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Abstract

Promotion and evacuation are bijections on the set of linear extensions of a finite
poset first defined by Schützenberger. This paper surveys the basic properties of
these two operations and discusses some generalizations. Linear extensions of a
finite poset P may be regarded as maximal chains in the lattice J(P ) of order ideals
of P . The generalizations concern permutations of the maximal chains of a wider
class of posets, or more generally bijective linear transformations on the vector space
with basis consisting of the maximal chains of any poset. When the poset is the
lattice of subspaces of Fn

q , then the results can be stated in terms of the expansion
of certain Hecke algebra products.

1 Introduction.

Promotion and evacuation are bijections on the set of linear extensions of a finite poset.
Evacuation first arose in the theory of the RSK algorithm, which associates a permutation
in the symmetric group Sn with a pair of standard Young tableaux of the same shape
[31, pp. 320–321]. Evacuation was described by M.-P. Schützenberger [25] in a direct
way not involving the RSK algorithm. In two follow-up papers [26][27] Schützenberger
extended the definition of evacuation to linear extensions of any finite poset. Evacuation
is described in terms of a simpler operation called promotion. Schützenberger established
many fundamental properties of promotion and evacuation, including the result that
evacuation is an involution. Schützenberger’s work was simplified by Haiman [15] and
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Malvenuto and Reutenauer [19], and further work on evacuation was undertaken by a
number of researchers (discussed in more detail below).

In this paper we will survey the basic properties of promotion and evacuation. We will
then discuss some generalizations. In particular, the linear extensions of a finite poset P
correspond to the maximal chains of the distributive lattice J(P ) of order ideals of P .
We will extend promotion and evacuation to bijections on the vector space whose basis
consists of all maximal chains of a finite graded poset Q. The case Q = Bn(q), the lattice
of subspaces of the vector space Fn

q , leads to some results on expanding a certain product
in the Hecke algebra Hn(q) of Sn in terms of the standard basis {Tw : w ∈ Sn}.

I am grateful to Kyle Petersen and two anonymous referees for many helpful comments
on earlier versions of this paper.

2 Basic results.

We begin with the original definitions of promotion and evacuation due to Schützenberger.
Let P be a p-element poset. We write s ⋖ t if t covers s in P , i.e., s < t and no
u ∈ P satisfies s < u < t. The set of all linear extensions of P is denoted L(P ).
Schützenberger regards a linear extension as a bijection f : P → [p] = {1, 2, . . . , p} such
that if s < t in P , then f(s) < f(t). (Actually, Schützenberger considers bijections
f : P → {k + 1, k + 2, . . . , k + p} for some k ∈ Z, but we slightly modify his approach by
always ensuring that k = 0.) Think of the element t ∈ P as being labelled by f(t). We
now define a bijection ∂ : L(P ) → L(P ), called promotion, as follows. Let t1 ∈ P satisfy
f(t1) = 1. Remove the label 1 from t1. Among the elements of P covering t1, let t2 be the
one with the smallest label f(t2). Remove this label from t2 and place it at t1. (Think of
“sliding” the label f(t2) down from t2 to t1.) Now among the elements of P covering t2,
let t3 be the one with the smallest label f(t3). Slide this label from t3 to t2. Continue this
process until eventually reaching a maximal element tk of P . After we slide f(tk) to tk−1,
label tk with p + 1. Now subtract 1 from every label. We obtain a new linear extension
f∂ ∈ L(P ). Note that we let ∂ operate on the right. Note also that t1 ⋖ t2 ⋖ · · · ⋖ tk
is a maximal chain of P , called the promotion chain of f . Figure 1(a) shows a poset P
and a linear extension f . The promotion chain is indicated by circled dots and arrows.
Figure 1(b) shows the labeling after the sliding operations and the labeling of the last
element of the promotion chain by p+ 1 = 10. Figure 1(c) shows the linear extension f∂
obtained by subtracting 1 from the labels in Figure 1(b).

It should be obvious that ∂ : L(P ) → L(P ) is a bijection. In fact, let ∂∗ denote dual
promotion, i.e., we remove the largest label p from some element u1 ∈ P , then slide the
largest label of an element covered by u1 up to u1, etc. After reaching a minimal element
uk, we label it by 0 and then add 1 to each label, obtaining f∂∗. It is easy to check that

∂−1 = ∂∗.

We next define a variant of promotion called evacuation. The evacuation of a linear
extension f ∈ L(P ) is denoted fǫ and is another linear extension of P . First compute f∂.
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Figure 1: The promotion operator ∂ applied to a linear extension

5

2

53

1

5

3

4

5

5

4

4

5

5

2

4

5

5 4

1

4 4

3 3

3
4

5

2

3
2

Figure 2: The evacuation of a linear extension f

Then “freeze” the label p into place and apply ∂ to what remains. In other words, let P1

consist of those elements of P labelled 1, 2, . . . , p−1 by f∂, and apply ∂ to the restriction
of ∂f to P1. Then freeze the label p− 1 and apply ∂ to the p− 2 elements that remain.
Continue in this way until every element has been frozen. Let fǫ be the linear extension,
called the evacuation of f , defined by the frozen labels.

Note. A standard Young tableau of shape λ can be identified in an obvious way with
a linear extension of a certain poset Pλ. Evacuation of standard Young tableaux has a
nice geometric interpretation connected with the nilpotent flag variety. See van Leeuwen
[18, §3] and Tesler [36, Thm. 5.14].

Figure 2 illustrates the evacuation of a linear extension f . The promotion paths are
shown by arrows, and the frozen elements are circled. For ease of understanding we
don’t subtract 1 from the unfrozen labels since they all eventually disappear. The labels
are always frozen in descending order p, p − 1, . . . , 1. Figure 3 shows the evacuation of
fǫ, where f is the linear extension of Figure 2. Note that (seemingly) miraculously we
have fǫ2 = f . This example illustrates a fundamental property of evacuation given by
Theorem 2.1(a) below.

