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Abstract 

 

Targeted inhibition of cytokine pathways provides opportunities to understand fundamental 

biology in vivo in humans.  The IL-33 pathway has been implicated in the pathogenesis of atopy 

through genetic and functional associations.  We investigated the role of IL-33 inhibition in a first-

in-class phase 2a study of etokimab (ANB020), an IgG1 anti-IL-33 monoclonal antibody, in 

patients with atopic dermatitis (AD). Twelve adult patients with moderate-to-severe AD received 

a single systemic administration of etokimab. Rapid and sustained clinical benefit was observed 

with 83% achieving Eczema Area and Severity Index (EASI)50, and 33% EASI75, with reduction in 

peripheral eosinophils at day 29 post-administration. We noted significant reduction in skin 

neutrophil infiltration after etokimab compared to placebo upon skin challenge with house dust 

mite, reactivity to which has been implicated in the pathogenesis of atopic dermatitis.  We 

showed that etokimab also inhibited neutrophil migration to  skin interstitial fluid in vitro. Besides 

direct effects on neutrophil migration, etokimab revealed additional unexpected CXCR1-

dependent effects on IL-8-induced neutrophil migration. These human in vivo findings confirm 

an IL-33 upstream role in modulating skin inflammatory cascades and define the therapeutic 

potential for IL-33 inhibition in human disease, including atopic dermatitis. 
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Introduction 

 

Targeted cytokine pathway intervention has been associated with enormous therapeutic 

advance (1).  In addition, studying the sequelae of such approaches has shed light on basic 

biological and disease mechanisms.  For example, TNF-inhibition in the treatment of psoriasis is 

highly effective, yet smoldering inflammation in some patients can require IL-17A/IL-23 pathway 

inhibition for greatest therapeutic efficacy.  Furthermore, TNF-inhibition can occasionally 

associate with pustular psoriasis, or the clinical onset of multiple sclerosis (MS) and isolated 

demyelinating diseases, such as optic neuritis. Further studies on IL-17A inhibition have 

highlighted the complexities of shared and unique tissue pathotypes (2, 3) and more recently it 

has been described how IL-6 controls visceral adipose tissue mass (4). All these findings provide 

examples of unforeseen biological activities obtained from cytokine targeted therapeutic 

interventions in man, but also provide clues for novel therapeutic options.  

 

Among the new wave of cytokines involved in the pathogenesis of inflammatory diseases, IL-33 

has emerged a key candidate to control atopic disorders (5).  IL-33 is an alarmin cytokine 

produced by a number of different cell types including epithelia, endothelia, fibroblasts, and 

haematopoietic cells including mast cells, neutrophils, monocytes, macrophages, and dendritic 

cells. IL-33 lacks a secretory signal peptide, an IL-1 family trait, and is found preformed in the 

nucleus under steady state conditions. IL-33 is rapidly released from damaged cells in response 

to stress conditions such as infection, injury, and inflammation (5).  By binding to its 

heterodimeric receptor comprising ST2 and interleukin-1 receptor accessory protein (IL-1RAcP), 

IL-33 signals through MyD88, IRAK1, and IRAK4 with downstream activation of NF-κB or MAPK 

pathways (5). Altered gene expression, use of a decoy receptor, and post-translational 

modifications (for example, proteolytic processing and oxidation) all contribute to regulation of 

the IL-33 pathway (5, 6). 

 

The IL-33:ST2 pathway contributes to inflammation associated with disorders including AD (7), 

asthma (8), inflammatory bowel disease (IBD) (9), and arthritis (10, 11). The most studied effects 
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of IL-33 relate to the initiation of innate and adaptive type 2 immune responses, characterized 

by the production of IL-4, IL-5, and IL-13. IL-33 administration to mice induces type 2 cytokines, 

serum IgE, eosinophilia, T helper 2 (Th2) and group 2 innate lymphoid cells (ILC2) accumulation 

and activation, epithelial cell hyperplasia, excessive mucus production, and smooth muscle 

contraction (12, 13).  IL-33 over-expression in the skin leads to an AD-like phenotype with 

infiltration of ILC2, mast cells, and eosinophils (14).  Rare loss-of-function mutations in the IL-33 

pathway associate with reduced blood eosinophils and protection from asthma (15).   Direct 

administration of IL-33 to murine skin leads to an infiltration of mast cells and neutrophils (16). 

IL-33 also drives neutrophil migration to sites of infection (17, 18), and contributes to their 

activation (19, 20).  Furthermore, IL-33 can be cleaved into active forms by neutrophil elastase 

and cathepsin G (21) implicating an inflammatory cycle.  IL-33 is known to modulate the inhibitory 

effects of bacterial infection on the neutrophil IL-8 receptor CXCR2 in animal models, but whether 

IL-33 can modulate IL-8 effects in human inflammation in vivo has not been studied, nor whether 

there is an impact of IL-33 on the other known IL-8 receptor, CXCR1 (17, 18, 22).  

 

AD is a common inflammatory pruritic skin disease affecting up to 20% of children and 5-10% of 

adults, and is associated with atopic asthma, allergic rhino-conjunctivitis, and food allergy (23).  

Approximately 80% of affected individuals have elevated IgE specific to airborne allergens, 

including house dust mite, pollens and animal dander.  Moderate-to-severe disease accounts for 

approximately 20-30% of cases and associates with a major impact on quality of life (24).  

