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Abstract. We introduce basic principles that underlie proof-based sys-
tem engineering, an engineering discipline aimed at computer-based sys-
tems. This discipline serves to avoid system engineering faults. It is based
upon fulfilling proof obligations, notably establishing proofs that deci-
sions regarding system design and system dimensioning are correct, be-
fore embarking on the implementation or the fielding of a computer-based
system. We also introduce a proof-based system engineering method
which has been applied to diverse projects involving embedded systems.
These projects are presented and lessons learned are reported. An analy-
sis of the Ariane 5 Flight 501 failure serves to illustrate how proof-based
system engineering also helps in diagnosing causes of failures.

1 Introduction

Taurus (stock exchange), Relit (stock exchange), AAS (air traffic control), Con-
firm (on-line hotel and car reservation), Socrate (on-line railways seat reserva-
tion), Freedom (manned orbital station), P20 (nuclear power plants), Ariane 5
Flight 501 (satellite launcher). This is a small sample of projects that have been
significantly delayed, or have been cancelled, or have entailed costs much higher
than anticipated, or have resulted into operational failures, because of problems
with “informatics”. According to a study conducted over 8,380 computer-based
system projects by the Standish Group in 1995, only 16% of these projects were
found to be successful, i.e. completed in time, within their initial budget, and
having produced systems that - as of 1995 - had not failed.

Industrialized countries are wasting huge amounts of time and money for the
simple reason that our community is not very good at designing and building
computer-based systems that match clients requirements at decent costs. Among
those computer-based systems that function properly, how many are unjustifi-
ably expensive, in terms of development and maintenance? Our community is
not very good either at correctly identifying the real causes of project setbacks
or operational failures. Too often, blame is inappropriately put on poor project
management and/or poor software (S/W) engineering practice.

There is growing evidence that system engineering currently is the weakest
(i.e., the least rigorous) of all those engineering disciplines covered by what
the IEEE Computer Society refers to as the Engineering of Computer-Based



Systems. This view is not universally shared (yet). In certain circles, the motto
is “S/W is all what matters”. Interestingly enough, infatuation with S/W is
manifest in some of those countries which have failed so far to develop a profit-
making hardware (H/W) industry. That S/W is not a dominant cause of project
setbacks or system failures is supported by a growing number of studies (see [10],
[14], [16] for examples).

Asap, Better, Cheaper (ABC) now is the clients defined rule of the game.
Meeting the ABC rule involves dramatic improvements in methods, processes
and tools directed at systems engineering in general, at system engineering for
computer-based systems in particular. This need has been acknowledged by the
US industry and governmental bodies in the early 90’s. As a result, the InterNa-
tional Council On Systems Engineering (originally called NCOSE) was created.

Let us now consider the body of knowledge that has been accumulated over
the last 35 years by the research community in computer science. It is reason-
ably straightforward to conclude that a large fraction of those system engineer-
ing problems faced by the information industry and by the computing industry
have solutions readily available. To be more specific, there are many architec-
tural and algorithmic problems that have well documented optimal or correct
solutions, notably in the areas of real-time computing, distributed computing,
and fault-tolerant computing. These are the areas of relevance for embedded
applications and systems. However, only a small subset of these solutions have
so far translated into commercial, off-the-shelf (COTS) products or operational
computer-based systems.

That time has come for major changes in system engineering (SE) methods,
practices and tools directed at computer-based systems is no longer being ques-
tioned in professional circles. Which sorts of changes is the issue of interest. We
believe - and we will attempt to convince the reader - that such changes should be
aimed at introducing correctness proof obligations, as is (resp. is becoming) the
case in the integrated circuits (resp. software) industry. We believe that proof-
based system engineering for computer-based systems - referred to as proof-based
SE in the sequel - is the privileged vehicle to successfully meet the ABC challenge.
Many embedded applications being complex and/or critical, meeting correctness
proof obligations seems even more appropriate in the case of embedded systems.

Proof-based SE is introduced in section 2. In section 3, we present a proof-
based SE method - the TRDF method - and we show how to conduct the various
phases of a computer-based system project according to this method. Some real
projects addressed with the TRDF method are sketched out and lessons learned
are reported in section 4. Section 5 serves to illustrate how proof-based SE, when
applied a posteriori, helps in diagnosing the real causes of operational failures.
The Ariane 5 Flight 501 failure is the case selected.



2 What is Proof-Based System Engineering

2.1 Introduction

With proof-based SE, one seeks to solve system engineering problems arising
with computer-based systems in much the same way engineering problems are
solved in such well established disciplines as, e.g., civil engineering or electrical
engineering, that is by “exploiting” scientific results. Indeed, before they under-
take the construction of a dam or the electrical cabling of a building, engineers
draw plans first (design) and check that plans are correct (proofs). Of course,
they do not have to re-establish theoretical results, such as theorems in hydrody-
namics or the Kirchhoff laws. They apply well established engineering methods
which build upon (and “encapsulate”) fundamental scientific work. Why would
it be different when it comes to computer-based systems?

The essential goal pursued with proof-based SE is as follows: starting from
some initial description of an application problem, i.e. a description of end
user/client requirements and assumptions (e.g., an invitation-to-tender), to pro-
duce a global and implementable specification of a computer-based system (de-
noted S in the sequel), along with proofs that system design and system dimen-
sioning decisions made to arrive at that specification do satisfy the specification
of the computer science problem “hidden” within the application problem.

With proofs, it is possible to ensure that future behavior of S is the desired
behavior, before implementation or construction or fielding is undertaken. Proof-
based SE aims at avoiding system engineering faults, in contrast with fault-
tolerance approaches, such as those based on, e.g., “design diversity”.

Any project involves a number of actors, namely a client, a prime contractor,
co/sub-contractors. Roles taken on by actors are described wherever appropriate.
Note that a client may not be a specific organization or company, but a team
of marketing/business experts internal to a system vendor/integrator company
that targets a certain market, in which case another team (of engineers) would
take on the role of a prime contractor.

2.2 Three Essential Phases in a Project Lifecycle

Notation <Y> (resp. [Z]) is used in the sequel to refer to a specification of a
problem Y (resp. a solution Z). Notation <y> (resp. [z]) is used to refer to a spec-
ification of a set of unvalued problem-centric (resp. solution-centric) variables.
The term “specification” is used to refer to any complete set of unambiguous
statements - in some human language, in some formalized notation, in some
formal language.

Proof-based SE addresses those three essential phases that come first in a
project lifecycle, namely the problem capture phase, the system design phase,
and the system dimensioning phase. Proof-based SE also addresses phases con-
cerned with changes that may impact a computer-based system after it has
been fielded. For example, phases devoted to handling modifications in client-
originated descriptions of application problems, coping with evolutions of COTS



products, taking advantage of advances in state-of-the-art in computer science,
and so on, are also covered by proof-based SE. Such phases simply consist in
repeating some of the three phases introduced below, and which precede phases
covered by other engineering disciplines (e.g., S/W engineering), which serve to
implement system engineering decisions. The whole set of notations needed to
describe these phases is summarized in figure 1.

< A>
<X >

specification of an invariant (i.e., generic) application problem A.
specification of the generic computer science problem that

matches < A >.

specification of the set of variables in < A > that are left unvalued.
specification of the set of variables in < X > that are left unvalued.
modular specification of a generic computer-based system S such
that [S] satisfies < X >.

specification of the set of variables in [S] that are left unvalued.
specification of a dimensioning oracle (obtained from correctness
proofs) for generic system S.

some assignment of values to variables in < z >.

an assignment of values to variables in [s] that satisfies V(< z >).

<a>
<z>
[S]

[s]

[oracle. S|

V(i<z>)
V([s])

Notations

=< X >
{description of an application problem} =< A > | = < a >
=<z >

Capture
= [S]

<X >| = ¢
= [oracle.S|

Design

V(< z >) = oracle.S = V([s])

Dimensioning

Fig. 1. Organization of proof-based SE phases

The Problem Capture Phase

This phase has an application problem description as an input. Such a de-
scription, provided by a client, usually is expressed in some human language and
is incomplete and/or ambiguous. The capture phase is concerned with, (i) the
translation of an application problem description into < A >, which specifies
the generic application problem under consideration and, (ii) the translation of



< A > into < X >, a specification of the generic computer science problem that
matches < A >. A generic problem is an invariant for the entire duration of a
computer-based system project.

Specifications < A > and < X > are jointly produced by a client and a
prime contractor. A client knows “what he/she wants”, i.e. the semantics of the
application problem of interest. A prime contractor is in charge of identifying
which are the models and properties commonly used in computer science that
have semantics that match those of the application problem. Consequently, a
specification < X > actually is a pair {< m.X >, < p.X >}, where m stands
for models and p stands for properties.

For example, statement “despite being read and updated possibly concurrently,
files should never be inconsistent” in < A > would translate as “serializability
property (for operations on files)” in < X >. Or statement “workstations used by
air traffic controllers should either work correctly or stop functioning” in < A >
would translate as “dependability property is observability = stop failure (for
workstations)” in < X >. Or statement “how application-level service app will
be invoked is unknown” in < A > could translate as “unimodal arbitrary arrival
model (for the event type that triggers app)” in < X > (see section 3.1 for an
introduction to models and properties).

Besides making sure that a client fully understands what is implied with
every model and property that appears in < X >, a prime contractor is in charge
of helping a client decide which degree of genericity is appropriate. Inevitably,
variables appear in specifications < A > and < X >. Notation < a > (resp.
< x >) is used to refer to a specification of those variables in < A > (resp.
< X >) that are left unvalued. As for < X > (resp. < A >), < x > (resp.
< a>)is apair {<m.x >, <px >} (resp. {< m.a >, <p.a>}.

The genericity degree of < A > or < X > may vary from 0 (< ¢ > and
< x > are empty) to oo (every variable in < X > (resp. < A >) appears in
< x> (resp. < a>)).

Of course, any degree of genericity has an associated cost and a payoff. With
a “high” degree of genericity, design work is “hard”, but is valid for a very large
number - say N - of problem quantifications and, therefore, releases of S, which
entails possibly significant savings vis-a-vis design, dimensioning, implementa-
tion and testing activities. Conversely, with a “low” degree of genericity, design
work is “easy”, but it must be repeated “many” times in order to deliver these
same N releases of S. Hence, design costs are higher. However, the cost of every
single (specifically dimensioned) release of S is lower than that of any release
resulting from a “highly” generic approach. (See also further, under the system
dimensioning phase sub-section, and section 2.3).

Set {< A > < X > < a> < x >} is the contract established between a
client and a prime contractor. Such a contract is essential for avoiding those
misunderstandings or litigations that are commonplace with current system en-
gineering practice. Any extra cost or delay incurred in a project due to changes
in < A > or < a > isto be beared by a client. Similarly, any extra cost or delay
due to erroneous < X > or < z > (i.e., any mistaken translation of < A > or



< a >) is to be beared by a prime contractor. There are methods and tools (e.g.,
rapid prototyping) that may help a client produce a specification < A > that
correctly mirrors “what he/she has in mind”. One of the purposes of proof-based
SE methods is to help specify < A > and < a > as well as correctly derive a set
{< X >, <z >} from a given set {< A >, <a >}

At present time, such derivations can be performed by experts, namely com-
puter scientists and engineers who are aware of such methods. We foresee the
existence of knowledge-based tools that will help automate these derivation pro-
cesses.

