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Abstract. We study the following online problem: at each time unit,
one of m identical items is offered for sale. Bidders arrive and depart
dynamically, and each bidder is interested in winning one item between
his arrival and departure. Our goal is to design truthful mechanisms that
maximize the welfare, the sum of the utilities of winning bidders.

We first consider this problem under the assumption that the private
information for each bidder is his value for getting an item. In this model
constant-competitive mechanisms are known, but we observe that these
mechanisms suffer from the following disadvantage: a bidder might learn
his payment only when he departs. We argue that these mechanism are
essentially unusable, because they impose several seemingly undesirable
requirements on any implementation of the mechanisms.

To crystalize these issues, we define the notions of prompt and tardy
mechanisms. We present two prompt mechanisms, one deterministic and
the other randomized, that guarantee a constant competitive ratio. We
show that our deterministic mechanism is optimal for this setting.

We then study a model in which both the value and the departure time
are private information. While in the deterministic setting only a trivial
competitive ratio can be guaranteed, we use randomization to obtain a
prompt truthful Θ( 1

log m
)-competitive mechanism. We then show that no

truthful randomized mechanism can achieve a ratio better than 1
2

in this
model.

1 Introduction

1.1 Background

The field of algorithmic mechanism design attempts to handle the strategic be-
havior of selfish agents in a computationally efficient way. To date, most work
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in this field has sought to design truthful mechanisms for static settings, e.g.,
auctions. In reality, however, the setting of many problems is online, meaning
that the mechanism has no prior information regarding the identity of the par-
ticipating players, or that the goods that are for sale are unknown in advance.
Examples include sponsored search auctions [12], single-good auctions [10], and
even pricing WiFi at Starbucks [5].

This paper considers the following online auction problem: at each time unit
exactly one of m identical items is offered for sale. The item at time t is called
item t. There are n bidders, where bidder i arrives at time ai and departs at
time di, both unknown before bidder i’s arrival. The interval [ai, di] will be called
bidder i’s time window, and the set of items offered in i’s time window will be
denoted by Wi. Each bidder is interested in winning at most one of the items
within Wi. Let vi denote the value to the ith bidder of getting an item in Wi.
Our goal is to maximize the social welfare: the sum of the values of the bidders
that get some item within their time window. As usual in online algorithms,
our goal is to optimize the competitive ratio: the worst-case ratio between the
welfare achieved by the algorithm and the optimal welfare.

In the full information setting, this problem is equivalent to the online schedul-
ing of unit-length jobs on a single machine to maximize weighted throughput.
This online problem and its variants have been widely studied (e.g., [1, 8, 3]). The
best deterministic algorithm to date guarantees a competitive ratio of ≈ 0.547 [4,
11], while it is known that no deterministic algorithm can obtain a ratio better
than 2√

5+1
≈ 0.618 [2]. In the randomized setting, a competitive ratio of 1 − 1

e

is achieved by [1], and no algorithm can achieve a ratio better than 0.8 [2].
This problem provides an excellent example of the extra barriers we face when

designing online mechanisms. The only general technique known for designing
truthful mechanisms is the VCG payment scheme. In the offline setting we can
obtain an optimal solution in polynomial time (with bipartite matching), and
then we can apply VCG. In the online setting, however, it is impossible to find
an optimal solution, and thus we cannot use VCG. Yet, truthful competitive
mechanisms do exist. The competitive ratio of these mechanisms depends on the
specific private-information model each mechanism was designed for. This paper
considers two different natural models:

– The Value-Only model: Here, the private information of bidder i consists
of just his value vi, and the arrival time and the departure time are known
to all (but both are unknown prior to the arrival of bidder i).

– The Generalized Model: The private information of bidder i consists
of two numbers: his value vi and his departure time di. The arrival time is
public information (but unknown prior to the arrival of bidder i).

1.2 The Value-Only Model: Is Monotonicity Enough?

The only private information of a bidder in the value-only model is his value,
and thus this model falls under the category of single-parameter environments
– environments in which the private information of each bidder consists of only



one number. Fortunately, designing truthful mechanisms for single-parameter
environments is quite well understood: an algorithm is truthful if and only if it
is monotone. That is, a winning bidder that raises his bid remains a winner.