We can define dual evacuation analogously to dual promotion. In symbols, if f ∈ L(P )

the electronic journal of combinatorics 16(2) (2009), #R9 3



5

2

5
3

4

1

3 5 5
4

3

5

4

45

5
4

3 3
4

5

25

3
4

5

21

2 4

Figure 3: The linear extension evac(evac(f))

then define f ∗ ∈ L(P ∗) by f ∗(t) = p+ 1 − f(t). Thus

fǫ∗ = (f ∗ǫ)∗.

We can now state three of the four main results obtained by Schützenberger.

Theorem 2.1. Let P be a p-element poset. Then the operators ǫ, ǫ∗, and ∂ satisfy the
following properties.

(a) Evacuation is an involution, i.e., ǫ2 = 1 (the identity operator).

(b) ∂p = ǫǫ∗

(c) ∂ǫ = ǫ∂−1

Theorem 2.1 can be interpreted algebraically as follows. The bijections ǫ and ǫ∗ gen-
erate a subgroup DP of the symmetric group SL(P ) on all the linear extensions of P .
Since ǫ and (by duality) ǫ∗ are involutions, the group they generate is a dihedral group
DP (possibly degenerate, i.e., isomorphic to {1}, Z/2Z, or Z/2Z × Z/2Z) of order 1 or
2m for some m ≥ 1. If ǫ and ǫ∗ are not both trivial (which can only happen when P is a
chain), so they generate a group of order 2m, then m is the order of ∂p. In general the
value of m, or more generally the cycle structure of ∂p, is mysterious. For a few cases in
which more can be said, see Section 4.

The main idea of Haiman [15, Lemma 2.7, and page 91] (further developed by Mal-
venuto and Reutenauer [19]) for proving Theorem 2.1 is to write linear extensions as words
rather than functions and then to describe the actions of ∂ and ǫ on these words. The
proof then becomes a routine algebraic computation. Let us first develop the necessary
algebra in a more general context.

Let G be the group with generators τ1, . . . , τp−1 and relations

τ 2
i = 1, 1 ≤ i ≤ p− 1

τiτj = τjτi, if |i− j| > 1.
(1)
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Some readers will recognize thatG is an infinite Coxeter group (p ≥ 3) with the symmetric
group Sp as a quotient. Define the following elements of G:

δ = τ1τ2 · · · τp−1

γ = γp = τ1τ2 · · · τp−1 · τ1τ2 · · · τp−2 · · · τ1τ2 · τ1

γ∗ = τp−1τp−2 · · · τ1 · τp−1τp−2 · · · τ2 · · · τp−1τp−2 · τp−1.

Lemma 2.2. In the group G we have the following identities:

(a) γ2 = (γ∗)2 = 1

(b) δp = γγ∗

(c) δγ = γδ−1.

Proof. (a) Induction on p. For p = 2, we need to show that τ 2
1 = 1, which is given. Now

assume for p− 1. Then

γ2
p = τ1τ2 · · · τp−1 · τ1 · · · τp−2 · · · τ1τ2τ3 · τ1τ2 · τ1

·τ1τ2 · · · τp−1 · τ1 · · · τp−2 · · · τ1τ2τ3 · τ1τ2 · τ1.

We can cancel the two middle τ1’s since they appear consecutively. We can then cancel
the two middle τ2’s since they are now consecutive. We can then move one of the middle
τ3’s past a τ1 so that the two middle τ3’s are consecutive and can be cancelled. Now the
two middle τ4’s can be moved to be consecutive and then cancelled. Continuing in this
way, we can cancel the two middle τi’s for all 1 ≤ i ≤ p − 1. When this cancellation is
done, what remains is the element γ2

p−1, which is 1 by induction.
(b,c) Analogous to (a). Details are omitted.

Proof of Theorem 2.1. A glance at Theorem 2.1 and Lemma 2.2 makes it obvious that
they should be connected. To see this connection, regard the linear extension f ∈ L(P )
as the word (or permutation of P ) f−1(1), . . . , f−1(p). For 1 ≤ i ≤ p− 1 define operators
τi : L(P ) → L(P ) by

τi(u1u2 · · ·up) =






u1u2 · · ·up, if ui and ui+1 are
comparable in P

u1u2 · · ·ui+1ui · · ·up, otherwise.

(2)

Clearly τi is a bijection, and the τi’s satisfy the relations (1). By Lemma 2.2, the proof
of Theorem 2.1 follows from showing that

∂ = δ := τ1τ2 · · · τp−1.

Note that if f = u1u2 · · ·up, then fδ is obtained as follows. Let j be the least integer
such that j > 1 and u1 < uj. Since f is a linear extension, the elements u2, u3, . . . , uj−1

are incomparable with u1. Move u1 so it is between uj−1 and uj. (Equivalently, cyclically
shift the sequence u1u2 · · ·uj−1 one unit to the left.) Now let k be the least integer such
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Figure 4: The promotion chain of the linear extension cabdfeghjilk

that k > j and uj < uk. Move uj so it is between uk−1 and uk. Continue in this way
reaching the end. For example, let z be the linear extension cabdfeghjilk of the poset
in Figure 4 (which also shows the promotion chain for this linear extension). We factor
z from left-to-right into the longest factors for which the first element of each factor is
incomparable with the other elements of the factor:

z = cabd · feg · h · jilk.

Cyclically shift each factor one unit to the left to obtain zδ:

zδ = abdc · egf · h · ilkj = abdcegfhkilj.

Now consider the process of promoting the linear extension f of the previous para-
graph, given as a function by f(ui) = i and as a word by u1u2 · · ·up. The elements
u2, . . . , uj−1 are incomparable with u1 and thus will have their labels reduced by 1 after
promotion. The label j of uj (the least element in the linear extension f greater than u1)
will slide down to u1 and be reduced to j − 1. Hence f∂ = u2u3 · · ·uj−1u1 · · · . Exactly
analogous reasoning applies to the next step of the promotion process, when we slide the
label k of uk down to uj. Continuing in this manner shows that zδ = z∂, completing the
proof of Theorem 2.1.

Note. The operators τi : L(P ) → L(P ) have the additional property that (τiτi+1)
6 =

1, but we see no way to exploit this fact.

