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Gregory Hine has written a very interesting paper on the application of proofs using the 
method of ‘proof by contradiction’. Proof by contradiction first takes the assumption that 
the thing we are proving is not true, and secondly then shows that any consequences from 
it are not possible. Greg presented a version of this paper at the recent AAMT conference  
in Brisbane.

Gregory Hine
University of Notre Dame 
Australia 
<gregory.hine@nd.edu.au>

Proof by contradiction:  
Teaching and learning considerations in 
the secondary mathematics classroom 

This professional practice paper is underpinned 

philosophically by the indisputable centrality of 

proof to the discipline of mathematics. Proof offers 

students the opportunity to deepen their own 

understanding of mathematical ideas, to construct 

and defend logical arguments, and to think critically 

about the veracity of mathematical statements. Such 

opportunities afford students key skills required for 

further study, and arguably for a myriad of careers. 

Proof by contradiction is a particular mathematical 

technique taught in Australian senior secondary 

classrooms (ACMSM025, ACMSM063) which will be 

explored in this paper. In particular, several worked 

examples will be outlined alongside implications for 

best instructional practice within the context of the 

secondary mathematics classroom. 

Introduction

A considerable amount of literature highlights the central-

ity of proof to the discipline of mathematics (Hanna & de 

Villiers, 2008; Hine, Lesseig & Boardman, 2018; Stylianou, 

Blanton, & Knuth, 2009). This centrality is reflected in 
policy documents and national curricula which govern the 

teaching and learning of mathematics (e.g. ACARA, 2017; 

Common Core State Standards Initiative, 2010). Such 

importance is supported by the notion that engaging in 

proof activity helps students reason about mathematical 

ideas as they critique arguments or construct their own 

logically sound explanations or justifications (Lesseig, 
Hine, Na & Boardman, 2019). Working with proofs  

enables students to explore the axiomatic structure of  

the discipline and the infallible nature of mathematical 

truths (Zaslavsky, Nickerson, Stylianides, Kidron, & 

Winicki-Landman, 2012), and through this exploration, 

students can develop all mathematical skills (Milbou, 

Deprez & Laenens, 2013). Additionally, constructing 

mathematical arguments to convince oneself or others of 

a statement’s truth (or falsehood) provides opportunities 

for students to deepen their understanding of underlying 

mathematical ideas (Lesseig et al., 2019).  

Despite these recognised affordances, the extent to 

which proof plays a significant role in the teaching and 
learning of mathematics across the grades is subject to 

variation and debate (Hanna & de Villiers, 2008; Stylianou 

et al., 2009). For instance, research has revealed that 

secondary mathematics teachers often hold a limited  

view on the purpose of proof instruction and its appro-

priateness for all students (Bergqvist, 2005; Knuth, 2002). 

With such a narrowed view, teachers can relegate proof  

to verifying formulas in secondary school geometry 

lessons, neglecting the explanatory role proof can 

play in the learning of mathematics at all levels (Hanna, 

2000; Knuth, 2002). Furthermore, there is a tendency for 

teachers to focus on the structure of a proof rather than 

its substance (Dickerson & Doerr, 2014); this focus of  

proof as a formalistic mechanism has been reported as 

a common and most recent experience for prospective 

secondary mathematics teachers (Boyle, Bleiler, Yee,  

& Ko, 2015; Varghese, 2009).

This paper will explore proof by contradiction, which 

is a form of proof that establishes the truth or validity 

of a proposition. It achieves this by showing that the 

proposition being false would imply a contradiction 

(Hine & McNab, 2014). Within the Australian Curriculum: 

Mathematics (ACMSM025, ACMSM063), proof by 

contradiction is taught in the senior secondary course 

Specialist Mathematics (ACARA, 2019). After outlining the 

proof by contradiction method, various worked examples 

will be presented with a running commentary to assist 
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teachers wishing to use these examples in the classroom. 

Then, several difficulties associated with teaching and 
learning this proof method—as reported by researchers 

and scholars alike—will be offered to the readership. The 

final section of the paper contains a number of examples 
for teachers and students to practice using the proof by 

contradiction method.