Using the above characterization, it is possible to prove that the greedy
algorithm is monotone [7] (see Section 2.4 for a description). Since [8] shows that
greedy is 1/2 competitive, this gives a truthful mechanism that is 1

2 competitive.
However, a closer look at this mechanism may make one wonder if it is

indeed applicable. The notions of prompt and tardy mechanisms we define next
highlight the issue.

Definition 1. A mechanism for the online auction problem is prompt if a bid-
der that wins an item always learns his payment immediately after winning the
item. A mechanism is tardy otherwise.

As we show later in the paper, the tardiness in the greedy mechanism [7,
8] is substantial: there are inputs for which a bidder learns his payment only
when he departs. Tardy mechanisms seem very unintuitive for the bidders, and
in addition they suffer from the following disadvantages:

– Uncertainty: A winning bidder does not know the cost of the item that he
won, and thus does not know how much money he still has available. E.g.,
suppose the mechanism is used in a Las Vegas ticket office for selling tickets
to a daily show. A tourist that wins a ticket is uncertain of the price of this
privilege, and thus might not be able to determine how much money he has
left to spend during his Las Vegas vacation.

– Debt Collection: A winning bidder might pay the mechanism long after
he won the item. A bidder that is not honest may try to avoid this payment.
Thus, the auctioneer must have some way of collecting the payment of a
winning bidder.

– Trusted Auctioneer: A winning bidder essentially provides the auctioneer
with a “blank check” in exchange for the item. Consequently, all bidders
must trust the honesty of the auctioneer. Even if the bidders trust the auc-
tioneer, they may still want to verify the exact calculation of the payment,
to avoid over-payments that make winning the item less profitable, or even
unprofitable. In order to verify this calculation, the bids of all bidders have
to be revealed, leading to an undesirable loss of privacy.

Notice that all of these problems are due to the online nature of the setting,
and do not arise in the offline setting. To overcome these problems, we present
prompt mechanisms for the online auction problem. Prompt mechanisms are
very intuitive to the bidders as they (implicitly) correspond to take-it-or-leave-it
offers: a winning bidder is offered a price for one item exactly once before getting
the item, and may reject the offer if it is not beneficial for him. We improve upon
the greedy algorithm of [7, 8] by showing a different mechanism that achieves the
same competitive ratio, but is also prompt.

Theorem: There exists a 1
2 -competitive prompt and truthful mechanism for

the online auction problem in the value-only model.



We show that this is the best possible by proving that no prompt deterministic
mechanism can guarantee a competitive ratio better than 1

2 .
We also present a randomized mechanism that guarantees a constant com-

petitive ratio. The achieved competitive ratio of the latter algorithm is worse
than the competitive ratio of the deterministic algorithm. Yet, the core of the
proof studies a balls-and-bins problem that might be of independent interest.

1.3 The Generalized Model

While truthful mechanisms for single-parameter settings are well characterized
and thus relatively easy to construct, truthful mechanisms for multi-parameter
settings, like the generalized model, are much harder to design. The online setting
considered in this paper only makes the design of truthful mechanisms a more
challenging task.

The online auction problem in the generalized model illustrates this challenge.
Lavi and Nisan [9] introduced the online auction problem to the mechanism
design community. They showed that no truthful deterministic mechanism for
this multi-parameter problem can provide more than a trivial competitive ratio.
As a result, Lavi and Nisan proposed a weaker solution concept, set-nash, and
provided mechanisms with a constant competitive ratio under this notion. We
stress that the set-nash solution concept is much weaker than the dominant-
strategy truthfulness we consider.

By contrast with [9], instead of relaxing the solution concept, we use the
well-known idea that randomization can help in mechanism-design settings [14].
We provide randomized upper and lower bounds in the generalized model for
the online auction problem.

Theorem: There exists a prompt truthful randomized Θ( 1
log m )-competitive

mechanism for the online auction problem in the generalized model.

The main idea of the mechanism is to extend the randomized mechanism for
the value-only model to the generalized model. Specifically, we use the random-
sampling method introduced in [6] to “guess” the departure time of each bidder,
and then we use the above randomized mechanism with these guessed departures.
This mechanism is also a prompt mechanism. We notice that it is quite easy to
obtain mechanisms with a competitive guarantee of the logarithm of the ratio
between the highest and lowest valuations. However, since this ratio might be
exponential in the number of items or bidders, this guarantee is quite weak.
By contrast, the competitive ratio our mechanism achieves is independent of
the ratio between the highest and lowest valuations, and the mechanism is not
required to know these valuations in advance.