Theorem 2.1 states three of the four main results of Schützenberger. We now discuss
the fourth result. Let f : P → [p] be a linear extension, and apply ∂ p times, using
Schützenberger’s original description of ∂ given at the beginning of this section. Say
f(t1) = p. After applying sufficiently many ∂’s, the label of t1 will slide down to a new
element t2 and then be decreased by 1. Continuing to apply ∂, the label of t2 will eventually
slide down to t3, etc. Eventually we will reach a minimal element tj of P . We call the
chain {t1, t2, . . . , tj} the principal chain of f (equivalent to Schützenberger’s definition of
“orbit”), denoted ρ(f). For instance, let f be the linear extension of Figure 5(b) of the
poset of Figure 5(a). After applying ∂, the label 5 of e slides down to d and becomes 4.
Two more applications of ∂ cause the label 3 to d to slide down to a. Thus ρ(f) = {a, d, e}.
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Figure 5: A poset P with a linear extension and its evacuation

Now apply ∂ to the evacuation fǫ. Let σ(fǫ) be the chain of elements of P along
which labels slide, called the trajectory of f . For instance, Figure 5(c) shows fǫ, where
f is given by Figure 5(b). When we apply ∂ to fǫ, the label 1 of a is removed, the label
3 of d slides to a, and the label 5 of e slides to d. Schützenberger’s fourth result is the
following.

Theorem 2.3. For any finite poset P and f ∈ L(P ) we have ρ(f) = σ(fǫ).

Proof (sketch). Regard the linear extension f∂i of P as the word ui1ui2 · · ·uip. It is
clear that

ρ(f) = {u0p, u1,p−1, u2,p−2, . . . , up−1,1}

(where multiple elements are counted only once). On the other hand, let ψj = τ1τ2 · · · τp−j,
and regard the linear extension fψ1ψ2 · · ·ψi as the word vi1vi2 · · · vip. It is clear that
vij = uij if i + j ≤ p. In particular, ui,p−i = vi,p−i. Moreover, fǫ = v2,p, v3,p−1, . . . , vp+1,1.
We leave to the reader to check that the elements of ρ(f) written in increasing order, say
z1 < z2 < · · · < zk, form a subsequence of fǫ, since ui,p−i = vi,p−i. Moreover, the elements
of fǫ between zj and zj+1 are incomparable with zj . Hence when we apply ∂ to fǫ, the
element z1 moves to the right until reaching z2, then z2 moves to the right until reaching
z3, etc. This is just what it means for σ(fǫ) = {z1, . . . , zk}, completing the proof.

Promotion and evacuation can be applied to other properties of linear extensions.
We mention three such results here. For the first, let e(P ) denote the number of linear
extensions of the finite poset P . If A is the set of minimal (or maximal) elements of P ,
then it is obvious that

e(P ) =
∑

t∈A

e(P − t). (3)

An antichain of P is a set of pairwise incomparable elements of P . Edelman, Hibi, and
Stanley [9] use promotion to obtain the following generalization of equation (3) (a special
case of an even more general theorem).

Theorem 2.4. Let A be an antichain of P that intersects every maximal chain. Then

e(P ) =
∑

t∈A

e(P − t).

the electronic journal of combinatorics 16(2) (2009), #R9 7



The second application of promotion and evacuation is to the theory of sign balance.
Fix an ordering t1, . . . , tp of the elements of P , and regard a linear extension of f : P → [p]
as the permutation w of P given by w(ti) = f−1(i). A finite poset P is sign balanced if it
has the same number of even linear extensions as odd linear extensions. It is easy to see
that the property of being sign balanced does not depend on the ordering t1, . . . , tp. While
it is difficult in general to understand the cycle structure of the operator ∂ (regarded as
a permutation of the set of all linear extensions f of P ), there are situations when we
can analyze its effect on the parity of f . Moreover, Theorem 3.1 determines the cycle
structure of ǫ. This idea leads to the following result of Stanley [32, Cor. 2.2 and 2.4].

Theorem 2.5. (a) Let #P = p, and suppose that the length ℓ of every maximal chain of
P satisfies p ≡ ℓ (mod 2). Then P is sign-balanced.

(b) Suppose that for all t ∈ P , the lengths of all maximal chains of the principal order
ideal Λt := {s ∈ P : s ≤ t} have the same parity. Let ν(t) denote the length of the longest
chain of Λt, and set Γ(P ) =

∑
t∈P ν(t). If

(
p
2

)
≡ Γ(P ) (mod2) then P is sign-balanced.

Our final application is related to an operation ψ on antichains A of a finite poset P .
Let

IA = {s ∈ P : s ≤ t for some t ∈ A},

the order ideal generated by A. Define Aψ to be the set of minimal elements of P − IA.
The operation ψ is a bijection on the set A(P ) of antichains of P , and there is considerable
interest in determining the cycle structure of ψ (see, e.g., Cameron [7] and Panyushev
[20]). Here we will show a connection with the case P = m × n (a product of chains
of sizes m and n) and promotion on m + n (where + denotes disjoint union). We first
define a bijection Φ: L(m+n) → A(m×n). We can write w ∈ L(m+n) as a sequence
(am, am−1, . . . , a1, bn, bn−1, . . . , b1) of m 1’s and n 2’s in some order. The position of the 1’s
indicate when we choose in w (regarded as a word in the elements of m + n) an element
from the first summand m. Let m ≥ i1 > i2 > · · · > ir ≥ 1 be those indices i for which
ai = 2. Let j1 < j2 < · · · < jr be those indices j for which bj = 1. Regard the elements
of m × n as pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, ordered coordinatewise. Define

Φ(w) = {(i1, j1), . . . , (ir, jr)} ∈ A(m × n).

For instance (writing a bar to show the space between a1 and b6), Φ(1211221|212211) =
{(6, 1), (3, 2), (2, 5)}. It can be checked that Φ(w∂) = Φ(w)ψ. Hence ψ on m×n has the
same cycle type as ∂ on m + n, which is relatively easy to analyze. We omit the details
here.

3 Self-evacuation and P -domino tableaux

In this section we consider self-evacuating linear extensions of a finite poset P , i.e., linear
extensions f such that fǫ = f . The main result asserts that the number of self-evacuating
f ∈ L(P ) is equal to two other quantities associated with P . We begin by defining these
two other quantities.
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An order ideal of P is a subset I such that if t ∈ I and s < t, then s ∈ I. A P -domino
tableau is a chain ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ir = P of order ideals of P such that Ii − Ii−1 is
a two-element chain for 2 ≤ i ≤ r, while I1 is either a two-element or one-element chain
(depending on whether p is even or odd). In particular, r = ⌈p/2⌉.

