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Abstract. In 1958 B. Griinbaum made a conjecture concerning families of disjoint 
translates of a compact convex set in the plane: if such a family consists of at least 
five sets, and if any five of these sets are met by a common line, then some line 
meets all sets of the family. This paper gives a proof of the conjecture. 

I. Introduction 

Let K be a compact  convex set in the plane, and let F be a family of  pairwise 
disjoint translates of  K (also in the plane). We say that F has property T(k) if 
any k sets from F have a common transversal (i.e., a line meeting those k sets). 
Then Gri inbaum's  conjecture (G.C.) can be stated as follows [4]: 

I f  F has property T(5), and consists of  at least five sets, then there is a 
common transversal for all sets in F. 

G.C. is known to hold for circles [1], squares [4], and then, of  course, for 
ellipses and parallelograms. Danzer 's  paper  was motivated by a question of 
Hadwiger [5], who gave an example (five circles, almost touching and with centers 
forming a regular pentagon) which shows that G.C. is best possible in the sense 
that "five" cannot be replaced by "four."  

A weaker form of G.C. was recently proved by Katchalski [7]. He assumes 
T(128) (and IFI-> 128), and proves the existence of a transversal. This result is 
very nice, not only because it shows that there is a finite number  which suffices, 
but also because it is then fairly easy to see that G.C. is decidable, as it suffices 
to check whether T(5) implies T(128) or not. 
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As usual we have to give a reference to [2], which is still a very valuable 
source for results and problems about transversals. We would also like to draw 
attention to Eckhott's thesis [3], with its systematic study of basic transversal 
theory. 

Our proof starts with some standard reductions, showing that if there is a 
counterexample there is one for which t FI is finite, K is a centrally symmetric 
polygon, and the centers of the translates are convexly independent. In Section 
3 it is shown that we can assume tFI = 6, and in Section 4 the hexagon of  centers 
is studied more closely. Then follows a discussion of which single partial trans- 
versals can exist (for five sets). In Section 6 we give rules which show that certain 
pairs of  partial transversals cannot coexist. The results from Sections 5 and 6 are 
used to exclude myriads of  combinations of six partial transversals, and in Section 
7 the nonexcluded combinations are dealt with. The exclusion was made (inde- 
pendently) by hand and by computer. The computer work was organized by 
my colleague, Dr. Svein Mossige, who deserves a double thanks here, as it was 
the preparation for the computer work which provided the insight that made 
the checking by hand a feasible task. 

2. Some Standard Reductions 

Let a counterexample be given as {K +ci; i~ I}, where K contains the origin. 
Then c~ can be thought of  as a translation vector, or a point in K + c,, at will. K 
is two-dimensional, as otherwise even T(3) would suffice. 

Let S be a point set in the plane. Then we define the K-height of  S in the 
direction D as the quotient of  the length of the orthogonal projection of S on a 
line in the direction D by the length of the projection of K on the same line. 
The condition T(5) then clearly means: for any i~ < .  - • < is, the set {c , , , . . . ,  c,} 
has K-height -<1 in some direction D=D( i~  . . . . .  i5). The fact that F is a 
counterexample means that {ci: i c I} has K-height > 1 in all directions, but for 
any given direction some finite set of ci's will already have K-height > 1 in that 
direction, and in an open set of  neighboring directions. The compactness of S l 
thus shows that a finite subset of  the .ci's has K-height > 1 in all directions, i.e., 
we may assume IFt = N < ~. (In view of  Katchalski 's result we could of  course 
assume N < 129 straight away.) 

Now to symmetrization, which means to replace K by ½(K - K ), while conserv- 
ing the ci. Projecting K and ½(K - K)  on a line, we get intervals of  equal lengths, 
so K-height and -~(K - K)-height  means the same for all directions. This means 
that any subfamily of  {K + c ~ , . . . ,  K + CN} has a transversal in exactly those 
directions in which the corresponding subfamily of  { ½ ( K - K ) +  

c~ . . . .  ,½(K--K)+CN} has one. As two sets intersect if and only if they have a 
common transversal in every" direction, the disjointness of  the K + ci is also 
preserved on replacing K by ½ ( K -  K). We may thus assume K to be centrally 
symmetric. 

