, implying the estimates 
should not lead to problems with incorrect identification of 
unresponsive or unfriendly flows. This is confirmed by our 
simulations to date. 

The test of TCP-friendliness does not attempt to verify that a 
how responds to each and every packet drop exactly as would a 
conformant TCP flow. It does, however, assume a flow should 
not use more bandwidth than would the most aggressive con- 
formant TCP implementation in the same circumstances. The 
TCP protocol itself is subject to change, and the congestion 
control mechanisms used to derive (1) could at some point be 
changed by the Internet Engineering Task Force (IETF), the 
responsible standards body. Nevertheless, the two limitations 
on a TCP’s window increase and decrease algorithms have 
been followed by all conformant TCP implementations since 
1988 [14], and have an installed base in the end systems of 
the Internet that will persist for some time, even if at some 
point in the future changes might be proposed to the TCP 
standards to allow more aggressive responses to congestion. 
As long as best-effort traffic is dominated by such an installed 
base of TCP, it would be reasonable for routers to restrict the 
bandwidth of any best-effort flow with an arrival rate higher 
than that of any conformant TCP implementation in the same 
circumstances. 

The TCP-friendly test does not attempt to detect all flows 
which are not TCP-friendly. For example, the router might 
know a lower bound on any flow’s round-trip time, but the 
router does not know any flow’s actual round-trip time. For 
routers with attached links with large propagation delays, the 
TCP-friendly test of Eq. (1) gives a useful tool for identifying 
flows which are not TCP-friendly. For routers with attached 
links of smaller propagation delay, the TCP-friendly test of Eq. 
(1) is less likely to identify any unfriendly flows. Such routers 
cannot exclude the possibility that a conformant TCP flow 
could receive a disproportionate share of the link bandwidth 
simply because it has a significantly smaller round-trip time 
than competing TCP flows. 

Limitations of this Test: The TCP-friendly test can only be 
applied to a flow at the level of granularity of a single TCP 
connection. 

It can be difficult to determine the maximum packet size 
B in bytes or a minimum round-trip time R for a how. An 
individual flow whose arrival rate significantly exceeds the 
maximum TCP-friendly arrival rate is either not using TCP- 
friendly congestion control, or has larger packets or a smaller 
round-trip time than assumed by the router. Close to 100% 
of the packets in the Internet are 1500 bytes or smaller [31]; 

routers could detect those high-bandwidth flows that use larger 
packets simply by observing the sizes of packets in the recent 
history of dropped packets. However, there is no simple test 
for a router to determine the end-to-end round-trip time of an 
active connection. 

The minimum round-trip time R could be set to twice the 
one-way propagation delay of the attached link; this would 
limit the appropriateness of this test to those routers where the 
propagation delay of the attached link is likely to be a signif- 
icant fraction of the end-to-end delay of a connection’s path. 

Care should be taken to only apply the TCP-friendly test 
to measurements taken over a sufficiently large time interval. 
The time period should not correspond to only one or two 
flow round-trip times. If a very long round-trip time flow is 
incorrectly identified as not TCP-friendly because of a short 
measurement interval relative to its round-trip time, then the 
router will notice the flow’s delayed response to congestion a 
short time later, and can respond accordingly (e.g. by removing 
bandwidth restrictions it may have applied, see below). 

Another consideration in applying (1) is the prevalence of 
packet drops from buffer overflow. Equation (1) only applies 
for nonbursty packet drop behavior, where a flow receives at 
most one packet drop per window of data, and therefore each 
packet drop corresponds to a separate indication of congestion 
to the end nodes. In particular, when congestion is high and 
there is significant buffer overflow, multiple packets dropped 
from a window of data are likely to be fairly common. 

Response by the Router: Our proposal is that routers 
should freely restrict the bandwidth of best-effort flows de- 
termined not to be TCP-friendly in times of congestion. Such 
flows are “stealing” bandwidth from TCP-friendly traffic and, 
more seriously, are contributing to the danger of congestion 
collapse. Any such flow should only have its bandwidth 
restriction removed when there is no longer any significant 
link congestion, or when it has been shown to reduce its arrival 
rate appropriately in response to congestion. 

Example Test: a TCP-friendly test. One possibility for a 
TCP-friendly test that we explored in simulations would be to 
identify a high-bandwidth best-effort flow as not TCP-friendly 
if its estimated arrival rate is greater than 1.45B/(RJ?T), 

for B : the maximum packet size in bytes, R : twice the 
propagation delay of the attached link, and p : the aggregate 
packet drop rate for that queue. A flow’s restriction would be 
removed if its arrival rate returns to less than 1.22B/(R&, 

for the new packet drop rate p. 

B. Identifying Unresponsive Flows 

The TCP-friendly test is based on the specific congestion 
control responses of TCP, and many routers may not want 
to use such a “TCP-centric” measure. The TCP-friendly test 
is also of limited usefulness for routers unable to assume 
strong bounds on TCP packet sizes and round-trip times. A 
more general test would be simply to verify that a high- 
bandwidth flow was responsive (i.e., its arrival rate decreases 
appropriately in response to an increased packet drop rate). 