Note. In [32, §4] domino tableaux were defined so that Ir − Ir−1, rather than I1,
could have one element. The definition given in the present paper is more consistent with
previously defined special cases.

Now assume that the vertex set of P is [p] and that P is a natural partial order,
i.e., if i < j in P then i < j in Z. A linear extension of P is thus a permutation
w = a1 · · ·ap ∈ Sp. The descent set D(w) of w is defined by

D(w) = {1 ≤ i ≤ p− 1 : ai > ai+1},

and the comajor index comaj(w) is defined by

comaj(w) =
∑

i∈D(w)

(p− i). (4)

(Note. Sometimes the comajor index is defined by comaj(w) =
∑

i∈[p−1]−D(w) i, but we

will use equation (4) here.) Set

W ′
P (x) =

∑

w∈L(P )

xcomaj(w).

It is known from the theory of P -partitions (e.g., [30, §4.5]) that W ′
P (x) depends only on

P up to isomorphism.

Note. Usually in the theory of P -partitions one works with the major index maj(w) =∑
i∈D(w) i and with the polynomial WP (x) =

∑
w∈L(P ) x

maj(w). Note that if p is even then

comaj(w) ≡ maj(w) (mod2), so WP (−1) = W ′
P (−1).

Theorem 3.1. Let P be a finite natural partial order. Then the following three quantities
are equal.

(i) W ′
P (−1).

(ii) The number of P -domino tableaux.

(iii) The number of self-evacuating linear extensions of P .

In order to prove Theorem 3.1, we need one further result about the elements τi of
equation (1).

Lemma 3.2. Let G be the group of Lemma 2.2. Write

δi = τ1τ2 · · · τi

δ∗i = τiτi−1 · · · τ1.

Let u, v ∈ G. The following two conditions are equivalent.
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(i) uδ∗1δ
∗
3 · · · δ

∗
2j−1 = vδ∗1δ

∗
3 · · · δ

∗
2j−1 · δ2j−1δ2j−2 · · · δ2δ1.

(ii) uτ1τ3 · · · τ2j−1 = v.

Proof of Lemma 3.2. The proof is a straightforward extension of an argument due to
van Leeuwen [17, §2.3] (but not expressed in terms of the group G) and more explicitly
to Berenstein and Kirillov [2]. (About the same time as van Leeuwen, a special case was
proved by Stembridge [35] using representation theory. Both Stembridge and Berenstein-
Kirillov deal with semistandard tableaux, while here we consider only the special case of
standard tableaux. While standard tableaux have a natural generalization to linear exten-
sions of any finite poset, it is unclear how to generalize semistandard tableaux analogously
so that the results of Stembridge and Berenstein-Kirillov continue to hold.) Induction on
j. The case j = 1 asserts that uτ1 = vτ1τ1 if and only if uτ1 = v, which is immediate from
τ 2
1 = 1. Now assume for j − 1, and suppose that (i) holds. First cancel δ∗2j−1δ2j−1 from

the right-hand side. Now take the last factor τi from each factor δi (1 ≤ i ≤ 2j − 2) on
the right-hand side and move it as far to the right as possible. The right-hand side will
then end in τ2j−2τ2j−3 · · · τ1 = δ∗2j−2. The left-hand side ends in δ∗2j−1 = τ2j−1δ

∗
2j−2. Hence

we can cancel the suffix δ∗2j−2 from both sides, obtaining

uδ∗1δ
∗
3 · · · δ

∗
2j−3τ2j−1 = vδ∗1δ

∗
3 · · · δ

∗
2j−3 · δ2j−3δ2j−4 · · · δ2δ1. (5)

We can now move the rightmost factor τ2j−1 on the left-hand side of equation (5) directly
to the right of u. Applying the induction hypothesis with u replaced by uτ2j−1 yields (ii).
The steps are reversible, so (ii) implies (i).

Proof of Theorem 3.1. The equivalence of (i) and (ii) appears (in dual form) in [32,
Theorem 5.1(a)]. Namely, let w = a1 · · ·ap ∈ L(P ). Let i be the least nonnegative integer
(if it exists) for which

w′ := a1 · · ·ap−2i−2ap−2iap−2i−1ap−2i+1 · · ·ap ∈ L(P ).

Note that (w′)′ = w. Now exactly one of w and w′ has the descent p − 2i − 1. The
only other differences in the descent sets of w and w′ occur (possibly) for the numbers
p− 2i− 2 and p− 2i. Hence (−1)comaj(w) + (−1)comaj(w′) = 0. The surviving permutations
w = b1 · · · bp in L(P ) are exactly those for which the chain of order ideals

∅ ⊂ · · · ⊂ {b1, b2, . . . , bp−4} ⊂ {b1, b2, . . . , bp−2} ⊂ {b1, b2, . . . , bp} = P

is a P -domino tableau. We call w a domino linear extension; they are in bijection with
domino tableaux. Such permutations w can only have descents in positions p − j where
j is even, so (−1)comaj(w) = 1. Hence (i) and (ii) are equal.

To prove that (ii) and (iii) are equal, let τi be the operator on L(P ) defined by
equation (2). Thus w is self-evacuating if and only if

w = wτ1τ2 · · · τp−1 · τ1 · · · τp−2 · · · τ1τ2τ3 · τ1τ2 · τ1.
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On the other hand, note that w is a domino linear extension if and only if

wτp−1τp−3τp−5 · · · τh = w,

where h = 1 if p is even, and h = 2 if p is odd. It follows from Lemma 3.2 (letting
u = v = w) that w is a domino linear extension if and only if

w̃ := wτ1 · τ3τ2τ1 · τ5τ4τ3τ2τ1 · · · τmτm−1 · · · τ1

is self-evacuating, where m = p − 1 if p is even, and m = p − 2 if p is odd. The proof
follows since the map w 7→ w̃ is then a bijection between domino linear extensions and
self-evacuating linear extensions of P .