Proof in mathematics education

One popular view of a mathematical proof has been 

described as a sequence of steps, written almost exclu-

sively in symbols, where each step follows logically from 

an earlier part of the proof and where the last line is the 

statement being proved (Garnier & Taylor, 2010). Lawson 

(2016) suggested that in order to understand how proofs 

work, three simple assumptions are needed:

1.  Mathematics only deals in statements that 

are capable of either being true or false

2. If a statement is true then its negation is false, and 

if a statement is false then its negation is true

3. Mathematics is free from contradictions (p. 12).

According to Otani (2015), mathematical proof can be 

classified into two types. The first type is direct proof, 
which claims that a statement Q is true based on a 

premise P that is supposed to be true (this rule of logic  

is referred to as modus ponens). The other type of proof  

is where an indirect claim is made that a conclusion Q  

is true. Mathematical proof by contradiction is one of  

the latter type of proof methods, which is logically 

constructed, formally valid, and devoid of uncertainty  

and probability (Otani, 2015). 

Proof by contradiction

Proving by contradiction is common practice amongst 

mathematicians (Amit & Portnov-Neeman, 2017) who 

cannot derive, or find it difficult to derive, that a conclu-

sion Q is true from a premise P directly (Otani, 2015). 

Polya (1957) claimed that using indirect proof is the height 

of intellectual achievement, and that it promotes students’ 

thinking to higher levels. This method of indirect proof  

is frequently referred to as reductio ad absurdum (reduc-

tion to absurdity), and it claims indirectly the truth about  

a conclusion Q. According to (Antonini & Mariotti, 2008), 

we suppose both the premise P and the negation of the 

conclusion Q (¬Q) are true. Using a logically constructed 

series of mathematical statements, deriving a contra- 

diction (i.e., the falsehood of (¬Q) implies the truth of 

conclusion Q (Otani, 2015)). In a real-world example, 

suppose that it was alleged that a person had committed 

an offence in a certain city. Using evidence that this 

person was not in the city at the time of the offence 

contradicts the allegation and hence establishes the 

person’s innocence. The steps to follow using the proof  

by contradiction method with mathematical examples are:

1. Commence with claim P 

2. Assume that P is an incorrect claim and 

develop an oppositional claim ¬P

3. Work logically to determine an inconsistency 

between P and ¬P, and prove that ¬P is false

4. Conclude that if claim ¬P is false then by 

contradiction the premise P is true.

The steps of this method will be demonstrated in three 

worked examples which now follow.

Worked example 1
Prove by contradiction that the difference of  

any rational number and any irrational number  

is irrational.

To get started, we develop a rational number x and an 

irrational number y such that their difference (x−y ) is 

rational (the negation of the original premise). 

By definition of a rational number, we have x =
a

b
for 

some integers a and b with b ≠ 0 and x – y =
c

d
  

for some integers c and d with d ≠ 0.

Starting with x – y =
c

d
 (We need to prove this result  

    will give a rational number)

                      
a

b
– y =

c

d
  Substitute for x

      

           y =
a

b
–
c

d
=

ad –bc( )
bd

  Add fractions and  

       simplify

Now the result (ad– bc) is an integer (because a, b, c, d 

are all integers and products and differences of integers 

are integers), and bd ≠ 0 (by zero product property). 
Therefore, by definition of a rational number, y is rational. 

However, this finding contradicts our original supposition 
that y is irrational. Hence, the supposition is false and the 

theorem is true.

Worked example 2
Prove by contradiction that for every prime integer, p, 

p is irrational.

Let’s start by asserting that the negation of this premise 

is true, viz. p  is a rational number.

This means that p  can be written as the ratio of two 

integers, a and b such that:

 

p =
a

b
, b ≠ 0

  

                                              Equation 1

From this statement we can assume that a and b have no 

common factors (if there were any common factors, these 

could be cancelled in both numerator and denominator).

Proof by contradiction: Teaching and learning considerations in the secondary mathematics classroom
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If we square both sides of Equation 1 we obtain:  

p =
a2

b2
   Equation 2

And rearranging gives:       

  

pb2
= a2   Equation 3          

which implies that a2 is a multiple of p.