Treatment requires optimisation of topical therapies, but lack of response to topical medications 

can necessitate the use of systemic approaches such as methotrexate, ciclosporin, azathioprine, 

and more recently, targeted inhibition of inflammatory pathways, such as IL-4Rα antagonism 

(25).  The decision to use a systemic approach for treatment can be based on assessment of 

severity and quality of life while considering safety and efficacy, general health status, 

psychologic burden, and patient choice (26).  Despite recent advances, there remains an unmet 

need for additional safe and efficacious treatments for AD.  Here, we undertook a first-in-class 

phase 2a clinical trial of anti-IL-33 (etokimab) in adult patients with atopic dermatitis and 

investigated underlying mechanisms. 
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Results 

We performed a phase 2a proof-of-concept study of a single intravenous 300mg dose of 

etokimab, a humanized IgG1/kappa anti-IL-33 monoclonal antibody in twelve adult patients with 

moderate-to-severe AD (Fig. 1). Seven days prior to etokimab, subjects received a placebo 

injection. In order to understand the mechanistic role of IL-33 in atopic skin inflammation, we 

also sampled skin after placebo and etokimab administration.  Skin suction blisters induce a split 

at the dermo-epidermal junction, and so provide an opportunity to investigate mechanisms of 

human sterile tissue inflammation, including responses to relevant antigens following skin 

challenge. We raised skin suction blisters, thirty minutes after saline or house dust mite (HDM) 

intra-epidermal skin challenge, and sampled the blister contents 24 hours later. 

 

Safety 

Etokimab was generally well-tolerated.  Treatment-emergent adverse events are detailed in 

Table 1.  Most adverse events were mild and transient, and none were thought to be etokimab-

related. One participant had a transient mild neutropenia on day 8 which recovered by day 11, 

with no associated clinical sequelae. There were no other decreases in blood neutrophils outside 

the reference range throughout the study.  There were no new episodes of conjunctivitis.  One 

patient had pre-existing conjunctivitis and this did not exacerbate during the study. One patient 

had secondarily infected AD starting at day 76 post-etokimab which responded to oral antibiotics.  

The patient had previously required repeated courses of antibiotics pre-study for recurrently 

infected AD.  One patient had an upper respiratory infection starting on day 139 post-

administration which resolved without needing oral antibiotics. Two patients had a urinary tract 

infection starting on day 35 and day 132 post-administration which both resolved with oral 

antibiotics. One participant had a serious adverse event of exacerbation of pre-existing 

depression which started at day 140 post-etokimab and was potentially linked to concurrent 

immediate family serious illness. This exacerbation of depression resolved and in view of 

concurrent events, and timing from study drug administration, was not considered related to the 

study drug. 
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Efficacy 

All twelve patients achieved at least EASI50 (defined as 50% improvement in EASI score from 

baseline) during the study following a single dose of etokimab.  By 29 days after etokimab 

administration, we noted a marked improvement in EASI score with 83.3% of patients showing 

EASI50 and 33% showing EASI75, with a mean EASI improvement of 61% (P<0.0001, Fig. 2A-C).  

Even 15 days after etokimab, we had observed a significant improvement (mean 58% EASI 

decrease, P<0.01) compared to baseline. Responses were sustained with 75% showing EASI50 

and 42% showing EASI75 at day 57 post-administration, with a mean EASI improvement of 62% 

(P<0.001).  There were significant improvements in SCORAD at day 29 with 40% reduction 

(P<0.001, Fig. 2D).  Three (25%) patients reached an IGA (Investigator Global Assessment) of 0/1 

during the study (Fig. 2E). The objective clinical outcomes were associated with significant 

improvement in DLQI (Dermatology Life Quality Index, P<0.05, Fig. 2F) and 5D (5 Domain) Itch 

scores (P<0.001, Fig. 2G). Topical corticosteroid rescue therapy was negligible throughout the 

duration of the study. We noted that patients responded irrespective of pre-study eosinophil 

frequency, moderate or severe disease or preceding use of systemic therapies. 

 

Pharmacodynamics  

We investigated the in vivo pharmacodynamic (PD) effects in the setting of disease using whole 

blood stimulation with IL-33/IL-12, and measurement of IFNγ production by ELISA.  As shown in 

Fig. 3A, the inhibition of IFNγ production was rapid and striking, and was observed to extend 

beyond 57 days in all patients and to beyond 120 days in some individuals (Fig. 3A).  

 

The EASI score pre-treatment showed a significant correlation with peripheral eosinophil 

percentage (r=0.623, P<0.0001, fig. S1). There was a significant reduction in peripheral eosinophil 

absolute counts at day 29 post-administration (mean 40% reduction, P<0.05, Fig. 3B) and 

eosinophil percentage count throughout the study correlated with EASI score (r=0.3419, P<0.001, 

Fig. 3C). It is noteworthy that in some cases, the decline in eosinophils was substantial; three 

patients had peripheral eosinophil percentages at 13% or above at study entry, and all three had 
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a decrease in eosinophils to 8% or less by day 15.  There was no significant change in serum total 

IgE during the study (mean total serum IgE at study entry 10101+7594 kU/L; day 29 post-

etokimab 9954+7394 kU/L; day 140 post-etokimab 10321+8103 kU/L). 