Remark. Symmetrization has another nice property which, though not essential 
to our proof  of  G.C., may be useful in studying geometric permutations of  families 
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of translates (see Section 6). Namely, a family and the symmetrized family admit 
exactly the same geometric permutations. The reader will easily see this by 
considering what happens as K changes into ~(K - K)  through the sets (1 - t )K  - 
tK, 0 <- t<_½, or by making an alternative calculation. 

We may also assume K to be a polygon. For if we replace K by a slightly 
larger centrally symmetric polygon K ' ,  the K-heights of  {c~ , . . . ,  cN} will decrease 
so little that we will still have a counterexample. 

It will be useful to have some independence conditions on the centers c,  

Firstly, we may assume that the ( N )  directions c, cj, i ~ j, are alt different. For 

we can replace K by ( l + e ) K ,  for some small e>O,  and still have a counter- 
example. Then we are sure of  enough freedom to move the centers c, a little so 
that coinciding directions can be eliminated. Secondly, the c, may be assumed 
convexly independent. For {c~ . . . .  , cN} and conv{c~, . . . ,CN} have the same 
K-height in any direction /9, so the extremal points of  conv{c~, . . . ,  cN} will 
already furnish a counterexample to G.C. 

3. Reduction to the Case N = 6  

The idea of this reduction is to manufacture, from the counterexample under 
study, a counterexample where some five of  the sets have a unique common 
transversal T. Then, since we have a counterexample,  some sixth set does not 
meet T. But the uniqueness of  T shows that T would be the only common 
transversal for these six sets. It follows that these six sets already form a counter- 
example. 

The manufacturing mentioned above is effected by Hadwiger 's  shrinking 
process [6], i.e., we replace, in our example,  K by AK, where A c [0, 1], and get 
what we want by choosing A as the infimum of those A's for which A K +  
c~ . . . .  , AK + cN form a counterexample.  This procedure will work when we have 
modified the given counterexample as follows. 

First we arrange it so that K has a pair of  parallel sides in each of the directions 
c, cj. This is done, for one direction at a time, by cutting two small triangles off 
K (or rather that mutilated version of the original K which we have at that 
stage). The triangles have to be small, so that no 5-tuple of  sets loses a transversal 
in the process. It may also be necessary to blow up K a little before starting the 
cutting. 

now add, on each of the 2 ( 2  ) sides introduced, an isosceles triangle We 

with base on that side and height h,j where opposite triangles get the same height 

so that symmetry is preserved, lt is clear that there is a 6 > 0 so that if the ( N )  

values h,i are in [0, 6], we will still have a counterexample given by K = 
K(h~2,  h13 . . . .  ) and cl . . . . .  cN. The projection of  K ( h l 2  , h i 3 , . . . )  on a line 
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orthogonal to c~q will equal (2h, + the corresponding length for K ) (still provided 

6 is small). So this length, l,j, is a free variable in a certain interval, and the ( N )  

variables are independent. 
In particular, when given finitely many nonzero polynomials in these variables, 

we can find values of them for which none of the polynomials vanish. We choose 
the polynomials d(c,, cr, c~)l,j-d(c~, c,, cj)l,, where d(c~, c,, c:) is the distance 
from c~ to the line c~c., and we choose only the combinations where l{r, s, t} I = 
t{i,j, k}I= 3 <-t{i,j, r, s} t. 

We assume that the 1~, have been chosen so that none of our polynomials 
vanish. Then Hadwiger's procedure will work. The critical value of )t will be the 
largest one for which at least one 5-subset of {c~ . . . . .  cN} has ( a K ) - h e i g h t -  > 1 
in all directions, with equality at least once. Let {c~ . . . . .  cs}, say, be such a set. 
As its (aK)-height is 1 in some direction, K + c~ , . . . ,  K + cs have a transversal 
T in the orthogonal direction. We claim that T is the unique transversal for 
{c~, . . . ,  cs}. Firstly, T must he tangent to at least three of the five sets a K +  
c , , . . . ,  aK + cs. For otherwise T could be moved a little, so as to meet the five 
sets in interior points, and then {c~ . . . .  , cs} would have )tK-height < 1 in some 
direction. Secondly, T cannot be tangent to more than three of the sets. For there 
would then be either three collinear points among c~ , . . . ,  cs, or two parallel 
segments defined by four of these points. 