The System Design Phase

This phase entirely is under the responsibility of a prime contractor. A de-
sign phase has a specification < X > as an input. It covers all the design stages
needed to arrive at [S], a modular specification of a generic solution (a generic
computer-based system), the completion of each design stage being conditioned
on fulfilling correctness proof obligations. A design phase is conducted by ex-
ploiting state-of-the-art in various areas of computer science (e.g., computing
system architectures, algorithms, models, properties), in various theories (e.g.,
serializability, scheduling, game, complexity), as well as by applying appropri-
ate proof techniques, which techniques depend on the types of problems under
consideration (examples are given in the sequel).

More precisely, one solves a problem {< m.X >,< p.X >} raised at some
design stage by going through the following three steps: specification of an archi-
tectural and an algorithmic solution designed for some modular decomposition,
establishment of proofs of properties and verification that a design correctness
proof obligation is satisfied, specification of a dimensioning oracle.

For example, let {< distributed processes, some partially synchronous system
model >, < mutual exclusion >} be a problem contemplated at some design
stage. One cannot proceed further in the design phase unless, (i) one specifies
a modular architecture that supports the distributed processes, (ii) one proves
that the required safety property (mutual exclusion) is ensured with some to-be-
specified distributed algorithm designed for a computational model “as strong
as” - see section 3.1 - the specified partially synchronous model.

Similarly, if a real-time problem such as {< distributed task models, multi-
modal arbitrary arrival model >, < latest deadlines for completing task execu-
tions >} is to be solved, one goes through that design stage by, (i) specifying a
distributed modular architecture that supports the specified tasks, as well as a
distributed scheduling algorithm, (ii) proving that the specified timeliness prop-
erty holds for every task for feasibility conditions “as strong as” the specified
arrival model.

The first stage of a design phase results into the breaking of the initial (pos-
sibly complex) generic problem < X > into a number of independent generic
subproblems. Fulfilling a design correctness proof obligation guarantees that if
every subproblem is correctly solved, then the initial problem is correctly solved
as well by “concatenating” the individual generic solutions. And so on. Conse-
quently, a design phase has its stages organized as a tree structure (see fig. 2).



By the virtue of the uninterrupted tree of proofs (that every design decision is
correct), the union of those specifications that sit at the leaves of a design tree
is a modular specification of generic S that provably correctly satisfies < X >.
This modular specification is denoted [S]. If < X > is a correct translation of
< A >, then, transitively, < A > is provably correctly solved with [S].

Clearly, this approach is based on compositionality principles very similar to
those that underlie some formal methods in the S/W engineering field.

Every module of [S] is deemed implementable, or is known (in a provable
manner) to be implemented by some procurable product or is handed over to a
co/sub-contractor. As will be seen in section 3, another output of a design phase
is a specification of a system-wide dimensioning oracle - denoted [oracle.S] -
which includes, in particular, a set of constraints called (system-wide) feasibility
conditions. Of course, [oracle.S| must be implemented in order to conduct sub-
sequent system dimensioning phases. From a practical viewpoint, [oracle.S] is a
specification of a {< X >, [S]}-dependent component of a more general system
dimensioning tool.

The System Dimensioning Phase

The purpose of a dimensioning phase is to find an assignment V'([s]), i.e.
a quantification of system S unvalued variables, such as, e.g., sizes of mem-
ory buffers, sizes of data structures, processors speeds, databuses throughputs,
number of databuses, processors redundancy degrees, total number of processors.
V([s]) must satisfy a particular assignment V(< = >), i.e. a particular quantifi-
cation of the captured problem-centric models and properties. A dimensioning
oracle, i.e. an implementation of [oracle.S], is needed to run a dimensioning
phase. Such an oracle may be owned by a client or a prime contractor, or both.

One or several dimensioning phases may have to be run until the dimension-
ing oracle declares that there is a quantified S that solves a proposed quantified
problem {< X > V(< x >)}. How many phases need be run directly depends
on the genericity of [S]. Consider for example that [s] is close to empty, for the
reason that many (design and dimensioning) decisions were made prior to en-
tering the design phase. This is typically the case whenever it is decided a priori
that S must be based on specific COTS or proprietary products. The good news
are that a small number of dimensioning phases need be run, given that many
system variables are valued a priori. The bad news are that the oracle may find
out (rapidly) that the proposed problem quantification is not feasible (e.g., some
deadlines are always missed), no matter which V([s]) is considered.

Pair {[S],V([s])} is a modular implementation specification of a system S
that provably solves problem {< X >, V(< z >)}. Modules of {[S], V([s])} are
contracts between a prime contractor and those co/sub-contractors in charge of
implementing S.

To summarize, a capture phase yields the specification of a generic problem
in computer science that matches an invariant application problem. A design
phase is the resolution of that generic problem, which yields a specification of a
generic solution, exactly like in Mathematics where one demonstrates that some
theorems hold - properties “as strong as” those stated in < p.X > - for every



possible set of values taken by some set of variables var, for some axiomatics
- models “as strong as” those stated in < m.X >. After this is done, a client
or a prime contractor is free to quantify the generic problem, as many times as
desired. For each feasible quantification, there exists a matching dimensioning
of the generic solution (i.e., of S). To pursue the analogy with Mathematics,
theorems are applied for various assignments of values to set var.

If deemed implementable, set {[S], V([s])} is the borderline between system
engineering on the one hand, S/W engineering, electrical engineering and other
engineering disciplines on the other hand.

S/W engineering serves the purpose of producing correct executable imple-
mentations of given specifications. Where do these specifications come from?
Obviously, they result from system engineering work. Hence, S/W engineering
necessarily follows system engineering in a project lifecycle. Why is it useless or,
at best, marginally productive to apply formal methods in the S/W engineering
field without applying proof-based methods in the system engineering field? For
the obvious reason that provably correct S/W implementations of specifications
that are flawed in the first place can only result into incorrect computer-based
systems. For example - as amply demonstrated by many failed projects and/or
operational failures - a faulty design decision results into specifying some inad-
equate algorithmic solution. No matter how correctly that specification ends up
being implemented, the resulting system can only fail to meet < X >. Specifi-
cations handed over to S/W engineers must first be proved correct w.r.t. some
client-originated problem.

2.3 Stochastic Versus Deterministic Approaches in Proof-Based
System Engineering

System engineering for computer-based systems has been an area of concern
for almost half a century. Until recently, with few exceptions, design and/or di-
mensioning correctness proofs that have made inroads in industrial and business
circles are those based on stochastic approaches, namely probabilistic approaches
(e.g., analytical modeling, queueing theory) and statistical approaches (e.g., nu-
merical simulation, event-driven simulation) .

We believe time has come for changes. We hope that the viewpoints presented
below will help to properly put current trends into historical perspective.

The major reason for changes is the clients defined ABC rule. Consider the
trends in the embedded applications area. Can we still “play with probabilities”
when, on the one hand, complexity and criticality go beyond certain thresholds
and, on the other hand, costs must go down, costs including losses incurred be-
cause of operational failures? With embedded applications, it is more and more
often the case that those computer science problems derived from client origi-
nated problems are of deterministic nature. Typically, clients want to be shown
that properties < p.X >, quantified as per V(< p.x >), always hold under as-
sumptions < m.X >, quantified as per V(< m.x >), i.e. for possibly exceptional

! Proofs serve the purpose of predicting before constructing. Consequently, we do not
consider here such techniques as prototyping or testing.



or worst-case operational conditions. Most often, deterministic approaches are
then mandatory.

For example, whenever initial < X > indirectly raises a real-time, or a distri-
bution, or a fault-tolerance issue, it is necessary to resort to such deterministic
algorithms and “non probabilistic” proof techniques as those found in, e.g., [1],
[5], [7], [15]. This is so for at least one reason: the set that includes all possi-
ble runs of a reasonably complex computer-based system cannot be built by, (i)
resorting to models based on (independent) random variables, (ii) considering
stochastic “adversaries”.

Let us imagine we have to solve a distributed hard real-time problem. Any
solution must include some distributed synchronization algorithm (e.g., concur-
rency control, consensus). Therefore, those variables that model individual pro-
cessor states are related to each other in very specific ways. They cannot be seen
as independent random variables. Furthermore, upper bounds on response times
must be given for worst-case scenari such as, e.g., highest “load” densities (a
deterministic “adversary”). This is radically different from expressing expected
values and standard deviations of response times assuming, e.g., Poisson arrivals.

Composite algorithms built out of, e.g., concurrency control algorithms, fault-
tolerant algorithms, distributed algorithms for fault-tolerance, real-time schedul-
ing algorithms, on the one hand, reasoning techniques such as adversary argu-
ments (game theory), proof techniques pertaining to mathematical logic, and
such calculi as matrix calculus in (max, +) algebra, on the other hand, are
needed to establish desired solutions and correctness proofs.

Of course, stochastic approaches have their own merits. Whenever appropri-
ate, they should be followed. Nevertheless, we would like to dispel the following
misconceived argument: “Given that “the world” is probabilistic, only stochas-
tic approaches make sense”. Firstly, it has never been proved that “the world”
is probabilistic. Probabilities and coverage factors are one possible manner of
modeling our inability to tell the future (of “the world”). Secondly, the fact that
real future operational conditions may from time to time deviate from what has
been assumed does not mean that it is impossible to prove properties “deter-
ministically”.

More to the point, we see three fundamental differences between deterministic
and stochastic approaches.

The first one is related to the capture phase. As will be seen, in any of the
classes of models that are considered under a deterministic approach, there is
one model that is “extreme”, in the sense that it reflects a fully unrestricted “ad-
versary”. Examples of such models are the asynchronous computational model,
the byzantine failure model, the multimodal arbitrary event arrival model. Pick-
ing up these models has a price: one may run into impossibility results or one
may end up with “demanding” feasibility conditions (which translates into costly
computer-based systems). The beauty of such models is that they are “safe”: no
real future operational conditions can be worse than what is captured with these
models. Therefore, the issue of estimating coverage factors is void with such mod-
els. Conversely, even with “extreme” stochastic models, the issue of estimating



coverage factors must be addressed. Picking up models weaker than “extreme”
ones involves a risk: operational conditions may be “stronger than” assumed
during a capture phase. Again, this is unavoidable, given that we cannot “tell
the future”. However, it is fallacious to conclude from this (rather trivial) ob-
servation that only stochastic approaches make sense. “Deterministic” theorems
are established under Euclidian or Riemannian axiomatics, without asking which
matches best some given universe. The same is true with properties in computer
science. Picking up the appropriate models for < m.A > and < m.X > boils
down to making tradeoffs between having coverage factors sufficiently close to 1
and retaining models as weak as acceptable.

The second fundamental difference is related to the design phase. There is
no probability or coverage factor involved with deterministic design approaches.
Properties “as strong as” those stated in < p.X > either hold or do not hold. For
example, mutual exclusion or serializability or atomic broadcast or some time-
liness property is either not ensured or it is (via some deterministic algorithm),
under specific feasibility conditions. There are no probabilities or “proof cover-
age factors” or “proof confidence intervals” involved with proofs of properties or
feasibility conditions.

Feasibility conditions are analytical expressions. For a given set of models,
they define a set of scenari that, with certainty, includes all worst-case scenari
that can be deployed by “adversary” < m.X >. (This set is exact, i.e., is not a
superset, whenever feasibility conditions are necessary and sufficient). There are
no probabilities or coverage factors involved with expressing computable lower
bounds on a redundancy degree or on a number of modules, or computable
upper bounds on response times. Conversely, there is inevitably some approx-
imation involved with a stochastic modeling of those deterministic algorithms
(probabilistic ones, in some instances) that constitute the inner mechanisms of
computer-based systems.