The equivalence of (i) and (iii) above is an instance of Stembridge’s “q = −1 phe-
nomenon.” Namely, suppose that an involution ι acts on a finite set S. Let f : S → Z.
(Usually f will be a “natural” combinatorial or algebraic statistic on S.) Then we say
that the triple (S, ι, f) exhibits the q = −1 phenomenon if the number of fixed points of ι
is given by

∑
t∈S(−1)f(t). See Stembridge [33][34][35]. The q = −1 phenomenon has been

generalized to the action of cyclic groups by V. Reiner, D. Stanton, and D. White [23],
where it is called the “cyclic sieving phenomenon.” For further examples of the cyclic
sieving phenomenon, see C. Bessis and V. Reiner [3], H. Barcelo, D. Stanton, and V.
Reiner [1], and B. Rhoades [24]. In the next section we state a deep example of the cyclic
sieving phenomenon, due to Rhoades, applied to the operator ∂ when P is the product
of two chains.

4 Special cases.

There are a few “nontrivial” classes of posets P known for which the operation ∂p = ǫǫ∗

can be described in a simple explicit way, so in particular the order of the dihedral group
DP generated by ǫ and ǫ∗ can be determined. There are also some “trivial” classes, such as
hook shapes (a disjoint union of two chains with a 0̂ adjoined), where it is straightforward
to compute the order of ∂ and DP . The nontrivial classes of posets are all connected with
the theory of standard Young tableaux or shifted tableaux, whose definition we assume
is known to the reader. A standard Young tableau of shape λ corresponds to a linear
extension of a certain poset Pλ in an obvious way, and similarly for a standard shifted
tableau. (As mentioned in the introduction, Schützenberger originally defined evacuation
for standard Young tableaux before extending it to linear extensions of any finite poset.)
We will simply state the known results here. The posets will be defined by examples which
should make the general definition clear. In these examples, the elements increase as we
move down or to the right, so that the upper-left square is always the unique minimal
element of Pλ.

Theorem 4.1. For the following shapes and shifted shapes P with a total of p = #P
squares, we have the indicated properties of ∂p and DP .
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(a)  rectangle

(c)  shifted double staircase (d)  shifted trapezoid

(b)  staircase

Figure 6: Some shapes and shifted shapes

(a) Rectangles (Figure 6(a)). Then f∂p = f and DP
∼= Z/2Z (if m,n > 1). Moreover,

if f = (aij) (where we are regarding a linear extension of the rectangle P as a labeling
of the squares of P ), then fǫ = (p+ 1 − am+1−i,n+1−j).

(b) Staircases (Figure 6(b)). Then f∂p = f t (the transpose of f) and D ∼= Z/2Z×Z/2Z.

(c) Shifted double staircases (Figure 6(c)). Then f∂p = f and DP
∼= Z/2Z.

(d) Shifted trapezoids (Figure 6(d)). Then f∂p = f and DP
∼= Z/2Z.

Theorem 4.1(a) follows easily from basic properties of jeu de taquin due to Schützen-
berger [28] (see also [31, Ch. 7, Appendix 1]) and is often attributed to Schützenberger.
We are unaware, however, of an explicit statement in the work of Schützenberger. Part (b)
is due to Edelman and Greene [8, Cor. 7.23]. Parts (c) and (d) are due to Haiman [15,
Thm. 4.4], who gives a unified approach also including (a) and (b).

The equivalence of (i) and (iii) in Theorem 3.1 was given a deep generalization by
Rhoades [24] when P is an m × n rectangular shape (so p = mn), as mentioned in the
previous section. By Theorem 4.1(a) we have f∂p = f when P is a rectangular shape of
size p. Thus every cycle of ∂, regarded as a permutation of the set L(P ), has length d
dividing p. We can ask more generally for the precise cycle structure of ∂, i.e., the number
of cycles of each length d|p. Equivalently, for any d ∈ Z (or just any d|p) we can ask for
the quantity

ed(P ) = #{f ∈ L(P ) : f = f∂d}.
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To answer this question, define the major index of the linear extension f ∈ L(P ) by

maj(f) =
∑

i

i,

where i ranges over all entries of P for which i + 1 appears in a lower row than i [31,
p. 363]. For instance, if f is given by

f =
1 3 4 8
2 5 6 11
7 9 10 12

,

then maj(f) = 1 + 4 + 6 + 8 + 11 = 30. Let

F (q) =
∑

f∈L(P )

qmaj(f).

It is well known [31, Cor. 7.21.5] that

F (q) =
qn(m

2
)(1 − q)(1 − q2) · · · (1 − qp)∏

t∈P (1 − qh(t))
,

where h(t) is the hook length of t. If say m ≤ n, then we have more explicitly

∏

t∈P

(1 − qh(t))

= [1][2]2[3]3 · · · [m]m[m+ 1]m · · · [n]m[n+ 1]m−1[n+ 2]m−2 · · · [n +m− 1],

where [i] = 1 − qi. The beautiful result of Rhoades is the following.

Theorem 4.2. Let P be an m× n rectangular shape. Set p = mn and ζ = e2πi/p. Then
for any d ∈ Z we have

ed(P ) = F (ζd).

Rhoades’ proof of this theorem uses Kazhdan-Lusztig theory and a characterization
of the dual canonical basis of C[x11, . . . , xnn] due to Skandera [29]. Several questions are
suggested by Theorems 4.1 and 4.2.

1. Is there a more elementary proof of Theorem 4.2? For the special case of 2× n and
3 × n rectangles, see [21]. The authors of [21] are currently hoping to extend their
proof to general rectangles.

2. Can Theorem 4.2 be extended to more general posets, in particular, the posets of
Theorem 4.1(b,c,d)?

3. Can Theorem 4.1 itself be extended to other classes of posets? A possible place to
look is among the d-complete posets of Proctor [22]. Some work along these lines is
being done by Kevin Dilks (in progress at the time of this writing).
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Figure 7: A linear extension of a poset P

5 Growth diagrams

There is an alternative approach to promotion and evacuation, kindly explained by an
anonymous referee. This approach is based on the growth diagrams developed by S.
Fomin in a series of papers [10][11][12][13]. In [31, pp. 424–429] Fomin uses growth
diagrams to develop Schützenberger’s work on evacuation related to the RSK algorithm.
This approach can be extended to arbitrary posets by replacing Young diagrams with
order ideals of P .