Let T he tangent to, say, aK + c,, aK + c2, and XK + c3, meeting the sets in 
this order. Then T separates aK + c2 from aK + c~ and aK + c~, as otherwise a 
contradiction could again be obtained by moving T a little. Then we clearly have 
(as d(c2, c~, c3) denotes the distance from c2 to aff({c~, c3})) 

d(¢2, cl ,  c3) /AI13 = 1 

so that a = d(c2, q ,  t23)/113. This means that T is the unique transversal for 
AK + c~ , . . . ,  a.K + cs. For there is no other one parallel to T, and one in a different 
direction would give a. = d(¢~, c~., c:)/!~ z for some (x, y, z) with {y, z} ~ (1, 3}, 
which would make one of  the nonvanishing polynomials, described above, vanish. 

4. The Four Possible "Shapes" of the Hexagon of Centers 

Consider a convex n-gon P, having no two sides parallel. Assign to each side of 
P the unique vertex of P which has maximal distance from the line through that 
side, the opposite vertex of the side. The n-gon P'  will be said to have the same 
shape as P if there is a bijection between the vertices of  P and those of  P', and 
also one between the edges, so that incidence and "opposit ion" between edges 
and vertices are preserved. Shape is an afline invariant and it will be important 
to us further on. 

For a given n, all possible shapes are obtained as follows: start with a regular 
k-gon Q, for some odd k <- n, and a distribution of  n - k points, q~ , . . . ,  q,-k, on 
the sides of Q. Then choose n - k  points p~ , . . . ,  P,-k, one near each q~, so that 
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c o n v ( Q u { p t  . . . . .  p,-k}) becomes a convex n-gon P. If  the p, are sufficiently 
near the q,, only the vertices of  Q will be opposite to the sides of  P and the 
shape of  P will only depend on the numbers  of  q,'s on the various sides of  Q. 

We prove by induction on n that all shapes are obtained as asserted. The case 
n = 3 is trivial, so assume n > 3. Choose,  if possible, a vertex, say (0, 0) (with 
adjacent vertices (0, 1) and (1, 0)), which is not opposi te  any side o f  P. Let u be 
the vertex opposi te  the side (0, 0) - (1 ,0) ,  i.e., the highest vertex of  P. Then u is 
also the rightmost vertex o f  P (i.e., opposi te  (0, 0)-(0,  1)). For otherwise the side 
uv (where v succeeds u in the clockwise order  a round  P) would have a negative 
slope, so that its parallel through (0, 0) would exhibit (0, 0) as being the vertex 
opposite uv. 

I f  we now omit the vertex (0, 0) from P, we get a convex (n - l ) -gon  P '  where 
each side, except (0, 1)- (1 ,0) ,  has the same opposi te  vertex as it had in P. 
(0, 1)-(1, 0) clearly has the opposi te  vertex u. Having represented the shape o f  
P '  in the desired way, we can obviously add a vertex and get a representation 
for P. 

If  each vertex of  P is opposi te  some side of  P, we have to check that n is odd 
and that P has the shape of  a regular n-gon. Consider  an arbitrary vertex, say 
(0, 0), with its opposite side being ( 1 , - 1 ) - ( 1 ,  1). Let P have a sides in the first 
quadrant  and b ( = n - a - 1 )  sides in the fourth quadrant .  A side in the first 
quadrant  will have its opposi te  vertex in the fourth quadrant ,  as a tangent to P 
through the vertex and parallel to the side will have to run strictly below (0, 0) 
and (1,0).  Thus a ~ b, which, together with the converse inequality, proves our  
assertion. 

In the case n = 6 it follows that there are three possible shapes with k = 3 and 
one with k = 5. 