Theorem: No truthful randomized mechanism for the online auction problem
in the generalized model can obtain a competitive ratio better than 1

2 .

The proof of this bound is quite complicated. We start by defining a family of
recursively-defined distributions on the input, and then show that no determin-



istic mechanism can obtain a competitive ratio better than 1
2 on this family of

distributions. We then use Yao’s principle to derive the theorem.
The main open question left in the generalized model is to determine whether

there is a truthful mechanism with a constant competitive ratio.

Paper Organization In Section 2 we describe prompt mechanisms for the
value-only case, and prove that no deterministic tardy algorithms can achieve a
ratio better than 1

2 . Due to lack of space, lower and upper bounds for the general-
ized case are proved only in the full version (see http://www.cs.huji.ac.il/∼shahard).

2 Prompt Mechanisms and the Value-Only Model

2.1 A Deterministic Prompt 1
2
-Competitive Mechanism

The mechanism maintains a candidate bidder cj for each item j. To keep the
presentation simple and without loss of generality, we assume an initialization of
the mechanism in which each item j receives a candidate bidder cj with a value
of 0 for winning an item (i.e., vcj

= 0).
The mechanism runs as follows: at each time t we look at all the bidders that

arrived at time t. We consider these bidders one by one in some arbitrary order
(independent of the bids): for each bidder i we look at all the candidates in i’s
time window, and let cj be the candidate bidder with the smallest bid (if there are
several such candidates, we select one arbitrarily). Formally, cj ∈ arg mink∈Wi

ck.
We say that i competes on item j. Now, if vcj

< vi, we make i the candidate
bidder for item j. After all the bidders that arrived at time t have been processed,
we allocate item t to the candidate bidder ct.

The next theorem proves that this algorithm is monotone, i.e., a bidder that
raises his bid is still guaranteed to win. This is also a necessary and sufficient
condition for truthfulness. We are still left with the issue of finding the payments
themselves. First, observe that the payment of each winning bidder must equal
his critical value: the minimum value he can declare and still win. Notice that
this value is indeed well defined if the algorithm is monotone. For each bidder
i this value can be found by using a binary search on the possible values of
vi. Clearly, this procedure takes a polynomial time. See, e.g., [13] for a more
thorough discussion. By the discussion above, it is clear that a mechanism is
prompt if and only if i’s critical value can be found by the time i wins an item.
In this case, the payment can also be calculated in polynomial time.

Theorem 1. The mechanism is prompt and truthful. Its competitive ratio is 1
2 .

Proof. To show that the mechanism is truthful we have to show that it is mono-
tone: that is, a winning bidder i still wins an item by raising his value vi to v′i.
First, observe that fixing the declarations of the other bidders, i competes on
item j regardless of his value. We now compare two runs of the mechanism, with
i declaring vi and with i declaring v′i, and show that at each time the candidate



for any item j′ is the same in both runs. In particular, it follows that the set of
winners stays the same, and thus the mechanism is monotone.

First, observe that the two runs are identical until the arrival of i. Look
at the next bidder e that arrives after i. For a contradiction, suppose that the
candidate for some item changes after bidder e arrives. It follows that i declaring
v′i causes e to compete on an item different than the one that e competes on
when i declares vi. This is possible only if e is competing on j if i declares vi,
but if i declares v′i, e competes on h 6= j. It follows that if i declares, v′i both i
and e compete on j, and that i wins j. Thus, vi ≥ ve. When i raises his bid e
competes on h. Let ch be the candidate for h at the time that e arrives. We have
that v′i > vch

≥ vi, and thus ve < vch
so e does not become a candidate on h,

and the set of candidates stays the same. To finish the monotonicity proof, look
at the rest of the bidders one by one, and repeat the same arguments.

As for the promptness of the mechanism, observe that the identity of the
item that i competes on is determined only by the information provided by
bidders that had already arrived by the time of i’s arrival. The winner of any
item j is of course completely determined by the information provided by bidders
that arrived by time j. Thus, we can calculate the payment of a winning bidder
immediately after he wins an item.

