

Citation for published version:
Heijltjes, W 2011, Proof nets for additive linear logic with units. in 2011 26th Annual IEEE Symposium on Logic
in Computer Science (LICS). IEEE, pp. 207-216, 26th Annual IEEE Symposium on Logic in Computer Science,
Toronto, ON, Canada, 21/06/11. https://doi.org/10.1109/LICS.2011.9

DOI:
10.1109/LICS.2011.9

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/LICS.2011.9
https://doi.org/10.1109/LICS.2011.9
https://researchportal.bath.ac.uk/en/publications/9289132e-a4f8-463e-a0c9-cff280e16a98

Proof nets for additive linear logic with units
Willem Heijltjes

LFCS, School of Informatics, University of Edinburgh

Abstract—Additive linear logic, the fragment of linear logic
concerning linear implication between strictly additive formu-
lae, coincides with sum-product logic, the internal language of
categories with free finite products and coproducts. Deciding
equality of its proof terms, as imposed by the categorical laws,
is complicated by the presence of the units (the initial and
terminal objects of the category) and the fact that in a free
setting products and coproducts do not distribute. The best
known desicion algorithm, due to Cockett and Santocanale (CSL
2009), is highly involved, requiring an intricate case analysis on
the syntax of terms.

This paper provides canonical, graphical representations of the
categorical morphisms, yielding a novel solution to this decision
problem. Starting with (a modification of) existing proof nets,
due to Hughes and Van Glabbeek, for additive linear logic
without units, canonical forms are obtained by graph rewriting.
The rewriting algorithm is remarkably simple. As a decision
procedure for term equality it matches the known complexity of
the problem. A main technical contribution of the paper is the
substantial correctness proof of the algorithm.

I. INTRODUCTION

Proof nets, introduced by Girard in the seminal [6], are a
beautiful, geometric description of linear logic proof. They
aim to reproduce the qualities of the conjunction–implication
fragment of intuitionistic natural deduction, that have made
it into a prominent model of computation, via the Curry–
Howard correspondence. The specifics of this motivation have
been described in subtly different ways: proof nets are to
remove the uninteresting, bureaucratic permutations from the
cut-elimination procedure in the sequent calculus; to identify
proofs that are ‘morally’ the same; or to obtain confluent
cut-elimination, to name a few. A natural interpretation that
subsumes those above, is that proof nets aim to be a canonical
representation of proof in linear logic, with respect to its
categorical semantics (see [15] and [1]). This means there
is a 1–1 correspondence between proof nets and categorical
morphisms, in the way that normal proofs in negative intu-
itionistic natural deduction uniquely describe morphisms in a
free Cartesian closed category (see, e.g., [12]).

The original nets for linear logic were canonical, in this
sense, only for the multiplicative connectives. It has proven
exceedingly difficult to extend them to larger fragments, and in
particular, to include the units, which are the neutral elements
for the four binary connectives. A widely hailed success,
after a partial result in [7], are the canonical proof nets
for the combined multiplicative–additive fragment of linear
logic, without the four units, in [9]. Successive approaches
to including the multiplicative units are [2] and [13], and
more recently [16] and [8]. Although some of the proposed
representations have confluent normalisation, a treatment of

the multiplicative units that is canonical with respect to the
semantics provided by ∗-autonomous categories has remained
out of reach.

This paper presents a new notion of proof net, for addi-
tive linear logic, the fragment of linear implication between
additive formulae, including a canonical treatment of the two
additive units, which have thus far not appeared in proof nets.
To quote Girard, in [7, Appendix A.3]:

There is still no satisfactory approach to additive
neutrals [. . .].1 The only way of handling ⊤ is by
means of a box or, if one prefers, by means of
a second order translation: on this Kamtchatka of
linear logic, the old problems of sequent calculus are
not fixed. The absence of a satisfactory treatment of
⊤ calls for another notion of proof-net. . .

Sum–product logic

Additive linear logic is also known as sum–product logic: it
is the internal language of sum–product categories, categories
that have all finite products and coproducts. Free sum–product
categories are the finite, discrete versions of Joyal’s free
bicomplete categories [11], which are free completions with
all limits and colimits. As such, free sum–product categories
are characterised by the softness property described in that
paper (and expanded on in [10]), a property related to cut-
elimination and the subformula property in logic.

Cut-elimination for sum–product logic was investigated by
Cockett and Seely in [4]. They show that it reduces the
word problem—deciding equality of (proof) terms—for sum–
product logic to a small set of simple permutations, making it
decidable. However, this observation does not give a tractable
algorithm, as the equivalence classes involved are exponen-
tially sized. One factor complicating the search for an efficient
decision procedure is the presence of the units, the categorical
initial and terminal objects; omitting the units, a simple notion
of proof identity via graphs is described in [5]. Another is the
absence of distributivity; products distribute over coproducts
in most situations where both occur, simplifying the problem
considerably. In particular, no solution is provided by orien-
tating the permutations as rewrites, a standard technique.

Recently, Cockett and Santocanale [3] have presented an
intricate, polynomial-time decision algorithm for the word
problem for sum–product logic.

1The original text reads, “. . . which are fortunately extremely uninteresting
in practice.” One can only guess at the reasons for questioning the significance
of the additive units; after all, they are an integral part of linear logic, and in
the opinion of the author, and probably that of others who have worked on
them, pose a demanding challenge with interesting technical consequences.

𝑎 ∈ hom(𝐴,𝐵)
𝐴

𝑎−→ 𝐵

0
?−→ 𝑋

𝑋
!−→ 1

𝑋
𝑡0−→ 𝑌0 𝑋

𝑡1−→ 𝑌1

𝑋
〈𝑡0,𝑡1〉−→ 𝑌0 × 𝑌1

𝑋𝑖
𝑡−→ 𝑌

𝑋0 ×𝑋1
𝑡∘𝜋𝑖−→ 𝑌

𝑋0
𝑡0−→ 𝑌 𝑋1

𝑡1−→ 𝑌

𝑋0 +𝑋1
[𝑡0,𝑡1]−→ 𝑌

𝑋
𝑡−→ 𝑌𝑖

𝑋
𝜄𝑖∘𝑡−→ 𝑌0 + 𝑌1

𝑋
id𝑋−→ 𝑋

Id
𝑋

𝑡−→ 𝑌 𝑌
𝑠−→ 𝑍

𝑋
𝑠∘𝑡−→ 𝑍

Cut

Fig. 1. Sum–product logic

Sum–product nets

The proof nets presented in this paper provide graphical
representations of proofs in additive linear logic, that are
canonical with respect to the categorical semantics of free
sum–product categories, constituting a novel solution to their
word problem.

First, in Section II, the proof terms of sum–product logic
are translated to sum–product nets, proof nets similar to the
unit-free MALL-nets in [9]. These are canonical for the unit-
free fragment, and factor out the permutations of that do not
involve the units. This sharply isolates the challenge posed by
the additive units, in the form of an equational theory over
sum–product nets, induced by the remaining permutations.