Let us consider probabilistic approaches first. Even though the modeling of
some deterministic arrivals models and algorithms is known to be tractable in
queueing theory (e.g., ND/D/1), approximations cannot be avoided whenever
queue servers model real processors that are actually synchronized. This raises
the issue of estimating the level of error introduced with such approximations.
Common practice consists in validating probabilistic analytical models via event-
driven simulations. Hence the question: What can be expected from statistical
approaches ?

Given that random number generators and limited numbers of input sce-
nari are resorted to under such approaches, it is impossible to ascertain that
every possible worst-case scenario has been explored. Coverage factors or con-
fidence intervals depend on the sizes of the actual state spaces. In most real
cases, these sizes are huge (see sections 3.4 and 3.5 for numerical examples).
Which results into coverage factors or confidence intervals considered realistic
or satisfactory when in the [95 % - 99 %] interval. This is problematic with
critical applications. When highest accepted unavailability of critical services is
set to 107* (resp. 10~7) by a client (via V(< p.z >)) - as is the case with some



airborne/spaceborne (resp. air traffic control) applications - we can no longer
rely on stochastic proofs of properties, for the simple reason that levels of con-
fidence reachable with probabilistic analytical modeling or statistical modeling
have a distance to 1 which is orders of magnitude greater than 10~4 (resp. 10~
a fortiori).

The third fundamental difference is related to the dimensioning phase. In
both cases, quantifications of models (via V(< m.z >)) and properties (via
V(< p.x >)) have some related coverage factors. However, in the deterministic
case, there are exceptions. For example, quantification coverage factors need not
be estimated when considering “extreme” models (e.g., the asynchronous compu-
tational model, the byzantine failure model) or such properties as serializability
or timeliness. This being granted, it is important to see that, under a deter-
ministic approach, physical dimensionings of computer-based systems have no
coverage factors or confidence intervals or probabilities associated to them. Those
numerical values that appear in V'([s]) specify a “safe” physical dimensioning of
a computer-based system. A “safe” dimensioning is a by-product of checking
the feasibility of some problem-centric quantification V(< x >). Consequently,
such dimensionings are certainly sufficient (ideally, they should be necessary and
sufficient), contrary to stochastic dimensionings, which are probabilistically or
statistically correct.

We do not mean to dismiss the relevance of stochastic approaches. What is
getting clearer is the existence of a strong trend in favor of resorting to deter-
ministic approaches more often than has been the case in the past. Interestingly
enough, besides embedded applications, such a trend is manifest in application
domains that have traditionally been terra incognita for deterministic approaches
such as, e.g., telecommunications [8]. In the sequel, we consider deterministic
proof-based SE approaches and methods.

2.4 Current Status

As is the case with other engineering disciplines, various proof-based SE methods
will emerge in the future. Work on proof-based SE which was started in 1993
[11], [12] has led to the development of a method named TRDF 2. That name
was retained for the reason that those application problems of interest to us raise
real-time issues (R), or distribution issues (D), or fault-tolerance issues (F), or
any combination of these issues. Embedded applications raise such issues. TRDF
currently is the only proof-based SE method (based on a deterministic approach)
we are aware of. Consequently, in what follows, we further explore proof-based
SE as instantiated by the TRDF method.

2 Temps Réel, Traitement Distribué, Tolérance aux Fautes (T is a common factor)



3 Proof-Based System Engineering and the TRDF
Method

In this section, we provide a detailed description of what is involved with design
and dimensioning phases. In order to do this rigorously, detailed notations are
necessary. They are provided for the interested readers. However, these notations
may be skipped by those who simply want to read this paper as an introduction
to proof-based SE.

3.1 The Problem Capture Phase

Most often, properties (services to be provided to end users) and models (as-
sumptions regarding future operational conditions) are not clearly separated in
an application problem description. Furthermore, such descriptions inevitably
contain many TBD (to-be-defined) quotations. This is felt to be a major cause
of those difficulties faced by a prime contractor and, transitively, by co/sub-
contractors. It should not - and may not - be so. Too often, clients believe -
or are told by prime contractors - that they must make early commitments
on specific numerical values for variables appearing in the descriptions of their
application problems.

Of course, this results into specific - hence, simpler - design problems. Con-
versely, this maximizes the likelihood that some of these values are changed by
a client after a design phase has started or is completed. As a result, most often,
existing design work is invalidated. This does not happen if invariants < A >
and < a > are identified.

As explained in section 2, a capture phase involves a number of interactions
between a client and a prime contractor. The identification of invariants {< A >,
< a >}, as well as their translation into {< X >, < >}, rest on combining
knowledge of application-centric semantics and knowledge of those models and
properties elaborated in computer science. For example, only a client can tell
whether a-particles should be of concern. If such is the case, a prime contractor
is responsible for translating this into appropriate failure models.

Let us now give a non exhaustive list of classes of models and properties (each
class being non exhaustively described either). Every class has a hierarchical
structure. In some cases, partial orders are known (see, e.g., [3], [17]). Of course,
this is an area of on-going research. When element Y precedes element Z in the
hierarchy or in the partial order considered, one says that Y dominates Z, or that
Y is stronger than or equal to Z, which is written Y O Z. Notation O correctly
reflects the fact that Z is included in Y or that Y = Z (see further for examples).

This definition of dominance or strength is consistent with the fact that
work involved with a design phase is best described a la game theory, as follows.
Set < m.X > defines an “adversary”. A designer is in charge of devising and
specifying [S], a set of architectural and algorithmic solutions, from which worst-
case strategies that can be deployed by “adversary” < m.X > can be inferred
and proved. Computer-based system S should always “win against” < m.X >.
One of the greatest difficulties is to identify and prove these worst-case strategies.



A model Y dominates another model Z if the “adversary” reflected by model Y is
less restricted than that reflected by model Z (or is equally restricted). Similarly,
this definition of dominance or strength applies to architectural and algorithmic
solutions, as well as to properties.

Examples of Model Classes

Architectural models

Definition of which are the modules to be architected.

Centralized shared memory, distributed clients-servers interconnecting sen-
sors and actuators, meshed topology of point-to-point links, multiaccess
broadcast bus, group of replicated processors.

External event types models

Arrival model (for every type):

periodic (pr), sporadic (sr), aperiodic (apr), arbitrary (arr); the latter is
based on the concept of bounded arrival density, which is defined via a
pair of variables, namely a sliding time window of some constant size (w)
and a maximum number (a) of arrivals within any such window; unimodal
arbitrary (uarr) is the model such that only one pair is defined (per event
type); multimodal arbitrary (marr) is the general case (i.e., ordered multiple
pairs for an event type).

marr 2 uarr 2 apr
marr D uarr 2O sr 2D pr

Collective attributes:
sets of event types that are mutually dependent (causally, chronologically),
constraints on arrivals (e.g., time gaps) between different event types.

System or computational models

They model advance knowledge relative to upper and lower bounds on com-
putational delays (e.g., time taken by a processor module to make a com-
putational step) as well as on communication delays (e.g., time taken by
a network module to transmit a message). More than 30 models known,
organized in three sub-classes:

synchronous (sm): bounds exist, and their values are known,

partially synchronous (psm): bounds exist, but their values are unknown;
or, postulated values hold only after some unknown time; etc.,
asynchronous (am): bounds do not exist (even if bounds exist, they cannot
be reached, even with infinite runs).

am 2 psm 2 sm

Models of shared persistent variables
Consistency sets, i.e. sets of variables whose values are bound to meet specific
sets of invariants.



- External variables, which are shared between tasks and the environment,
as well as variables that depend upon these external variables. Examples:
variables shared between tasks and sensors, between tasks and actuators.

- Internal variables, which are shared among tasks only, and which do not
depend on external variables.

e Task models
- Individual structure: sequence, star, tree, finite graph.

finite graph D tree D star O sequence

- Individual attributes (per task): external variables accessed, conditions for
(re)activation, suspension, abort (e.g., arrivals of external or internal events),
shared internal variables, roll-backs allowed or prohibited.

- Collective attributes: sets of causally dependent tasks, of chronologically
dependent tasks.

e Failure models (of architectural modules)

- Value domain: incorrect values.

- Time domain: crash (crf) = permanent halt without warning, omission
(omf) = correct steps are not taken from time to time, timing (tif) =
steps are taken, but too early or too late.

tif Domf Derf

Many models can be built by combining both domains. More than 20 models
known. Most restricted model is stop (either correct behavior or crash). Most
unrestricted model is byzantine (any behavior in the value domain, in the time
domain).

e Failure occurrence models (for every module)
See external event arrival models. Most often, the aperiodic or the arbitrary
models are considered.

Examples of Property Classes

e Safety: every possible system run (a collective execution of tasks) satis-
fies some set of invariants. Examples are mutual exclusion, serializability,
data constistency, causal ordering, linearizability.

consensus 2 causal broadcast D reliable broadcast

e Liveness: for every possible system run, tasks that are invoked are activated
and make progress. Examples are deadlock freedom, collision detection-and-
resolution in bounded time.

e Timeliness: tasks are assigned timeliness constraints. For every possible sys-
tem run, every timeliness constraint is met.



A timeliness constraint belongs to a category and has a type.
- Examples of categories: latest termination deadline (Id), bounded jitter (bj),
earliest start time (st).

stAbj D stAldDbjDld

- Examples of types: constant (c), linear function (If), or non linear function
(nlf) of system or environment parameters. An example of type [ f would be
deadline = a/temperature. An example of type nlf would be deadline =
B.(altitude)?.

nlf 21f D¢

e Dependability: in the presence of partial failures, every possible system run
satisfies some set of invariants. Examples are:

- observability (module): states which type of failure behavior is to be exhibited
by module.

- total order: histories of steps (e.g., reads and writes over replicated data) in
a group of modules are uniquely ordered.

- availability (service 3): states that service can be activated whenever re-
quested.

- reliability (service): states that service must be correctly delivered.

Note that our definitions of availability, of reliability, are “free from proba-
bilities”. This is consistent with the views presented in section 2.3. Under given
models - e.g., an upper bound f on the number of module failures that can accu-
mulate without repair, a computational model - and for some given architectural
and algorithmic solution, one can establish feasibility conditions such as, e.g., a
lower bound on the number of modules needed to cope with up to f failures.
Under such conditions, desired dependability properties hold for sure.

With traditional “stochastic” approaches, the definition of a dependability
property involves a “measure” - e.g., a probability, a coverage factor - of the
smallest acceptable likelihood that this property does hold. In fact, such “mea-
sures” come into play for the reason that some of the models considered may be
violated - by the environment of S - at run time *. If we were to follow this line
of reasoning, then safety, or liveness, or timeliness properties should also always
involve some “probabilistic measure”. As we know, this is not the case at all.

Again, we see no benefits deriving from having probabilities or coverage fac-
tors appearing in specifications of properties, on the ground that specified mod-
els/assumptions may be violated. Conversely, what does matter is knowing how
to compute probabilities or coverage factors for a set of models (such as, e.g., the

3 A fault-tolerant service is obtained via replicated tasks and data.

4 Faulty implementations are another popular motivation. Besides the fact that this
is tantamount to assume that there is fundamentally no hope of achieving correct
implementations, one may wonder how such “measures” can be used a priori by, e.g.,
S/W engineers, as ladders of acceptable “faultiness”.



conventional “up to f failures without repair” assumption - a failure occurrence
model).

Even without embarking on probabilistic or statistical calculations, clients
may want to specify how properties should be “degraded” if it happens that
some models are violated at run time. This is often achieved by specifying - in
addition to the property attributes presented above - individual task or service
“value” functions and by requiring that, for every possible system run, accumu-
lated “value” be maximized. This leads to optimization problems akin to, e.g.,
minimum regret,.