 

Skin suction blisters induce neutrophilic infiltration at 24 hours 

We noted infiltration of leukocytes into skin suction blisters sampled 24 hours after saline skin 

challenge, which was significantly enhanced after HDM challenge (P<0.05; Fig.4A). Granulocyte 

infiltration was reduced in response to skin suction blister formation with saline challenge after 

etokimab compared to that observed after placebo (mean 37% reduction, P=0.05, Fig. 4A-C). 

Granulocyte infiltration into the skin showed no significant difference in response to skin suction 

blister formation with HDM challenge after etokimab compared to that observed after placebo 

(mean 30% reduction, P=0.13, Fig. 4C).  On further characterization of the infiltrating leukocytes 

24 hours after HDM challenge as a model of antigen-specific inflammation (Fig. 4D), several 

immune sub-populations were detected in the blisters (fig. S2). We noted that the most profound 

effects of etokimab to be that of a significant inhibition of infiltration of neutrophil granulocytes  

in response to HDM which was reduced after etokimab compared to that observed after placebo 

(P<0.05, Fig. 4E). 

 

Etokimab inhibits IL-33-induced neutrophil migration to skin interstitial fluid ex vivo 

In order to investigate whether skin interstitial fluid can induce neutrophil migration ex vivo, we 

measured cell migration from whole blood of healthy donors using transwell IncuCyte assays, 

and measured neutrophil activation through shape change and elastase production.  Skin 

interstitial fluid induced rapid neutrophil migration within 1 hour, with accompanying shape 

change, and neutrophil elastase production (Fig. 5A-C).  Given the clinical trial data implicating a 

key role for IL-33 in granulocyte migration in vivo, we next tested whether etokimab could 

modulate neutrophil migration ex vivo.  We first investigated whether peripheral blood 

neutrophils expressed ST2 and IL-1RAcP, and observed a mean of 40% expression of ST2 and 

100% expression of IL-1RAcP (Fig. 6A). We next used the transwell assay to show that IL-33 was 

able to induce significant neutrophil migration (P<0.05, Fig. 6B).  We observed that etokimab 
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disrupted the detection of IL-33 in the culture, and therefore took advantage of an enzyme linked 

immunosorbent assay (ELISA) to determine a concentration range of etokimab to investigate 

further (Fig. 6C). 5µg/ml etokimab significantly (P<0.01) inhibited detection of IL-33, and 

significantly reduced neutrophil migration towards IL-33 (P<0.05, Fig. 6D). These data suggested 

that IL-33 is a relevant skin chemoattractant for neutrophils, and that biologic therapeutic 

targeting is able to effectively inhibit neutrophil migration both in vivo and ex vivo.  

 

Etokimab inhibits IL-8-induced neutrophil migration to skin interstitial fluid ex vivo 

As part of our panel of controls from the previous experiment, we made an unexpected 

observation, namely that etokimab could also inhibit migration of etokimab-pre-treated 

neutrophils towards IL-8 (Fig. 7A).  We firstly confirmed that etokimab did not bind IL-8 (fig. S3), 

and so proceeded to investigate the underlying mechanisms. In contrast to when neutrophils 

from healthy controls were pre-treated with etokimab, there was no inhibition of migration 

towards IL-8 if the neutrophils were not pre-treated with etokimab (Fig. 7B).  Furthermore, we 

noted that etokimab only partially inhibited neutrophil migration towards skin interstitial fluid 

(Fig. 7C).  In trying to reconcile these findings, we reasoned that other chemo-attractants beyond 

IL-33 were likely to be present in skin blister fluid in vivo and that etokimab had a direct effect on   

neutrophils during the pre-treatment phase.  We were able to examine the concentrations of IL-

8 in the saline interstitial fluid of 4 patients before and after etokimab administration, but we 

were not able to detect a significant difference (Fig. 7D).  Treatment of neutrophils with etokimab 

did not significantly reduce IL-8 production by neutrophils in response to skin interstitial fluid 

(Fig. 7E). Finally, we were able to show that etokimab was able to abrogate neutrophil migration 

toward skin interstitial fluid if the neutrophils were pre-treated with etokimab (Fig. 7F).  These 

data confirmed that etokimab was able to inhibit IL-8-induced migration of neutrophils through 

inhibiting an initial priming of IL-8 sensitivity.  

 

 

Etokimab inhibits IL-33-induced neutrophil autocrine expression of CXCR1 
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We next investigated the underlying mechanisms of the effects of etokimab in modulating 

neutrophil sensitivity to IL-8.  In mice, IL-33 has been shown to reduce the TLR-induced down-

regulation of neutrophil CXCR2, but was not found to increase CXCR2 expression or affect CXCR1 

(17, 18, 22).  However, in contrast we found IL-33 was able to induce CXCR1 expression by human 

neutrophils and that this was inhibited by etokimab in all neutrophils (Fig. 8A, fig. S4A).  CXCR2 

was expressed by the majority of neutrophils, but there was no effect of etokimab on CXCR2 

expression (Fig. 8A).  Etokimab inhibited the effects of autocrine production of IL-33 on CXCR1 

expression in a dose-dependent manner (Fig. 8B).  When CXCR1 expression remained low, the 

neutrophils had reduced IL-8 sensitivity (Fig. 8C).  The soluble IL-33 decoy receptor sST2 has been 

used in treating allergic diseases in model systems (27). We tested whether sST2 exhibited similar 

effects compared to etokimab in regulating neutrophil migration. Notably, sST2 failed to 

abrogate the migration of neutrophils toward IL-8, and did not reduce the CXCR1 expression on 

neutrophils (fig. S4B-C). This may reflect differential binding affinity or neutralisation capacity of 

the sST2 compared to etokimab; for example, it is of note that the affinity of etokimab for IL-33 

is very high (Kd 1pM) whereas that for sST2 is 4nM (28). Overall, these data suggested that 

etokimab can inhibit an autocrine IL-33 response of neutrophils to skin interstitial fluid, which 

further modulates responsiveness to IL-8 via CXCR1. 
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Discussion 