Equation (1) shows that for a TCP flow with persistent 
demand, if the long-term packet drop rate of the connection 
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increases by a factor of Z, then the arrival rate from the source 
should decrease by a factor of roughly ,,6. For example, if 
the long-term packet drop rate increases by a factor of four, 
than the arrival rate should decrease by a factor of two. This 
suggests a test for identifying unresponsive flows if the drop 
rate is changing. If the steady-state drop rate increases by a 
factor x and the presented load for a high-bandwidth flow 
does not decrease by a factor reasonably close to fi or 
more, then the flow can be deemed not to be using congestion 
control (unresponsive). Similarly, if the steady-state drop rate 
increases by a factor z and the presented load for aggregated 
traffic does not decrease by a factor reasonably close to fi or 
more, then either the mix of the aggregated traffic has changed, 
or the traffic as an aggregate is not using congestion control, 
and can be categorized as unresponsive. 

Applying this test to a flow (or to an aggregate) requires 
estimates of a flow’s arrival rate and packet drop rate over 
several long time intervals. The flow’s arrival rate could be 
estimated from the history of packet drops maintained by ac- 
tive queue management, and the flow’s packet drop rate could 
be estimated using the aggregate packet drop rate at the queue. 

This test does not attempt to detect all flows that are not 
responding to congestion, but is only applied to the high 
bandwidth flows. When the packet drop rate remains relatively 
constant, no flows will be identified as unresponsive. In 
addition, the router has limited information about the flow’s 
responses to congestion. The primary congestion indications 
experienced by a flow might be coming from elsewhere in 
the network. In addition, the arrival rate seen by a router is a 
result not only of the sending rate, but also of the drop rate 
experienced by a how at a congested link earlier on its path. 

An additional refinement of this “responsiveness” test would 
be to distinguish three separate subcases: flows with an in- 
creasing or relatively constant average arrival rate (as indicated 
by the drop metric) in the face of an increasing packet drop rate 
at the router; a flow whose average arrival rate generally tracks 
longer term changes in the packet drop rate at the router; and a 
flow whose average arrival rate seems to change independently 
of changes in the router’s packet drop rate. 

Limitations of this Test: As discussed in the previous 
section, care should be taken when applying this test. In 
particular, a test for unresponsiveness is less straightforward 
for a flow with a variable demand. In addition to possible 
end-to-end congestion mechanisms such as senders adjusting 
their coding rates or receivers subscribing and unsubscribing 
from layered multicast groups, the original data source itself 
could be ON/OFF, or otherwise have strong rate variations over 
time. If a high-bandwidth flow is restricted because it has 
been identified as unresponsive, and is later determined to be 
responding to congestion by reducing its arrival rate, then the 
restriction is removed. 

If the only tests deployed along a path were tests for 
responsiveness, this could give flows an incentive to start 
with an overly-high initial bandwidth. Such a flow could then 
reduce its sending rate in response to congestion, and still 
receive a larger share of the bandwidth than competing flows. 

Response by the Router: The router should freely restrict 
the bandwidth of best-effort flows determined to be unre- 

sponsive in times of congestion. Such flows are “stealing” 
bandwidth from responsive TCP-friendly traffic, and, more 
importantly, increasing the danger of congestion collapse. 

Instead of applying the test passively by observing how 
the flow’s arrival rate changes in response to changes in the 
packet drop rate, another possibility would be to apply the 
test actively. This could be done by purposefully increasing 
the packet drop rate of a high bandwidth flow in times of 
congestion, and observing whether the arrival rate of the flow 
on that link decreases appropriately. 

Example Test: a test for unresponsiveness. One possibility 
for an unresponsiveness test is to identify a high-bandwidth 
best-effort flow as unresponsive if the packet drop rate in- 
creases by more than a factor of four, but the flow’s arrival 
rate has not decreased to below 90% of its previous value. 
Restrictions would be removed from an unresponsive flow 
only if, after an increased packet drop rate, its arrival rate 
returns to at most half of its arrival rate when it was restricted. 

C. Identifying Flows Using Disproportionate Bandwidth 

A third test would be simply to identify flows that use 
a disproportionate share of the bandwidth in times of high 
congestion, where a disproportionate share is defined as a 
significantly larger share than other flows in the presence of 
suppressed demand from some of the other flows. A router 
might restrict the bandwidth of such flows even if the flows 
are known to be using conformant TCP congestion control. 
A conformant TCP flow could use a “disproportionate share” 
of bandwidth under several circumstances: if it was the only 
TCP with sustained persistent demand, or the only TCP using 
large windows, or the only TCP with a significantly smaller 
round-trip time or larger packet sizes than other active TCP’s. 

Let n be the number of flows with packet drops in the 
recent reporting interval. The most obvious test to check if a 
flow was using a disproportionate share of the bandwidth in 
times of congestion would be to test if the how’s fraction 
of the aggregate arrival rate was greater than some small 
constant times l/n, when the aggregate packet drop rate 
was greater than some preconfigured threshold deemed as an 
unacceptable level of congestion. Our test is a modification of 
this approach that, instead of using a preconfigured threshold 
for the acceptable packet drop rate, simply allows for greater 
skewedness in the distribution of best-effort bandwidth when 
packet drop rates are lower. The goal is only to prevent flows 
from using a highly disproportionate share of the bandwidth 
when there is likely to be “sufficient” demand from other 
best-effort flows. 

