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Proof of concept of regional scale hydrologic simulations
at hydrologic resolution utilizing massively parallel computer
resources
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[1] We present the results of a unique, parallel scaling study using a 3‐D variably
saturated flow problem including land surface processes that ranges from a single
processor to a maximum number of 16,384 processors. In the applied finite difference
framework and for a fixed problem size per processor, this results in a maximum number
of approximately 8 × 109 grid cells (unknowns). Detailed timing information shows that
the applied simulation platform ParFlow exhibits excellent parallel efficiency. This study
demonstrates that regional scale hydrologic simulations on the order of 103 km2 are
feasible at hydrologic resolution (∼100–101 m laterally, 10−2–10−1 m vertically) with
reasonable computation times, which has been previously assumed to be an intractable
computational problem.
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1. Introduction

[2] Since Freeze and Harlan [1969] proposed a blueprint
for an integrated hydrologic model, a number of simulation
platforms have been developed in that direction [e.g., Jones
et al., 2006; Kollet and Maxwell, 2006, 2008a; Panday and
Huyakorn, 2004; Qu and Duffy, 2007; VanderKwaak and
Loague, 2001]. These platforms have been used to tackle
research questions already put forth by Freeze and Harlan
[1969] including continuity in the variably saturated flow
problem, the influence of vegetation on the terrestrial water
balance, and feedbacks between the subsurface and weather
generating processes of the lower atmosphere. The latter has
gained recent attention in both the hydrologic and atmo-
spheric community, which led to model development efforts
ranging from simple operational incorporation of subsurface
hydrodynamics in atmospheric models [e.g., Niu et al., 2007;
Seuffert et al., 2002] to full coupling of three‐dimensional
subsurface hydrodynamics with land surface and atmo-
spheric models [Maxwell et al., 2007].
[3] In coupling hydrologic and atmospheric models, the

obvious disparity in spatial scales and resolutions that are
applied in these models is still an unresolved issue. Three‐
dimensional physics‐based hydrologic models commonly

are applied at relatively small spatial scales of 10−1–102 km2

and high resolution of 100–102 m. On the other hand,
atmospheric models are commonly applied at the regional to
global scale with spatial resolutions ranging from 100–
102 km. Thus, physics‐based hydrologic models basically
constitute a single grid cell in a global circulation model. It
is important to note that these different scales and resolu-
tions are not arbitrary but commensurate with the major
processes that need to be accurately represented in these
models. Two major questions arise that require careful sci-
entific and technical consideration: (1) can atmospheric
models be applied and coupled at hydrologic resolution
(here defined as 100–101 m horizontally and 10−2–10−1 m
vertically) and (2) can hydrologic models be applied at no
less than regional scales on the order of 103 km2 while still
maintaining hydrologic resolution?
[4] The first question is related to the representation of

turbulence and the lower boundary condition in atmospheric
models, i.e., the land surface, and constitutes a science
question that has recently received considerable attention
but remains unresolved [Huang et al., 2009; Patton et al.,
2005]. The second question implies the lack of adequate
scaling laws in order to upscale the continuity equations
of variably saturated subsurface flow (e.g., Richards’ equa-
tion) to atmospheric resolution. Thus, it is postulated that
hydrologic models must be applied at hydrologic resolution
over regional scales with acceptable compute times, which
requires very large computational resources and has until now
appeared impossible.
[5] The benefit of developing and applying highly

resolved hydrologic models over regional scales is not only
motivated by the potential of coupling with atmospheric
models in a physically consistent fashion. These types of
models may be useful in serving as virtual laboratories or
realities, a term that was quite recently coined in the liter-
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ature by, e.g.,Weiler and McDonnell [2006] andWood et al.
[2005]. The rational beyond the establishment of virtual
laboratories is that experimental studies alone cannot com-
pletely solve important scientific problems related to, for
example, upscaling of fluxes, variables and parameters,
because there will arguably never be enough measured data
of appropriate uncertainty across multiple space and time
scales. Here high‐resolution, regional scale models consti-
tuting virtual laboratories, which explicitly resolve the dif-
ferent variances over orders of magnitude, provide a means
of exploring these problems and testing upscaling techni-
ques in a formalized fashion. Of course virtual laboratories
must always be informed and tested with available measured
data. In turn, they constitute a useful tool in experimental
design to develop optimized monitoring networks and
schedules [Wood et al., 2005]. Thus, a constructive recip-
rocal connection can be established between experimental
studies and virtual laboratories, i.e., large‐scale, high‐
resolution physics‐based models.
[6] In this study, we demonstrate that large‐scale hydro-