Here we capitalized on an early experimental medicine phase 2a trial of a first-in-class anti-IL-33 

biologic that provided significant clinical benefit to AD patients, to understand mechanisms of 

disease and identify non-redundant pathways of inflammation. Suction blisters taken over saline- 

or HDM-challenged skin were found to provide a useful in vivo model inflammatory system in 

humans to explore efficacy and to identify previously unrecognized immune networks in skin.  

Furthermore, the interstitial fluid could be used ex vivo to define underlying mechanisms.  We 

showed that IL-33 acts upstream in an inflammatory cascade; neutrophil migration can be 

directly modulated through IL-33 blockade, but also indirectly through inhibitory effects on the 

IL-8 pathway.  Eosinophil reduction in the blood of etokimab-treated patients further supports 

the broad effects of IL-33 inhibition, as predicted by genetic analysis of IL-33 loss-of-function in 

humans (15). IFNγ has been implicated in the pathogenesis of chronic AD (29, 30). The significant 

and sustained inhibition of IFNγ production by whole blood in response to ex vivo IL-33/IL-12 

suggests a prolonged in vivo pharmacodynamic effect in the setting of disease.  Furthermore, the 

skin neutrophil observations associated with clinical response, confirming in vivo relevance of the 

findings. A single administration of etokimab was well-tolerated with most adverse effects being 

mild and transient.  A single SAE occurred during the course of the current study in which there 

was exacerbation of pre-existing depression day 140 after etokimab administration, and was 

during a major family illness.  The timing of the SAE (20 weeks post-dosing) and the concurrent 

events suggested it was unlikely to be study drug related.  There were no new cases of 

conjunctivitis or exacerbations of previous conjunctival disease.   

 

Specifically, we showed that skin interstitial fluid induces neutrophil migration and activation 

which can be inhibited by etokimab ex vivo. IL-33 acts independently of microbial co-factors to 

upregulate CXCR1 which sensitizes human neutrophils for migration to IL-8.  Although excellent 

previous studies have demonstrated in vitro and in murine models that IL-33 is involved in 

neutrophil migration (17, 18, 22), the translation here to human tissue immunology  shows that 

IL-33 plays a dominant role and effects are in part likely to be mediated instead by CXCR1. 
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Therefore, specific IL-33 therapeutic intervention is not targeting a redundant system, and is 

worthy of further investigation. 

 

Although marked elevation of skin neutrophils is not a typical conspicuous feature of AD (31), 

there is evidence that they may nevertheless contribute to the inflammatory process (32, 33), 

particularly during acute disease if secondary infection is present (31).  Neutrophilic infiltration 

to the skin may also be part of the response to HDM challenge in healthy controls, suggesting 

this may be a useful human in vivo tissue model system for wider mechanistic and therapeutic 

evaluation. It is likely that the clinical benefits of etokimab are related to effects beyond 

neutrophils and eosinophils.  As well as highlighting indications amongst classical neutrophilic 

disease, the study therefore prompts further evaluation of the mechanistic effects of etokimab 

on broader pathways potentially associated with clinical efficacy, for example type 2 immune 

responses.  Sterile neutrophilic inflammation is a feature of a wide spectrum of skin pathology 

including disorders such as plaque psoriasis, generalized pustular psoriasis, Sweet’s syndrome, 

SAPHO  syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis), pyoderma 

gangrenosum, Bechet’s disease, hidradenitis suppurativa, and other auto-inflammatory diseases.  

We aimed to take advantage of the sub-epidermal plane of separation during skin suction blister 

formation to minimize the role of infection in confounding the inflammatory model.  In contrast, 

conventional skin biopsies will include commensal organisms within the epidermis which may 

complicate interpretation.  Furthermore, the skin suction blisters provide access to skin cells and 

interstitial fluid without digestion, which facilitates the development of ex vivo assays for 

investigation of underlying mechanism.   

 

There are a number of limitations of the study, in particular that there is no separate placebo 

group for the long-term clinical efficacy data.  However, since all treated patients showed at least 

fifty percent improvement in their EASI scores relative to baseline after a single dose, and 

changes in blood and skin biomarkers are consistent with observed efficacy, this study 

demonstrates an etokimab-specific drug effect.  Although difficult to directly compare, it is 

noteworthy that placebo effects in studies with similar EASI scores at entry are typically in the 



13 

 

range of 10-20% EASI improvement by day 29 when topical steroids are used as rescue therapy 

(25, 34).  In addition, the number of participants was small in the current experimental medicine 

proof-of-concept study, but we were able to explore in vivo skin neutrophil findings in 

mechanistic studies using additional human skin material ex vivo.  Skin suction blisters take 

considerable participant involvement, but do offer the possibility of sampling live, 

unmanipulated cells from human challenged tissue. 