We list below, for each shape,  a corresponding shape sequence. This is obtained 
by naming the vertices a round  the polygon as 1 . . . .  ,6,  and forming the sequence 
j ( 1 ) , . . .  , j (6) ,  where j ( i )  is the vertex opposite the side ii+ 1. 

St: 5 , 5 , 1 , 1 , 3 , 3 .  

S~: 3 , 5 , 2 , 2 , 3 , 3 .  

$2: 5 , 5 , 6 , 1 , 3 , 4 .  

$4: 3, 4, 2, 3, 3, 3. 

In the next section we see how the shape sequence restricts the possibilities 
for the partial transversals o f  a given family F. 

5. The Possibilities for Individual Partial Transversals for F 

Consider  disjoint convex sets K~ . . . . .  K,, and a transversal T, meeting them in 
the order i t , . . . ,  i,,. Then,  according to Katchalski et aL [9], we say that the sets 
admit  the geometr ic  permutat ion ( i t , .  • •, in), and also the geometr ic  permutat ion 
( i , , . . . ,  it), which we identify with the first one. If  we have more information 
about the sets, some of  the In ! initial possibilities can often be excluded. If  we, 
for instance, for n =4 ,  let K t , . . . ,  K4 be the sets K + c t , . . . ,  K +c4 from our  
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counterexample,  then (1324) is not possible. For if it occurs, we can shrink K 
(as in Section 3), so as to get in the situation where a transversal T ( inducing 
1324) separates one set f rom two o f  the others. Up to symmetry,  only two cases 
are possible: T separates K+c2 from K+c~ and K+c4, or from K + c  3 and 
K + ca. Drawing a picture, the reader will realize that in each case the cyclic 
order  o f  the c~ is violated. 

It follows, by symmetry,  that (2431), (3142), and (4213) are also excluded. If  
we represent the permutat ion (1324) by a 3-edge path with edges c~c3, c3c2, and 
c~c4, and the 11 others in a similar way, we find that the forbidden ones are those 
for which the path crosses itself. 

Consider  now five of  the sets K + c ~ , . . . ,  K + c6, and a permutat ion o f  them, 
represented by a 4-edge self-crossing path. An edge-crossing here involves only 
four of  the sets, and so we find that this permutat ion cannot  be a geometric one, 
as it induces a nongeometr ic  one on four o f  the subsets. It turns out that 40 of  
the 60 candidates for a geometric permutat ion are excluded in this way. 

But there are further limitations on the geometric permutat ions possible in 
the present situation. Consider,  for example, the case when the shape sequence 
is 5, 5, 1, 1, 3, 3. Then we know that no geometric permutat ion for five o f  the sets 
can be o f  the form ( . . .  1 . . .  5 . . .  2 . . . ) .  For  if that were the case, then that 
common,  nonseparat ing tangent T for K + c~ and K + c2 which is not a support  
line for c o n v ( K  + ca u • • • w K + c6), would meet K + c5. But since the first ele- 
ment of  the shape sequence is 5, we know that K + c5 is the set which is furthest 
away from the support  line just mentioned. It follows that K + c3, K + Ca, and 
K + c6 also meet T, and our  counterexample fails. 

Thus each term o f  the shape sequence limits the possibilities for three o f  the 
six 5-set transversals, and the possible number  of  combinat ions  goes down from 
206 to 43 × 123. For $2, $3, and $4 we get the numbers  4 x 84 × 12, 43 × 8 × 12 x 16, 
and 4 × 83 x 202, respectively. 

6. Incompatible Pairs of Geometric Permutations 

I f  A, B, X, and Y are disjoint convex sets in the plane, then A B X Y  and BAYX 
cannot  both be geometric permutations,  as was observed in [9]. The reader will 
readily prove this, as one is immediately reduced to the case when A . . . . .  Y are 
(---1)-dimensional. Below we list this incompatible pair, together with the other 
types o f  incompatible pairs which we have used in our  proof :  

Ii: ABXY, BA YX. 

I3: AXPYB, YABX. 

I5: AXYPZ, A YZX. 

12: AXBY, A YCX. 

I4: AX YZ, A YPZX. 