The first component of the disproportionate-bandwidth test 
is to check if a flow is using a disproportionate share of the 
bandwidth. We define a flow as using a disproportionate share 
of the best-effort bandwidth if its fraction of the aggregate 
arrival rate is more than log(3n)/n, for log the natural 
logarithm. We chose this fraction because it is close to one 
(i.e., 0.9) for n equal to two, and grows slowly as a multiple 
of l/n. 

The second component of our test takes into account the 
level of congestion itself, as reflected in the aggregate packet 
drop rate p. We define a flow as having a high arrival 
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rate relative to the level of congestion if its arrival rate is 
greater than c/Jij Bps for some constant c. This definition 
is motivated by our characterization in Section III-A of the 
relationship between the arrival rate and the packet drop rate 
for conformant TCP. For our simulations we set c to 12,000, 
which is close to 1.5$@B/R for B = 512 bytes and 
R = 0.05 s. 

Limitations of this Test: Gauging the level of unsatisfied 
demand is problematic. For a large round-trip time TCP flow 
with persistent demand, a single packet drop can represent 
a significant suppressed demand. For a short bursty web 
transfer, a single packet drop might not mean much in terms 
of unsatisfied demand. 

Response by the Router: A conservative approach would 
be to limit the restriction of a high-bandwidth responsive 
flow so that over the long run, each such flow receives as 
much bandwidth as the highest bandwidth unrestricted flow. 
In restricting the bandwidth of a high-bandwidth flow that 
has not been identified as either unresponsive or not TCP- 
friendly, care should be taken not to “punish” it by restricting 
its bandwidth too severely. 

Example Test: a disproportionate-bandwidth test. Let p be 
the aggregate packet drop rate for the unrestricted best-effort 
traffic, and let n be the number of flows with packet drops in 
the most recent interval. One possibility for a disproportionate- 
bandwidth test would be to identify a best-effort flow as 
using disproportionate-bandwidth if the estimated arrival rate 
is greater than 12,000/@ and the arrival rate is also greater 
than a fraction log(3n)/ n of the best-effort bandwidth. The 
restriction would be removed when one of these conditions is 
no longer true. 

IV. ALTERNATE APPROACHES 

An alternative to the use of the router mechanisms pro- 
posed in this paper would be the ubiquitous deployment, at 
all congested routers in the Internet, of per-flow scheduling 
mechanisms such as round-robin or fair-queueing scheduling. 
In general, per-flow scheduling algorithms separately schedule 
packets from each flow, dividing the available bandwidth 
among the various flows and providing isolation between them. 
Per-flow scheduling mechanisms at routers would indeed take 
care of many of the fairness issues concerning competing best- 
effort flows. With per-flow scheduling, it might also seem that 
there is no need for further mechanisms to identify and restrict 
the bandwidth of best-effort flows that do not use appropriate 
end-to-end congestion control. In this section we argue that: 1) 
even routers with per-flow scheduling mechanisms still need 
additional mechanisms as an incentive for best-effort flows 
to use end-to-end congestion control and 2) FCFS scheduling 
has some advantages for best-effort traffic that are apart from 
issues of implementation efficiency or incentives regarding 
end-to-end congestion control. 

As we have seen in Section II, per-flow scheduling can- 
not, by itself, prevent congestion collapse from undelivered 
packets. To what extent would the use of per-flow scheduling 
mechanisms encourage end-to-end congestion control for best- 
effort traffic? Recommendations for the ubiquitous deployment 
of per-flow scheduling for best-effort traffic are based on an 

assumption that in a heterogeneous world, best-effort flows 
cannot be relied upon to be responsive to congestion, and 
therefore they should be isolated from each other. In some 
sense, per-flow scheduling has incentives in the wrong direc- 
tion, encouraging flows to make sure that “their” queue in the 
congested router never goes empty (so that they never lose 
“their” turn at scheduling). 

An advantage of simple FCFS’ scheduling over per-flow 
scheduling is that FCFS scheduling is more efficient to im- 
plement. Implementation efficiency can be a concern as link 
speeds and the number of active flows per link both increase. 
Apart from considerations of implementation efficiency, how- 
ever, FCFS scheduling is in many ways the optimal scheduling 
algorithm for a class of traffic where the long-term aggregate 
arrival rate is restricted by either admission controls or, in the 
case of best-effort traffic, by compatible end-to-end congestion 
control procedures. In comparison to FQ [4] or Round Robin 
scheduling, FCFS scheduling reduces the tail of the delay 
distribution [3]. In particular, FCFS scheduling allows packets 
arriving in a small burst to be transmitted in a burst, rather than 
having the packets “spread out” and delayed by the scheduler. 

In some sense, FCFS scheduling and per-flow FQ or Round 
Robin scheduling are two ends of a spectrum. The middle 
ranges of the spectrum would include not only FCFS schedul- 
ing enhanced by mechanisms for the differential treatment of 
unresponsive flows, but could also include relaxed variants 
of per-flow scheduling that allow for small bursts to be 
transmitted by each flow and include additional incentives 
for end-to-end congestion control. This middle range would 
also include FCFS scheduling with differential dropping for 
flows using a disproportionate share of the bandwidth [18], or 
scheduling mechanisms such as class-based queueing (CBQ) 
[lo] or stochastic fair queueing (SFQ) [20] that can operate 
on levels of granularity between the two extremes of either a 
single flow or the entire aggregate of best-effort traffic. 