 

Several targeted systemic therapies are now emerging based on the growing understanding of 

the involvement of type 2 immune polarization in atopic pathology (35). Another keratinocyte-

derived alarmin, thymic stromal lymphopoietin (TSLP), which acts upstream of type 2 responses, 

is also considered a potential therapeutic target in the treatment of AD (36-38). In murine 

models, either IL-33 or TSLP alone is sufficient to promote the development of AD-like 

inflammation (39). Tezepelumab, an anti-TSLP humanized monoclonal antibody, has undergone 

a randomized phase 2a clinical trial in the treatment of patients with moderate to severe AD (40).   

A positive trend of improvement  on EASI score was observed after subcutaneously administered 

Tezepelumab plus topical corticosteroids (TCS) compared to placebo plus TCS. Multiple anti-IL-

33 antibodies have been developed and reported in mouse disease models (41-44). Peng and 

colleagues established the efficacy of an anti-mouse IL-33 antibody on the treatment of 2, 4-

dinitrochlorobenzene (DNCB)-induced dermatitis murine model, with an improved phenotype 

coupled with impaired eosinophils and mast cells skin infiltration and decreased serum IgE 

concentrations (41). Although anti-mouse IL-33 antibodies show encouraging results, there have 

been no published studies thus far in humans. Clinicaltrials.gov lists anti-IL-33 clinical trials in 

patients with asthma, food allergy, chronic rhinosinusitis, chronic obstructive airways disease, 

and an anti-ST2 clinical trial in patients with chronic obstructive airways disease [accessed June 

6th 2019]. These findings confirm significant interest in the pathway. 

 

Experimental medicine studies provide powerful means to identify unexpected pathways and 

explore efficacy in inflammatory systems in vivo.  These can be useful early signals in therapeutic 

development and can help identify new priority therapeutic areas.  Most of the focus for IL-33 
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pathway inhibition has been on the type 2 cytokine axis, because of significant supporting genetic 

and functional data in both human and murine systems.  Our findings might also provide a further 

dimension to explain how etokimab, by inhibiting IL-33, could provide such a rapid and persistent 

clinical benefit as described in this report.  Furthermore, these findings open new therapeutic 

possible applications of etokimab to sterile neutrophilic disease as well as other inflammatory 

diseases with a clear neutrophilic involvement such as neutrophilic asthma.  This first-in-class 

experimental medicine study has shown that in vivo in human tissue that IL-33 has key upstream 

effects which broadly influence different and relevant inflammatory cascades and thus widen the 

potential of this treatment to a larger than anticipated group of diseases.   
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Materials and Methods 

Study design 

The study was based on a phase 2a proof-of-concept study of a single unblinded intravenous 

300mg dose of etokimab, a humanized IgG1/kappa anti-IL-33 monoclonal antibody previously 

referred to as ANB020 (EudraCT 2016-002539-14) (45) (US patent #10,059,764, Horlick et al.), in 

twelve adult patients with moderate-to-severe AD. The clinical study was accompanied by 

contralateral skin suction blister analysis five days after placebo administration and then five days 

after etokimab administration. The protocol was written by the Sponsor (AnaptysBio, Inc.). The 

inclusion and exclusion criteria are provided in the Supplementary Materials, and a study 

summary is presented in Fig. 1. Pre-specified pharmacodynamic endpoints were changes in skin 

suction blister contents, and differential white blood cell counts. Main clinical endpoints were 

scores for Eczema Area and Severity Index (EASI), Investigator's Global Assessment (IGA), Severity 

scoring of atopic dermatitis (SCORAD), DLQI, and 5D Pruritus Score.  Primary safety and 

tolerability end-points were:  measure of etokimab inhibition of cytokine release (IFNγ) in an ex 

vivo test, immunogenicity to etokimab (anti-drug antibodies), potentially significant and clinically 

important AEs, SAEs, AEs of special interests, and AEs leading to withdrawal, physical 

examinations, vital signs, clinical safety laboratory tests (hematology, biochemistry, and 

urinalysis), electrocardiogram (ECG). Primary data are reported in data file S1. 

 

 

Patients 

Patients were adults diagnosed with AD based on Hanifin/Rajka criteria and recruited through a 

secondary/tertiary care hospital setting (Oxford University Hospitals NHS Foundation Trust). 

Ethical approval was given by the London-Hampstead Research Ethics Committee (16/LO/1959) 

and MHRA (46837/0001/001-0001) with EudraCT 2016-002539-14. Patients had an EASI>=14 at 

screening and a positive skin prick test to HDM. Patients were excluded if they had received 

systemic treatment for AD within 4 weeks of recruitment. Patients were permitted to continue 

using their existing emollients without change during the course of the study.  Except for the skin 
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suction blister site, topical corticosteroids (mometasone furoate 0.1% ointment for body, 

hydrocortisone 2% ointment for face) were permitted in limited amounts as rescue therapy, and 

amounts were recorded by weight. Full inclusion and exclusion criteria and patient characteristics 

are presented in the Supplementary Materials. 

 

Neutrophil isolation and culture 

Peripheral blood and skin of healthy volunteers and patients with AD who were not part of the 

clinical trial were collected under local ethics approval [Oxford C, 09/H0606/71, National 

Research Ethics Service (NRES) Committee South Central]. Peripheral blood was subject to 

Lymphoprep (Stem Cell Technologies) isolation according to manufacturer’s instructions.  The 

lower layer was harvested and contained granulocytes and erythrocytes.  The cell suspension was 

treated with red blood cell lysis buffer (Biolegend) for 10 minutes and neutrophils were isolated 

using CD16 microbeads (Miltenyi Biotec) following manufacturer’s instructions and resuspended 

in RPMI medium. The neutrophils were immediately used in the migration assays or stained for 

flow cytometry analysis. For surface marker staining, neutrophils (2-5 ×105 cells) were treated 

with IL-33 (Biolegend, 50 ng/ml) for 2 hours, or with Etokimab (5 µg/ml) for 1, 2, or 3 hours. 