This equational theory is addressed by rewriting to canonical
forms. The rewrite algorithm, called saturation, is extremely
simple, and is the first main contribution of the paper, pre-
sented in Section III. As a decision procedure—consisting
of translating terms to proof nets, saturation, and testing for
syntactic equality—it shares the polynomial time complexity
of the decision algorithm by Cockett and Santocanale [3].
The correctness proof for the saturation algorithm is highly
involved. This is the second main contribution of the paper,
discussed in Section IV.

The nets obtained by saturation form a syntactic charac-
terisation of free sum–product categories. Section V explores
composition and identity morphisms in this context.

II. SUM–PRODUCT NETS

For the remainder, fix a category 𝒞 and denote by ΣΠ(𝒞)
its free completion with products and coproducts (for an

𝜄𝑖 ∘ (𝑡 ∘ 𝜋𝑗) = (𝜄𝑖 ∘ 𝑡) ∘ 𝜋𝑗

𝜄𝑖 ∘ [𝑡, 𝑠] = [𝜄𝑖 ∘ 𝑡, 𝜄𝑖 ∘ 𝑠]

〈𝑡 ∘ 𝜋𝑖, 𝑠 ∘ 𝜋𝑖〉 = 〈𝑡, 𝑠〉 ∘ 𝜋𝑖

〈[𝑡0, 𝑡1] , [𝑠0, 𝑠1]〉 = [〈𝑡0, 𝑠0〉, 〈𝑡1, 𝑠1〉]

! = ! ∘ 𝜋𝑖

! = [!, !]

𝜄𝑖 ∘ ? = ?

〈?, ?〉 = ?

!0 = ?1

Fig. 2. Permutations in sum–product logic

introduction to products and coproducts, see [14]). For the
purposes of the present paper, ΣΠ(𝒞) can be understood as a
syntactic category generated by sum–product logic [4], which
will be described below.

The objects in ΣΠ(𝒞), ranged over by variables 𝑋 , 𝑌 , 𝑍,
are given by the grammar

𝑋 ::= 𝐴 ∈ 𝒞 ∣ 0 ∣ 1 ∣ 𝑋 +𝑋 ∣ 𝑋 ×𝑋 .

The sequent calculus presentation of sum–product logic, illus-
trated in Figure 1, provides a term calculus for the morphisms
in ΣΠ(𝒞), in which the cut-rule and identity-rule are admissi-
ble. The permutations in Figure 2 form an equational theory
over proofs in sum–product logic. In the syntactic description
of the category, the morphisms of ΣΠ(𝒞) are the equivalence
classes of (cut-free, identity-free) proofs [4].

The notation for the connectives was chosen to agree with
that of [4], and is natural given the intended interpretation as
categorical products and coproducts. To retrieve the notation
of linear logic, interpret the unit 1 as ⊤, and the connectives
+ and × respectively as ⊕ and &. The case of additive linear
logic is given by choosing a discrete base category 𝒞 (one
with only identity morphisms).

A sum–product net will consist of a source object and a
target object from the category ΣΠ(𝒞), and a collection of
links connecting vertices in the syntax tree of the former to
vertices in that of the latter. Two example nets are drawn
below, together with the terms they represent.

𝐴
id𝐴

𝐴

+ +

𝐵
id𝐵

𝐵

0 1

+ ×

1 1

[(𝜄0 ∘ id𝐴), (𝜄1 ∘ id𝐵)] [?, 〈!, !〉]

Interpreted informally, nets are to be read from left to right.
Solid edges in the object trees correspond to projections and
injections, while dashed edges correspond, roughly, to (the
application of) the inference rules 〈−,−〉 and [−,−] . Links
correspond to axioms, and are distinguished from solid edges
in the object trees by being slightly detached from vertices.

For the formal definition, the vertices (or positions) in the
syntax tree of an object 𝑋 are given as binary words, with
𝜀 the empty word and (≤) the standard prefix ordering, and
collected in the set pos(𝑋). The subformula of 𝑋 at a vertex
𝑣 is denoted 𝑋𝑣 , and ‘𝑣 is 𝑌 ’ will mean 𝑋𝑣 = 𝑌 when 𝑋 is
understood. In this definition, if 𝑣 is a product or coproduct it
has children 𝑣0 and 𝑣1, and none otherwise.

Definition 1 (Pre-nets). A ΣΠ(𝒞)-pre-net (𝑋,𝑌,ℛ) consists
of a source object 𝑋 , a target object 𝑌 and a relation

ℛ ⊆ pos(𝑋) × (
hom(𝒞) ⊎ {∗}) × pos(𝑌)

such that for any ⟨𝑣, l , 𝑤⟩ ∈ ℛ, if l = ∗ then 𝑋𝑣 = 0 or
𝑌𝑤 = 1, and otherwise l ∈ 𝒞(𝑋𝑣, 𝑌𝑤).

Variables f , g, h and k are used for pre-nets. The links
in a pre-net are the elements ⟨𝑣, l , 𝑤⟩ of ℛ, which may be

rendered ⟨𝑣, 𝑤⟩ when the label 𝑙 is understood or irrelevant.
A link ⟨𝑣, ∗, 𝑤⟩ (the label ∗ will be omitted from diagrams) is
a unit link; if 𝑣 is 0 it is an initial link, if 𝑤 is 1 a terminal
link. A link labelled with a 𝒞-morphism is atomic.

A switching 𝜍 of an object 𝑋 is a function choosing one
branch of each product vertex: 𝜍(𝑣) ∈ {0, 1} if 𝑋𝑣 is a
product, while otherwise 𝜍(𝑣) is undefined. The dual notion of
a co-switching is a function choosing branches on coproduct
vertices. A vertex 𝑤 is switched on by a [co-]switching 𝜍 ,
written 𝜍 𝑤, if for any ancestor (i.e. prefix) of 𝑤 that is a
[co]product, 𝜍 selects the branch containing 𝑤;

𝜍 𝑤
Δ⇐⇒ (

𝑣𝑖 ≤ 𝑤 ∧ 𝑣 ∈ dom(𝜍)) ⇒ 𝜍(𝑣) = 𝑖 .

A switching for a pre-net (𝑋,𝑌,ℛ) is a pair (𝜍, 𝜏) of a co-
switching 𝜍 of 𝑋 and a switching 𝜏 of 𝑌 . A link ⟨𝑣, 𝑤⟩ is
switched on by (𝜍, 𝜏) if 𝜍 𝑣 and 𝜏 𝑤.

Definition 2 (Nets). A ΣΠ(𝒞)-net is a pre-net f that satisfies
the following correctness criterion (the switching condition).

∙ Any switching (𝜍, 𝜏) for f switches on precisely one link.
Let NET denote the set of all ΣΠ(𝒞)-nets.

Sum–product nets without units form the purely additive
fragment of the MALL-nets by Hughes and Van Glabbeek
[9, Section 4.10]. The addition of unit links has only minor
technical consequences, which are due to the fact that unlike
atomic links, unit links may connect to non-leaf nodes.