logic simulations are feasible at hydrologic resolution (100–
101 m horizontally and 10−2–10−1 m vertically) and that
there is great potential in the use of virtual laboratories.
These simulations open new ways of answering important
scientific questions related to, for example, upscaling of
hydrologic processes in coupled soil‐vegetation‐atmosphere
systems and the analysis of surface‐subsurface interactions
as well as two‐way feedback mechanisms in soil‐vegeta-
tion‐atmosphere systems. We utilized the parallel variably
saturated groundwater flow model ParFlow [Jones and
Woodward, 2001; Kollet and Maxwell, 2006] that has
been explicitly designed for massively parallel computer
environments. Here ParFlow was applied in coupled mode
with the land surface model CLM (Common Land Model)
[Dai et al., 2001] to account for land surface processes and
their interactions with the subsurface. The computational
challenge we posed is solving a realistic problem on the
order of almost 1010 computational cells (unknowns) in a
tractable ratio of wall clock time to simulation time, which
ultimately affords the simulation of yearly time series. This
was done in the framework of a parallel scaling study by
successively increasing the problem and processor size in
order to evaluate ParFlow’s parallel efficiency. In addition,
an illustrative numerical experiment was performed that
demonstrates the usefulness of the proposed approach.

2. Simulation Platform ParFlow

[7] In this study, the coupled model ParFlow was used to
simulate the interactions between land surface processes and
variably saturated flow in a heterogeneous subsurface. The
core of the integrated watershed simulation platform con-
sists of ParFlow [Jones and Woodward, 2001; Kollet and
Maxwell, 2006], a parallel, three‐dimensional, variably sat-
urated groundwater flow code with integrated overland flow
that is especially suitable for large‐scale, high‐resolution
flow problems. ParFlow’s development has been ongoing
for more than 10 years and has resulted in some of the most
advanced numerical solvers and multigrid preconditioners
for massively parallel computer environments that are
available today [Falgout et al., 2006; Falgout, 2008].
[8] An additional advantage of ParFlow is the use of a

sophisticated octree space partitioning algorithm to depict

complex structures in three‐dimensional space, such as to-
pography, different hydrologic facies, and watershed
boundaries. In order to generate stochastic models of the
hydraulic property distribution of the subsurface, two par-
allel, correlated, random field simulators have been devel-
oped as an integral part of ParFlow [Tompson et al., 1989].
The ParFlow platform also incorporates physical processes
that are related to the energy and mass balance at the land
surface. This has been done by integrating a land surface
model, namely, the Common Land Model [Dai et al., 2003],
into ParFlow [Kollet and Maxwell, 2008a; Maxwell and
Miller, 2005]. More specifically, the 3‐D variably satu-
rated groundwater flow formulation of ParFlow replaces the
1‐D subsurface hydrology of CLM. This also allows to
accurately represent a free water table and lateral flow. Thus,
ParFlow simulates the 3‐D transient moisture redistribution
in the subsurface including nonlinear sources and sinks
from land surface fluxes (e.g., evapotranspiration) that are
calculated by CLM. Topography is derived from digital ele-
vation models and approximated in ParFlow’s finite differ-
ence framework. Since various land surface fluxes depend on
the moisture and energy state of the subsurface, a two‐way
nonlinear feedback arises between the subsurface and the
land surface that is accounted for in the resulting coupled
model. The incorporation of the different components in
a single numerical framework enables large‐scale, high‐
resolution, integrated watershed simulations that can be used
to establish virtual laboratories.
[9] It is important to note that CLM estimates the different

land surface fluxes based on similarity approaches that ap-
proximate 1‐D vertically the turbulent mass, energy, and
momentum transport above a rough surface. This means that
lateral fluxes are not incorporated explicitly, and that no
horizontal scale and resolution are assigned a priori in the
application of these approaches. This makes CLM applica-
ble to point measurements as well as global scales, which
has been pointed out previously by Dai et al. [2003] as
a major advantage of their approach. The validity of the
applied similarity approaches and thus, the kernel of CLM,
mainly depends on the roughness characteristics and het-
erogeneity of the land surface, and has to be evaluated on a
case‐by‐case basis.