The differential treatment of unresponsive flows can 
consist of preferentially dropping packets from unresponsive 
flows while keeping those packets in the same queue, or of 
reclassifying packets from unresponsive flows to a separate 
queue or queues. Another choice concerns the granularity at 
which regulation should be applied. The approach outlined 
in Section III-A of identifying unfriendly flows can best 
be applied to the level of granularity of a single flow; the 
sending rate for an aggregate of flows is quite different 
from the sending rate of a single flow. In contrast, the 
approaches outlined in Sections III-B and III-C, of identifying 
unresponsive flows or flows using disproportionate 
bandwidth, could also be applied to aggregates of flows. As 
with any scheduling or packet-dropping mechanism applied 
to an aggregate, there is a fundamental question of the 
relative allocation of scarce network resources to the various 
aggregates. This issue remains problematic even at the level 
of granularity of single flows: an application can open N 
separate flows to the same destination instead of one, for 
example,2 or frequently change port numbers for active flows. 

*This particular form of evasion of end-to-end congestion control would 
be reduced by the development of mechanisms for shared congestion control 
among flows with the same source and destination [13]. 
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A more speculative issue is whether min-max fairness 
is the ideal fairness metric to use for best-effort traffic at 
a specific router. Min-max fairness has the advantage of 
being simple to define at a router; indeed, it is the basis 
for our approach in this paper for defining flows using 
a disproportionate share of the link bandwidth. However, 
instead of considering the network as a whole, the min-max 
definition of fairness restricts attention separately to each 
isolated component. A more appropriate fairness metric for 
recognizing each flow’s equal access to the scarce resources 
of the Internet would take into account such global factors 
as the number of congested links on each flow’s path. 

Another alternative to the router mechanisms described in 
this paper might be the deployment of pricing structures 
sensitive to the behavior of each flow in the global Internet that 
would elicit the desired behavior. Although pricing structures 
that provide an incentive for applications to use end-to-end 
congestion control could be envisioned, the state required by 
such a pricing scheme would be nontrivial. 

In contrast, router mechanisms that detect and restrict the 
bandwidth of uncooperative flows could be deployed in- 
crementally, without requiring global knowledge or global 
consistency in the network infrastructure, to provide a con- 
crete incentive to flows to use appropriate congestion control 
mechanisms. Such mechanisms could be deployed at a con- 
gested router, using information from packet drops (or other 
congestion indications) generated at the router itself. 

In a network engineered so that the typical case is one 
of sufficient bandwidth for the demand, distinctions between 
the various scheduling algorithms and incentive mechanisms 
would become less important. Similarly, in such a network 
the possibility of congestion collapse due to congested links 
carrying packets that would later be dropped in the network 
would become more remote. It is hard to predict, however, 
when or if the scenario of sufficient bandwidth for the demand 
is likely to be achieved. 

V. CONCLUSIONS AND FUTURE WORK 

We have argued in this paper on the need for end-to-end 
congestion control, and further, on the need for mechanisms 
in the network to detect and restrict unresponsive or high- 
bandwidth best-effort flows in times of congestion. Such 
mechanisms would provide an incentive in support of end- 
to-end congestion control for best-effort traffic. 

Clearly, there is substantially more work still to be done 
in developing and investigating the approaches outlined in 
this paper. We have not yet outlined a specific proposal 
for mechanisms for identifying and controlling unresponsive 
flows. We believe the most important issue is not the precise 
functioning of the mechanisms to restrict the bandwidth of un- 
responsive best-effort flows, but simply that such mechanisms 
be deployed. Mechanisms such as these would go a long way 
to making concrete the essential role played by congestion 
control for best-effort traffic in the Internet. 

APPENDIX A 

ONE TCP CONNECTION OR MANY 

This section discusses the negative impact on the network of 
breaking a single TCP connection into multiple connections at 
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the application level to increase throughput. In particular, we 
show that while the use of concurrent connections increases 
throughput for those applications that break a TCP connection 
into multiple connections (relative to those applications that 
do not do this), it also increases the packet drop rate shared 
by all of the best-effort traffic (see also [2]). Breaking a single 
TCP connection into multiple connections is one example of 
a possible spiral of increasingly aggressive TCP congestion- 
control behaviors that leads to increasing packet drop rates in 
the Internet. 

For a TCP connection that has been separated into N 
different TCP subconnections, a single packet drop results 
in one of the N subconnections, receiving l/N-th of the 
aggregate bandwidth, having its throughput cut in half. Thus, 
a single packet drop causes the aggregate arrival rate to be 
dropped to a fraction (2N - 1)/(2N) of its previous value. 
Then, because each TCP subconnection continues to increase 
its congestion window by one packet per RTT for those 
TCP subconnections that have not yet reached the receiver’s 
advertised window, the aggregate TCP connections together 
increase their arrival rate by up to N packets per RTT. This 
is much more aggressive congestion control that would lead 
to a correspondingly-larger steady-state packet drop rate in 
the Internet. A router could detect a TCP connection that 
had been separated into N different TCP subconnections by 
defining the granularity of a “flow” by source and destination 
IP addresses only. 