Ii is valid for arbitrary convex sets. In 12 we must have some restriction on 
the sets, and we have assumed them to be translates of  one set. For  13, 14, and 
15 we use the fact that the pair in question comes from our  counterexample.  
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Before starting the proofs of 12-15, we remark that 12 (for B = C) was also 
discovered by Katchalski et al. [8]. In each case we assume that a line L induces 
the first permutation listed, and a line M the second one, and deduce a contradic- 
tion. We start with some observations which are valid in all four cases. 

Firstly, the sets may be assumed to be squares. For assume (temporarily) L 
to be horizontal, and consider the two horizontal tangents to one of the sets 
meeting L. By central symmetry, the set will have at least one central chord 
meeting both tangents. This chord meets L, and in each of the other translates 
meeting L, the parallel central chord will also meet L. The permutation induced 
on the chords corresponds, of course, to the one on the sets. 

Now the horizontality of L was irrelevant (but linguistically convenient), and 
so we conclude that there wilt be another set of parallel central chords on which 
M induces the "same" permutations as the one given on the sets. Thus, cutting 
each set down to a parallelogram spanned by a pair of central chords, we find 
that our sets may be assumed to be parallelograms. These are nondegenerate, as 
a set of parallel segments admits only one geometric permutation. After an affine 
transformation we can thus assume that the sets are squares, with horizontal and 
vertical sides. 

If  we consider three squares, A, X, and Y, say, there are in a certain sense (to 
be discussed below) 468 possibilities for their relative positions. Assuming that 
L, say, induces the permutation A X Y  and M the permutation AYX, we see that 
there are just 16 possibilities. These are the two depicted in Fig. 1 and the ones 
obtained from them by a rotation and/or  a reflection. 

Relative positions are defined as follows. " X  is to the right of A" means that 
X is strictly separated from A by a vertical line to the left of X. Similar expressions 
are also used with "left," "below," and "'above." "X  is further right than Y" 
(as in Fig. 1 (a)) means that the center of X is further right than that of Y. Whether 
X is to the right of Y or not, is left open. Similar expressions are also used with 
"further left," "lower than," and "higher than." These expressions suffice to 
define relative positions for our purpose. (Note that by increasing and moving 
the squares a little, we can avoid ambiguous cases with collinear pairs of square 
sides.) 

The figures are meant to give full information on relative positions. Thus Fig. 1 
tells us that X is lower than A, and also not below A. 

For the proof of the assertion about the 16 possibilities for X, Y, and A, we 
can clearly normalize by assuming that X is to the right of A and lower than A, 

(a) fb) 

Fig. i 
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and then prove that one of  the situations of  Fig. 1 must occur. First note that the 
permutation A X Y  shows that X meets conv(A u Y) and, afortiori, the minimal 
rectangle, with horizontal and vertical sides, containing A and Y. Similarly Y 
meets the rectangle spanned by A and X. Thus, as X is to the right of  A, Y can 
be neither to the left nor to the right of  X. Since X is lower than A, it follows 
that Y is neither below X (nor above A). Thus Y is above X, which shows that 
A is not also above X, and so we have one of the situations of  Fig. 1. Note that 
in the situation depicted in Fig. 1 L must be ascending and M must be descending. 

Each of  the cases I2-15 is normalized by assuming that X is to the right of A 
and lower than A. Considering A, X, and Y in cases 12, ]4, and I~, and A, X, 
and B in case I3, we see that L is ascending and M is descending. 

The proof  of  12 is now immediate from Fig. 1. If we have the situation in 
Fig. l(a),  then L cannot exist. For the part of  L which is assumed to run from 
X to Y would have to be contained in the rectangle shown as connecting X to 
Y. But this rectangle cannot meet B, as its height is smaller than the side-length 
of  B, and our squares are disjoint. Similarly, in the situation in Fig. l(b), M, 
which is descending, must meet C somewhere in the rectangle connecting Y and 
X, which cannot meet C, however. 

In case 13, with A X P Y B  induced by L, and Y A B X  by M, we already know 
the two possibilities for A, X, and B (see Fig. 2). But, in the situation in Fig. 2(b), 
X Y B  (induced by L) and X B Y  (induced by M)  show that Y must be to the 
right of  B, so L and M are both impossible. 