3. Numerical Experimental Setup

[10] In order to evaluate the parallel performance of
ParFlow, a scaling study was performed on the JUGENE
massively parallel supercomputer (http://www.fz‐juelich.de/
jsc/jugene). JUGENE is an IBM Blue‐Gene supercomputer
with a total of 294,912 processors and 144TB of memory
capable of 0.825 PetaFLOPS (floating point operations per
second) that is currently ranked the fourth fastest super-
computer in the world (http://www.top500.org/lists/2009/11/).
In this scaling study we employed the parallel efficiency, E,
following Jones and Woodward [2001] and Kollet and
Maxwell [2006] as

E n; pð Þ ¼ T n; 1ð Þ=T pn; pð Þ ð1Þ

where T is the run time as a function of the problem size, n,
which is distributed across a number of processors, p. For the
case of a perfectly efficient parallel simulator, E(n,p) = 1,
doubling the problem size and the number of processors
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will result in the same wall clock run time. The problem size
per processor (here termed the unit problem size) was defined
to optimally exploit the relatively small per‐processor
memory size. This unit problem size was fixed at 45 × 45 ×
240 grid cells in the x, y, and z directions, respectively, for a
total of 486,000 compute cells. The total problem size was
increased by distributing the unit problem over a geometri-
cally increasing number of processors: 512, 1,024, 2,048,
4,096 (one complete JUGENE rack) and 16,384 (four com-
plete JUGENE racks).
[11] The physical problem simulated in this experiment

was a fully coupled subsurface–land surface domain. The
problem was published previously by Kollet [2009] and
consists of a 3‐D heterogeneous subsurface with Dx = Dy =
1 m, Dz = 0.025 m and nx = ny = 45, nz = 240 as afore-
mentioned. The water table was implemented as a constant
head boundary condition at the bottom of the domain with
an unsaturated zone above, extending 6 m toward the land
surface. The heterogeneous subsurface was simulated as a
spatially uncorrelated, log‐transformed Gaussian random
field of the saturated hydraulic conductivity with a variance
ranging over 1 order of magnitude. The vegetation cover
was grass using default CLM parameters. The atmospheric
time series used to drive the model was the water year 1999
data set previously used by Kollet [2009]. The time step was
fixed at 1 h and the total simulation time was 240 h.

4. Results and Discussion

[12] In order to comprehensively interrogate the scaling
behavior of ParFlow, timing information was collected for
the entire simulation platform (Figure 1a) and the different
components (Figure 1b) that are the Solver Setup; the
Solver; different objects of the Solver, such as the nonlinear
function evaluation (NL_F_EVAL), the nonlinear Newton‐
Krylov solver KINSOL, the preconditioner MGSemi; and
also the land surface module CLM. Figure 2 shows the
relative compute times of the different objects defined as
absolute compute times of the different objects scaled by the
total wall clock time.

[13] The total wall clock time ranged from some 105
to 182 min for problem sizes ranging from 486,000 cells
(p = 1) to 7,962,624,000 cells (p = 16,384), respectively.
This leads to a parallel efficiency that decreases continuously
with increasing p and results in E = 0.58 for the largest
processor number, p = 16,384. With increasing problem
size, the decrease in E is due to the increase in communi-
cation overhead that is required to exchange information at
the edges of the computational domains of adjacent pro-
cessors; nonscalability in the numerical methods; and
complete global reduction operations. Nevertheless these
E values show that the overall parallel performance of
ParFlow is excellent for problem sizes up to one rack
of processors (p = 4,096), and good for up to four racks
(p = 16,384).
[14] Figure 1a shows a stronger performance decrease

when the problem size is increased from p = 2,048 (E =
0.85) to one complete rack of processors (p = 4,096, E =
0.75) and to four racks of processors (p = 16,384, E = 0.58)
which will be explained in the following using Figures 1b
and 2.
[15] It is important to note that the total wall clock time of

the simulations is relatively small (<182 min). Thus, the
time spent in simulation initialization and the setup of the
solver infrastructure (Solver Setup) requires an increasingly
larger proportion of the total simulation time as the number
of processors increases, because the information has to be
distributed over a very large amount of processors which
requires a considerable amount of interprocessor commu-
nication. This is illustrated by an increase of relative com-
pute time from 0.03 to 0.1 for Solver Setup for an increase
in p from 4,096 to 16,384 shown in Figure 2. Thus, this
negative impact of Solver Setup on the overall parallel
performance is small for small problem sizes but becomes
amplified with larger numbers of processors due to the small
total wall clock times. However, for larger simulation times
(i.e., larger wall clock times), the negative impact of Solver
Setup on E will decrease considerably, because the setup
occurs once at the beginning of the simulation. Thus, E will
improve and approach E ∼ 0.65, which is close to that of