Let f : P → [p] be a linear extension of the p-element poset P . For simplicity we will
denote the element t ∈ P satisfying f(t) = i by i. Figure 7 shows an example that we
will use throughout this discussion.

We now define the growth diagram D(P, f) of the pair (P, f). Begin with the points
(a, b) ∈ Z2 satisfying a, b ≥ 0 and a+ b ≤ p. We want to label each of these points (a, b)
with an order ideal I(a, b) of P . In general we will have #I(a, b) = a + b. We first label
all the points satisfying a + b = p with the elements {1, 2, . . . , p} of the entire poset P ,
and the points (0, b) with the order ideal {1, 2, . . . , b}. See Figure 8.

We now inductively label the remaining points according to the following local rule:
suppose that we have labelled all the corners except the bottom-right corner of a unit
square. The bottom-left corner (a, b) will be labelled with an order ideal I = I(a, b); the
top-left corner (a, b+1) will be labeled I∪{i} for some 1 ≤ i ≤ p; and the top-right corner
(a + 1, b+ 1) will be labelled I ∪ {i, j}. We then define the labelling of the bottom-right
corner (a+ 1, b) by

I(a+ 1, b) =

{
I(a, b) ∪ {i}, if i < j in P
I(a, b) ∪ {j}, if i ‖ j in P,

where i ‖ j denotes that i and j are incomparable. The labelling begins at (1, p− 2) and
works its way down and to the right. See Figure 9 for a diagram of the local rule and
Figure 10 for the completed growth diagram of our example.

The bottom row of the growth diagram D(P, f) lists a chain ∅ = I0 ⊂ I1 ⊂ · · · ⊂
Ip = P of order ideals of P with #Ii = i. This chain corresponds to the linear extension
g of P given by g(t) = i if t ∈ Ii − Ii−1. Now every lattice path from (0, 0) to a point
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Figure 8: Initialization of the growth process
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Figure 9: The local growth rule
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Figure 10: A growth diagram

(a.b) with a + b = p with steps (1, 0) and (0, 1) defines a linear extension of P , just as
we have done for the linear extension g. By analyzing how these linear extensions change
as we alter the lattice path by changing two consecutive steps (0, 1), (1, 0) to (1, 0), (0, 1),
we can deduce that g = fǫ∗, the dual evacuation of f . If we reflect D(P, f) about the
main diagonal then we obtain D(P, g) = D(P, ǫ∗). Hence it is geometrically obvious that
(ǫ∗)2 = 1. In a similar manner we can obtain the other parts of Theorem 2.1 and (with a
little more work) Lemma 3.2.

6 Generalizations.

The basic properties of evacuation given in Sections 2 and 3 depend only on the formal
properties of the group G defined by equation (1). It is easy to find other examples of
operators satisfying these conditions that are more general than the operators τi operating
on linear extensions of posets. Hence the theory of promotion and evacuation extends to
these more general situations.

Let J(P ) denote the set of all order ideals of the finite poset P , ordered by inclusion.
By a well-known theorem of Birkhoff (see [30, Thm. 3.41]), the posets J(P ) coincide with
the finite distributive lattices. There is a simple bijection [30, §3.5] between maximal
chains ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ip = P of J(P ) and linear extensions of P , viz., associate with
this chain the linear extension f : P → [p] defined by f(t) = i if t ∈ Ii − Ii−1. In terms
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of the maximal chain m : ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ip = P of J(P ), the operator τi on linear
extensions of P can be defined as follows. The interval [Ii−1, Ii+1] contains either three or
four elements, i.e., either Ii is the unique element satisfying Ii−1 ⊂ Ii ⊂ Ii+1 or there is
exactly one other such element I ′. In the former case define τi(m) = m; in the latter case,
τi(m) is obtained from m by replacing Ii with I ′.

The exact same definition of τi can be made for any finite graded poset, say for
convenience with a unique minimal element 0̂ and unique maximal element 1̂, for which
every interval of rank 2 contains either three or four elements. Let us call such posets
slender. Clearly the τi’s satisfy the conditions (1). Thus Lemma 2.2 applies to the
operators γ, γ∗, and δ. (These observations seem first to have been made by van Leeuwen
[17, §2], after similar results by Malvenuto and Reutenauer [19] in the context of graphs
rather than posets.) We also have an analogue for slender posets Q of the equivalence of
(ii) and (iii) in Lemma 3.2. The role of P -domino tableau is played by domino chains
of Q, i.e., chains 0̂ = t0 < t1 < · · · < tr = 1̂ in P for which the interval [ti−1, ti] is a
two-element chain for 2 ≤ i ≤ r, while [t0, t1] is either a two-element or one-element chain
(depending on whether the rank of Q is even or odd). We then have that the number of
self-evacuating maximal chains of Q is equal to the number of domino chains of Q.

Some example of slender posets are Eulerian posets [30, §3.14], which include face
posets of regular CW-spheres [4] and intervals in the Bruhat order of Coxeter groups W
(including the full Bruhat order of W when W is finite). Eulerian posets Q have the
property that every interval of rank 2 contains four elements. Hence there are no domino
chains when rank(Q) > 1, and therefore also no self-evacuating maximal chains. Non-
Eulerian slender posets include the weak order of a finite Coxeter group [5][6, Ch. 3] and
face posets of regular CW-balls. We have not systematically investigated whether there
are examples for which more can be said, e.g., an explicit description of evacuation or the
determination of the order of the dihedral group generated by γ and γ∗.