Regarding timeliness, constant “values” have been considered [9]. Results of
interest in the presence of general “value” functions can be imported from game
theory or decision theory. Feasibility conditions may not be satisfied transiently,
because of spurious violations of an event arrival model. Thanks to some appro-
priate algorithmic solution, tasks that do not meet their timeliness constraints
precisely are those being the least valuable whenever such violations occur. Sim-
ilar comments and solutions apply to dependability properties.

e Complexity of [oracle.S)|
A client may want to bound C(oracle), the complexity of a dimensioning
oracle, which is determined by the complexity of feasibility conditions.

3.2 The System Design Phase

Overview

Most often, real problems < X > are of exponential complexity. Conse-
quently, from a practical standpoint, algorithmic solutions - meant to be used
on-line by S - are sub-optimal in most realistic cases. Therefore, a prime contrac-
tor has many ways of constructing a design tree, for any given < X >. From a
practical standpoint again, it may be required (by a client) - or it makes sense -
to have some of the modules of S based on COTS products (e.g., processors, op-
erating systems, middleware). Early adoption of COTS products is tantamount
to “freeze” a priori some of the intermediate nodes or some of the leaves of a
design tree. This reduces the space of potential solutions to be explored, which
is a good idea at first sight. However, correctness proof obligations have to be
met at any design stage, regardless of the fact that COTS products are or are
not being considered at that stage. There are potential difficulties involved with
COTS products (see further).

The tree structure of a design phase is shown figure 2, where [S] = Ujep,.1[S5]
is the (modular) specification of S that “aggregates” all design decisions. A prime
contractor stops designing along a branch whenever the specification arrived at
is known to be implementable (e.g., via some COTS product, or as a customized
H/W and/or S/W module), or when the to-be-continued design work is assigned
to a co/sub-contractor (who is bound to apply a proof-based SE method as
well). Indeed, in practice, a prime contractor may decide to end a design tree
branch “prematurely”, i.e. when arrived at some non implementable specification
module [S,]. Design work - to be continued - is contractually handed over to some
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co/sub-contractor. As explained further, the specification of problem < X' >,
which is the contract handed over by the prime contractor, is directly extracted
from [m.S,]. To a co/sub-contractor, < X’ > is a design tree root.

Design Stages

Each stage has a unique reference r;, i being a tree level and r being one
element of the set of names needed to enumerate all stages of the same level.
Problem considered at stage r; is denoted < X (r;) >. Initial problem < X >
is rewritten < X (a;) >. Design decision/solution or design stage r; is denoted
D(?"z)

Generic solutions

Design stage D(r;) consists in dividing < X (r;) > into a number - denoted
d(r;) - of modules or subproblems, by specifying a modular decomposition. For
every such module, one specifies a set of models, denoted [my(ri)], k € [1,d(r;)].
Given a modular decomposition, one specifies a global architecture - denoted
[arch(r;)] - as well as a global algorithmic solution (a composite algorithm, in
most cases) - denoted [alg(r;)]. Instantiation of [alg(r;)] (resp. [arch(r;)]) local
to module k is denoted [algy(r;)] (resp. [archi(r;)]). Choice of models my(r;) is
constrained by the obligation of fulfilling a design correctness proof (see further).
Furthermore, for some modules, it may be that some associated models depend
on alg(r;). This is often the case with event arrivals models (events triggered
among modules).

The output of design stage D(r;) is a triple {[S(r;)], P.S(r:), [oracle.S(r;)]},
where :

- [S(r;)] comprises the d(r;) sets {[mg(r:)], [algk(ri)], [archi(r:)]},

- P.S(r;) is the set that describes those global properties - along with their
proofs - that hold with [S(r;)],

- [oracle.S(r;)] specifies a dimensioning oracle (see further) which is derived
from set P.S(r;).

e Specification [S(r;)]

For each of the specification sets in [S(r;)], there is one out of two possible
outcomes. Consider [Sk(r;)]. If deemed implementable or implemented by some
procurable product, that specification terminates a design tree branch. In other
words, [Si(r;)] is a (level 1) design tree leaf, i.e. a specification of a real (phys-
ical) module of S. If deemed non implementable or not implemented by some
procurable product, then [Si(r;)] - which then specifies an abstract module of
S - translates into a (level ¢ + 1) subproblem {< m.X(g;1+1) >, < p.X(¢i+1 >}
trivially extracted from [my(r;)].

Let us illustrate the above with the following example drawn from our expe-
rience with project 1 (see section 4), where < X (a1) > is a distributed real-time
fault-tolerant computer science problem and [S(aq)] is based - in particular - on
a network module, node k of level 1 in the design tree. In [my(a1)], one finds the
following :



- synchronous computational model : network delays range between min and
max,
- failure model : bounded message omissions.

Furthermore, given the (external) event arrivals and the task models specified
in < m.X(a1) > on the one hand, the algorithmic solution alg(ai) on the other
hand, one derives time windows within which messages can be generated by
tasks, i.e. the message arrivals model to be found in [my(a1)], e.g., the unimodal
arbitrary model. Such derivations may raise non trivial issues, barely addressed
so far in scientific publications.

Obviously, this postulated network module is not directly implementable with
existing COTS products, or with other documented products. In fact, [mg(aq)]
raises the following level 2 subproblem (say, tree node c2) :

- < m.X(c2) > = < unimodal arbitrary message arrivals model, message
omission failure model >,
- < p.X(e2) > = < network delays € [min, max] >.

Solving this subproblem entails - in particular - designing a real-time com-
munication protocol (an algorithmic solution) and establishing timeliness proofs,
such as done in [4].

e Set P.S(r;)

This is the set describing properties and proofs that properties “as strong as”
those specified in < p.X (r;) > do hold with [S(r;)]. Establishing the existence of
such properties is needed so as to meet a design correctness proof obligation, i.e.
to prove that [S(r;)] is a correct solution. This is also essential for establishing
[foracle.S] (see further). Proofs in P.S(r;) may rest on establishing computable
behavioral functions such as, e.g., upper (resp. lower) bounds on task response
times (denoted B (resp. b)), lower bounds on redundancy degrees (denoted R).

e Specification [oracle.S(r;)]

Most often, [S(r;)] contains unvalued variables, specified as per [s(r;)], such
as, e.g., a boolean matrix reflecting how level i S/W modules are mapped onto
the modules considered with [S(r;)], periods of invocation for task schedulers
over every such module. [s(r;)] is decomposed as follows :

- ['s(r;)], which contains variables that may be valued (by a client or a prime
contractor) prior to conducting a dimensioning phase; such valuations are
performed via a tool component denoted configurator.S(r;); for example,
some mappings being geographically constrained (for some particular re-
lease of S), corresponding variables have pre-determined values; some of the
variables in [!s(r;)] may be left unvalued,

- [?s(r;)] = [s(r3)] - ['s(r;)], which contains variables to be valued by a tool
component denoted f.oracle.S(r;), i.e. by running (dimensioning) oracle.S
(see section 3.3).



In [f.oracle.S(r;)], one finds generic feasibility conditions; such conditions
are a set of constraints that, for pair {< X (r;) >,[S(r;)]}, bind together vari-
ables that appear in < m.X(r;) >, < p.X(r;) >, set P.S(r;) and [m.S(r;)] =
Ukept,agrop[me(ri)]. Let [oracle.S(r;)] be the union of [configurator.S(r;)] and
[froracle.S(r;)].

Let us now take a broader view, and consider a complete design phase. As
shown fig. 2, design tree leaves are relabelled consecutively. As for [S], we have
loracle.S] = U, e . [oracle.S;], which is to be implemented as a tool compo-
nent. Note that, rigorously speaking, [S] is only partially implementable. For
example, algorithms and protocols can be implemented in some language (or
reused, if available), without having to know the outcome of a dimensioning
phase. However, full implementation of S is conditioned on knowing V' ([s]).

Design correctness proof obligation: design_cpo(D(r;))
A generic solution D(r;) provably solves problem < X (r;) > if the following
two conditions are satisfied:

p.S(r;) 2 p.X(r;) and m.S(r;) 2 m.X(r;),
where p.S(r;) are properties enforced by [S(r;)], as given in P.S(r;).

Obligation design_cpo(D(r;)) expresses the constraint that properties en-
sured with some [S(r;)] must dominate those stated in < p.X(r;) >, under
models that must dominate those stated in < m.X (r;) >.

For example, with the real-time problem sketched out in section 2.2 (system
design phase), picking up the periodic arrival model, which is central to the
rate/deadline monotonic approach, would be invalid in our case. Indeed, proofs
that the first condition of design_cpo(.) is met (no deadline is missed) would be
irrelevant, as being non applicable to the problem under consideration (revealed
by a violation of the second condition).

In fact, the periodic arrival model is quite inappropriate for modeling event
arrival laws within distributed systems (i.e. its coverage factor is close to 0), even
if one would assume periodic models for external event arrivals. This is essentially
due to the fact that task durations, resource contention delays, sojourn times in
waiting queues, are inevitably variable, even more so when failures are consid-
ered. Consequently - and contrary to widespread belief - results on periodic task
scheduling have very limited usefulness in the case of distributed computer-based
systems, even more so when established for sequential task models.

COTS Products and Current SE Practice

As stated earlier, one may have to conduct a design phase under the con-
straint that COTS products have been selected a priori. A COTS product has
an architecture and contains inner mechanisms (algorithms) that ensure specific
properties, for some environments. A vendor may not want to reveal which al-
gorithms are used in a product that is considered for implementing some design
tree leaf (say ¢), nor the proofs of properties. Keeping {[S], [s4]} undisclosed is
acceptable provided that there is a commitment on a pair {< X >, < z >} that
specifies which is the problem solved by that product, and that there exists a



matching dimensioning oracle. Under current industry /business practice, COTS
products are not accompanied with (provably correct) specifications, neither
with oracle-like tools. Consequently, there is no way of checking whether early
adoption of a COTS product is or is not a correct design decision, or whether -
if correct - that design decision is arbitrarily non optimal (hence, costly). Which
explains many of the problems that bring clients and prime contractors, or prime
contractors and co/sub-contractors, into conflict.

Yet, it is easy to eliminate such problems simply by requiring that design
correctness proof obligations be fulfilled at every design stage, including those
based on COTS products. Of course, it will take some time before we see S/W,
computing or networking companies ship COTS products along with such spec-
ification sets as {[S], [sq]} or {< X >, < x >}. This simply mirrors the current
immaturity of the (relatively young) computing and information industry. Is it
not surprising that vendors of refrigerators make contractual commitments on
specifications akin to < A > or < X >, whereas vendors of such COTS products
as “real-time” operating systems or middleware do not publish or do not make
contractual commitments on similar specifications?

As explained earlier, fulfilling design correctness proof obligations yields feasi-
bility conditions (FCs). One may establish FCs without expressing computable
behavioral functions such as b, B or R. For example, for some {uniprocessor,
periodic arrival model, timeliness} problems, it has been proved that Earliest-
Deadline-First is an optimal algorithm, FCs being stated as U < 1, where U
is a processor utilization ratio. Latencies (i.e., slack times before deadlines) of
periodic tasks are unknown. One may also establish FCs by first expressing B
(in P.S), and then constrain it to match the timeliness property specified in
< p.X > by fulfilling a design_cpo. One would then know task latencies.