 

Transwell migration assay 

HTS-Transwell-96 Well Plates with 5-µm pore filters (Corning Costar) were used in the chemotaxis 

assay. The upper chambers were loaded with 1.5-2 ×105 whole blood cells or neutrophils from 

healthy donors in 50-100 μl of RPMI, and either treated with isotype control or Etokimab at 

different concentrations for 1 hour at 37°C or left untreated. The lower chambers were loaded 

with 150-250 μl of diluted (6x in RPMI) blister fluid or RPMI containing 10% fetal calf serum (FCS) 

and IL-33 (Biolegend, at 0, 12.5, 25, 50, 100, or 200 ng/ml concentration) or IL-8 (Biolegend, 50 

ng/ml) with or without Etokimab (5 µg/ml) or human sST2-Fc IgG1 chimera (700 ng/ml, R&D).  

The IL-33 ELISA in presence of etokimab was undertaken in RPMI containing 10% FCS. Following 

coculture for 1 hour, the upper chambers were removed, and the plates were subjected to 

scanning (IncuCyte S3 Live-Cell Analysis System, Sartorius). The confluency of the cells was 
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determined using IncuCyte S3 Software (Sartorius) and calculated against the confluency of cells 

of known cell counts.  

 

 

Antibodies and flow cytometry (FACS) 

All stainings were performed at 4 oC in FACS staining buffer (0.5% FCS in PBS). The following anti-

human antibodies were used: PerCP anti-human CD19 (H1B1, Biolegend), PerCP anti-human 

CD11b (M1/70, Biolegend), PerCP anti-human FcεRIα (AER-37(CRA-1), Biolegend), PerCP anti-

human CD14 (HCD14, Biolegend), Alexa Fluor 700 anti-human CD45 (HI30, Biolegend), Brilliant 

Violet 650 anti-human CD3 (OKT3, Biolegend), PE anti-human CRTH2 (BM16, Miltenyi Biotec), 

Brilliant Violet 785 anti-human CD127 (A019D5, Biolegend), Brilliant Violet 605 anti-human CD56 

(HCD56, Biolegend), Alexa Fluor 488 anti-human CD16 (3G8, Biolegend), PE/Cy7 anti-human 

CD123 (6H6, Biolegend), PE-CF594 anti-human CD15 (HI98, BD Biosciences), Brilliant Violet 421 

anti-human CCR3 (5E8, Biolegend), APC/Cy7 anti-human CD11c (Bu15, Biolegend), APC anti-

human CD1a (HI149, BD Biosciences), Brilliant Violet 650 anti-human CD16 (3G8, Biolegend), FITC 

anti-human ST2L (B4E6, MD Bioproducts), and LIVE/DEAD Fixable Aqua Dead Cell Stain 

(ThermoFisher). Human CXCR1 Antibody (42705, R&D system) and human CXCR2 Antibody 

(48311, R&D system) were conjugated in house with Alexa Fluor 488 and Alexa Fluor 647 

respectively using Antibody Labeling Kits from ThermoFisher. Flow data were acquired using 

FACSDiva software on LSRFortessa (BD Biosciences) and further analyzed with FlowJo (Tree Star 

LLC) software.  

 

ELISA 

Samples were stored at -80oC and concentrations of elastase (ThermoFisher), IL-8 

(ThermoFisher), and IL-33 (R&D) were measured by sandwich  ELISA according to manufacturers’ 

instructions. According to the manufacturer, the IL-33 ELISA detects the oxidized form of IL-33, 

and it is not known if it detects the reduced form. 

 

PMN cell shape analysis 
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Images of cell were taken using IncuCyte. Images were opened using Fiji and then inverted. Next, 

the 'Find Maxima’ plugin was applied with a noise tolerance parameter of ‘160’ with the output 

set to be as ‘Segmented Particles’. From this output the "Analyze Particles” plugin was applied, 

and objects detected within the size range of 20-200 and with a circularity index 

(4*pi(area/perimeter^2)) of between 0.2-1.00. This filtered out any artifacts or debris which were 

too small, or too large to be cells. From the detected cell regions, the circularity index was 

measured and output in a list for subsequent analysis.  

 

Statistical analysis 

It was not possible to use power calculations in this discovery proof-of-concept study.  For 

primary and secondary continuous endpoints, change from baseline were evaluated. Mixed 

effect analysis of covariance was used to assess treatment effects. All tests of treatment effects 

were conducted at a 2-sided alpha of 0.05 or with 2-sided 95% confidence intervals (CIs). For 

safety and tolerability, AEs, SAEs, vital signs, physical examinations, ECGs, and clinical laboratory 

assessments were evaluated. Values in ex vivo assays are shown as mean+ standard deviation 

(SD).  Paired t tests, one-way or two-way ANOVA were performed using GraphPad Prism version 

7.00 (GraphPad Software) to assess statistical significance: *, P < 0.05; **, P < 0.01; ***, P < 0.005; 

and ****P < 0.0001. 
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Condition 
Patient 

n(%) Condition 
Patient 

n(%) 