How diagrams and definitions relate is illustrated below.

𝐴
0 id𝐴

𝐴
0

+
𝜀

1
10

+
𝜀

0
1

×
1

1
11

(𝐴+ 0, 𝐴+ (1× 1), { ⟨0, id𝐴, 0⟩, ⟨1, ∗, 1⟩ })
The edges of nodes subject to (co-)switchings (in the switch-
ing condition) are dashed. The switching condition can be
separated into an at–least–one and an at–most–one part. A
pre-net satisfying the latter, i.e. one for which any switching
(𝜍, 𝜏) switches on at most one link, is called a partial net.
(An insightful way of gaining familiarity with the switching
condition is by convincing oneself that there are no natural
nets from 𝐴× (𝐵 +𝐶) to (𝐴×𝐵) + (𝐴×𝐶), showing that
sum and product do not distribute.)

The proof terms of sum–product logic suggest an inductive
construction method for sum–product nets. Using the abbre-
viation (𝑋,𝑌, l) for (𝑋,𝑌, {⟨𝜀, l , 𝜀⟩}), there are basic nets

0 1 𝐴
𝑎

𝐵

?𝑌
Δ
= (0, 𝑌, ∗) !𝑋

Δ
= (𝑋,1, ∗) (𝐴,𝐵, 𝑎)

for each 𝑋,𝑌 ∈ ΣΠ(𝒞) and 𝑎 ∈ 𝒞(𝐴,𝐵), corresponding to
the axioms—note the upright font, to contrast with terms.
Inference rules coincide with the four constructors,

(π𝑖(𝑋);−) [−,−] ⟨−,−⟩ (−;ι𝑗(𝑌)) ,

f

×
f

×
g

π0 ;f ⟨f, g⟩

f

+

g

f

+

[f, g] f ;ι0

Fig. 3. Net constructors

illustrated in Figure 3. Using the notation

𝑢 ⋅ ℛ Δ
= {⟨𝑢𝑣, l , 𝑤⟩ ∣ ⟨𝑣, l , 𝑤⟩ ∈ ℛ}

ℛ ⋅ 𝑢 Δ
= {⟨𝑣, l , 𝑢𝑤⟩ ∣ ⟨𝑣, l , 𝑤⟩ ∈ ℛ} ,

the constructors are defined, on pre-nets, by

π𝑖(𝑋0 ×𝑋1);(𝑋𝑖, 𝑌,ℛ) Δ
= (𝑋0 ×𝑋1, 𝑌, 𝑖 ⋅ ℛ)

[(𝑋,𝑍,ℛ), (𝑌, 𝑍,𝒮)] Δ
= (𝑋 + 𝑌, 𝑍, (0 ⋅ ℛ) ∪ (1 ⋅ 𝒮))

⟨(𝑋,𝑌,ℛ), (𝑋,𝑍,𝒮)⟩ Δ
= (𝑋,𝑌 × 𝑍, (ℛ ⋅ 0) ∪ (𝒮 ⋅ 1))

(𝑋,𝑌𝑖,ℛ);ι𝑖(𝑌0 + 𝑌1)
Δ
= (𝑋,𝑌0 + 𝑌1, ℛ ⋅ 0) .

The translation from (cut-free) proof terms to nets, implicit
in the naming of constructors, is made explicit as �−� below.

�?𝑌 � = ?𝑌 �!𝑋� = !𝑋 �𝑎 : 𝐴→ 𝐵� = (𝐴,𝐵, 𝑎)

�𝑡 ∘ 𝜋𝑖� = π𝑖 ;�𝑡� �〈𝑡, 𝑠〉� = ⟨�𝑡�, �𝑠�⟩
�[𝑡, 𝑠]� = [�𝑡�, �𝑠�] �𝜄𝑗 ∘ 𝑡� = �𝑡�;ι𝑗

Applying a constructor is called construction, the reverse
deconstruction. A pre-net of the form π𝑖 ;f or [f, g] is left-
constructible; one of the form ⟨f, g⟩ or f ;ι𝑖 right-constructible;
one that is either, constructible; and one that is both, bi-
constructible. Both construction and deconstruction preserve
the switching condition, and moreover, all nets are basic or
constructible. This gives the sequentialisation result below,
which states that all nets correspond to some term.

Proposition 3. NET is the smallest set containing all basic
nets, closed under construction.

(This is a minor variant on the analogous result by Hughes
and Van Glabbeek in [9].)

For bi-constructible pre-nets the following equations are
immediate from the definitions, as illustrated in Figure 4.

Proposition 4. Construction of pre-nets satisfies:

(π𝑖 ;f);ι𝑗 = π𝑖 ;(f ;ι𝑗) ⟨[f, h], [g, k]⟩ = [⟨f, g⟩, ⟨h, k⟩]
[f, g];ι𝑗 = [(f ;ι𝑗), (g;ι𝑗)] ⟨(π𝑖 ;f), (π𝑖 ;g)⟩ = π𝑖 ;⟨f, g⟩

These equations correspond to the four equations on the left
in Figure 2; precisely those not involving the units.

f

× +

f

g
× ×

f

+ +
g

f

g
+ ×

k

h

Fig. 4. Bi-constructible nets

× 1 ⇔ × 1 ! = ! ∘ 𝜋0

+ 1 ⇔ + 1 ! = [!, !]

0 + ⇔ 0 + ? = 𝜄0 ∘ ?

0 × ⇔ 0 × ? = 〈?, ?〉

Fig. 5. The unit laws force an equational theory over nets

Of the remaining equations in Figure 2, those involving
the units, only ?1 = !0 is factored out (by labelling initial
and terminal links uniformly). The other four will form an
equational theory over nets, equivalence (⇔), illustrated in
Figure 5. The natural way of defining it is via graph-rewriting,
as rewrite rules that replace one subnet with another—which
firstly requires a notion of subnet. In the general notion a sub-
pre-net of (𝑋,𝑌,ℛ) will mean a pre-net between subformulae
of 𝑋 and 𝑌 , with a subcollection of the links between them: a
pre-net (𝑋𝑣, 𝑌𝑤,𝒮) such that 𝑣 ⋅ 𝒮 ⋅𝑤 ⊆ ℛ. Call two pre-nets
parallel if they have the same source objects and the same
target objects, and define, on parallel pre-nets,

(𝑋,𝑌,𝒮) ⊆ (𝑋,𝑌,ℛ) Δ⇐⇒ 𝒮 ⊆ ℛ ,

and, for a pre-net f = (𝑋,𝑌,ℛ),

ℛ𝑣,𝑤
Δ
= {⟨𝑣′, l , 𝑤′⟩ ∣ ⟨𝑣𝑣′, l , 𝑤𝑤′⟩ ∈ ℛ}

f𝑣,𝑤
Δ
= (𝑋𝑣, 𝑌𝑤, ℛ𝑣,𝑤) .