Figure 1a. Semilogarithmic plot of scaled parallel efficiency, E, versus the number of processors, p, of
the simulation platform ParFlow.
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Solver (i.e., time spent in the solution infrastructure and
algorithm alone, excluding communication overhead in the
process of initialization) for increasing simulation times.
[16] The above rationale is corroborated by the relative

compute times of Solver in Figure 2. Solver, which includes
the components CLM, MGSemi, NL_F_Eval and Kinsol,
naturally contributes the largest amount of compute time to
the total wall clock time and scales with E = 0.65 for the
largest processor number, p = 16,384. In Solver, the by far
largest compute time contribution stems from the nonlinear
algebraic solver Kinsol, which includes the nonlinear
function evaluation NL_F_Eval. Both components show E
values above 0.7 for p = 16,384 and, thus, determine the

overall scaling behavior of ParFlow, when the relative
contribution of Solver Setup decreases (i.e., when the total
simulation time increases). Note that these E values are
similar to that observed in the original scaling studies of
Kinsol within the ParFlow system [Woodward, 1998].
[17] Simultaneous inspection of Figures 1a, 1b, and 2

allows diagnosis of more aspects of the performance of
ParFlow. The scaling of each component taken as a function
of overall contribution to simulation time provides great
insight into not only which components scale well, but
whether they constitute a significant fraction of wall clock
time. For example, E values for CLM decrease considerably
as the number of processors increases, although there is very

Figure 2. Semilogarithmic plot of relative compute times for different components versus the number of
processors, p. Timing information is shown for different components of the ParFlow simulation platform.
Compute times of the different components were normalized by compute times for the unit problem size
on one processor.

Figure 1b. Semilogarithmic plot of scaled parallel efficiency, E, versus the number of processors, p, for
different components of the simulation platform ParFlow including the integrated land surface model CLM.
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little communication overhead in CLM, because the land
surface energy and mass balances are calculated for each
column individually without lateral transport (i.e., no inter-
processor communication is required). The reason for this
scaling behavior is that the timing information of CLM in-
cludes the initialization of the land surface module, which is
performed separately from ParFlow at the beginning of each
simulation. This again results in considerable communica-
tion overhead, because a large amount of input data needs to
be distributed over a very large amount of processors. Thus,
better performance can again be expected for increasing
simulation times, which will reduce the relative contribution
of the initialization at the beginning of each simulation.
Additional output overhead from CLM might be another
reason, though limited output was specified in the per-
formed simulations.

5. Illustrative Numerical Experiment

[18] In order to illustrate the strength of the proposed
approach, a realistic hypothetical example was simulated
focusing on the influence of subsurface heterogeneity on
evapotranspiration, ET, at the land surface [Kollet, 2009]. In
the numerical experimental setup, the difference from the
parallel scaling study described above was the representa-
tion of the heterogeneity in the saturated hydraulic con-
ductivity, Ksat. While uncorrelated Gaussian fields were
used in the parallel scaling study, correlated Gaussian fields
were generated using highly anisotropic correlation lengths
in the x, y, and z directions of lx = 10 m, ly = 1000 m, lz =
0.1 m, respectively. Thus, in order to accurately simulate the
influence of heterogeneity in Ksat and resulting variability in
ET at all scales (ranging from 100 to 103 m in the horizontal
directions), high‐resolution, large‐scale simulations were
required. Due to computational time and memory con-
straints, these results could not be obtained using commonly
applied, nonparallel simulation platforms. Here, these
computations were carried out by distributing the afore-
mentioned unit problem size per processor over a total of
16,384 processors (the maximum number used also in the
scaling study) resulting in 7,962,624,000 cells in the finite

difference framework of ParFlow. This led to a 3‐D com-
putational domain of 6 m thickness and an area of some
33.18 km2 at a resolution of 1 m and 0.025 m in the hori-
zontal and vertical directions, respectively.
[19] Note that although the simulated problem is hypo-

thetical at this point, it nevertheless constitutes a realistic test
case including realistic hydrologic boundary conditions and
atmospheric forcing, which is relevant to many science
questions dealing with the influence of subsurface hydro-
dynamics on the mass and energy balance at the land sur-
face. In the presented example, the application of the land
surface model CLM at high spatial resolution is warranted,
because the land surface roughness characteristics are homo-
geneous at all spatial scales in the simulations. Under which
conditions similarity breaks down is subject of current
research and must be evaluated on a case‐by‐case basis as
aforementioned [Huang et al., 2009].
[20] Figure 3 shows a snapshot of the calculated ET dis-