With realistic problems, the number of scenari that can be deployed by any
given “adversary” < m.X > is “high”. “High” also is the number of states a
computer-based system might enter whenever any of these scenari is instantiated.
Consequently, set 6 of pairs {adversary scenario, system state} may not even be
enumerable (think of partial failures). FCs are generic computable constraints.
They demarcate the boundary of a set of scenari that includes all worst-case
scenari that can be instantiated by “adversary” < m.X >. This boundary de-
termines a subset ¢ of set §.

Under current SE practice, identification of set 6y is ignored. A computer-
based system S is accepted by a client provided that S has successfully gone
through a finite number of tests that are supposed to represent real future oper-
ational conditions. Definition of these tests usually is based on past experience
and on the identification of specific pairs {adversary scenario, system state} that
are considered to be “of particular concern”. This is tantamount to invite a client
- who should not be involved at all in such decisions - to make early commitments
on a limited number of elements in set 8, without knowing whether one is testing
for worst-case scenari nor how many of worst-case scenari are left untested.

This explains why simulation and integration testing, as performed under
current SE practice, do not allow for verifying whether or not a specification



{[S],V([s])} is satisfied, even less a specification {< X >, V(< x >)}. Which
explains many operational failures and project cancellations.

Conversely, it is reasonably obvious that FCs bring along the following ben-
efits: (i) FCs yield a dimensioning of S such that problem-centric properties
quantified as per V(< p.x >) certainly hold for all possible worst-case quantified
scenari “hidden” within V(< m.z >), (ii) time needed to compute a set of con-
straints along the boundary of 6 is vastly smaller than checking whether some
invariants are satisfied for every element in 6y, which is what must be done if
one would resort to event-driven simulation or model checking (assuming fur-
thermore that 67 has been identified under these approaches). See sections 3.4
and 3.5 for more on this issue.

Final Comments

Experience shows that early design stages - design stage 1 in particular -
are conducted more or less empirically under current SE practice. This explains
many of the setbacks and operational failures experienced over the last 10 years
with projects involving complex and/or critical embedded systems.

An appropriate illustration of this reality is the US FAA AAS project (air
traffic control). The Center for Naval Analyses, which was asked to audit the
project, diagnosed, in particular, the following problems and oversights:

- “There is no evidence that any in-depth analysis of the design architecture
or the contractor methodology was conducted.”

- “Major system and architectural engineering, so desperately needed early in
the program, was not evident.”

- “In addition to the S/W problems, the system lacked overall system engi-
neering. The S/W and the H/W were broken into pieces without looking at
the overall system requirements.”

Another appropriate illustration of this reality is the failed maiden flight of the
Ariane 5 European satellite launcher (see section 5).

See section 4 for an example of how to conduct design stage 1 in the case of
a (complex and critical) modular avionics problem.

3.3 The System Dimensioning Phase

This phase can be conducted by a client, a prime contractor, or both. Before
an implementation or some specific release of S can be undertaken, the physical
dimensioning of every module of S need be specified. Such a dimensioning V' ([s])
depends upon a quantification specification V(< x >). Recall that one cannot
proceed with fully implementing or releasing S without knowing {[S], V/([s])}-

Specification [s] is the union of those subsets that contain unvalued system
variables accumulated throughout design stages, i.e. from the root of a design
tree. Hence, as for [S], [s] = Uje1,,)[s;] is a modular specification. As seen before,
[s] is decomposed as follows:

- ['s;], which contains variables that may be valued prior to conducting a
dimensioning phase,



- [?s;] = [s5] - [!s;]; values to be assigned to variables in [7s;] are obtained as
a by-product of verifying that specified feasibility conditions are satisfied.

Consequently, dimensioning oracle oracle.S for pair {< X >, [S]} includes
the following:

- a configuration component, denoted configurator.S; its input is some valua-
tion of some of the variables in [ls]; its output is V([!s]),

- a feasibility oracle, denoted foracle.S, a component which implements fea-
sibility conditions established for pair {< X >, [S]}; its inputs are V([!s])
and V(< x >); its output is V([?s]).

For example, some valuation is assigned to a boolean matrix in [!s] that
reflects how application-level (i.e. level 1) S/W modules are to be mapped onto
(real) modules of S. Values of other variables in [ls], e.g. matrices that give
mappings of low-level S/W modules, are computed by con figurator.S.

Examples of variables that are valued by f-oracle.S are as follows in the case
of a processor module: exact invocation period of a task scheduler, maximum
execution time of this scheduler, exact or sufficient memory capacity needed to
store the data structures used by application S/W modules mapped onto that
module, exact or sufficient size of every buffer needed to store shared external
variables and related variables, exact or sufficient size of every waiting queue,
exact values of timers used to detect failures, lower bound of the group size that
module belongs to. For a communication bus module, one would have: number of
access ports, number of independent physical channels, exact or sufficient sizes
of waiting outqueues and inqueues (one of each kind per access port), and so on.

Component f oracle.S works as follows. For every variable in [?s], it selects a
potential value within a given range (ranges are specified in the feasibility condi-
tions) and iterate in this range until, either quantification V(< x >) of problem
< X > is declared non feasible, or a value that meets the dimensioning_cpo is
found.

Let V([s]) be some proposed dimensioning of [S]. How do we know whether
V([s]) is correct w.r.t. problem quantification V(< 2 >)?

Dimensioning correctness proof obligation: dimensioning_cpo(V ([s]))
A system dimensioning V' ([s]) provably satisfies a quantification V(< x >)
of problem < X > if the following two conditions are satisfied:

V([p.s]) 2 V(< p.x >) and V([m.s]) D V(< m.z >).

An illustration of the first condition for a real-time problem stating bounded
jitters as a timeliness property would be that values of behavioral functions b
and B, computed considering some processors speeds and processors storage
capacity, match the values of bounded jitters set via V(< p.x >). An illustration
of the second condition would be: these values have been computed for values of
upper bounds on arrival densities at least equal to those stated via V(< m.x >).

It is reasonably obvious that whenever a proof-based SE method is resorted
to, meeting a dimensioning_cpo with some V([s]) is automatically enforced by a



dimensioning oracle, given that values of variables in [?s] are computed by the
oracle. Nevertheless, it may be that meeting such a cpo is not possible, in which
case the oracle returns a negative output. This may happen essentially for two
reasons. One is that V(< z >) is too “ambitious” (e.g., very small deadlines un-
der very high arrival densities and for a widely dispersed architecture). Another
(practical) reason is that acceptable V([s])’s are constrained, either technology-
wise (there is no processor running at the speed required to meet V(< s >)) or
budget-wise (their is a limit on what a client is willing to spend on S).

Another motivation behind the concept of a dimensioning_cpo is linked with
the fact that proof-based SE is not very much practiced yet. Hence, especially
when COTS products are considered, system engineers should be aware of what
is involved with correctly dimensioning a computer-based system. Whenever
COTS or proprietary products are targeted for the implementation of S, values
of some variables in [!s] and [?s] are “frozen” a priori, i.e. prior to entering
a design phase, which increases the likelihood of delivering a system S that
will fail when being used. This can be avoided by showing system engineers
how to check whether a computer-based system is correctly dimensioned. Quite
often, approximate over-dimensioning - which is commonly practiced, to clients’
expenses - may be shown to violate dimensioning_cpo’s.

Correct V([s]) is optimal for the solution specified in [S] if, by choosing a
dimensioning “weaker” than V([s]), at least one of the conditions of the di-
mensioning_cpo is not satisfied. Physical dimensionings translate into costs. In
other words, with optimal V' ([s]), one knows what is the cheapest correct S that
satisfies {< X >, V(< z >)}, with the solution considered.

Many different problem quantifications V(< x >) may be contemplated by a
client or a prime contractor, before a decision is made, e.g. before the fielding of
a particular instantiation of S, or each time a new mission is set up. The latter
would apply, for example, with embedded systems used for defense applications.
Depending on the application considered, a client may or may not be willing
to restrict complexity C(oracle) - see section 3.1. Most real problems being of
exponential complexity, an optimal oracle is hardly usable in practice. Small
(resp. big) values of C(oracle) translate into fast (resp. slow) oracles, but also
into pessimistic (resp. more accurate) oracles. A pessimistic oracle may return a
negative output despite the fact that problem {< X >, V(< z >)} is feasible.

Note that the dimensioning of every variable that is shared by S and its
environment (i.e., every external variable) is provably correctly specified, rather
than being left undefined or to be decided upon by implementors of system en-
gineering decisions (e.g., S/W engineers). Finding a correct dimensioning of a
variable internal to some application S/W module is under the sole responsi-
bility of the S/W engineer(s) in charge of that module. Conversely, finding a
correct dimensioning of an external variable that is used by some application
S/W module is not a S/W engineering issue.

Failure to understand or to acknowledge this distinction usually leads to
disasters, as illustrated by the unsuccessful maiden flight of the European Ariane
5 launcher (see section 5).



Final Comments

As discussed in section 2.3, with deterministic proof-based SE, one may have
to estimate coverage factors for some of the models specified in < m.z >, as well
as for some of the quantifications specified via V(< m.z >) and V(< p.z >). By
the virtue of the design_cpo’s and dimensioning_cpo’s, coverage factors related
to {[S],V([s])} can only be greater than those estimated for problem-centric
set {< m.X > V(< z >)}. Consequently, the capacity for a provably correct
S to satisfactorily cope with violations of {< m.X >, V(< z >)} is higher
than mirrored by the problem-centric coverage factors, this being obviously true
whenever feasibility conditions are sufficient rather than necessary and sufficient.

3.4 Benefits achieved with Proof-Based System Engineering

In addition to avoiding system engineering faults, a number of advantages derive
from proof-based SE. Some of them are briefly reviewed below.

Technical Benefits

- Design reusability. Various generic application problems {< A >, < a >}
may translate into the same set {< X >, < z >}. Whenever a generic
problem < X > has been provably solved in the past, matching generic
solution [S] comes for free for any of these application problems. (Potentially
huge savings in projects durations and costs).

- High and cheap system configurability. The fact that system design and sys-
tem dimensioning are distinct phases makes it possible for a client to select
at will any combination of application S/W modules, some quantification of
the application problem of interest, and to be delivered a correctly dimen-
sioned system S, without having to incur any of those delays and costs that
are induced by the need to re-design S.

- Elimination of artificial dependencies between the capture, the design and
the dimensioning phases has the effect of suppressing time and budget con-
suming inefficient work, such as looping back and forth between different
design stages or between different phases of a project lifecycle.

- Rigorous assessment of COTS technology, via design and dimensioning cor-
rectness proof obligations.

- Simplification of final integration testing. Verification that a set of concate-
nated modules “behaves correctly” - the “system integration phase” - runs
into combinatorial problems. Under current practice, such a verification is
done via testing, within imposed bounded time and budget, which means
that testing is necessarily incomplete, even with computer-based systems
of modest complexity. Let us consider conservative figures. Imagine that 10
modules, each having 100 visible states (reduction to such a small number
being achieved via unitary testing), go through integration testing. Complete
testing involves checking 1020 global states, which is beyond feasibility. (Even
if a global state could be checked in 1 millisecond, complete testing would
take in the order of 3.10° years). Under a proof-based SE approach, it is
proved beforehand that the union of modules is a global solution. If it would



be the case that every specification pair {[S;],V([s;])} is correctly imple-
mented, there would be no need for system S integration testing (theoretical
viewpoint). Unitary tests, i.e. on a per module basis, being incomplete in
general, system S integration testing still is necessary (practical viewpoint).
However, the beneficial effect of proof-based SE is to bring the complex-
ity of system integration testing down to acceptable figures, such as, e.g.,
pseudo-linear complexity in the number of modules’ visible states.