Definition 5 (Subnets). A sub-pre-net of a pre-net f is a pre-
net g ⊆ f𝑣,𝑤. If g is a net, it is a subnet of f .

The notation f{g}𝑣,𝑤 denotes a pre-net f with the sub-pre-
net f𝑣,𝑤 replaced by a parallel pre-net g. Formally, for pre-nets
f = (𝑋,𝑌,ℛ) and g = (𝑋𝑣, 𝑌𝑤,𝒮), define the following.

ℛ{𝒮}𝑣,𝑤 Δ
= {⟨𝑣′, l , 𝑤′⟩ ∈ ℛ ∣ 𝑣 ≰ 𝑣′ ∨ 𝑤 ≰ 𝑤′} ∪ (𝑣 ⋅ 𝒮 ⋅ 𝑤)

f{g}𝑣,𝑤 Δ
= (𝑋,𝑌, ℛ{𝒮}𝑣,𝑤)

The general form of rewriting in context is given by the
following relation.

f{g}𝑣,𝑤 =[g ∣ h]⇒𝑣,𝑤 f{h}𝑣,𝑤
The relation =[g ∣ h]⇒𝑣,𝑤 replaces the pre-net between ver-
tices 𝑣 and 𝑤, which is required to be g, with the parallel pre-
net h, leaving the context intact. An equivalent formulation
would be f =[f𝑣,𝑤 ∣ h]⇒𝑣,𝑤 f{h}𝑣,𝑤. Dropping the subscript
𝑣, 𝑤 indicates the union over all 𝑣 and 𝑤.

Definition 6 (Equivalence). The equational theory ⇔ (equiv-
alence) on ΣΠ-nets is the equivalence relation generated by
the following four relations.

=[! ∣π𝑖 ;!]⇒ =[! ∣ [!, !]]⇒ =[? ∣ ⟨?, ?⟩]⇒ =[? ∣ ?;ι𝑗]⇒
These four rewrite rules are the equivalences illustrated in

Figure 5, interpreted as rewrite steps from left to right, on
subnets. With some effort, it then follows from the description
of free sum–product categories by Cockett and Seely in [4],
that ΣΠ-nets up to equivalence, too, characterise free sum–
product categories.

Proposition 7. For cut-free proof terms 𝑡 and 𝑠 of sum–
product logic,

ΣΠ(𝐶) ∣= 𝑡 = 𝑠 ⇐⇒ �𝑡�⇔ �𝑠� .

III. DECIDING EQUIVALENCE OF NETS

The equivalence relation over nets will be decided by rewrit-
ing equivalent nets to a common canonical form. A natural
first question is whether a suitable, confluent rewrite relation
can be obtained by orientating the equivalence rewrites, i.e.
by restricting them to one direction. Two straightforward
candidates are to rewrite towards the leaves or towards the
the roots of the trees. In fact, neither option is confluent.
For the first, an example of non-confluence is illustrated in
Figure 6. For the second option, the situation is more delicate.
The non-confluent example in Figure 7 could in principle be
resolved by introducing a novel kind of link connecting both
root nodes, while preserving the switching condition as the
correctness criterion for nets. However, the non-confluence
of the example in Figure 8 has no solution along these lines.

If confluent rewriting is impossible without breaking the
switching condition, the obvious next step is to break it. Then
when two nets rewrite into each other, the easiest way to obtain
confluence is to combine the links of both, as in the example of
Figure 9. This gives a simple rewrite relation called saturation.

To define the saturation relation a different form of rewriting
is required, whereby links are added to a net, rather than

× 1

⇒ ⇒

× 1 ?

⇒ ⇒× 1

Fig. 6. Rewriting towards the leaves is non-confluent

0 1

× +

⇒ ⇒

0 1

× +

0 1

× +

⇒ ⇒

?

Fig. 7. Rewriting towards the roots is non-confluent (1)

0 1

+ ×

𝐴
id𝐴

𝐴⇒ ⇒
0 1

+ ×

𝐴
id𝐴

𝐴

0 1

+ ×

𝐴
id𝐴

𝐴⇒ ⇒

?

Fig. 8. Rewriting towards the roots is non-confluent (2)

replaced. Let the union of two parallel pre-nets be the union
of their collections of links,

(𝑋,𝑌,ℛ) ∪ (𝑋,𝑌,𝒮) Δ
= (𝑋,𝑌,ℛ∪ 𝒮) .

A statement f = f{f ′∪g}𝑣,𝑤 then expresses the condition that
a pre-net f must have g as a subnet, g ⊆ f𝑣,𝑤 (where f ′ holds
the other links in f𝑣,𝑤). Define a second rewrite relation:

f (g ∣ h)
𝑣,𝑤

f{f𝑣,𝑤 ∪ h}𝑣,𝑤 if g ⊆ f𝑣,𝑤 .

Definition 8. The saturation relation on pre-nets is the
union of the following eight relations.

(π𝑖 ;! ∣ !) ([!, !] ∣ !) (⟨?, ?⟩ ∣ ?) (?;ι𝑗 ∣ ?)
(! ∣π𝑖 ;!) (! ∣ [!, !]) (? ∣ ⟨?, ?⟩) (? ∣ ?;ι𝑗)

The relation − is the irreflexive restriction of .

The eight saturation steps in Definition 8 are illustrated in
Figure 10. In general, the relation (g ∣ h)

𝑣,𝑤
is reflexive for

nets that already have h (and g) as a subnet between vertices

+ 1 ⇔ + 1

+ 1

Fig. 9. Saturation

𝑣 and 𝑤. In order to provide saturation with a standard notion
of termination, the irreflexive variant − is defined. Both
and − will be referred to as saturation, with the distinction
only made when necessary.

Proposition 9. The saturation relation (−) is confluent and
strongly normalising.

× 1 (π0 ;! ∣ !) × 1

× 1 (! ∣π0 ;!) × 1

+ 1 ([!, !] ∣ !) + 1

+ 1 (! ∣ [!, !]) + 1

0 × (⟨?, ?⟩ ∣ ?) 0 ×

0 × (? ∣ ⟨?, ?⟩) 0 ×

0 + (?;ι0 ∣ ?) 0 +

0 + (? ∣ ?;ι0) 0 +

Fig. 10. Saturation steps

Proof: For strong normalisation it is sufficient to observe
that each step in − adds one or two unit links to a pre-
net, while the number of unit links in a pre-net (𝑋,𝑌,ℛ) is
bounded by the size of pos(𝑋)× pos(𝑌).

For confluence, let f = (𝑋,𝑌,ℛ), let g′ = (𝑋𝑣, 𝑌𝑤,𝒮),
and let h′ = (𝑋𝑥, 𝑌𝑦, 𝒯). Observe that the result of applying
a saturation step (g ∣ g′)

𝑣,𝑤
to f is just

f{f𝑣,𝑤 ∪ g′}𝑣,𝑤 = (𝑋,𝑌, ℛ ∪ 𝑣 ⋅ 𝒮 ⋅ 𝑤) .
The following diagram shows local confluence for .