We now analyze the competitive ratio of the mechanism. Let OPT = (o1, ..., om)
be the optimal solution, and ALG = (p1, ..., pm) be the solution constructed by
the mechanism. That is, oj is the bidder that wins item j in OPT and pj is the
bidder that wins item j in ALG. We will match each bidder i that wins an item
in OPT to exactly one bidder l that wins an item in ALG. Furthermore, we will
make sure that vi ≤ vl, and that each bidder in ALG is associated with at most
two bidders in OPT. This is enough to prove a competitive ratio of 1

2 .

The bidders are matched as follows: for each item j, let oj1 , · · · , ojkj
be the

bidders (ordered by their arrival time) that won an item in the optimal solution
and are competing on j. Now match each ojr

to pjr+1 for r < kj . Match ojkj
to

pj , the bidder that wins j in ALG (it is possible that pj = ojkj
).

Observe that bidder pj is associated with at most two bidders that win some
item in OPT: bidder ojkj

, and at most one bidder, oji , that is competing on
an item j, where j is the item that oj (= oji+1) is competing on in ALG. To
finish the proof, we only have to show that vojkj

≤ vpj
and voji

≤ vpj
. Since ojkj

and pj both compete for slot j (possibly they are the same bidder) and pj wins,
vojkj

≤ vpj . Now we show the second claim. When oji+1 arrives, oji is already

competing on slot j; as oji+1 chooses to compete on slot j rather than slot j′

which is also in its interval, thus the current candidate for slot j has value at
least voji

. But the eventual winner of slot j, pj , can only have a larger value; i.e.
voji

≤ vpj
. ut



2.2 A Prompt Randomized Mechanism

We present a randomized prompt O(1)-competitive mechanism for the online
auction problem in the value-only model. The analysis of the competitive ratio
of the mechanism is related to a variant of the following balls-and-bins question:

Balls and Bins (intervals version): n balls are thrown to n bins, where the
ith ball is thrown uniformly at random to bins in the interval Wi = [ai, di]. We
are given that the balls can be placed in a way such that all bins are filled, and
each ball i is placed in exactly one bin in [ai, di]. What is the expected number
of full bins (bins with at least one ball)?

The theorem below proves that, for every valid selection of the ai’s and di’s, in
expectation at least 1

10 of the bins will be full (notice that in the online auction
problem the “balls” have weights). There is a gap between this ratio and the
worst example we know: in Subsection 2.3 we present an example in which at
most 11

24 of the bins are full in expectation. Improving the analysis of the balls and
bins question will almost immediately imply an improvement in the guaranteed
competitive ratio of the mechanism.

The Mechanism

1. When bidder i arrives, assign it to exactly one item in Wi to compete on
uniformly at random.

2. At time j conduct a second-price auction on item j among all the bidders
that were selected to compete on item j in the first stage.

Theorem 2. The mechanism is prompt and truthful, and guarantees a compet-
itive ratio of 1

10 .

Proof. To see that the mechanism is truthful, recall that in the value-only model
the arrival time and the departure time of each bidder are public information.
It follows that the identity of bidders competing on a certain item is determined
only by the outcome of the random coin flips. It is well known that a second-
price auction is truthful, and thus we conclude that the mechanism is truthful.
Clearly, the mechanism is prompt since the price is determined by the second-
price auction which is conducted before allocating the item to the winning bidder.

We now turn to analyzing the competitive ratio of the mechanism. Instead
of analyzing this ratio directly, we analyze the competitive ratio of the following
process. In addition to the input of the mechanism, the input of the process
consists also of “forbidden” sets S1 ⊆ W1, ..., Sn ⊆ Wn. Later we will see how to
construct these sets in a way that guarantees a constant competitive ratio.

1. For each bidder i that won an item in the optimal solution, select exactly
one item j in Wi to compete on uniformly at random. If j ∈ Si then bidder
i is not competing on any item at all.

2. At time j allocate item j to one bidder i, where bidder i is selected uniformly
at random from the set of all bidders that are competing on item j.