APPENDIX B 

CHARACTERIZING TCP-FRIENDLY FLOWS 

Since congestion control was introduced to TCP in 1988 
[14], TCP flows in the Internet have used packet drops as an 
indication of congestion, and have responded by reducing their 
offered load by half for each window of data experiencing a 
packet drop. For a responsive flow with persistent demand, 
increasing the packet drop rate for a flow at a router should, 
after a short delay, result in a decreased arrival rate from 
that flow at that router. In this section, we give an upper 
bound on the arrival rate from any single conformant TCP 
connection at a router, given a steady-state packet drop rate 
at the router, an upper bound on the TCP packet size, and a 
lower bound on the TCP connection’s round-trip time. Using 
this characterization, routers can characterize selected flows as 
using more bandwidth than would any TCP flow in the same 
circumstances. 

In this section, we explore the relationship between through- 
put and the packet drop rate for a conformant TCP connection 
[11], [26], [22], [23]. By a conformant TCP connection, we 
mean a TCP connection where the TCP sender follows the 
following two essential components of today’s TCP congestion 
control. First, the TCP data sender interprets any packet drop in 
a window of data as an indication of congestion, and responds 
by reducing the congestion window at least in half. Second, 
during the congestion avoidance phase in the absence of 
congestion, the TCP sender increases the congestion window 
by at most one packet per round-trip time (or more precisely, 
by at most one packet per window of data). These two 
components lead to a simple relationship between the “steady- 
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state” packet drop rate received by a TCP connection, and the 
“steady-state” average throughput achieved by that connection. 

There are many reasons why conformant TCP implemen- 
tations might respond to congestion less aggressively than 
allowed by the limits of congestion control described above. 
TCP connections have potentially long delays due to retrans- 
mit timeouts; at times, TCP senders invoke slow-start in 
responding to congestion; TCP connections may be limited by 
maximum bounds on the window size, imposed by buffering 
or lack of window scaling at either at the sender or receiver; 
for TCP connections where the receiver only sends an ACK 
packet for every two data packets, the TCP sender increases 
the congestion window by less than one packet per round-trip 
time. 

We assume a steady-state model of TCP as introduced in 
Section V of [l 11. For the purposes of heuristic analysis, we 
assume a single packet is dropped from a TCP connection each 
time the congestion window is increased to W packets (and 
never when the congestion window is below W packets). The 
steady-state model assumes a nonzero but nonbursty average 
packet drop rate of p, where an individual TCP connection has 
at most one packet drop in a window of data. The TCP sender 
responds to a packet drop by cutting the congestion window 
at least in half. After a packet is dropped, the TCP sender 
increases its congestion window by at most one packet each 
round-trip time, until the congestion window again reaches 
its old value of W packets (and, in steady state, the TCP 
connection receives another packet drop). The assumption in 
this model of a deterministic and repeatable pattern, although 
admittedly unrealistic, leads to results verified by simulations 
in this section and by independently derived and more rigorous 
analysis in [26], [ 191, [27]. The equation that results from this 
steady-state model has also been proposed as a basis for new 
congestion-control mechanisms [22]. 

We consider a TCP connection sending packets (or more 
precisely, segments) of B bytes, with a fairly constant round- 
trip time, including queueing delays, of R seconds. Each time 
a packet is dropped, the TCP sender has a congestion window 
of W packets. 

By decreasing its window by at least half for each packet 
drop and increasing its window by at most one per round-trip 
time afterwards, the TCP sender transmits at least 

;+ ;+1 +.. ( 1 .+wz;w2 (2) 

packets for each packet dropped. The fraction p of the sender’s 
packets that are dropped is then bounded by the reciprocal of 
that value 

8 
plw. 

From (3) 

WI p J 
For our steady-state model assuming a link with steady-state 

packet drop rate p, (4) gives the maximum congestion window 
W of a TCP connection when a packet is dropped. In the 

100 Mbps 

1 msec 

10 Mbps 

20 msec 

Fig. 9. Simulation network. 

steady-state model where the congestion window is increased 
by one packet per round-trip time, the average congestion 
window over a single cycle of the steady-state model is 
0.75 WThe maximum sending rate for a TCP connection over 
a single cycle of the steady-state model is thus T bytes/s, for 

T < 0.75 * W * B 

R ’ 

Substituting for W from (4), we get 

T < 1.5m* B 
- 

R*@ ’ 
(3 

This upper bound on TCP’s average sending rate applies for 
any conformant TCP that decreases its congestion window 
by at least half, and, after the congestion window has been 
decreased by half, increases the congestion window by at 
most one packet per round-trip time.3 Thus, this upper bound 
also applies to a TCP restricted by the receiver’s advertised 
window, or by TCP variants such as Vegas TCP which 
sometimes refrain from increasing the congestion window 
during the congestion avoidance phase. Assuming a steady- 
state packet drop rate of p, and thus, in the steady-state 
model, that the TCP connection gets to send l/p packets 
between packet drops, clearly the TCP connection maximizes 
its average throughput by increasing its congestion window by 
the maximum allowed amount each round-trip time. 