Furthermore, we can deduce that if a2 is a multiple of p, 

then a is also multiple of p (see Question 1 in Exercises).

We can therefore write a = pw for some natural number w.

Substituting this value of a into Equation 3 3 pb2
= a

2( ) , 
we can obtain:

pb2
= p2w 2

Dividing both sides of this equation by p gives us 

b2
= pw 2

Now since the RHS of this equation is a multiple of p,  

so must the LHS. Thus, b2 is a multiple of p.

Furthermore, it follows from an earlier deduction that  

if b2 is a multiple of p, then b is a multiple of p. 

It has been shown that that both a and b are multiples 

of p as they have the common factor of p.

This contradicts the original assumption that 
a

b
was 

fully cancelled down (or in other words, the only natural 

number to divide both a and b is 1).

In summary, p cannot be written as a fraction and 

hence p is irrational.

Worked example 3
If n is an integer, then n2+2 is not divisible by 4.

This generalised statement cannot by proven by the 

method Proof by Exhaustion since it would involve 

infinitely many integers. Looking at the Proof by 
Contradiction method, we commence with the negation 

of the premise (n is an integer and n2+2 is divisible by 4) 

and demonstrate that this negation is false.

If n is an integer and n2+2 is divisible by 4 we need to 

consider n as either even or odd.

After considering both cases we can make some 

conclusions.

1.  Assume first that n is even.  

Then n=2m, for some integer m.

2.  Thus, n2
+2 = 2m( )

2

+2 = 4m
2
+2

3.  Since n2+2 is divisible by 4, we have that 

4m
2
+2 = 4k , for some integer k.

4.  By dividing both sides by 2 we get 2m2
+1= 2k, 

where k and m2 are integers.

5.  So, there is an odd number that is equal to 

an even number (the conclusion is false).

1.  Assume now that n is odd. Then n = 2m+1 

for some integer m.

2.  Thus, n2
+2 = 2m+1( )

2

+2 = 4m
2
+4m+3 .

3.  Since n2+2 is divisible by 4, we have that 

4m
2
+4m+3 = 4k , for some integer k.

4.  By dividing both sides by 2 we get 

2m
2
+2m+1.5 = 2 m

2
+m( )+1.5 = 2k, k an integer.

5.  So again, there is a decimal number that is 

equal to an even number (false conclusion).

Since both cases lead to a false conclusion we have 

proven that the original statement is true.

Difficulties with teaching and learning proof 
by contradiction

The literature base suggests that teaching and learning 

proof in general is a difficult endeavour for a variety of 
reasons. According to Lawson (2016, p. 13), proofs are 

difficult because: 

…it is usually far from obvious how to reach the 

conclusions from the assumptions. In particular, 

we are allowed to assume anything that has been 

previously been proved, which is daunting given  

the scale of the subject. 

More specifically, proof by contradiction is a complex 
activity for students at various scholastic levels (Antonini, 

2008). For instance, research efforts have uncovered how 

many students experience difficulties in understanding 
certain aspects of logic. To illustrate, Romano and 

Strachota (2016) found that secondary school graduates 

enrolled in first-year university courses struggle to under-
stand the concepts of logical implication and its contra-

position. In a study of 202 Chinese students (aged 17–20 

years), Lin, Lee and Yu (2003) determined that 80% of their 

sample were unable to negate the quantifier ‘only one’ 
and that more than 70% lacked conceptual understanding 

of proof by contradiction. Studies conducted by Suppes 

(1962) and Suppes et al. (1962) revealed that students 

experience difficulty in recognising invalid proofs, and 
out of all sections tested that proof by contradiction was 

the worst scoring section. Antonini and Mariotti (2006) 

examined the complex relationship between the original 

statement to be proved (the principal statement) and a 

new statement (the secondary statement) that is actually 

proved. In their research, these authors noted that, 

through questionnaires and interviews conducted with 

Italian senior secondary students, the generation of false 

hypotheses in the initial stages of proving can lead to 

an impasse in the process itself. Proceeding to solve the 

proof with reasoning based on false assumptions induces 

cognitive strain, because the student does not know what 

is or what is not true. This finding supports the work of 
Durand-Guerrier (2003) who expressed that students who 
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assume false hypotheses ‘block’ the deductive process  
as they are required to apply mathematical theory to 

absurd situations.