We will compare runs of the mechanism and the process in which the same
random coins are used in Step 1. We argue that the competitive ratio of the
mechanism is at least as good as the competitive ratio of the process. To see
this, observe that in the first step we are restricting ourselves only to bidders
that won an item in the optimal solution. Furthermore, some of these bidders are
eventually not competing on any item at all. Also, the bidder that is assigned
item j is selected uniformly at random from the set of the bidders that are
competing on item j, while in Step 2 of the mechanism the bidder with the
highest valuation is assigned item j. Obviously, the mechanism does at least as
well as the process. We will need the following technical lemma:

Lemma 1. Let Cj be the random variable that denotes the number of bidders
competing on item j (the congestion of item j). Let Ui,j be the random variable
that gets the value of the utility of bidder i from winning item j (that is, vi if
bidder i wins item j, and 0 otherwise). Then,

E[Ui,j |i is competing on item j] ≥ vi

E[Cj ] + 1

Proof. We start by bounding from above E[Cj |i is competing on item j]. That
is, the expected congestion of item j given that bidder i is competing on j. Notice
that the expected congestion produced by all other bidders apart from bidder
i cannot exceed E[Cj ], since the item chosen for each bidder to compete on is
selected independently. We are given that bidder i is already competing on item
j, and thus we conclude that E[Cj |i is competing on item j] ≤ E[Cj ] + 1.

We now prove the main part of the lemma. Notice that E[Ui,j |i is competing on item j] =
Pr[i won item j|i is competing on item j] · vi. Let E denote the set of all coin
flips in which bidder i is competing on item j (observe that each event e ∈ E
occurs with equal probability). Let nj(e) be the congestion of item j in e ∈ E.

E[Ui,j |i is competing on item j] = Σe∈E
vi

|E| · nj(e)
≥ vi

E[Cj ] + 1

where the first equality is by the definition of expectation, and the second in-
equality is by the convexity of the function 1

x , and Jensen’s inequality. ut

As is evident from the lemma, if the expected congestion of all items that
are in bidder i’s time window is O(1), then bidder i’s expected utility is Θ(vi).
Unfortunately, it is quite easy to construct instances in which for every i, Si = ∅
and some items face super-constant congestion. Instead, we will specify for each
bidder i a set of items Si, of size at most half of the size of his time window.
We will see that by a proper choice of the Si’s the expected congestion of every
item is bounded by 4.

Then, as each bidder i (that participates in the optimal solution) has a prob-
ability of at least one half of competing on some item, by Lemma 1 bidder i
recovers in expectation at least 1

2 ·
1

E[Cj ]+1 of his value; by Lemma 2 this bidder
receives in expectation at least 1

10 of his value. Using the linearity of expectation,
we conclude that the mechanism is 1

10 -competitive.



Lemma 2. There exist sets S1, ..., Sn such that for each bidder i (that wins an
item in the optimal solution), Si ⊆ Wi, and |Si| ≤ |Wi|

2 , and for each item j,
E[Cj ] ≤ 4.

Proof. The proof of the lemma consists of m stages. In each step we will con-
sider bidders with time windows of length exactly t, where t will take values in
descending order from m to 1. We will show for each bidder i with |Wi| = t how
to construct his set Si. By the end of each step, we will be guaranteed that if
|Wi| ≥ t, then for each item in Wi \ Si, the expected congestion is at most 4.

We start by handling the case where t ≥ m
2 . Fix some bidder i with |Wi| ≥ m

2 .
We are considering only bidders that get an item in the optimal solution, and
since there are m items, we need to take into account at most m bidders. Observe
that since Wi ≥ m

2 , the average expected congestion of an item in Wi cannot
exceed 2. We let Si be the set of all items in Wi for which the expected congestion
is at most 4. By simple Markov arguments, |Si| ≤ |Wi|

2 . We now have that for
every bidder i with |Wi| ≥ m

2 , and for each j ∈ Wi \ Si, E[Cj ] ≤ 4.
Consider now Step t, where t < m

2 . We first consider the congestion due to
bidders with time windows of length at most t. Then we will see that our analysis
remains almost the same when including bidders with larger time windows.

Fix some bidder i with |Wi| = t. We now bound from above the total con-
gestion of the items in Wi. In the optimal solution, there are at most t bidders
that won an item in Wi. Their contribution to the congestion of Wi is bounded
from above by assuming that each one is competing on items in Wi time window
with probability 1. Hence, the total contribution of these bidders is at most t.