This might at first seem counter-intuitive. However, the 
purpose of the steady-state model in this section is to explore 
the relationship between the steady-state packet drop rate and 
the steady-state arrival rate from the TCP connection. Certainly 
in a specific scenario with all else being equal, a TCP that 
refrains from increasing its congestion window from time to 
time might increase its own throughput by decreasing the 
aggregate packet drop rate. This does not change the fact that 
the inequality in (1) still describes the relationship between 
the packet drop rate and the arrival rate for that connection. 

For TCP connections where the data receiver sends at most 
one ACK for every two packets, we could show a stronger 
upper bound on the sending rate. For a TCP connection with 
a delayed-ACK receiver, the sender receives one acknowledg- 
ment for every two packets, and increases its window more 
slowly that a TCP connection that receives an ACK for every 
packet. With a delayed-ACK receiver, the fraction of that 
connection’s arriving packets that are dropped is 

1 1 

p = g!!o(w/2 + i/2) = (3/4)W2 

This gives an upper bound on the arrival rate of 

(7) 

3The same result was derived by 1261, using a more rigorous model, with 
a constant of 1.3 instead of 1.22 (~1.5fl). 
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Fig. 10. TCP-friendly bandwidth for a 60-ms round-trip time and 1460.byte packets. 
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(b) 

Although the language in this paper refers only to packet 

drops, proposals have been made to add explicit congestion 

notification to TCP/IP [12], [29]. If explicit congestion no- 
tification were deployed, then instead of dropping a packet 

to provide feedback about congestion, a router could sim- 

ply “mark” packets by setting the the Explicit Congestion 
Notification bit in packet headers. 

Limitations of the Model: Equations (5) and (7) do not 
take into account TCP delays due to waiting for retrans- 
mit timers to time out. Thus, (5) drastically overestimates 

the bandwidth for steady-state scenarios when the conges- 
tion window W is less than four packets when a packet is 

dropped. From (4), this occurs when the packet drop rate 

is 16% or higher. (If the congestion window is four or 

higher, the TCP connection can recover from a single packet 
drop using Fast Retransmit, after receiving several duplicate 

acknowledgments. If the congestion window is smaller, then 
the TCP connection generally has to wait for a retransmit 

timeout [5].) In the extreme case, for a packet drop rate 
of lOO%, our steady-state model would assume that the 
TCP connection stubbornly sends one packet every round- 

trip time, and (5) (because it used an approximation in (2)) 
gives a .TCP sending rate of slightly over one packet per 
round-trip time. Incorporating the notion of retransmit timer 
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Fig. 11. TCP bandwidth versus steady-state drop rate, for SACK TCP with a delayed-ACK receiver, a 60-ms round-trip time and 512.byte packets 

backoff in the model, as in [27], gives a much more realistic 
result. 

A. Simulations Verifying the “TCP-Friendly” 
Characterization 

In this section we use simulations to loosely verify the 
“TCP-friendly” characterization in (5). This equation has also 
been verified with simulations and experiments in [23]. 

Fig. 9 illustrates the simulation topology used to evaluate 
the “TCP-friendly” characterization. The solid line in the top 
graph of Fig. 10 shows the TCP-friendly bandwidth from (5) 
as a function of the packet drop rate. This is also shown in 
the straight line in the bottom graph. The curved solid line 
in the bottom graph shows the revised equation from [27]. 
Fig. 10 assumes a TCP connection with minimum round-trip 
time of R = 0.06 s and a maximum packet size of B = 1460 
bytes. The z-axis shows p, the fraction of arriving packets 
that are dropped, and the y axis shows T, the upper bound on 
TCP arrival rate in kbytes/s. The bottom graph repeats the top 
graph on a log-log scale. 

Each dashed line in Fig. 10 shows the results from a single 
simulation set. Each simulation consists of two competing 
connections, one TCP and the other UDP, from node Sl to 
node S4. For each simulation set the sending rate of the 
UDP flow ranges from zero up to the available bandwidth 
of the congested link. The router uses FCFS scheduling and 
RFD queue management. The RED packet drop mechanisms 
are generally able to prevent both the FIFO buffer from 
overflowing and RED’s average queue size from exceeding 
its maximum threshold. The TCP connection sees a round-trip 
time, including queueing delay, of roughly 60 ms. 

Each simulation is represented by a number in Fig. 10. The 
simulations in a simulation set differ from each other only 
in the sending rate of the UDP flow. Numbers “1” through 
“3” show simulations where the TCP connection uses 1460- 
byte packets. Numbers “4” through “6” show simulations with 
5 12-byte packets. Simulation sets “2” and “5” use Tahoe TCP, 
and the others use SACK TCP. Simulation sets “3” and “6” 
use data receivers with delayed ACK’s (sending one ACK 
to acknowledge two data packets), and the others use single 
ACKS (sending an ACK for every data packet). For all of 
the simulations, the TCP clock granularity is 100 ms. The n:- 
axis in Fig. 10 shows the fraction of the TCP connection’s 

arriving packets that are dropped, and the y-axis shows the 
TCP connection’s sending rate. 