There is a simple example that can be made more explicit, namely, the face lattice Ln

of an n-dimensional cross-polytope Cn (the dual to an n-cube). The vertices of Cn can be
labelled 1, 1̄, 2, 2̄, . . . , n, n̄ so that vertices i and ī are antipodal for all i. A maximal chain
0̂ = t0 < t1 < · · · < tn+1 = 1̂ of Ln can then be encoded as a signed permutation a1 · · ·an,
i.e., take a permutation b1 · · · bn and place bars above some subset of the bi’s. Thus ai is
the unique vertex of the face ti that does not lie in ti−1. Write ′ for the reversal of the
bar, i.e., i′ = ī and ī′ = i. Let w = a1 · · ·an be a signed permutation of 1, 2, . . . , n. Then
it is easy to compute that

wδ = a2 a3 · · ·an a
′
1

wγ = a′1 an an−1 · · ·a2

wγ∗ = a′n a
′
n−1 · · ·a

′
1

wδn+1 = wγγ∗ = a′2 a
′
3 . . . a

′
n a1.

Thus γγ∗ has order n if n is odd and 2n if n is even. The dihedral group generated by γ
and γ∗ has order 2n if n is odd and 4n if n is even.

Can the concepts of promotion and evacuation be extended to posets that are not
slender? We discuss one way to do this. Let P be a graded poset of rank n with 0̂ and 1̂.
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If m : 0̂ = t0 < t1 < · · · < tn = 1̂ is a maximal chain of P , then we would like to define mτi
so that (1) τ 2

i = 1, and (2) the action of τi is “local” at rank i, i.e., mτi should only involve
maximal chains that agree with m except possibly at ti. There is no “natural” choice of a
single chain m

′ = mτi, so we should be unbiased and choose a linear combination of chains.
Thus let K be a field of characteristic 0. Write M(P ) for the set of maximal chains of P
and KM(P ) for the K-vector space with basis M(P ). For 1 ≤ i ≤ n− 1 define a linear
operator τi : KM(P ) → KM(P ) as follows. Let Ni(m) be the set of maximal chains m

′

of P that differ from m exactly at ti, i.e., m
′ has the form

m
′ : 0̂ = t0 < t1 < · · · < ti−1 < t′i < ti+1 < · · · < tn = 1̂,

where t′i 6= ti. Suppose that #Ni(m) = q ≥ 1. Then set

τi(m) =
1

q + 1

(
(q − 1)m − 2

∑

m′∈Ni(m)

m
′

)
. (6)

When q = 0 we set mτi = m, though it would make no difference to set mτi = −m to
remain consistent with equation (6). It is easy to check that τ 2

i = 1. In fact, ±τi are the
unique involutions of the form am + b

∑
m′∈Ni(m) m

′ for some a, b ∈ K with b 6= 0 when

q ≥ 1. It is clear that also τiτj = τjτi if |j − i| ≥ 2, so the τi’s satisfy (1). Hence we
can define promotion and evacuation on the maximal chains of any finite graded poset so
that Lemma 2.2 holds, as well as an evident analogue of the equivalence of (ii) and (iii)
in Theorem 3.1.

The obvious question then arises: are there interesting examples? We will discuss one
example here, namely, the lattice Bn(q) of subspaces of the n-dimensional vector space
Fn

q (ordered by inclusion). This lattice is the “q-analogue” of the boolean algebra Bn

of all subsets of the set {1, 2, . . . , n}, ordered by inclusion. The boolean algebra Bn is
the lattice of order ideals of an n-element antichain A. Hence promotion and evacuation
on the maximal chains of Bn are equivalent to “classical” promotion and evacuation on
A. The linear extensions of A are just all the permutations w of {1, . . . , n}, and the
evacuation wǫ of w = a1a2 · · ·an is just the reversal an · · ·a2a1. Thus we are asking for a
kind of q-analogue of reversing a permutation.

This problem can be reduced to a computation in the Hecke algebra Hn(q) of the
symmetric group Sn over the field K (of characteristic 0). Recall (e.g., [16, §7.4]) that
Hn(q) has generators T1, . . . , Tn−1 and relations

(Ti + 1)(Ti − q) = 0

TiTj = TjTi, |i− j| ≥ 2

TiTi+1Ti = Ti+1TiTi+1.

If q = 1 then we have T 2
i = 1, and the above relations are just the Coxeter relations for

the group algebra KSn.
For 1 ≤ i ≤ n− 1 let si denote the adjacent transposition (i, i + 1) ∈ Sn. A reduced

decomposition of an element w ∈ Sn is a sequence (a1, . . . , ar) of integers 1 ≤ ai ≤ n− 1
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such that w = sa1
· · · sar

and r is as small as possible, namely, r is the number of inversions
of w. Define Tw = Ta1

· · ·Tar
. In particular, Tid = 1 and Tsk

= Tk. A standard fact about
Hn(q) is that Tw is independent of the choice of reduced decomposition of w, and the Tw’s
for w ∈ Sn form a K-basis for Hn(q). We also have the multiplication rule

TuTk =

{
Tusk

, if l(usk) = l(u) + 1,

qTusk
+ (q − 1)Tu, if l(usk) = l(u) − 1,

(7)

for any u ∈ Sn.
Let End(KM(Bn(q))) be the set of all linear transformations

KM(Bn(q)) → KM(Bn(q)).

Let

ti = −
q + 1

2
τi +

q − 1

2
I,

the endomorphism sending a maximal chain m to
∑

m′∈Ni(m) m
′. It is easy to check that

the map Ti 7→ ti extends to an algebra homomorphism (i.e., a representation of Hn(q))
ϕ : Hn(q) → End(KM(Bn(q))). Moreover, ϕ is injective. If we fix a maximal chain m0,
then the set M(Bn(q)) has a Bruhat decomposition [14, §23.4]

M(Bn(q)) =
⊔

w∈Sn

Ωw,

where
⊔

denotes disjoint union and Ωid = {m0}. Defining tw = ϕ(Tw), we then have

tw(m0) =
∑

m∈Ωw

m.