(𝑋,𝑌,ℛ)

(g ∣ g′)𝑣,𝑤 (h ∣ h′)𝑥,𝑦

(𝑋,𝑌,ℛ ∪ 𝑣 ⋅ 𝒮 ⋅ 𝑤)

(h ∣ h′)𝑥,𝑦

(𝑋,𝑌,ℛ ∪ 𝑥 ⋅ 𝒯 ⋅ 𝑦)

(g ∣ g′)𝑣,𝑤

(𝑋,𝑌,ℛ ∪ 𝑣 ⋅ 𝒮 ⋅ 𝑤 ∪ 𝑥 ⋅ 𝒯 ⋅ 𝑦)
Then also − is locally confluent, and in the context of strong
normalisation this implies − is confluent.

The normal form of a pre-net f w.r.t. − is denoted 𝜎f , and,
if f is a net, is called a saturated net. The idea is that saturation
provides a decision procedure by comparing saturated nets, i.e.
f ⇔ g if and only if 𝜎f = 𝜎g.

Theorem 10 (Completeness). For nets f and g, if f ⇔ g then
𝜎f = 𝜎g.

The completeness proof of this decision procedure is
straightforward: two nets f ⇔ g that are equivalent by a single
rewrite step have saturation steps f h and g h with a
common target h; the statement then follows from confluence.
The soundness theorem is stated below; its elaborate proof
will be the subject of the next section.

Theorem 11 (Soundness). For nets f and g, if 𝜎f = 𝜎g then
f ⇔ g.

IV. THE SOUNDNESS PROOF

A natural approach to proving the soundness theorem would
be by induction on the saturation paths of 𝜎f and 𝜎g; e.g. for
f this is a sequence

f f1 f2 . . . 𝜎f .

One could imagine a proof to proceed as follows. Each stage f𝑘
in the saturation path would be taken to represent a collection
of equivalent nets, by their union, with f representing just
itself. A saturation step f𝑘 (g ∣ h)

𝑣,𝑤
f𝑘+1 would then

create the collection of f𝑘+1 by closing that of f𝑘 under
the corresponding rewrite step, =[g ∣ h]⇒𝑣,𝑤. To complete the
argument, it would suffice to show that if 𝜎f = 𝜎g then the
collections of equivalent nets that both saturations represent,
which contain f and g respectively, share at least one net.

A proof along these lines faces several obstacles, mainly in
the form of statements that are true, but hard to prove in the

proposed way. The first is that a saturated net 𝜎f is the union
of all nets equivalent to f—a fact that will follow from aspects
of the eventual soundness proof, and will have a separate use
in characterising composition of saturated nets. Despite being
naturally suggested by the proof idea above, the statement is
difficult to prove in the way suggested. In particular, that every
link in 𝜎f belongs to some net equivalent to f would follow
by induction on the saturation path, if not for the saturation
step below (and its dual).

+ 1 + 1

The left-hand side of this step contains two links; even if
each occurs in some net equivalent to f , for the corresponding
equivalence step to apply, both links must occur together in a
single net, and it is not obvious how to show this is the case.

One approach to the above problem would be to charac-
terise, for a saturated net, the nets whose saturation it is;
call such nets representatives of the saturated net. A simple
potential answer, that any subnet of a saturated net would be
a representative, turns out to be false: the saturated net below
left (the saturation of !;ι1) has that on the right as a subnet,
but the latter is already saturated.

0 0

× ×

0 0 +

1

0 0

× ×

0 0 +

1

In fact, no representative of the saturated net on the left
contains both links from the net on the right.

The main difficulty of this proof idea, however, is the
final step it suggests, of showing that the equivalence classes
represented by 𝜎f and 𝜎g overlap. Without a characterisation
of representatives, there are not many immediate indications
left on how this should be approached.

The previous served to illustrate how saturation is difficult
to characterise, and prove properties of, via saturation paths
alone. Instead, therefore, the soundness proof will proceed
by induction on the source and target objects of nets, and
rely on a different description of saturation, which follows the
construction of a net. For space reasons many technical details
are necessarily omitted.

As a first overview, there will be three cases, for nets f and
g with the same saturation (𝑋,𝑌,ℛ):

∙ one of 𝑋 and 𝑌 is an atom or unit,
∙ 𝑋 is a coproduct or 𝑌 is a product, and
∙ 𝑋 is a product and 𝑌 a coproduct.

The first two cases are relatively straightforward, and will be
treated in the next subsection. The main body of the proof is
concerned with the third case, which is that of nets f ;ι𝑗 and

π𝑖 ;g as illustrated below.

f× +
g× +

There are three main obstacles to overcome.
1) Inductive saturation: To apply the induction hypothesis

it must be possible to relate, e.g., a saturated net 𝜎(f ;ι0), to
the saturation of its component net, 𝜎f . This will be addressed
by Lemma 18, which describes saturated nets 𝜎f inductively,
on the construction of f . Subsection IV-B presents supporting
material for the lemma, whose main content will be discussed
in Subsection IV-C.

2) Representatives: The second obstacle is that nets con-
structed over different projections and injections, e.g. f ;ι0 and
π0 ;g, but also f ;ι0 and g;ι1, may have the same saturation;
naturally, in such a case the induction hypothesis cannot be
applied to 𝜎f and 𝜎g. This will be solved by Lemma 19, which,
for a saturated net 𝜎f , finds a representative g equivalent
to f containing given initial links ⟨𝑣, 𝜀⟩, or terminal links
⟨𝜀, 𝑤⟩, from 𝜎f . From the presence of these links it can then
be deduced that g is left-constructible or right-constructible,
respectively, and over which projection or injection it is
constructed. This is described in Subsection IV-D.

3) Deconstruction alone may not suffice: The third obstacle
is that nets constructed over the same projection or injection,
e.g. f ;ι0 and g;ι0, may have the same saturation, while their
components, f and g, do not. By isolating the exact cause of
this discrepancy it will be possible to transform the net f ;ι0
into an equivalent net h;ι0, such that h does have the same
saturation as g. This will be treated in Subsection IV-E.

A. The first two cases

The first case of the soundness proof concerns parallel nets
whose source or target is an atom or unit. For nets with source
𝑋 and target 𝑌 , this gives six, pairwise dual, possibilities. Four
are immediate: if 𝑋 is an atom or 1, or dually if 𝑌 is an atom
or 0, illustrated below, it is easily observed that no rewrite or
saturation steps apply.

𝐴 1 𝐴 0

For such nets f and g, it follows that if 𝜎f = 𝜎g then f = g.
For the remaining two cases, nets with source object 0 will

be called initial, and with target 1, terminal. The links in an
initial net (0, 𝑌,ℛ) can move up and down the syntax tree
of 𝑌 essentially without hindrance. From this Lemma 12 and
Lemma 13, below, follow.

Lemma 12. All parallel initial nets are equivalent, as are all
parallel terminal nets.