For the SACK and Tahoe simulations with 1460-byte pack- 
ets and single-ACK receivers (simulation sets “1” and “2”>, 
the simulation results are a reasonable match to the computed 
TCP-friendly bandwidth. For drop rates lower than 2%, the 
SACK and Tahoe TCP’s receive more than the computed TCP- 
friendly bandwidth. Examining the output traces shows that in 
these simulations, it is not uncommon for two packets to be 
dropped from a single window of data in a congestion epoch. 
When this happens, the two packet drops constitute a single 
indication of congestion to the end nodes. 

For packet drop rates greater than 5%, Fig. 10 shows that 
the TCP-friendly bandwidth greatly overestimates the arrival 
rate of a TCP connection. As mentioned earlier, this is because 
the version of the steady-state model used in this paper does 
not take into account delays due to retransmit timers. 

Simulations with 512-byte packets closely match (5) using 
512-byte packets. As seen in Fig. 10, the more aggressive the 
TCP congestion control (i.e. a TCP with 1460-byte packets is 
more aggressive than TCP with 512-byte packets), the higher 
the steady-state packet drop rate needed to sustain the same 
per-connection bandwidth. A spiral of increasingly aggressive 
congestion control would lead to a matching spiral of an 
increasingly high steady-state packet drop rate, in the context 
of a fixed available bandwidth. 

Fig. 11 shows the results for SACK TCP with a delayed- 
ACK receiver with the simulated topology of Fig. 9. For 
a fixed throughput, a TCP connection with a delayed-ACK 
receiver should receive half the packet drop rate of a TCP 
connection that receives an ACK for every packet. The top 
solid line shows the analytical results for an immediate-ACK 
receiver, and the bottom solid line shows the analytical results 
for an delayed-ACK receiver. For a given packet drop rate, a 
TCP connection with a delayed-ACK receiver will receive less 
throughput than a TCP connection with an immediate-ACK 
receiver. 

ACKNOWLEDGMENT 

This paper results, in part, from a long collaboration with 
V. Jacobson. It also results from a long history of discussions 
and disagreements in the IETF Transport Area Directorate, 
the Internet End-to-End Research Group, and elsewhere. We 



472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7. NO. 4. AUGUST 1999 

are particularly indebted to H. Balakrishnan, G. Minshall, L. 
Zhang, and the anonymous reviewers from SIGCOMM ‘97 
and from IEEE/ACM TRANSACTIONS ON NETWORKING for 
feedback on this paper, to K. Tieu who worked with us on 
the related issue of using RED packet drops to detect high- 
bandwidth flows, and to J. Bolot, B. Braden, J. Mahdavi, 
M. Mathis, and S. Shenker for discussions of some of these 
matters. 

t11 

PI 

[31 

[41 

[51 

[cl 

r71 

181 

[91 

[lOI 

[Ill 

[I21 

[I31 

1141 

[l51 

I161 

[l71 

Cl81 

r191 

REFERENCES 

R. Axelrod, The Evolution of Cooperation. 
1984. 

New York: Harper Collins, 

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, S. Stemm, and 
R. H. Katz, “TCP behavior of a busy intemet server: Analy- 
sis and improvements,” in Proc. ConJ Computer Communica- 
tions (IEEE INFOCOM), Mar. 1998. [Online]. Available HTTP: 
http://www.cs.berkeley.eduThari/papers/infocom98.ps.gz 
D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time ap- 
plications in an integrated services packet network: Architecture and 
mechanism,” in Proc. SIGCOMM Symp. Communications Architectures 
and Protocols, 1992, pp. 14-26. 
A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of 
a fair queueing algorithm,” Internetworking: Research and Experience, 
vol. 1, pp. 3-26, 1990. 
K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Rena, 
and Sack TCP,” ACM Cornput. Commun. Rev., pp. 5-21, July 1996. 
[Online]. Available HTTP: http://www-nrg.ee.lbI.gov/nrg-papers.html 
S. Floyd and K. Fall. (1997). Router mechanisms to support 
end-to-end congestion control [Online]. Available HTTP: http://www- 
nrg.ee.lbl.gov/floyd/papers.html 
S. Floyd and K. Fall, “Promoting the use of end-to-end congestion 
control in the intemet,” submitted for publication. [Online]. Available 
HTTP: http://www-nrg.ee.lbl.gov/floyd/end2end-paper.html 
S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched 
gateways,” Internetworking: Research and Experience, vol. 3, no. 3, pp. 
115-156, Sept. 1992. 
S. Floyd and V. Jacobson, “Random early detection gateways for con- 
gestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397413, 
Aug. 1993. [Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg- 
papers.html 