Legal Benefits

Would a problem arise during the implementation, construction, fielding or
utilization of a system, it is easy to find out which of the actors involved is/are
to be held responsible. Contrary to usual practice - actors involved share the
penalties - it is possible to discriminate without any ambiguity between client’s
fault (faulty specification set {< A >, < a >}), prime contractor’s fault (faulty
specification sets {< X >, < x >}, {[5],[s]}, or [oracle.S]), co/sub-contractors’
fault (faulty implementation of set {[S], [s]}), prime contractor’s or some co/sub-
contractor’s or some tool vendor’s fault (faulty implementation of [oracle.S]).

Strategic Benefits

It is common practice to assign different pieces of a project to different con-
tractors. It is possible for a client or a prime contractor (say M) to take full
responsibility w.r.t. a complex application problem, to “break” it into simpler
subproblems, either in one design stage or until some appropriate level of prob-
lem granularity has been reached. Subproblems can then be contracted, each
having a precise specification {< X(.) >, < z(.) >}. M may ask contractors
to show proofs of design and dimensioning correctness. Furthermore, note that
M only has complete knowledge of the overall technical decisions. Therefore,
M may subcontract work to its competitors, without giving away its technical
know-how.

Of course, there are also many new (strategic) opportunities for tool vendors
as well. Knowledge-based tools needed to support the various phases of proof-
based SE are yet to be developed.

3.5 Proof-Based System Engineering and the Software Crisis

Our main thesis is that one of the major causes of the so-called S/W problems or
“S/W crisis” is lack of proper identification of the real nature of those problems
that the S/W industry has been faced with for years, without succeeding in
solving them. Complexity is an archetypal example. In many instances, these
problems are system engineering issues. It is not surprising at all that SE issues
do not fade away when addressed as S/W engineering issues. Trying to resolve
them by improving the quality of S/W implemented modules is like trying to
successfully build a dam by improving the quality of blocks of reinforced concrete,
without realizing that the problems are due to incorrect dam blueprints.
Whenever an operational computer-based system fails, S/W is being run at
time of failure. It is then all the more tempting to believe that S/W is to be held



responsible for a failure. Unfortunately, just because a problem is observed in
S/W behavior does not mean that it is a S/W problem per se. Many such prob-
lems, especially the more difficult and subtle ones, are rooted into SE decisions
(problems originate in SE faults), and propagate to the S/W levels through de-
ficient specifications. Audits of a number of failed projects have indeed revealed
that causes of failures were not due to latent faults in application S/W, as was
believed by clients and/or contractors.

Planned or delivered systems did not operate properly simply because they
did not include appropriate “system-level” (e.g., scheduling, synchronization)
algorithms. As a result, application S/W modules (programs) could be inter-
rupted at random and/or could run interleaved in arbitrary fashion. Even with
perfectly correct application S/W modules, behavior of such computer-based
systems could only be incorrect.

One pre-requisite for solving the “S/W crisis” is to move away from mono-
lithic application S/W. Modularization and S/W modules reuse are sound prin-
ciples. However, in order to reap the benefits of such principles, one must show
that quasi or truly parallel asynchronous executions of S/W modules cannot
jeopardize the integrity of any of these modules (a property commonly found
in < A >). Which translates into showing that a set of invariants (I) is always
satisfied, i.e. into specifying a safety property in < X >, such as, e.g., lineariz-
ability or serializability [1], which raises problems that have numerous and well
documented solutions.

One approach - which is at the core of some formal methods popular in
the S/W engineering field - consists in exploring every global state that can be
entered by a given set of application S/W modules, and to verify for each global
state that (I) is not violated. Let us make some rough calculations. Consider
a set comprising 100 S/W modules (a conservative figure) and assume that, in
average, every single module can enter 10 different intermediate states that are
visible from other modules (again, a conservative figure).

This entails searching 101%° global states, which is beyond tractability, even if
one would reduce this complexity by a few orders of magnitude via, e.g., binary
decision diagrams. Verification methods directed at parallel synchronous or asyn-
chronous computations in the presence of failures - the correct paradigms with
embedded systems - and which are based on exhaustive searches of global state
spaces, are doomed to fail even with modestly complex systems. Furthermore,
their usage is hardly justifiable, given that there exists an impressive gamut
of fault-tolerant and/or concurrency control algorithms. Companion proofs es-
tablish that a system equipped with any of these algorithms guarantees that
(I) cannot be violated, whatever the set of application S/W modules consid-
ered. Proofs do away with the need for verification. Algorithms (SE originated
solutions) serve the purpose of “breaking complexity”, in a very cost effective
manner.

The above is a simple illustration of the fact that oversight of SE issues
inevitably complicates S/W design and S/W development. Proof-based SE pro-
motes S/W reuse, S/W evolution and facilitates S/W management.



4 Lessons Learned with Proof-Based System Engineering

In this section, we give examples of projects where the TRDF method has been
applied. As indicated in section 2.4, the TRDF method is aimed at application
problems that raise any combination of real-time, distributed, fault-tolerant com-
puting issues. It can be demonstrated that whenever either one of these issues
is raised in < A >, this translates into a problem < X > where at least one of
the other two issues is raised as well.

In projects 1 and 2, INRIA’s REFLECS team took on the role of a prime
contractor. For the sake of conciseness, presentations of projects will mainly
consist in summarizing lessons learned, to the exception of two projects that
will be more detailed, namely project 1 (see below) and project 4 (see section 5).
Work conducted during these projects has not been published, to the exception
of project 4. Reports, in French, are available upon request.

4.1 Project 1

Clients: French DARPA (DGA/DSP) and Dassault Aviation. Modular avionics
was the application problem considered. Objectives were to check the feasibility
of decoupling fully the capture, design and dimensioning phases, as well as to
deliver specifications [S] and [oracle.S], that were subsequently implemented by
Dassault Aviation. Practical constraints were that COTS products had to be
taken into account (e.g., specific processors, “real-time” monitors, object-based
middleware), and that one design stage only was to be undertaken.

Sketch of application invariant < m.A >

e Application S/W is modular; dates of creation of application S/W modules
(set M of modules) span over many years. Modules can be suppressed or
created at will. That is, set M is unbounded.

e Application S/W modules should not depend on any existing or future COTS
products.

e External events are pilot commands, sensors data, etc. They trigger applica-
tion S/W modules which, when executed, produce outputs, such as responses
displayed to pilot, commands applied to actuators.

e Numbers of sensors, actuators, are finite but unknown.

e Persistent variables that represent current global plane, environment, and
system states, are read and written when application S/W modules are run.

e Any such variable may be shared among some unknown number of S/W
application modules, as well as among modules and the environment.

e There should be no restrictions on the programming models used to develop
application S/W modules; no restrictions either on which variables can be
accessed by a S/W module.

e Distribution of application S/W modules and shared persistent variables
(over future embedded system S) should be unrestricted.

e Some external event types are periodic sensor readings, arrival laws for other
event types (a majority) are unknown.



Failures internal to (future) S should be anticipated (environment is “ag-
gressive”).
Failures occur at unpredictable times.

Sketch of application invariant < p.A >

Many different releases of M, involving any combination of application S/W
modules, can be fielded; this should not entail re-designing or re-proving S.
At all times, any application S/W module should run as expected (no side-
effect).

At all times, values taken by shared persistent variables should consistently
mirror the current plane and plane’s environment states.

e Outputs generated by application S/W modules are non recoverable.
e Application S/W modules must meet “hard” real-time constraints.
e Some of the persistent variables are critical. In case such a variable is lost,

pilot should be informed “rapidly”.
One should be able to generate any particular release of S (proved correct)
“rapidly”.

Sketch of problem invariant < m.X >

The executable counterpart of an application S/W module is a task.

Any task t, if run alone, has an upperly bounded execution time.

Any set T of tasks t can be considered; size of T is unknown.

Architectural model: a distributed system of modules, no shared memory;
number of modules is unknown.

External event type models: Set EV of event types (ev). Mapping of EV onto
T to be specified via a boolean matrix. Subset EV1: periodic arrival model
(values of periods: unknown). Subset EV2: unimodal arbitrary arrival model
(values of densities: unknown).

e Computational model: synchronous.
e Models of shared persistent variables:

Consistency sets in set DATA, i.e. subsets of variables whose values are
bound to satisfy client defined invariants (I). Any task, if run alone, satisfies
(I). There are no restrictions on which invariants (I) can be considered.

Set ¢.DATA = subset of DATA; defines the set of “critical” variables.

Type “internal” or “external” assigned to every shared persistent variable.
Mapping of DATA onto T to be specified via a boolean matrix.

Task models: finite graphs.

Failure Models:

Processor modules: stop.

Network module: omission.

Failure occurrence model: aperiodic and unimodal arbitrary arrival model.

Sketch of problem invariant < p.X >

Safety:
Exactly-once semantics for tasks. No task roll-backs.



- Invariants (I)
- Serializability: every possible run for any pair {T, DATA} satisfies (I).

o Timeliness:
Task timeliness constraints: latest termination deadlines. Values of individual
deadlines are unknown.

e Dependability:
- Very high availability and reliability for network services.
- Finite failure detection latency for computer modules that host c. DATA.

e Complexity C(oracle): pseudo-linear in the number of tasks in T.

It turns out that < X > specifies a generic computer science problem that
is at the core of such drastically diverse application problems as stock markets,
currency trading, defense (C®I, space), air traffic control, nuclear power plants.

Problem < X > is NP-hard. The algorithmic solution alg, specified in deliv-
ered [S], includes a hybrid algorithm that is a combination of periodic distributed
agreement, idling and non-idling, preemptive and non-preemptive First-In-First-
Out, Earliest-Deadline-First, and template-based schedulers.

Sketch of oracle.S: precomputed schedule templates (not precomputed sched-
ules) and particular constructs on graphs helped reduce C(oracle) to what was
specified. Note that the combination of arbitrary arrival models with finite graph
task models yields a reasonably unrestricted “adversary”. It turns out that, un-
der such models, those proof techniques traditionally used to establish timeliness
properties for weaker models (e.g, sequential tasks and periodic/sporadic arrival
models) simply do not apply. Examples of techniques and results that were used
are: optimal scheduling algorithms, analytical calculus, time based agreement
algorithms, adversary arguments, matrix calculus in (max,+) algebra [2].

Lessons learned

The genericity of the TRDF method has been validated. It has been verified
that it is possible to decouple fully the capture, design, and dimensioning phases.
It was confirmed that the capture phase is essential and that having a contract
such as {< A >, < X >} is instrumental in clarifying responsibilities. At one
point, Dassault Aviation felt that solution alg “had a problem”. It did not take
us long to agree that alg was correct vis-a-vis the contrat specified. What this
client had in mind was in fact a variation of < A >. It turned out that the
variation could be accomodated by alg, by restricting potential choices w.r.t.
the schedule templates. However, the feasibility oracle (in [oracle.S]) had to be
partially revisited.

What has also been clearly verified is how fast a dimensioning oracle can
be compared to an event-driven simulator. For the task sets considered, run
times never exceeded one hour with our dimensioning oracle, whereas run times
could be as long as one day for the event-driven simulator developed by Dassault
Aviation.



4.2 Project 2

Client: Institut de Protection et de Streté Nucléaire, French Atomic Energy
Authority. The problem we had to examine was whether some COTS command-
and-control system could be considered for automated safety related control
operations in nuclear power plants.

We applied the TRDF method twice, in parallel. One thread of work was
concerned with the capture phase only. Upon completion, the client was delivered
specifications < A > and < X >.