This proves soundness of saturation for initial and terminal
nets, and although it need not refer to saturated nets, their
characterisation will be useful. Call a pre-net full if it contains
all possible unit links (but no atomic links), i.e. one of the form

(𝑋,𝑌, {⟨𝑣, ∗, 𝑤⟩ ∣ 𝑋𝑣 = 0 or 𝑌𝑤 = 1}) .

Lemma 13. The saturation of initial and terminal nets is full.

The second case of the soundness proof concerns nets whose
source is a coproduct or whose target is a product; call these
coproduct nets and product nets, respectively.

+ ×

A product net is right-constructible unless it contains links
⟨𝑣, 𝜀⟩ connecting to the root of its target. Such a link must be
an initial link, and can be moved away from the root by the
following equivalence step. This gives the lemma below.

0 × ⇔ 0 ×

Lemma 14. A product net g is equivalent to a net ⟨g0, g1⟩. A
coproduct net f is equivalent to a net [f0, f1].

A similar result holds for the saturation of (co)product nets.
For a net ⟨f, g⟩, if first the saturation steps in f and g are
applied, the remaining steps to be applied to ⟨𝜎f, 𝜎g⟩ are of
the following kind.

0 × 0 ×

Applying these steps completes the saturation of ⟨f, g⟩: after a
step of the kind above, to the newly added link no saturation
steps apply, as the only possible step would be the reverse.
Moreover, the links added by these steps are all of the form
⟨𝑣, 𝜀⟩ and thus, in 𝜎⟨f, g⟩, illustrated below right, separate from
links in 𝜎f and 𝜎g.

𝜎f

𝜎g

× ∗
𝜎f

𝜎g

×

Lemma 15. Saturation of (co)product nets satisfies:

(𝜎[f0, f1])𝑖,𝜀 = 𝜎f𝑖 (𝜎⟨g0, g1⟩)𝜀,𝑖 = 𝜎g𝑖 .

Using the two lemmata on (co)product nets, the present
case in the soundness proof will be completed. For parallel
product nets f and g with the same saturation, Lemma 14 gives
equivalent nets ⟨f0, f1⟩ and ⟨g0, g1⟩ respectively. By Lemma 15

𝜎f𝑖 = (𝜎⟨f0, f1⟩)𝜀,𝑖 = (𝜎⟨g0, g1⟩)𝜀,𝑖 = 𝜎g𝑖

for 𝑖 ∈ {0, 1}. The induction hypothesis of the soundness
proof gives f𝑖 ⇔ g𝑖, and the equivalences below follow.

f ⇔ ⟨f0, f1⟩ ⇔ ⟨g0, g1⟩ ⇔ g

B. Pointed and copointed nets

A point is a map out of a terminal object, a copoint one into
an initial object. An object that has a [co]point is [co]pointed.
In free sum–product categories the pointed and copointed
objects are given by the following grammars, respectively.

𝑃 := 1 ∣ 𝑃 +𝑋 ∣ 𝑋 + 𝑃 ∣ 𝑃 × 𝑃

𝑄 := 0 ∣ 𝑄+𝑄 ∣ 𝑄×𝑋 ∣ 𝑋 ×𝑄

Here, 𝑋 may be any object: pointed, copointed, or neither.
Note that an object is never both pointed and copointed, and
that in ΣΠ(∅), the free sum–product completion of the empty
category, where atoms are absent, every object is either pointed
or copointed.

A categorical map that factors through a point, i.e. one
of the form 𝑝 ∘ !, where 𝑝 is a point, is called pointed;
one that factors through a copoint, ? ∘ 𝑞, copointed. Pointed
and copointed nets are defined slightly more narrowly, by the
following grammars over the net constructors.

p := ! ∣ p;ι𝑗 ∣ ⟨p, p⟩ q := ? ∣ [q, q] ∣ π𝑖 ;q .

Up to equivalence, the definition corresponds to the categorical
one, but it requires pointed and copointed nets to have the
following syntactic form. Call a terminal link ⟨𝜀, ∗, 𝑤⟩ and an
initial link ⟨𝑣, ∗, 𝜀⟩ rooted; pointed nets are those consisting
entirely of rooted terminal links, and copointed nets those
consisting of rooted initial links.

A map that is both pointed and copointed will be called
bipointed. Bipointed maps feature heavily in the decision
procedure of Cockett and Santocanale [3]—where they are
called disconnects—because of the following property: there
is precisely one bipointed map from a copointed object 𝑄
to a pointed object 𝑃 , and none between other objects. The
uniqueness property is easily observed from the fact that in
the diagram below the copoint 𝑞 and the point 𝑝 are arbitrary.

𝑄
𝑞

!

0
?

!

?

1
𝑝

𝑃

The corresponding notion for nets will again be restricted
to a useful syntactic form: let a bipointed net be a net from a
copointed to a pointed object that is itself pointed or copointed.
The properties of bipointed maps carry over, by the following
two lemmata.

Lemma 16. Any two parallel bipointed nets are equivalent.

Lemma 17. The saturation of a bipointed net is full.

C. Saturation via construction

Previous lemmata showed that the saturation of initial, ter-
minal, and bipointed nets is full (Lemma 13 and 17). The next
result will be that saturation is completely described by this
dynamic, i.e. by the ‘filling’ of initial, terminal, and bipointed
subnets. This enables, and is proved via, a characterisation of
saturation by induction on the construction of a net. For the

base cases, saturation of the basic nets (0, 𝑌, ∗) and (𝑋,1, ∗)
is full, by Lemma 13, while no saturation steps apply to a net
(𝐴,𝐵, 𝑎). The saturation of nets ⟨g, h⟩ and [g, h] was described
informally in Subsection IV-A, leaving the cases π𝑖 ;f and g;ι𝑗
(illustrated below for 𝑖 = 𝑗 = 0).

f

×
g

+

As an example, the saturation of g;ι0 = (𝑋,𝑌,ℛ) from
𝜎g can be described as follows. Firstly, any rooted initial link
⟨𝑣, 𝜀⟩ in 𝜎g forms an initial subnet between 𝑣 and the root of
𝑌 in (𝜎g);ι0, which will be filled. Secondly, since copointed
nets consist of initial links, if 𝜎g contains a copointed subnet
q ⊆ (𝜎g)𝑣,𝜀, the duplication of initial links will produce a
copointed subnet, in the saturation of g;ι0, between 𝑣 and
any 𝑤 in 𝑌 . Then if 𝑤 is pointed, such a copointed subnet is
bipointed. Lemma 18, below, states that filling these bipointed
subnets completes the saturation of g;ι0.

In a pre-net f = (𝑋,𝑌,ℛ), say that a vertex 𝑣 in 𝑋
has a rooted copointed subnet if there is a copointed net
q ⊆ f𝑣,𝜀. If 𝑣 is minimal among the vertices in 𝑋 that
have rooted copointed subnets in f , then 𝑣 is said to have
a maximal copointed subnet; let MAXCP(f) denote the set of
such variables in f . Dually, let MAXP(f) be the set of variables
in 𝑌 that have maximal pointed subnets, i.e. are minimal
among the vertices that have rooted pointed subnets.