Consider the bidders that won one item j, ai− t ≤ j ≤ ai− 1, in the optimal
solution. (Our analysis will only improve if ai − t ≤ 0.) Clearly, if bidder b won
item j in the optimal solution, then that item j is within b’s time window. Since
a bidder is selected to compete on an item uniformly, it is easy to verify that
his contribution to the expected congestion of Wi is maximized when his arrival
time is j and his departure time is j + t−1. (Recall that we are only considering
bidders with time window of size at most t.) In this case, his contribution to
the expected congestion of Wi is j+t−ai

t . Summing over all bidders (with time
windows of size at most t) that won one item j, ai − t ≤ j ≤ ai − 1, we get that
the total contribution of these bidders is at most t

2 .
Similarly, the total contribution of bidders with time windows of size at most

t that won items di +1 to di + t in the optimal solution is at most t
2 . It is easy to

see that all other bidders with time windows of at most t contribute nothing to
the expected congestion of items in Wi. In total, we get that the total expected
congestion of items in Wi (due to bidders with time window of length at most
t) is at most t

2 + t
2 + t = 2t, and thus the average expected congestion due to

these items is at most 2.
As before, we let Si be the set of all items in Wi for which the expected

congestion is at most 4. Again, standard Markov arguments assure that |Si| ≤
|Wi|

2 . We now have that for every bidder i with |Wi| = t, and for each j ∈
Wi \Si, the average expected congestion incurred by bidders with time windows
of size at most t is at most 4. We still need to take into account the congestion



incurred by bidders with time windows larger than t. Here we observe that by
our construction of the Si’s, these bidders can only contribute to the congestion
of items with an expected congestion of at most 4. Therefore, we claim that for
each bidder i with |Wi| ≥ t, and j ∈ Wi \ Si, we have that E[Cj ] ≤ 4. We finish
the proof of the lemma by considering smaller values of t, down to t = 1. ut

ut

2.3 A Bad Example

The following example shows that the mechanism presented has a competitive
ratio strictly worse than 1

2 . The example is an instance of the balls and bins
question presented earlier. For 1 ≤ i ≤ n

3 , we let Wi = [i, 2n
3 ]. For n

3 < i ≤ n, we
let Wi = [n

3 + 1, i]. The probability that bin i in [1, n
3 ] will be empty is:

Pr[no ball falls in bin i ∈ [1, n
3 ] ] = Πi

t=1 Pr[ball t does not fall to bin i ∈ [1, n
3 ] ]

= Πi
t=1(1−

1
2n
3 − t + 1

) = Πi
t=1(

2n
3 − t

2n
3 − t + 1

) =
2n
3 − i
2n
3

We now calculate the expected number of empty bins in the range [1, n
3 ]. Observe

that the probability of bin i ∈ [1, n
3 ] to be equal to the probability of bin n−i+1.

Thus, the expected number of empty bins in [1, n
3 ] is equal to the expected

number of empty bins in [ 2n
3 , n]:

n
3∑

t=1

2n
3 − t

2n
3

=
n
3 ( 2n

3 − 1 + n
3 )

2 · 2n
3

=
n− 3

4

Next we handle bins in the range [n
3 , 2n

3 ]. By reasoning similar to the previous
calculations, the probability that no ball i, n

3 ≤ i ≤ 2n
3 , falls into bin t in

this range is t−n
3−1
n
3

. The probability that no ball i, 1 ≤ i ≤ n
3 falls in bin

t is Π
n
3

j=1(1 − 1
2n
3 −i+1

) =
n
3
2n
3

= 1
2 . Similarly, the probability that no ball i,

2n
3 ≤ i ≤ n falls in bin t is 1

2 . Thus, with probability t−n
3

n
3

· 1
4 no ball falls into

bin t, n
3 ≤ t ≤ 2n

3 .
To conclude, the expected number of empty bins in the ranges [1, n

3 ] and

[ 2n
3 , n] together is≈ n

2 . The expected number of empty bins in [n
3 , 2n

3 ] is Σ
2n
3

t= n
3

t−n
3

n
3
·

1
4 ≈

1
8 ·

n
3 . In total, about 13

24 of the bins are empty in expectation. We note that
this constant can be somewhat increased to 4

7 by recursively applying this con-
struction on balls in the middle third (and keeping the other balls’ time windows
the same). Details are omitted from this extended abstract.