(In fact, this equation could be used to define Ωw.) Let Ei = 1
q+1

(q − 1 − 2Ti) ∈ Hn(q),

so E2
i = 1. It follows that

m0ǫ =
∑

w∈Sn

cw(q)
∑

m∈Ωw

w,

where cw(q) is defined by the Hecke algebra expansion

E1E2 · · ·En−1E1E2 · · ·En−2 · · ·E1E2E1 =
∑

w∈Sn

cw(q)Tw. (8)

Note that by Lemma 2.2(a) the right-hand side of equation (8) remains invariant if we
reverse the order of the factors on the left-hand side. In general, however, the expression
Ea1

· · ·Ear
is not the same for all reduced decompositions (a1, . . . , ar) (r =

(
n
2

)
) of w0 =

n, n− 1, . . . , 1.
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When w ∈ S4 the values of cw(q) are given by

c1234(q) = (q − 1)2/(q + 1)2

c1243(q) = −2(q − 1)3/(q + 1)4

c1324(q) = −16q(q − 1)(q2 + 1)/(q + 1)6

c1342(q) = 4(q − 1)2/(q + 1)4

c1423(q) = 4(q − 1)2/(q + 1)4

c1432(q) = −8(q − 1)3/(q + 1)6

c2134(q) = −2(q − 1)3/(q + 1)4

c2143(q) = 4(q − 1)2/(q + 1)4

c2314(q) = −4(q − 1)4/(q + 1)6

c2341(q) = −8(q − 1)/(q + 1)4

c2413(q) = 0

c2431(q) = 16(q − 1)2/(q + 1)6

c3124(q) = −4(q − 1)4/(q + 1)6

c3142(q) = 0

c3214(q) = 8(q − 1)3/(q + 1)6

c3241(q) = 0

c3412(q) = 16(q − 1)2/(q + 1)6

c3421(q) = −32(q − 1)/(q + 1)6

c4123(q) = −8(q − 1)/(q + 1)4

c4132(q) = 16(q − 1)2/(q + 1)6

c4213(q) = 0

c4231(q) = −32(q − 1)/(q + 1)6

c4312(q) = −32(q − 1)/(q + 1)6

c4321(q) = 64/(q + 1)6.

Although many values of cw(q) appear to be “nice,” not all are as nice as the above data
suggests. For instance,

c12453(q) = 4(q2 + 6q + 1)(q − 1)4/(q + 1)8

c13245(q) = −2(q4 − 8q3 − 2q2 − 8q + 1)(q − 1)5/(q + 1)10

c13425(q) = −4(q6 − 6q5 − 33q4 + 12q3 − 33q2 − 6q + 1)(q − 1)2/

(q + 1)10.

We will prove two results about the cw(q)’s.

Theorem 6.1. Let id denote the identity permutation in Sn. Then

cid(q) =

(
q − 1

q + 1

)⌊n/2⌋

.
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Proof (sketch). I am grateful to Monica Vazirani for assistance with the following
proof. Define a scalar product on Hn(q) by

〈Tu, Tv〉 = qℓ(u)δuv,

where ℓ(u) denotes the number of inversions of u (i.e., the length of u as an element of
the Coxeter group Sn). Then one can check that for any g, h ∈ Hn(q) we have

〈Tig, h〉 = 〈g, Tih〉

and
〈gTi, h〉 = 〈g, hTi〉.

Since E2
i = 1 it follows that

〈EigEi, 1〉 = 〈g, 1〉. (9)

Now
cid(q) = 〈E1E2 · · ·En−1E1E2 · · ·En−2 · · ·E1E2E1, 1〉.

Using equation (9) and the commutation relation EiEj = EjEi if |i− j| ≥ 2, we obtain

cid(q) = 〈En−1En−3 · · ·Er, 1〉,

where r = 1 if n is even, and r = 2 if n is odd. For any subset S of {n− 1, n− 3, . . . , r}
we have ∏

i∈S

Ti = TQ
i∈S si

.

(The Ti’s and si’s for i ∈ S commute, so the above products are well-defined.) Hence
we obtain the scalar product 〈En−1En−3 · · ·Er, 1〉 by setting Ti = 0 in each factor of the
product En−1En−2 · · ·Er, so we get

〈En−1En−3 · · ·Er, 1〉 =

(
q − 1

q + 1

)⌊n/2⌋

,

completing the proof.

If w = a1a2 · · ·an ∈ Sn, then write ŵ for the reversal an · · ·a2a1. Equivalently,
ŵ = w0w, where w0 = n, n− 1, . . . , 1 (the longest permutation in Sn). Our second result
on the polynomials cw(q) is the following.

Theorem 6.2. Let w ∈ Sn, and let κ(w) denote the number of cycles of w. Then cw(q),
regarded as a rational function of q, has numerator divisible by (q − 1)n−κ( bw).

Proof. Consider the coefficient of Tw in the expansion of the product on the left-hand side
of (8). For each factor Ei = 1

q+1
(q − 1 − 2Ti) we must choose a term (q − 1)/(q + 1) or

−2Ti/(q + 1). If we choose (q − 1)/(q + 1) then we have introduced a factor of q − 1. If
we choose −2Ti/(q+ 1) and multiply some Tu by it, then a Tv so obtained satisfies either
v = usi or v = u; in the latter case a factor of q − 1 is introduced. It follows that every
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contribution to the coefficient of Tw arises from choosing a subsequence (b1, . . . , bj) of the
reduced decomposition (1, 2, . . . , p− 1, 1, 2, . . . , p− 2, . . . , 1, 2, 1) of w0 such that

w = sb1 · · · sbj
, (10)

in which case we will obtain a factor (q − 1)(
n
2
)−j . The bi’s correspond to the terms that

do not introduce a factor of q − 1.
Now let a = (a1, . . . , a(n

2
)) be a reduced decomposition of w0. It is a well-known

and simple consequence of the strong exchange property for reduced decompositions (e.g.
[6, Thm. 1.4.3]) that if k is the length of the longest subsequence (b1, . . . , bk) of a such
that sb1 · · · sbk

= w, then
(

n
2

)
− k is the minimum number of transpositions t1, . . . , tk for

which w = w0t1 · · · tk. This number is just n − κ(w−1
0 w) = n − κ(w0w) = n − κ(ŵ), so

k =
(

n
2

)
− n + κ(ŵ).

It follows that the largest possible value of j in equation (10) is
(

n
2

)
− n+ κ(ŵ). Thus(

n
2

)
− j ≥ n− κ(ŵ), completing the proof.

Theorem 6.2 need not be best possible. For instance, some values of cw(1) can be
0, such as c2413(q). For a nonzero example, we have that (q − 1)4 divides c2314(q), but
4 − κ(4132) = 2.
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