Reid and Dobbin (1998) suggested that the reasoning 

underlying proof by contradiction examples is less difficult 
that it is often thought to be. Underpinning their research 

is the notion that children use contradictions in playing 

games and in checking conjectures. On this basis, these 

authors posited that the difficulties students have with 
standard proofs by contradiction in mathematics may 

arise from issues of emotioning (the capacity to care 

about the decisions they make), especially the need from 

which their reasoning arises. In earlier work, Damasio 

(1994) conjectured that any decision people make is a 

choice between a vast number of possibilities, most 

of which are not even consciously considered because 

these have already been rejected by a pre-conscious 

emotioning process. Reid and Dobbin, as well as other 

authors (e.g. de Villiers, 1991; Hanna, 1989) have written 

about the needs which proving can satisfy, especially the 

need to explain. Reid and Dobbin argued that to prove 

the irrationality of 2 , it is rare that the principal need of 

students is to verify. These authors claim that for students 

to feel a need to verify, they must first be uncertain of 
the result; in this example it is likely that there is any 

uncertainty at all. Rather, there is perhaps some other 

need than the need to verify which is driving students to 

prove the irrationality of 2 . While acknowledging that 

conceptual difficulties associated with proof by contradic-

tion examples are real, Reid and Dobbin contended it is 

likely that the need to function within a social context (e.g. 

proving within a classroom because a teacher has asked 

it, or to attain good marks) supersedes a need to verify or 

explain mathematical statements. As such, these authors 

emphasised that when teachers examine students’ 

reasoning it should not be done in isolation from their 

emotioning, and that perhaps those students who do 

know that 2 is irrational are in a better position to prove 

that it is so. 

Conclusion

The purpose of this paper was to offer insight to edu-

cators about proof by contradiction as it pertains to the 

Australian Curriculum: Mathematics. In particular, this 

method of proof has been outlined in a step-by-step 

fashion, and some worked examples have been offered  

to amplify these steps and the theoretical approach 

overall. The review of literature focussed on the impor-

tance of proof as well as the affordances and caveats of 

this proof method within a context of secondary school 

teaching and learning. As advanced mathematics courses 

rely heavily on concepts of logic, the place of proof within 

secondary and tertiary education must remain centrally 

positioned. With increasing emphasis placed on Science 

Technology Engineering and Mathematics (STEM)–related 

careers, students must be explicitly introduced to 

concepts in proof and logic in order to succeed in STEM 

academic programs (Romano & Strachota, 2016). It is the 

author’s hope that this paper will be useful to mathemat-

ics educators within Australia and perhaps more broadly, 

as they model and explain how to apply the method of 

proof by contradiction to their students. More impor-

tantly, it is hoped that as students engage with examples 

they will not only master the method of reductio ad 

absurdum but concomitantly enhance their procedural 

understanding of logical implication.

Examples to try with secondary students

1. Prove by contradiction that if a2 is a 

multiple of p, then a is a multiple of p 

(suppose that a ∈ ! and p is prime).

2.  Prove by contradiction that 2  is irrational.

3.  Using Proof by Contradiction, investigate 

the statement: “If the square of an integer 

is odd, then that integer is odd”.

4.  For all integers n, prove that if n3
+5

is odd then n is even.

5.  Prove by contradiction that if a2 −2a+7 is 

even, then a is odd (suppose that a ∈ ! ).

6.  Using Proof by Contradiction, prove for 

ΔABC that if ∠A  is a right angle, then 

∠B  cannot be an obtuse angle.

7.  Prove that for every real number x ∈ 0,
π

2

⎡

⎣
⎢

⎤

⎦
⎥,   

we have sin x( )+ cos x( ) ≥1.

8.  Prove that no integers a and b 

exist for which 18a+6b=1.

9.  Prove that there are infinitely many prime numbers.
10. Using Proof by Contradiction, investigate the 

statement: “There is no greatest even integer”.
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