tribution for grassland at the land surface due to the het-
erogeneous subsurface. The ET distribution over the entire
domain (Figure 3, left) exhibits clearly the influence of the
anisotropy in lx and ly, which displays narrow, elongated
features on the order of kilometers in the y direction.
Zooming in on an area of 150 × 150 m (Figure 3, right)
again shows the characteristic elongated features, but addi-
tionally resolves explicitly the simulated point variability at
meter resolution that is mainly influenced by local, dis-
continuous subsurface heterogeneity in both the horizontal
and vertical directions. Thus, for the first time, simulations
resolve the variance in the mass and energy fluxes at the
subgrid scale of commonly applied, nonparallel simulation
platforms. Since this variability usually needs to be param-
eterized or interpolated using theoretical approaches in
nonparallel simulation platforms, benchmark ParFlow simu-
lations, such as the one presented here, can be useful in the
development, testing and verification of these approaches.
Additionally, two‐way feedbacks in the coupled subsurface–
land surface system can be studied at spatial scales ranging
over orders of magnitude, which allows developing spatial
scaling laws depending on the predominant processes acting

Figure 3. Snapshot of evapotranspiration, ET (W m−2), calculated for a hypothetical, heterogeneous
subsurface. The heterogeneity was approximated as a 3‐D correlated Gaussian random field in the satu-
rated hydraulic conductivity, Ksat, using highly anisotropic correlation lengths of lx = 10 m, ly = 1000 m,
and lz = 0.1 m.
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at different spatial scales. Thus, the presented example
nicely reflects the basic ideas of virtual laboratories.

6. Implications for Regional Scale Modeling at
Hydrologic Resolution

[21] Here we demonstrated excellent parallel scaling of
the simulation platform ParFlow to 4,096 processors and
good parallel scaling to 16,384 processors for problem sizes
up to eight billion compute cells. These parallel scaling
experiments also demonstrate a very tractable wall clock to
simulation time ratio: some 200 min of wall clock for 240 h
of simulation time. These two factors afford, for the first
time, catchment‐scale simulations (∼103 km2) at the hydro-
logic resolution (100–101 m resolution laterally and 10−1–
10−2 m vertically). For example, assuming a lateral resolu-
tion of 10 m with nx = 104, ny = 103, and a vertical resolution
of 0.1 m with nz = 103, 1010 elements may be simulated in a
1000 km2 catchment with a subsurface of 100 m depth!
Applying an atmospheric time series in 1 h time step will
result in about 4 days of compute time for 1 year of simu-
lation time. Thus, it is now possible to perform large‐scale,
multiyear numerical experiments at very high spatial and
temporal resolution. This unique capability allows us to
directly address many important hydrologic scientific
questions related to interactions of the subsurface–land
surface system, and the scaling behavior of hydrologic
processes and parameters. These simulations are currently in
preparation in order to study the influence of topography on
the scaling behavior on subsurface hydrodynamics at the
catchment scale [Kollet and Maxwell, 2008b].
[22] The hypothetical dimensions (nx, ny, nz) provided

above also suggest that variability in hydraulic proper-
ties, such as hydraulic conductivity, can be resolved over 3–
4 orders of magnitude in three spatial dimensions. This
presents new possibilities in the observation of the afore-
mentioned spatial scaling behavior and the derivation of
accurate spatial scaling laws. On the other hand, since var-
iability can be resolved over many orders of magnitude it
will be possible to provide benchmark simulation results
that can be used in the validation of novel theoretical
approaches of flow and transport in heterogeneous porous
media. This was demonstrated using an example simulation
of the influence of spatially correlated subsurface hetero-
geneity on evapotranspiration at the land surface. The
example simulation also reflects very well the idea and
potential of virtual laboratories that may be used in combi-
nation with field data to address the aforementioned scien-
tific questions in formalized fashion.
[23] At this point the parallel scaling study is limited to

physics‐based simulations of the interactions of the sub-
surface and the land surface using ParFlow coupled with the
land surface model CLM. In the future, additional scaling
studies will be performed using ParFlow coupled with the
climate model ARPS (Advanced Regional Prediction Sys-
tem) described by Maxwell et al. [2007] to investigate two‐
way feedbacks of subsurface hydrodynamics with weather
generating processes of the atmosphere.
[24] Finally the study shows that while hydrologic sciences

may have been slow in comparison to, e.g., atmospheric
sciences to adopt parallel programming and computing
as a standard tool to tackle important scientific questions,
this gap may soon be closed. Therefore, we strongly rec-

ommend increased development efforts and financial support
of parallel simulation platforms in the hydrologic science
community.
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