The other thread of work consisted in doing what can be called reverse proof-
based system engineering. The COTS system considered had no such specifica-
tion as {[m.S],[p.S]} or [alg]. Consequently, we had to inspect the technical
documentation and get information from engineers who were familiar with this
system. The TRDF method was applied bottom-up. By analyzing the modules
of the COTS system, we could reconstruct [m.S] and algorithmic solutions of
interest alg, which led us to specification [p.S].

We could then establish that none of the conditions of a design-cpo was fulfilled
(i.e., [S] 2< X > did not hold true). Our recommendation has been to disregard
the command-and-control system under study.

Lessons learned

Here too, it was verified that, when conducted rigorously, a capture phase is
time consuming. One difficulty we ran into during the first iterations was to have
the client’s engineers “forget” about the technical documentation of the COTS
system they were familiar with, and to concentrate on their real application
problem. The other lesson is that it is indeed possible to rigorously assess COTS
products.

4.3 Project 3

Clients: French Ministry of Research and Dassault Aviation. We had to identify
what were the dependability properties actually enforced by a simple embedded
system considered for commanding and controlling essential actuators in future
planes. Different teams of S/W engineers and scientists from various French
research laboratories had applied formal (proof-based) methods to specify, de-
velop and engineer S/W needed to command and control the actuators. When
our work was started, proofs of S/W correctness had been established. Our work
in this project was a bit similar to that of project 2. The TRDF method allowed
to show that, despite redundant S/W and a redundant architecture, the embed-
ded system could fail under certain circumstances. Essentially, that was due to
the fact that physical time is heavily relied upon in order to achieve necessary
synchronizations, and that physical time may not be properly maintained in the
presence of partial failures.

Lessons learned
What was revealed by applying the TRDF method was the exact “gap” ex-
isting between those models (e.g., system model, failure models, event arrivals



models) assumed in order to establish S/W correctness proofs and those models
that correctly reflect the real embedded system and its environment. S/W cor-
rectness proofs were developed assuming models much weaker (in the O sense)
than the correct ones.

This is an illustration of the fact that it is not a good idea to apply for-
mal S/W engineering methods without applying proof-based system engineering
methods as well. This is due to the fact that those models that can be accomo-
dated with existing formal S/W engineering methods are ideal representations of
physical reality and of real computer-based systems. Hence the following choices:
(i) either ignore such limitations, which inevitably leads to operational failures,
(i) or acknowledge these limitations and conclude - erroneously - that S/W
correctness proofs are useless, (iii) or acknowledge the need for proof-based SE,
whose role is to “bridge the gap” between both worlds. In other words, one of the
benefits of proof-based SE is to emulate over real systems those “simple” models
that can be currently accommodated with formal S/W engineering methods.

Project 4 - described in section 5 - is concerned with how the TRDF method
was applied to diagnose the causes of the failure of Ariane 5 Flight 501.

5 A Case Study in Proof-Based System Engineering: The
Ariane 5 Flight 501 Failure

5.1 Introduction

On 4 June 1996, the maiden flight of the European Ariane 5 satellite launcher
ended in a failure, entailing a total loss (satellites included) in the order of 0.5
Billion US dollars and a delay for the Ariane 5 program, which was initially
estimated to be in the order of 1 year. An Inquiry Board which was formed by
the European Space Agency (ESA) - the client - and the French Space Agency
(CNES) - the prime contractor - was asked to identify the causes of the failure.
Conclusions of the Inquiry Board were issued on 19 July 1996, as a public report
[6]. The failure analysis presented in the sequel is based upon the Inquiry Board
findings.

Our conclusions deviate significantly from the Inquiry Board findings. Ba-
sically, the Inquiry Board concludes that poor S/W engineering practice is the
culprit, whereas we argue that the 501 failure results from poor system engineer-
ing decisions. Most of what is labelled as S/W errors are in fact manifestations
of system engineering faults.

Had a proof-based SE method been applied by the prime contractor and by
the industrial architect (Aérospatiale), faults that led to the 501 failure would
have been avoided. This analysis is meant to - hopefully - help those partners
in charge of and involved in projects similar to the Ariane 5 program. Neither
the prime contractor’s system engineers nor the industrial architect’s system
engineers should be “blamed” for not having followed a proof-based SE approach,
given that proof-based SE methods did not exist at the time the Ariane 5 on-
board embedded system was ordered and designed.



Conversely, it would be hardly understandable to keep “taking chances” with
such grandiose projects now that the basics of proof-based SE have emerged. No
changes in system engineering methods or exclusive focus on S/W engineering
issues is what we mean by “taking chances”. Hopefully, this analysis may also
serve to demonstrate that it is inappropriate to “blame” the S/W engineers
involved, i.e. engineers with the industrial architect and with sub-contractors
Matra Marconi Space and Sextant Avionique.

An initial version of this analysis appeared in [13].

5.2 The Failure Scenario

The Ariane 5 flight control system (FCS) has a redundant architecture. Two
identical computers (SRI1 and SRI2), running identical S/W, are responsible
for extracting inertial reference data (launcher attitude) and for periodically
sending two other identical flight contol computers (OBC1 and OBC2) messages
that contain flight data. A redundant MIL-1553-B bus interconnects the SRIs
and the OBCs. The OBC computers, which run identical S/W, are in charge of
maintaining the launcher on its nominal trajectory, by commanding the nozzle
deflections of the solid boosters and the main engine. The FCS redundancy
management is of type passive: in the SRI logical module, in the OBC logical
module, only one physical module is active at any time, the other one - if not
failed - being the backup.

The 501 failure scenario described in the Inquiry Board report is as follows.
The launcher started to disintegrate 39 seconds after lift-off, because of an angle
of attack of more than 20 degrees, which was caused by full nozzle deflections
of the boosters and the main engine. These deflections were commanded by the
S/W of the OBC active at that time, whose input was data transmitted by the
SRI active at that time, that is SRI2.

Part of these data did not contain proper flight data, but showed a diagnostic
bit pattern of SRI2, which was interpreted as regular flight data by the OBC.
Diagnostic was issued by SRI2 as a result of a S/W exception. The OBC could
not switch to the backup SRI1 because that computer had ceased functioning
72 ms earlier, for the same reason as SRI2.

The SRI S/W exception was raised during a conversion from a 64-bit floating
point number N to a 16-bit signed integer number. N had a value greater than
what can be represented by a 16-bit signed integer, which caused an operand
error (data conversion — in Ada code — was not protected, for the reason that a
maximum workload target of 80% had been set for the SRI computers).

More precisely, the operand error was due to a high value of an alignment
function result called BH (horizontal bias), related to the horizontal velocity of
the launcher. The value of BH was much higher than expected because the early
part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in
considerably higher horizontal velocity values.

The operand error occurred while running the alignment task. This task
serves a particular purpose after lift-off with Ariane 4 but is useless after lift-off
in the case of Ariane 5.



5.3 Conclusions and Recommendations from the Inquiry Board

According to the Inquiry Board, causes of the 501 failure are S/W specification
and S/W design errors. Below are a few excerpts from the Board report:

Page 5: “Although the failure was due to a systematic S/W design error...”

Page 6: “... presumably based on the view that ... not wise to make changes
in S/W which worked well with Ariane 4”.

Page 6: “... S/W is flexible ... thus encourages highly demanding requirements
... complex implementations difficult to assess.”

Page 9 : “... it is evident that the limitations of the SRI S/W were not fully
analysed...”

Page 12: “This loss of information was due to specification and design errors
in the S/W of the inertial reference system.”

Hence, the following recommendations from the Inquiry Board (excerpts):

“Prepare a test facility ... and perform complete, closed-loop, system testing.
Complete simulations must take place before any mission.”

“Review all flight S/W...”.

“Set up a team that will prepare the procedure for qualifying S/W,..., and
ascertain that specification, verification and testing of S/W are of a consistently
high quality...”

Of course, improving the quality of the on-board S/W cannot do any harm.
However, doing just that misses the real target.

What caught our attention in the first place was the following sentence (page
3 of the report):

“... In order to improve reliability, there is considerable redundancy at the
equipment level. There are two SRIs operating in parallel with identical H/W
and S/W.”

This is really puzzling. Simple (i.e., degree 2) non diversified redundancy is
the weakest kind of redundancy that can exist. How can this be deemed “con-
siderable”? Furthermore, this is the only sentence of the report that addresses
system design issues. Very likely, the Board quickly concluded that, given this
“considerable” redundancy, system design issues deserved no additional atten-
tion.

There is some irony with the fact that a minor improvement w.r.t. redun-
dancy, that is considering degree 2 diversified redundancy in the encoding of
some variables, could have helped avoid the 501 failure.

More fundamentally, it is somewhat disturbing to observe that, once again,
S/W is held to be “all what matters” a priori. We refer the reader back to section
3.5 for more on this topic.

This case study helps showing how proof-based SE can be useful a posteriori,
to diagnose the causes of a failure. We present those system engineering faults
which, in our view, are the real causes of the 501 failure. In the sequel, we
use the term “module” rather than “computer” to refer to SRIs and OBCs.
A module is a set comprising application S/W tasks, system level S/W tasks
(e.g., algorithms), related data and variables, a computer. When a probability



of failure is estimated for a module, not just the computer (the H/W) should be
taken into consideration.

5.4 Problem Capture Faults

Let < X’ > denote the actual specification established by the prime contractor
and the industrial architect. Some of the necessary models (see section 3.1) were
not specified in < X’ >.

e Fault C7 (models of shared persistent variables, SRIs): horizontal velocity,
which is an external variable shared by the environment of the FCS and
some of the SRI module tasks, had not been listed in < m.X’ >. Neither N
nor BH, which depend on horizontal velocity, had been listed either.

Fault C led to system dimensioning fault Dim;.

e Fault C5 (task models, SRIs): Condition “must be aborted after lift-off” had
not been specified as an attribute for the alignment task in < m.X’ >.

The alignment task was running after lift-off. The “exception condition” (BH
overflow) was raised while running this task. It was later acknowledged that there
is no need to keep this task running after lift-off in the case of Ariane 5. This
has resulted into system design fault Dess.

o Fault C5 (failure models, SRIs): It was implicitly assumed that SRI modules
would fail according to the stop model.

Firstly, assumptions must be explicitly specified. Implicit assumptions can
be violated, which happened. Secondly, this assumption was flawed in the first
place. SRI computers, not SRI modules, were taken into consideration. This led
to system design faults Des; and Desy.

e Fault Cy (failure occurrence models, SRIs): It was implicitly assumed that
1 SRI module at most would fail during a flight.

Again, assumptions must be explicitly specified. This implicit assumption
also was violated. SRI computers, not SRI modules, were considered. Specifi-
cation < m.X’ > should have included the following statement: “up to f SRI
modules can fail during a flight”. Recall that the dimensioning of f is condi-
tioned on fulfilling a proof obligation which, itself, depends on design decisions
(see further). This led to system design fault Desy and to system dimensioning
fault Dims.

Some of the properties were not properly specified in < p.X’ >. Serializability
is an example. Some internal variables shared among SRI module tasks had not
been listed in < m.X’ >. For these variables, appropriate invariants were not
specified. (Note, though, that this was not a cause of the 501 failure).

Continuous correct SRI inertial data service provided to the OBCs is essential
to a correct functioning of the launcher. Availability, in particular, is an essential



property. Availability was correctly specified, as follows: access to SRI inertial
data service must be continuously ensured for the entire duration of a flight,
with a probability at least equal to 1 - p, p &~ 10~%. (It was implicitly assumed
that reliability - the SRI inertial data service delivered is correct - was ensured,
as “demonstrated” by the many successful flights of Ariane 4).