In the situation in Fig. 2(a) (for A, X, and B), it follows from YXA and Y A X  
that Y is above or below both A and X (since A and X are separated vertically). 
But Y cannot be below X because of L which is ascending from A to X to Y. 
Thus Y is above A and X, and the situation will be as in Fig. 2(a) except that 
Y might be above B (and then, possibly, not to the left of  B). But with Y above 
B, L cannot exist. Thus Fig. 2(a) is correct. The rectangle meeting just Y and X 
indicates where L must pass from X to Y, and hence meets P. The other four 
rectangles, connecting the pairs A Y, YB, BX, and XA, cannot meet P and P is 
then clearly contained in c o n v ( A u  Y u  B w  X) .  But this cannot happen,  as the 
centers of  the squares are assumed to be convexly independent. 

Figure 1 shows the possibilities for A, X, and Y also in case 14, when A X Y Z  
is induced by L and A YPZX by M. I f  we replace Y by Z, it becomes valid for 

(a) (b) 

Fig. 2 
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(a) (b) 

Fig. 3 

A, X, and Z. Since Y and Z are both above X, but not above A, they must be 
separated vertically and hence, because of L, Y is to the left of Z. The two 
alternatives are shown in Fig. 3. 

The situation in Fig. 3(a) is impossible as P cannot meet the rectangle between 
Y and Z, as required by M. In the situation in Fig. 3(b), P must meet the 
nonconvex pentagon connecting Y to Z. But only that part of it which is to the 
left of X is accessible to P and so P must be higher than and to the left of X. 
P must also be below Y (and thus lower than A), but it cannot be below A, and 
so it is to the right of A. P is thus situated as the dashed square in Fig. 3(b). We 
now use the fact that L and M are assumed to be two of the six partial transversals 
from our counterexample. Thus they do not meet the same five sets, and L does 
not meet P. But if L passes above P, it misses X, and if it passes below P, it 
misses A. 

Figure 3 gives the possibilities for A, X, Y, and Z also in the case of I5, when 
A X Y P Z  is induced by L, and A Y Z X  by M. But now we cannot have the situation 
in Fig. 3(b), as there the part of L between Y and Z cannot meet P. 

Figure 4 shows the case of Fig. 3(a), with P'  and P" showing the two alternatives 
for P (the domain connecting X, Y, and Z being inaccessible). Figure 4 is not 
completely exact, as it shows P '  as being further right than Y, whereas P '  might 
in fact be further left than Y. 

If P = P '  we use the fact that the centers of the squares are convexly indepen- 
dent, i.e., Y is not in conv(A u X w Z u P'). But Y is obviously "inside" seven 
of the lines defining this octagon. The eighth one is the common tangent (as 

Fig. 4 
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drawn) to A and P',  which also passes above Y, as A is to the left of  and not 
below Y, while P '  is above Y and not to the right of Y. 

If  P =  P" we use the fact that M does not meet P (just as L did not meet P 
in the case of  I4). As M is descending and meets X, it must pass below P". Thus 
M meets the left vertical tangent to Z above P" and the right one below P", so 
that slope (M)  < -1 .  On the other hand, M must leave and enter Y through its 
vertical sides, so that slope (M)  > -1 .  This contradiction ends the discussion of 15. 

7. End of the Proof 

Consider a counterexample F to G.C., having a given shape sequence for the 
hexagon of centers. The six partial transversals of  F induce six geometric permuta- 
tions, one for each five of  the sets in F. From Section 5 we know which possibilities 
there are for each of these permutations, and in Section 6 we proved that certain 
types of  pairs of  permutations cannot coexist. Using this knowledge we checked 
by hand and, independently, by computer, which sixtuples of  permutations are 
possible. The computer  work was organized as follows. For a given shape 
sequence, six lists L~ . . . . .  L 6 of possible permutations were produced, and also 
15 tables T~, showing which combinations of  a permutation from L, and one 
from L~ are incompatible. We now go through all possible combinations of six 
permutations, one from each L,. If, for a given combination r r l , . . . ,  7r6, say, i 
is the first index for which 7ri is incompatible with some Try,j< i, then this 
combination is discarded, simultaneously with all combinations of  the form 
~/'/'1, • • • J'/'i, Oi+l," " ' ,  06" The computer work took less than 5 minutes CPU-time 
on the Univac 1100/82 of  the University of Bergen Only two sixtuples come out: 