Nervous system disorders   4 (33.3) 
Musculoskeletal and connective 

tissue disorders 
  3 (25.0) 

    Dizziness   1 ( 8.3)     Back pain   1 ( 8.3) 
    Headache   3 (25.0)     Bursitis   1 ( 8.3) 
    Migraine   1 ( 8.3)     Pain in extremity   1 ( 8.3) 

    Paraesthesia   1 ( 8.3) Respiratory, thoracic and 

mediastinal disorders 
  2 (16.7) 

    Presyncope   0     Cough   1 ( 8.3) 
Infections and infestations   4 (33.3)     Nasal congestion   1 ( 8.3) 
    Upper respiratory tract 

infection 
  2 (16.7)     Oropharyngeal pain   0 

    Urinary tract infection   2 (16.7) Vascular disorders   1 ( 8.3) 
    Skin infection   1 ( 8.3)     Hot flush   1 ( 8.3) 
Injury, poisoning and procedural 

complications 
  3 (25.0)     Hypertension   0 

    Accident   1 ( 8.3)     Peripheral coldness   0 

    Arthropod bite   1 ( 8.3) Psychiatric disorders   2 (16.7) 

    Clavicle fracture   1 ( 8.3)     Depression   1 ( 8.3) 
    Contusion   0     Stress   1 ( 8.3) 
General disorders and 

administration site conditions 
  3 (25.0) Skin and subcutaneous tissue 

disorders 
  2 (16.7) 

    Peripheral swelling   2 (16.7)     Urticaria   2 (16.7) 

    Chest pain   1 ( 8.3) Ear and labyrinth disorders   1 ( 8.3) 
    Fatigue   1 ( 8.3)     Tinnitus   1 ( 8.3) 
    Infusion site pain   0 Gastrointestinal disorders   1 ( 8.3) 
Investigations   3 (25.0)     Dyspepsia   1 ( 8.3) 
    Haemoglobin decreased   1 ( 8.3)     Nausea   1 ( 8.3) 
    Monocyte count decreased   1 ( 8.3)     Vomiting   1 ( 8.3) 
    Neutrophil count decreased   1 ( 8.3)   

 

Table 1.  
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Figure legends 

Figure 1. Study design. (A) Schematic of study design.  Saline was injected on the inside of the 

left upper arm and 0.05 µg HDM was injected on the inside of the right upper arm, four days after 

receiving either placebo or etokimab (300mg IV). After one hour, suction blister cups were 

applied to the sites of saline and HDM challenge with a vacuum pressure of 250 mmHg for 60 to 

90 minutes to generate blisters. The blisters were protected overnight and interstitial fluid and 

cellular infiltrate assessed 24-hour post challenge by ELISA or FACS. (B) Schematic of skin blister 

analysis.  The blister/interstitial fluid from all donors was collected and stored at -80oC and the 

cellular infiltrate was analysed by FACS. 

 

Figure 2. Etokimab induces rapid and sustained improvements in disease severity scores and 

reported outcome measures. AD severity scores after administration of placebo on day -7 and 

300mg IV etokimab on day 1. (A) EASI score relative to day -14(100%). (B) Percentage of patients 

reaching EASI50 and EASI75. (C) Changes in absolute EASI score. (D) Changes in absolute SCORAD 

score. (E) Changes in IGA absolute score. (F) Percentage changes in DLQI score. (G) Percentage 

changes in 5D itch score. Friedman test with Dunn’s multiple comparison. n=12, showing mean + 

SD. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.   

 

Figure 3. Pharmacodynamic effects after administration of placebo on day 1 and 300mg IV 

etokimab on day 8. (A) Whole blood from different timepoints was incubated at 37°C for 16 

hours with IL-12 and IL-33 at 30 and 50ng/mL, respectively. IFNγ concentration in the supernatant 

was measured by ELISA and normalized to baseline timepoint (100%). Friedman test with Dunn’s 

multiple comparison. n=12, showing mean +/- SD. (B) Peripheral blood eosinophil count (109/L), 

showing mean + SD. (C) Correlation between eosinophil percentage and EASI score (Spearman 

correlation). 

 

Figure 4. Skin suction blisters represent a model of sterile inflammation in humans. (A) 

Leukocytes from skin suction blisters of saline and HDM challenges were analyzed for their 

Forward Scatter (FSC) and Side Scatter (SSC) by FACS. One representative result is shown of 
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twelve donors, and overall analysis of the leukocyte numbers was plotted (right panel). (B) 

Leukocytes from skin suction blisters of saline and HDM challenges after etokimab administration 

were analyzed for their FSC and SSC by FACS. One representative result is shown of twelve 

donors.  (C) 5 days after placebo or 300mg etokimab, skin suction blisters were samples 24 hours 

following saline or HDM skin challenge.  Granulocytes were quantified using FACS and expressed 

as percentage total leukocytes. (D) 5 days after placebo, skin suction blisters were samples 24 

hours following saline or HDM skin challenge.  Neutrophils were quantified using FACS and 

expressed as percentage total leucocytes. (E) Overall analysis of the neutrophil percentage of 

leukocytes from skin suction blisters of saline and HDM challenges, 5 days after placebo or 300mg 

etokimab. n=12. Lines in the statistics plots represent the mean+SD. Boxes show 25/75 

percentiles, whiskers show range. *P <0.05, t test. 