Lemma 18. For a net g;ι𝑗 let 𝜎g = (𝑋,𝑌𝑗 ,ℛ) and let
𝜎(g;ι𝑗) = (𝑋,𝑌,𝒮). Then 𝒮 = (ℛ ⋅ 𝑗) ∪ Γ ∪ Δ, where

Γ = {⟨𝑣, ∗, 𝑤⟩ ∣𝑋𝑣 = 0, ⟨𝑣, ∗, 𝜀⟩ ∈ ℛ}
Δ = {⟨𝑣, ∗, 𝑤⟩ ∣𝑋𝑣 = 0 or 𝑌𝑤 = 1,

∃𝑣′ ≤ 𝑣. 𝑣′ ∈ MAXCP(𝜎g),

∃𝑤′ ≤ 𝑤. 𝑌𝑤′ is pointed }
The case π𝑖 ;f is dual. The lemma is proved by showing that

its description of a saturated net, as (𝑋, 𝑌, (ℛ⋅𝑗) ∪ Γ ∪ Δ),
is closed under .

D. Deconstruction of saturated nets

The previous lemma (Lemma 18) illustrates that retrieving
the saturation of f from that of f ;ι0 is easy in some cases,
but not in others. A simple case that follows immediately,
for example, is that 𝜎(f ;ι0) = (𝜎f);ι0 if and only if 𝜎f
contains no rooted initial links. For the remaining part of
the soundness proof, on nets from products into coproducts,
this solves the case for saturated nets that are constructible.
However, this need not be the case; and moreover, parallel
nets constructed over different projections and injections, as
illustrated in Figure 11, may have the same saturation (lower
right). For an inductive proof this is clearly problematic: for
nets f ;ι𝑗 and π𝑖 ;g, with the same saturation, equivalent nets
must be found that are constructed over the same projection or
injection. In other words, equivalent nets must be found that

0 1

× +

0 1

0 1

× +

0 1

0 1

× +

0 1

0 1

× +

0 1

Fig. 11. Differently constructed nets with the same saturation

allow the deconstruction of a saturated net along a certain
projection or injection.

Fortunately the examples in Figure 11 also suggest a so-
lution. The two nets on the left are both bipointed, and thus
equivalent (by Lemma 16). Then for the one top right, it needs
to be shown that from the fact that its saturation is full, it
follows that it is equivalent to a bipointed net. Since not all
saturated nets are between pointed and copointed objects, a
generalisation is needed. Recall that a partial net is a pre-net
that has at most one link for each switching. Call a partial net
[co]pointed if it consists entirely of rooted terminal [initial]
links—note that in this definition the target of a partial pointed
net need not be pointed.

Lemma 19. If f is a net and q ⊆ 𝜎f is a partial pointed or
copointed net, then there is a net g s.t. q ⊆ g and f ⇔ g.

This solves the deconstruction problem, for nets f ;ι𝑗 and
π𝑖 ;g, as follows. Suppose the saturation of f ;ι𝑗 is non-
constructible (i.e. not of the form π𝑖 ;h or h; ι𝑗 , nor ⟨h, k⟩
or [h, k], for any pre-nets h and k). This can only be the
case if the saturation of f contains rooted initial links, which
rewrite from ⟨𝑣, 𝑗⟩ in 𝜎(f ;ι𝑗) to ⟨𝑣, 𝜀⟩. Then the above lemma
provides a net h equivalent to f ;ι𝑗 containing ⟨𝑣, 𝜀⟩, since
this link constitutes, on its own, a partial copointed subnet of
𝜎(f ;ι𝑗). Now h, containing ⟨𝑣, 𝜀⟩, is not right-constructible,
and so must be left-constructible; moreover, if 0 ≤ 𝑣 then
h is constructed over π0, and if 1 ≤ 𝑣 then over π1. Since
the saturation of π𝑖 ;g contains the same link ⟨𝑣, 𝜀⟩, it has an
equivalent k constructed over the same projection as h.

E. Completing the proof

The final case in the soundness proof, for nets f and g
between a product and a coproduct, is nearly complete. It was
shown that if their (common) saturation is constructible, the
induction hypothesis can be applied immediately, and that if
it is not, there are equivalent nets f ′ ;ι𝑗 and g′ ;ι𝑗 constructed
over the same injection (or projection). A final obstacle is
the fact that their components f ′ and g′ need not have the
same saturation, and indeed need not be equivalent. The simple
example below illustrates the idea.

0 0

× +

0 1

0 0

× +

0 1

These two nets, π0 ;?;ι0 and π1 ;?;ι0, have the same saturation,
which is full. However, their components π0 ;? and π1 ;? do
not: they are already saturated. That this is a general problem
can be observed from Lemma 18. Consider the saturation of
a net (f ;ι0), with a pointed target 𝑌 , described by

(𝜎f);ι0 ∪ Γ ∪ Δ
(abusing notation). With 𝑌 pointed, if a vertex 𝑣 has a maximal
copointed subnet q in 𝜎f , the subnet between 𝑣 and 𝜀 is filled,
by Δ. Now suppose g is identical to f , except that 𝑣 has
a different maximal copointed subnet k in the saturation 𝜎g.
Then f ;ι0 and g;ι0 have the same saturation, but f and g might
not. The solution is illustrated below.

𝑣
q

+
𝜀

⇔
𝑣 q′

+
𝜀

⇕
𝑣

k

+
𝜀

⇔
𝑣 k′

+
𝜀

The subnets q and k need not be equivalent, but q;ι0 and k;ι0
are. They are equivalent to q′ and k′ by moving their links up
to the root (each ⟨𝑢, 0⟩ becomes ⟨𝑢, 𝜀⟩). Because 𝑌 is pointed,
q′ and k′ are bipointed, and hence equivalent by Lemma 16.

The generalised application of this idea is as follows. If nets
f ;ι0 and g;ι0 have the same saturation, it can be shown that
the same vertices 𝑣 have maximal copointed subnets in 𝜎f
as in 𝜎g. It may be assumed, by Lemma 19, that a maximal
copointed subnet of 𝜎f is also a subnet of f . Then a net h is
formed from f as follows: for every vertex 𝑣 that has a maximal
copointed subnet q in f and one k in g, replace q in f with
k. Then h;ι0 is equivalent to f ;ι0 by the above reasoning (the
equivalence of q;ι0 and k;ι0), while h and g have the same
saturation, allowing the induction hypothesis to be applied.

V. THE CATEGORY OF SATURATED NETS

The soundness result, together with completeness, means
that saturated nets are in one-to-one correspondence with
morphisms in ΣΠ(𝒞). A complete description of this category
requires also composition and identities to be defined. A useful
result in this respect is the characterisation of saturated nets
as unions over equivalence classes of nets.

Proposition 20. The saturation of a net f is
∪ {g ∣ f ⇔ g}.