and 

3 2 4 5 6 ,  4 3 5 6 1 ,  5 4 6 1 2 ,  6 5 1 2 3 ,  1 6 2 3 4 ,  2 1 3 4 5  

2 3 4 6 5 ,  3 4 5 1 6 ,  4 5 6 2 1 ,  5 6 1 3 2 ,  6 1 2 4 3 ,  1 2 3 5 4 ,  

and they both occur when the shape sequence is S~ or $2. 
We have to prove that these sixtuples cannot arise after all. Consider one of 

them, and consider the set K + c2, say, and the set 

K 2 = c o n v ( K  + c~ w K + c3 w K + c4 w K + cs u K + c6). 

The fifth permutation shows that K + c2 meets conv(K + cl w K + c3). The convex 
independence of the ci, and their cyclic ordering, then shows that K + c2 meets 
that boundary segment of  K2 which connects K +cl  to K +c3. K +c2 thus 
penetrates partly into K 2 between K + ct and K + c3. 

Consider now the standard triangular lattice in the plane. We may assume 
that Cl, c3, and cs are lattice points at pairwise distances of  two lattice units, and 
that ClC3 is horizontal, with c5 above c~c3 (see Fig. 5). Let H + C l  be the regular 
hexagon formed by the lattice triangles around Cl, let L be the lower horizontal 
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k+c, k+c, 

Fig. 5 

tangent to H+c~ and let k+c~ be a point in (K+c~)~L (its existence being 
assumed for the moment). Then the area of the parallelogram with vertices 
k + c~, k + c3, c~, and c3 equals four (triangular units). But we shall see that, of 
that area, K + c~ and K + c3 together cover at least two units. Also (provided we 
have made the right choice) K + c2 covers at least two units, which contradicts 
the disjointness of our sets. 

In order to see that K + c~ meets L, it suffices, by the central symmetry of K, 
to see that K + c~ meets the reflection of L in c~, i.e., the line L' through ½(c~ + c5) 
and ½(c3+c5). But if K+c~ were below L' then K+c~ would lie above it, by 
symmetry, and so L' would separate K + c5 from K + c~ and K + c~. This contra- 
dicts the existence of the second permutation, however, and so the point k + c~ 
really exists. 

The point k + c~ even belongs to the lower horizontal side of H + c~, not just 
to L. For if it were outside that side, then it is obvious that -k+c5 would not 
be between - k  + c~ and - k  + c3, so that L' would induce a permutation different 
from 1, 5, 3. But the second permutation shows that the upper common horizontal 
tangent to K + c~ and K + c3 induces 1, 5, 3. This is a contradiction, as parallels 
cannot induce different permutations. 

We have just seen that K + c~ meets the horizontal sides of H + c~. Symmetry 
then shows that the positive-sloped sides are also met by K +ct .  A similar 
argument to the one above shows that K + c5 meets the lower horizontal side of 
H + c5, and then symmetry shows that K + c~ also meets the negative-sloped sides 
of H+c~. 

The fact that K meets the sides of H in points ±k, ±k' ,  and ±k" implies that 
K c~ H has an area of at least four triangular units. For the area of the hexagon 
with vertices ±k, ±k' ,  and ± k" is a linear function of the parameter which describes 
the position of  one pair of  vertices, while the other pairs are constant. Thus it 
achieves its minimum (at least) when each of k, k', and k" is a vertex of H. 