 

Figure 5. Skin interstitial fluid induces neutrophil migration and activation ex vivo. (A) Whole 

blood cells (2x105 cells) from healthy donors were placed into the upper wells of a transwell 

chamber system and allowed to migrate through 5 µm pores toward the lower wells containing 

medium or non-autologous blister fluid at 37˚C for 1 hour. The cell numbers from the lower wells 

were calculated and then the total cells (left panel) were collected for FACS analysis. One 

representative result is shown of three experiments (middle panel) and the overall numbers of 

migrated neutrophils was determined (right panel), n=5. Lines in the statistics plots represent the 

mean+SD. (B) Neutrophils (1x106 cells) were treated with medium or blister fluid for 24 hours.  

The concentration of elastase in the blister fluids before and after neutrophil culturing was 

measured by ELISA, n=5. (C) Images of neutrophils (0.5-1x105 cells) were taken 1 hour after 

culturing with medium or blister fluid. One representative result is shown of fifteen  experiments 

from 5 donors. The cell morphologies were analyzed and a circularity index for each cell was 

assigned. 0 is square and 1.0 is perfect circle. The average circularity index per image was 

calculated and overall analysis plotted. *P < 0.05; **P < 0.01; ****P < 0.0001, t test. Boxes show 

25/75 percentiles, whiskers show range. 
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Figure 6. Etokimab inhibits IL-33-induced neutrophil migration ex vivo. (A) Freshly isolated 

neutrophils from healthy donors were analyzed for ST2 and IL-1RAcP expression by FACS, n=3-6.  

(B) Freshly isolated neutrophils were used for Transwell assays. Neutrophils (2x105 cells) were 

placed into the upper wells of a transwell chamber system and allowed to migrate through 5 µm 

pores toward the lower wells containing IL-33 at different concentrations at 37˚C for 1 hour. Data 

are shown as fold change of random migration (10% FCS in RPMI 1640), n=6. (C) The 

concentrations of IL-33 in the culture with or without different concentrations of Etokimab were 

measured by ELISA. 50 ng/ml IL-33 added shown as dotted line. (D) Neutrophils (2x105 cells) were 

placed into the upper wells of a transwell chamber system and allowed to migrate through 5 µm 

pores toward the lower wells containing IL-33 (50 ng/ml) with isotype control (5 µg/ml) or 

Etokimab (5 µg/ml) at 37˚C for 1 hour. Boxes show 25/75 percentiles, whiskers show range, n=8.  

*P < 0.05, One-way ANOVA or Nonlinear fit. 

 

Figure 7. IL-33 has a dominant non-redundant upstream role in sterile skin neutrophilic 

inflammation. Freshly isolated neutrophils (2x105 cells) were used for Transwell assays. 

Neutrophils were (A) pre-treated (n=8) or (B) not pre-treated (n=5) with etokimab (5 µg/ml) for 

1 hour and placed into the upper wells of a transwell chamber system and allowed to migrate 

through 5 µm pores toward the lower wells containing combinations of  IL-8 (50 ng/ml), isotype 

control (5 µg/ml), and/or etokimab (5 µg/ml) at 37˚C for 1 hour. (C) Neutrophils were not pre-

treated with etokimab and placed into the upper wells of a transwell chamber system and 

allowed to migrate through 5 µm pores toward the lower wells containing blister fluid, isotype 

control (5 µg/ml), or etokimab (5 µg/ml) at 37˚C for 1 hour, n=4. (D) The concentration of IL-8 in 

the blister fluids before and after etokimab administration was measured by ELISA, n=4. (E) IL-8 

was measured by ELISA after neutrophils (1x106 cells) were cultured in blister fluid with isotype 

control (5 µg/ml) or etokimab (5 µg/ml) for 24 hours, n=5. (F) Neutrophils were pre-treated with 

etokimab (5 µg/ml) for an hour and placed into the upper wells of a transwell chamber system 

and allowed to migrate through 5 µm pores toward the lower wells containing blister fluid with 

isotype control (5 µg/ml) or etokimab (5 µg/ml) at 37˚C for 1 hour. Data are shown as fold change 
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of random migration, n=7. Boxes show 25/75 percentiles, whiskers show range. *P < 0.05; **P < 

0.01; ***P < 0.005, Student’s t test or two-way ANOVA. 

 

Figure 8. Etokimab inhibits IL-33-induced neutrophil autocrine expression of CXCR1 and CXCR2. 

(A) Neutrophils (2-5x105 cells) were cultured in medium containing isotype control (5 µg/ml) or 

etokimab (5 µg/ml) at 37˚C for 1, 2, and 3 hours. The expression of CXCR1 and CXCR2 was 

analyzed by FACS. One representative histogram is shown, n=4-5. (B-C) Neutrophils (2-5x105 cells) 

were cultured in medium containing isotype control (5 µg/ml, or different dosage of etokimab 

(0.625, 1.25, and 5 µg/ml) at 37˚C for 2 hours. (B) The expression of CXCR1 was analyzed by FACS, 

n=5. (C) Neutrophil migration toward IL-8 (50 ng/ml) was analyzed against the expression of 

CXCR1. Correlations between migration fold change and CXCR1 MFI expression (R2=0.2606, 

P=0.0108) are shown. Each dot represents an individual paired fold-change experiment. Boxes 

show 25/75 percentiles, whiskers show range. *P < 0.05; **P < 0.01; ***P < 0.005, one-way or 

two-way ANOVA or linear regression. 

 

Table 1. Treatment emergent adverse events 
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