2.4 Limitations of Deterministic Tardy Mechanisms

Here we show that the prompt mechanism of Section 2.1 is optimal. In order to
develop some intuition about tardy mechanisms, we start by showing that the
greedy mechanism of [7] is tardy.



Recall that the greedy mechanism allocates item t to the bidder with the
highest valuation that is present at time t (and has not been assigned any item
yet). Consider the following example: two bidders, red and green, arrive at time
1. The red bidder has a value of 10 for winning an item, and his departure time is
5. The green bidder has a value of 6 and a departure time of 1. We consider two
scenarios: in the first one, four bidders arrive at time 2, each of them with value
100 and a departure time of 5. In the second scenario, there are no more arrivals.
Observe that the greedy mechanism assigns the red bidder the first item. To see
that the red bidder cannot learn his payment immediately, recall the following
characterization of the payment in single-parameter mechanisms: the payment
of a winning bidder is equal to the minimum value he can bid and still win.

In order to win an item in the first scenario, the red bidder must declare a
value of at least 6, and therefore this is his payment in this scenario. However, in
the second scenario a declaration of 0 will make him win the second item. The
mechanism cannot distinguish between the two scenarios when the red bidder
wins at time 1, and thus cannot determine the payment at time 1. We conclude
that the greedy mechanism is tardy.

The following proposition shows that every prompt deterministic mechanism
for the online auction problem achieves a competitive ratio of no better than 1
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Proposition 1. Every prompt deterministic mechanism for online auctions (even
in the value-only model) has a competitive ratio of no better than 1

2 .

Proof. Consider the following setting: two bidders arrive at time 1, each having
a value of 1, and a departure time of time 2. Suppose there are no more arrivals
of other bidders. Any mechanism that achieves a competitive ratio better than
2 must assign one bidder the first item, and the other item to the second bidder.
Let a be bidder that was assigned the first item, and b be the bidder that was
assigned the second item.

Claim. Let M be a prompt mechanism with a finite competitive ratio. In the
scenario described above, there is no declaration of a value vb that makes bidder
b win the first item.

Proof. Let Pb denote the payment of bidder b for winning the second item with
a declaration of 1. Observe that pb < 14. We consider two cases, one in which b
declares a value of w > 1, and one in which b declares a value of w < 1.

Suppose that bidder b raises his bid from 1 to w, and was assigned the
first item. The mechanism is prompt, so the payment of bidder b is determined
immediately. Suppose, for a contradiction, that this payment is higher than pb. In
this case, if bidder b’s true value was w, he could improve his profit by declaring a
value of 1, and be assigned the second item. Hence the payment must be at most
pb. Clearly, the payment can not be strictly less than pb, since otherwise if b’s
true value is 1, he has an incentive to declare a value of w and increase his profit.
Thus the payment must be equal to pb, but now we will see that this cannot be

4 If pi is equal to 1, we add some “noise” to the value to get a strict inequality.



the case. Consider the following setting: b’s true value is 1, and therefore he does
not win the first item. At time 2 a bidder c with value w′ >> w arrives. Bidder
c is going to depart immediately. In order to maintain a finite competitive ratio
the mechanism must assign bidder c the second item. Thus, if bidder b’s true
value is 1, he has an incentive to declare a value of w (and therefore win the first
item for a payment of pb), and the mechanism is not truthful.

The other case is where b bids a value w, w < 1, and thereby wins the first
item (with payment less than 1). As before, if a bidder c with a departure time
of 2 and a very high value arrives at time 2, then the mechanism must assign c
the second item in order to guarantee a finite competitive ratio. If bidder b’s true
value is 1, he has an incentive to declare w instead, and win the first item. ut

Now alter the scenario described above, and let b’s value be w >> 1. By
the claim, bidder b will not be assigned the first item. However, if at time 2
bidder c with a departure time of 2 and a value of w arrives, the total welfare
the mechanism achieves is at most 1 + w, while the optimal welfare is 2 ·w. ut
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