Consider now the parallelogram with vertices c~, c3, k + c~, and k + c~. That 
part of it which is covered by K + c~ and K + c~ equals exactly half of  the area 
of K ~ H, i.e., at least two triangular units. The part which is covered by K + Cz 
will depend on the position of  c2. We shall see below that c2 can be assumed to 
lie above L. The area we are interested in is that part of K + c2 which ties in the 
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strip between L and the line c~c3. The symmetry of K shows this area to be a 
(weakly) decreasing function of the distance from c2 to the center of the strip. 
Thus its value is at least two triangular units, as we get at least that when c2 lies 
on L. 

It only remains to show that c2, our chosen center, can be assumed to lie 
above L, i.e., that in a barycentric coordinate system, with basis cl, c3, and c5, 
the cs-coordinate of c2 is greater than -½. We prove a little bit more, namely that 
for some i, the ci+3-coordinate of c,, with reference to the basis c,_~, c,+~, c,~3 

(everything is read mod 6, of course) equals at least -~. And if the largest of the 
ci+3-coordinates equals -~, then they are all equal and conv{c~, . . . ,  c6} is the 
affine image of a regular hexagon. 

Affine invariance shows that we may assume c~, c3, and c5 to be fixed points, 
and then minimize the maximal one of the six coordinates we are interested in, 
letting c2, c4, and c6 vary under the given conditions. These say that c t , . . . ,  c6 
are the successive vertices of a nondegenerate convex hexagon. 

The minimum in question must be assumed. For if c,, c4, and c6 stay bounded, 
and c2, say, approaches the line c tc3 ,  then its cs-coordinate tends to 0. And if 
c2 approaches the line c3c5, say, while staying away from c~c3, convexity forces 
c4 toward c3c5. Possible unboundedness of, say, c2 is dealt with during the 
computation to follow. 

Let A be a 3 × 3 matrix where a 0 is the c:p+3-coordinate of the point c2,, and 
let B be its inverse. The six numbers we are interested in are the diagonal elements 
of A and B, and we want to minimize their maximum. The conditions imply that 
A and B have negative diagonal elements and positive off-diagonal elements. 
Thus the equations 

a i l b l , + a i 2 b 2 , + a i 3 b 3 , = l ,  i=  1,2,3, 

show that if a,, < -3 ,  then b,i > -~, which deals with unboundedness, as promised. 
Hence our minimum is assumed, and we go on to consider a corresponding 
matrix pair A and B (=A- l ) .  

Firstly, al~ = a22= a33-----bj~ = b22 = b33.  For if a~l, say, is the smallest of these 
numbers, and they are not all equal, then we can increase al1 by moving the 
point c2 a little toward c5, along the segment c2c5. Then a22 and 033 do not change, 
while b t l  , b22 ,  and b33 decrease. A slight move of any of the points c,, i = 1, 3, 5, 

toward c,+3, makes a22 and a33 decrease, too, and minimality is contradicted. 
Put a~l . . . . .  b33 = -x .  Then since B ----- A -l, we have x 2 -  a 2 3 a 3 2  -~ 

x 2 - a 3 1 a 1 3  = X 2 -  aj2a2~,  so that, since the row sums of A equal 1, 

a23(1 + x -  a31 ) = a3n(1 + x - an2 ) = al2(1 + x -  a23 ). 

Expressing al2 in terms of a23 and a31 , and substituting this in the middle term 
above, we get from the first equation 

(a23 - a3~)( (1 + x - a23)(1 + x )  + a3,a23 ) = O. 
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But here the second factor  is posi t ive,  as 1 + x  - a23 = a2~ > 0, and  so a23 = a3~ = a, 
say. By symmet ry  al2 = a, and,  also, b23 = b3~ = b~2 = b, say. Thus A and B are 
circulants with first rows - x ,  a, 1 + x - a and - x ,  b, 1 + x - b, respect ively.  A B  = I 

now gives 

x2 + a( l  + x - b ) + ( l  + x - a ) b =  l, 

- b x - a x + ( 1  + x - a ) ( 1  + x - b )  = 0 ,  

i.e., a + b = 1 + x, a b  = x ( 1  + x ) .  Hence  a = ½( 1 + x ± x/(1 + x)(1 - 3x))  so that  x -< I .  
But this was our  main  assert ion.  The add i t iona l  asser t ion abou t  the extremal  case 
also fol lows from our  argument .  
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