“Link-sharing and resource management models for packet 
networks,” IEEWACM Trans. Networking, vol. 3, pp. 365-386, 1995. 
[Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-papers.html 
S. Floyd, “Connections with multiple congested gateways in packet- 
switched networks part 1: One-way traffic,” ACM Comput. Commun. 
Rev., vol. 21, no. 5, pp. 30-47, Oct. 1991, [Online]. Available HTTP: 
http://www-nrg.ee.lbl.gov/nrg-papershtml 
-3 “TCP and explicit congestion notification,” ACM Comput. 
Commun. Rev., vol. 24, no. 5, pp. 10-23, Oct. 1994. 
- (I 999). Multiplexing, TCP, and UDP: P0inter.s to the discussion 
[Online]. Available HTTP: http://www.aciri.org/floyd/tcp_mux.html 
V. Jacobson, ‘Congestion avoidance and control,” in Proc. SIGCOMM 
Symp. Communications Architectures and Protocols, 1988, pp. 314-329. 
[Online]. Available mP: ftp://ftp.ee.Ibl.gov/papers/congavoid.ps.Z 
S. Kent and R. Atkinson, “Security architecture for the intemet proto- 
col,” RFC 2401, Internet Engineering Task Force, Nov. 1998. 
C. Kent and J. Mogul, “Fragmentation considered harmful.” in Proc. 
SIGCOMM Symp. Communications Architectures and Protocols, Aug. 
1987, pp. 390401. 
C. Kent, K. McCloghrie, J. Mogul, and C. Partridge, “IP MTU discovery 
options,” RFC 1063, Internet Engineering Task Force, July 1988. 
D. Lin and R. Morris, “Dynamics of random early detection,” in Proc. 
SIGCOMM Symp. Communications Architectures and Protocols, 1997, 
pp. 127-136. 
‘I’. V. Lakshman and U. Madhow, “The performance of TCP/IP for 
networks with high bandwidth-delay products and random loss,” 

[201 

1211 

P21 

WI 

1241 

WI 

Ml 

WI 

WI 

WI 

[301 

[3ll 

~321 

IEEE/ACM Trans. Networking, vol. 6, pp. 336350, June 1997. [Online]. 
Available HTTP: http://www.ccrc.wustl.edu/ton/jun97.htmi#Lakshman 
P. McKenney, “Stochastic fairness queueing,” in Proc. Con& Computer 
Communications (IEEE INFOCOM), pp. 733-740, 1990. 
J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Internet 
Engineering Task Force, Nov. 1990. 
J. Mahdavi and S. Floyd. (1997) TCP-friendly uni- 
cast rate-based fiow control [Online]. Available HTTP: 
http://www.psc.edu/networking/papers/tcp_friendly.html 
M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior 
of the TCP congestion avoidance algorithm,” ACM Comput. Commun. 
Rev., vol. 27, no. 3, pp. 67-82, July 1997. 
I. Nagle, “Congestion control in lP/TCP intemetworks,” RFC 896, 
Internet Engineering Task Force, Jan. 1984. 
(1995). NS (network simulator) [Online]. Available HTTP: http://www- 
mash.cs.berkeley.edu/ns 
T. Ott, J. Kemperman, and M. Mathis. (1996). The stationary distri- 
bution of ideal TCP congestion avoidance [Online]. Available HTTP: 
http://networks.ecse.rpi.edu/natun/papers/tcp-equn.ps 
J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling 
TCP throughput: A simple model and its empirical validation,” 
in Proc. SIGCOMM Symp. Communications Architecfwes and 
Protocols, Aug. 1998, pp. 303-314. [Online]. Available HTTP: 
http://www.acm.org/sigcomm/sigcomm98/tp/abs_25.html 
A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM 
networks,” IEEE .I. Select. Areas Commun., vol. 13, pp. 633-641, 1995. 
[Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-papers.html. 
K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit conges- 
tion notification (ECN) to IP,” RFC 2481, Jan. 1999. 
S. Shenker, “Making greed work in networks: A game-theoretic analysis 
of switch service disciplines,” m Proc. SIGCOMM Symp. Communica- 
tions Architectures and Protocols, Aug. 1994, pp. 47-57. 
K. Thompson, G. Miller, and R. Wilder, “Wide-area intemet traffic 
patterns and characteristics,” IEEE Network, vol. 11, pp. 10-23. Nov. 
1997. 
G. Varghese, “On avoiding congestion collapse,” viewgraphs, Washing- 
ton Univ. Workshop Integration of IP and ATM, Nov. 19, 1996. 

Sally Floyd (S’86-M’88-SM’98) received the B.A. 
degree in sociology, with a minor in mathematics, 
from the University of California (UC) at Berkeley 
in 1971. She received the M.S. and Ph.D. degrees in 
computer science from the UC at Berkeley in 1987 
and 1989, respectively. 

From 1975 to 1982, she worked on computer 
systems for Bay Area Rapid Transit, CA. From 1990 
to 1999, she was a member of the Network Research 
Group at Lawrence Berkeley National Laboratory. 
Berkeley, CA. Since February 1999, she has been a 

member of the AT&T Center for Internet Research at ICSI (ACIRI), at the 
International Computer Science institute, Berkeley, CA. Her research interests 
include congestion control in computer networks and the analysis of network 
dynamics. 

Kevin Fall received the B.A. digree in computer science from the University 
of California at Berkeley in 1988. He received the M.S. and Ph.D. degrees 
in computer science from the University of California (UC) at San Diego in 
1991 and 1994, respectively. 

From 1995 to 1998, he was a member of the Network Research Group at 
Lawrence Berkeley National Laboratory, Berkeley, CA. Since 1998, he has 
been with the Computer Science Division, UC at Berkeley, as a Research 
Computer Scientist and Adjunct Assistant Professor. He is also a co-founder 
of NetBoost Corporation, Mountain View, CA. His research interests include 
simulation, network protocol architecture, and performance analysis. 