Identity nets are the translation and saturation of identity
proofs in sum–product logic: nets 𝜎(id𝑋) where

id𝑋+𝑌
Δ
= [(id𝑋 ;ι0), (id𝑌 ;ι1)] id0

Δ
= ?0

id𝑋×𝑌
Δ
= ⟨(π0 ;id𝑋), (π1 ;id𝑌)⟩ id1

Δ
= !1 .

Hughes and Van Glabbeek established composition for unit-
free nets as relational composition [9]. Define, for pre-nets,

(𝑋,𝑌,ℛ) ∙ (𝑌, 𝑍,𝒮) Δ
= (𝑋,𝑍,𝒮 ∘ ℛ)

(denoting relational composition by (∘); labels 𝑙 and 𝑘 may
be composed as 𝑘 ∘ 𝑙 if both are morphisms in 𝒞, and ∗
otherwise). In the presence of the units, this does not work
immediately: the following composition would be empty.

0 + ∙ + 1

As is clear from this simple example, relational composition
does work for nets whose links only connect to leaves—call
these composable—and, by moving unit links up towards the
leaves, any net is equivalent to a composable one. Furthermore,
that composition preserves equivalence follows by a compari-
son with the cut-elimination procedure for sum–product logic
in [4], which it closely resembles.

Lemma 21. For composable nets, if f ⇔ f ′ and g⇔ g′ then
(f ∙ g)⇔ (f ′ ∙ g′).

For non-composable nets f and g the composition f ′ ∙ g′
of equivalent, composable nets f ′ ⇔ f and g′ ⇔ g may be
used; this does not define a unique result, but by the above
lemma the possible outcomes are equivalent. Consequently, in
the category of saturated nets, the composition of 𝜎f and 𝜎g
must be the saturation 𝜎(f ′ ∙ g′). It is obtained from 𝜎f and
𝜎g as follows.

Proposition 22. Composition of saturated nets is relational
composition followed by saturation.

Since saturated nets are unions over equivalence classes, by
Proposition 20, their relational composition is given by

𝜎f ∙ 𝜎g =
∪
{h ∙ k ∣ h⇔ f, k⇔ g} .

It is easily shown that this is a sub-pre-net of the desired so-
lution 𝜎(f ′ ∙ g′) mentioned above—in particular, the inclusion
of pre-nets h ∙ k for non-composable h and k is harmless. In
many cases, it will be strictly smaller: 𝜎(f ′ ∙ g′) is the union
over all nets equivalent to f ′ ∙ g′, which are not necessarily
of the form h ∙ k with h ⇔ f and k ⇔ g. Fortunately, the
remaining nets can be captured by saturating 𝜎f ∙ 𝜎g.

VI. NOTES, CONCLUSIONS AND FURTHER WORK

The saturated nets presented in this paper are canonical
representations of proofs in additive linear logic with units, or
equivalently of morphisms in free sum–product categories. The
saturation algorithm, by which they are obtained from sum–
product nets, is simple and tractable, which makes comparing
saturated nets an effective decision procedure. Finally, some
smaller issues will be picked up here.

Time complexity: The time complexity of saturation is
as follows. Using an appropriate representation of nets, a
saturation step may be performed in constant time. Bounded
by the maximum number of unit links in a net (𝑋,𝑌,ℛ),
saturation has a time complexity bound of𝒪(∣𝑋∣×∣𝑌 ∣) (where
∣𝑋∣ denotes the number of vertices in 𝑋). By comparison,

the algorithm by Cockett and Santocanale [3] has a time
complexity bound of

𝒪((hgt(𝑋) + hgt(𝑌))× ∣𝑋∣ × ∣𝑌 ∣)
(where hgt(𝑋) is the height of the syntax tree of 𝑋).

Correctness and sequentialisation: A tractable algorithm to
find representatives of saturated nets, or sequentialisation, can
be obtained from the soundness proof, using, in particular, the
inductive characterisation of saturated nets. Such an algorithm
also constitutes a correctness criterion, separating saturated
nets from arbitrary pre-nets. A useful addition would be an
elegant combinatorial correctness criterion, such as, possibly,
a modification of the switching condition.

Games semantics: A fruitful branch of research into logic,
linear or otherwise, is that of game-theoretic semantics, which
interprets formulae as two-player games and proofs as (win-
ning) strategies. Sum–product nets admit a simple game-
interpretation, where two games are played in parallel, one on
the source object and one on the target object. It appears that
saturated nets, viewed as strategies, exhibit interesting game-
theoretic properties concerning this parallelism, opening an
intriguing angle for future work.

ACKNOWLEDGEMENTS

Many thanks to Alex Simpson for guidance and support.
Thanks also to the anonymous referees for helpful, con-
structive comments. The author was supported by a Ph.D.
studentship on EPSRC research grant EP/F042043/1.

REFERENCES

[1] M. Barr: ∗-Autonomous categories and linear logic. Mathematical Struc-
tures in Computer Science 1:159–178 (1991)

[2] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, T.H. Trimble: Natural deduction
and coherence for weakly distributive categories. Journal of Pure and
Applied Algebra 113:229-296 (1996)

[3] J.R.B. Cockett, L. Santocanale: On the word problem for ΣΠ-categories,
and the properties of two-way communication. LNCS 5771:194–208
(2009)

[4] J.R.B. Cockett, R.A.G. Seely: Finite sum–product logic. Theory and
Applications of Categories 8(5):63–99 (2001)

[5] K. Došen, Z. Petrić: Bicartesian Coherence. Studia Logica 71(3):331–353
(2002)

[6] J.-Y. Girard: Linear Logic. Theor. Comput. Sci. 50 (1987)
[7] J.-Y. Girard: Proof-nets: The parallel syntax for proof-theory. Logic and

Algebra, 97–124 (1996)
[8] D.J.D. Hughes: Simple free star-autonomous categories and full coher-

ence. Preprint, available from the author’s website (2005)
[9] D.J.D. Hughes, R.J. van Glabbeek: Proof nets for unit-free multiplicative-

additive linear logic. ACM Trans. Comput. Log. 6(4):784–842 (2005)
[10] H. Hu, A. Joyal: Coherence completions of categories. Theor. Comput.

Sci. 227(1-2):153–184 (1999)
[11] A. Joyal: Free bicomplete categories. C.R. Math. Rep. Acad. Sci. Canada

17(5):219–224 (1995)
[12] J. Lambek, P. Scott: Introduction to Higher-Order Categorical Logic.

Cambridge University Press (1988)
[13] T.-W. Koh, C.-H.L. Ong: Explicit Substitution Internal Languages for

Autonomous and ∗-Autonomous Categories. Electronic Notes in Theo-
retical Computer Science 29 (1999)

[14] S. Mac Lane: Categories for the working mathematician. Second edition.
Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York (1998)

[15] R.A.G. Seely: Linear logic, ∗-autonomous categories and cofree coal-
gebras. Contemporary Mathematics 92 (1989)

[16] L. Straßburger, F. Lamarche: On Proof Nets for Multiplicative Linear
Logic with Units. CSL 2004:145-159