Had proof-based SE been applied, the prime contractor and the industrial
architect would have developed a specification < X > that would have been
a correct translation of the real application problem specification < A >, i.e.
free from faults Cy to Cy. A first obvious conclusion is as follows: given that
< X’ > is weaker than < X > (in the D sense), no FCS that (possibly provably
correctly) solves < X’ > can be a correct solution to the real application problem
considered.

5.5 System Design Faults

Redundancy of the SRIs is managed by the OBCs via a detection-and-recovery
algorithm, denoted Fj (passive redundancy). A correct detection-and-recovery
algorithm must ensure that no OBC module behaves incorrectly because of fail-
ing SRI modules, which means that such an algorithm must be proved correct
for the failure models that correctly reflect actual failure behaviors (see fault
C3). Such has not been the case. F; does not insulate the OBC modules from
failed SRI modules behavior.

e Fault Des; (SRIs, OBCs): The detection-and-recovery algorithm run by the
OBC modules to manage the redundant SRI modules is inconsistent with
the actual failure behavior of SRI modules (or vice-versa).

This is an example of a fault that results from not having designed the
FCS “in-the-large”. Such faults can be avoided by fulfilling a design correctness
proof obligation. That would have resulted into having system engineers select a
consistent pair {failure model, algorithm F}. Consequently, the respective spec-
ifications of SRI and OBC modules would have been globally consistent. Let us
give examples.

One possibility is to retain the current design, i.e. to choose {stop, Fy }. Choice
F = F is valid only if the stop assumption is shown to be actually instantiated
vis-a-vis the OBC flight program (which commands the nozzle deflectors). It
was believed that this assumption could not be enforced locally, at the SRIs,
because of the 80% workload target. Therefore, the SRI stop assumption had
to be enforced by the OBCs. That involves two requirements: (i) F; had to
include a “filtering” mechanism that would discriminate between “flight data”
and “exception condition reporting” messages issued by the SRI modules, (ii)
two separate OBC tasks should have been specified, one in charge of executing
the flight program, the other one in charge of handling exception conditions
(error messages). Had this been done, stop behavior would have been correctly
implemented vis-a-vis the OBC flight program. (This in fact should have been
done - see fault Dess).



One could also consider designs based on pairs {any failure model, masking
algorithm F'}. Recall that models stronger than stop have a higher coverage
factor. For any such model, there are known solutions (e.g., algorithms F' based
on majority voting) for a synchronous computational model - which was retained
for the FCS - as well as optimal feasibility conditions. In the presence of up to f
failures, n modules are necessary and sufficient, with n = 2f +1 (resp. 3f +1) if
byzantine models are not (resp. are) considered. The latter is the design choice
made for the US Space Shuttle on-board FCS. (Note that n is the behavioral
function R introduced in section 3.2).

Given that other faults have also been made, doing the above would not have
sufficed to avoid the 501 failure. Nevertheless, fault Des; is a latent fault that
may lead to a future flight failure.

e Fault Dess (event models, task models, OBCs): Type of events “flight data”
and type of events “error condition reporting” were not mapped onto two
different OBC tasks.

Every event type that can be posted to a module must be listed. Similarly,
tasks that can be activated over a module must be listed. A {task, event type}
mapping must be specified. Had this been done, event type “overflow reporting”
would not have been an input to the OBC flight program.

e Fault Dess (task models, SRIs): A task scheduling algorithm should have
aborted the alignment task right after lift-off.

Given fault Cy, it was simply impossible for those system engineers in charge
of designing/selecting the SRI task scheduler, as well as eligibility scheduling
rules, to “guess” that the alignment task should have been aborted right after
lift-off.

e Fault Desy (SRIs, OBCs): No proof was established that the probability of
experiencing more than f = 1 SRI module failure during a flight is p at
most.

Probabilistic computations that have been performed apply to SRI comput-
ers, rather than to SRI modules. This would have been revealed by attempting
a proof that the stated availability property does hold. In doing so, system engi-
neers would have run into the obligation of proving that the “up-to-f-out-of-n”
assumption has a coverage factor greater than 1 - p. Which would have led them
to prove that f cannot be equal to n, which is tantamount to proving that there
is no common cause of failure for the SRI modules.

e Fault Dess (SRIs, OBCs): Given the system engineering approach followed,
diversified redundancy should have been specified.



Indeed, making such deterministic assumptions as “up-to-f-out-of-n” (up-
to-1-out-of-2 for the FCS), or any similar assumptions of probabilistic nature,
does not make sense unless these assumptions are validated. Quite clearly, any
capture, design, or dimensioning fault is a common cause of failure, which inval-
idates such assumptions. Whenever a non proof-based SE method is applied, it
is safer - if not mandatory - to specify diversified redundancy, in order to elim-
inate potential common causes of failure, with a sufficiently “high” probability.
This is well understood vis-a-vis implementation phases (H/W engineering, S/W
engineering). This seems not to be so well acknowledged (yet) vis-a-vis system
engineering phases.

System dimensioning fault Dim, (see below) would have been avoided had
proof-based SE been resorted to. Conversely, under the existing approach, had
diversified redundancy been specified, a large enough size could have been picked
up (with a bit of luck) for the memory buffer used to implement BH on one of
the two SRI modules.

Other space missions have failed for the same reason (Mars Observer is an
example).

5.6 System Dimensioning Faults

No rigorous capture having been conducted, and system design faults having
been made, some of the variables that should have appeared in {[S], [s]}, the
generic FCS implementation specification, were missing (the case for BH), or had
been valued a priori (the case for f). Given that no dimensioning correctness
proof obligation was fulfilled, this was not detected at the time the actual FCS
specifications were handed over to S/W engineers.

This resulted into assigning an incorrectly sized memory buffer to variable
BH. This resulted also into an empirical dimensioning of the SRI logical modules

group.

e Fault Dim;: Range of values taken by variable BH was assumed to be in the
] — 215, +215] interval.

Had proof-based SE been resorted to, fault C; would have been avoided.
Consequently, < m.x > would have included variables horizontal velocity, N
and BH. In order to run the dimensioning phase, the prime contractor and/or
the industrial architect would have then been forced to ask Ariane 5 program
space flight engineers to decide upon some V(< z >). That is how the correct
value range of external variable horizontal velocity would have been explicitly
specified, i.e. the range that is valid for Ariane 5, not for Ariane 4.

This would have translated automatically into a correct quantification of the
value ranges for N and BH, variables that depend on that external variable. As a
result, with a very simple oracle at hands, a correct dimensioning of the memory
buffer assigned to BH - specified via V([s]) - would have been obtained.

It may be that, for Ariane 4, the issue of how to dimension the BH buffer
was raised and solved. Problem is that the SE method applied for Ariane 5 led
the prime contractor and the industrial architect to ignore that issue.



e Fault Dimo: It was implicitly assumed that f’s value would be 1 and that
simple redundancy (n = 2) would suffice.

The intrinsic reliability of a SRI module (H/ W + S/W + data), and related
confidence interval, can be derived from statistics computed over accumulated
experimental data and simulation results, or via probabilistic modeling. Intrinsic
reliability, combined with launch duration, is used to compute a value for f.
Obviously, the smallest acceptable value for f is such that the probability of
experiencing more than f SRI module failures is smaller than p.

It appears that system engineers took SRI computers (i.e., H/W) only into
consideration. Had SRI modules been considered rather, related confidence in-
tervals on modules reliability could have led to choose f =2 (for example).

Given that other faults have been made, picking up a value of f (resp. n)
greater than 1 (resp. 2) would not have helped avoid the 501 failure. Nevertheless,
this is a latent fault that may lead to a future flight failure.

The dual architecture of the FCS reflects the following widespread SE prac-
tice for many embedded systems : design for a “single-copy” architecture (1 SRI,
1 OBC in the FCS case) and duplicate.

From a more general perspective, if we compare the costs involved with ap-
plying a proof-based SE method and implementing a rigorously designed and
dimensioned embedded system on the one hand, costs incurred with operational
failures - such as that of the 501 failure - on the other hand, it seems there are
good reasons to consider switching to proof-based SE.

5.7 Summary

It is now possible to understand what led to the failure of Flight 501. If we were
to stick to internationally accepted terminology, we should write the following:

Faults have been made while capturing the Ariane 5 application problem.
Faults have also been made in the course of designing and dimensioning the
Ariane 5 FCS. These faults have been activated during launch, which has caused
errors at the FCS modules level. Neither algorithmic nor architectural solutions
could cope with such errors. Flight 501 failure ensued.

Flight 501 also is an example showing that integration testing phases - as con-
ducted under current SE practice - are not satisfactory, for they are unavoidably
incomplete. Flight 501 can be viewed as a (costly) continuation of an incomplete
integration testing phase.

This case study also helps showing that S/W reuse - a very sound objective -
has far reaching implications, which promote reliance on proof-based SE. Reuse
of S/W modules - those which work fine w.r.t. the Ariane 4 application problem
- is possible provided that those conditions under which they are to operate are
kept unchanged. Which is not the case when considering the Ariane 5 application
problem, or its quantification to the very least. As shown above, proof-based SE,
which permits to address these issues rigorously, favors S/W reuse.

Let us now go back to the conclusions of the Inquiry Board and ask ourselves
the following questions:



- Had all the modules as specified by system engineers been implemented in
H/W, would Flight 501 have failed the way it did?

- Had the implementation - in S/W and/or in H/W - of every module as
specified by system engineers been proved correct, would Flight 501 have
failed the way it did?

Obviously, answers are “yes” in both cases. Specifications of the S/W modules
as established by system engineers were incomplete/incorrect w.r.t. real problem
< X >. There is no “S/W error” involved with that. Why should the concept of
horizontal velocity be viewed as a S/W engineering concept rather than a H/W
engineering concept? (It is neither). What if the conversion procedure which
computes values of BH had been implemented in H/W? Flight 501 would have
failed as well. However, the Inquiry Board would have then diagnosed a “H/W
design error”. Clearly, causes of the failure belong neither to the “S/W world”
nor to the “H/W world”. Issues at stake are system engineering issues.

The S/W implemented N-to-BH conversion procedure is absolutely correct.
For any input value N, it computes a correct value BH. Not enough bits (15
instead of 18) were allocated for storing these correct values. Calling a faulty
dimensioning of a memory buffer a “S/W error” is as misleading as calling the
choice of too slow a processor a “S/W error”.

Confusion between S/W engineering and system engineering should come to
an end.

As for the recommendations of the Inquiry Board that system testing and
system simulation must be complete, we refer the reader to sections 3.4 and 3.5.
As we know, completeness - without resorting to proof-based SE - is beyond
reachability. Such recommendations are not very useful for the simple reason
that they cannot be implemented, if one believes that S/W is the only area of
concern.

6 Conclusions

The principles presented in this paper are believed to be useful in helping set
the foundations of proof-based system engineering for computer-based systems.
These principles have been illustrated with a presentation of a proof-based SE
method which has been applied to various problems, in cooperation with a num-
ber of companies and agencies. This has permitted to validate and to refine these
principles.

The essential feature of the methodological revolution embodied in proof-
based system engineering is that it has the effect of converting system engineering
into a bona fide scientific discipline. Every technical or methodological field goes
through this transition. When it does, advances occur at an unimaginable pace.

Times of changes are upon us when an area goes from trial-and-error to
prediction based on knowledge of the inner mechanisms and principles at work.
We are now on that threshold in the field of system engineering for computer-
based systems.
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