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Abstract. Ajtai and Dwork proposed a public-key encryption scheme
in 1996 which they proved secure under the assumption that the unique
shortest vector problem is hard in the worst case. This cryptosystem and
its extension by Regev are the only one known for which security can be
proved under a worst case assumption, and as such present a particularly
interesting case to study.

In this paper, we show statistical zero-knowledge protocols for state-
ments of the form “plaintext m corresponds to ciphertext c” and “ci-
phertext c and c’ decrypt to the same value” for the Ajtai-Dwork cryp-
tosystem. We then show a interactive zero-knowledge proof of plaintext
knowledge (PPK) for the Ajtai-Dwork cryptosystem, based directly on
the security of the cryptosystem rather than resorting to general inter-
active zero-knowledge constructions. The witness for these proofs is the
randomness used in the encryption.
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1 Introduction

There is much to celebrate in the progress made by cryptography on many fronts:
rigorous definitions of security of natural cryptographic tasks, constructions of
schemes achieving security based on general assumptions, new and seemingly
contradictory possibilities such as zero-knowledge proofs and secure multi-party
computations.

Still, during all this time, the implementations of this progress or rather the
assumptions that underly all implementations, remain almost exclusively the
intractability of factoring integers and of computing discrete logarithms which
go back to the original papers of [9, 25] (often even stronger versions of these
assumptions are utilized to gain better efficiency, such as higher quadratic resid-
uosity, DDH, Strong-RSA ). There are a couple of exceptions: computational
problems over Elliptic Curves and computational problems over Integer Lat-
tices. Whereas the computational problems over Elliptic curves do not seem to
be inherintely harder than the analogous problems over finite fields, the use of
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computational problems over lattices seem to present a new frontier. Due to the
pioneering work of Ajtai[], these problems certainly show the greatest promise
from a theoretical treatment point of view.

In particular, in 1996, Ajtai and Dwork proposed [1] a public-key cryptosys-
tem which is secure under the assumption that the unique shortest vector prob-
lem in integer lattices is hard in the worst case. The Ajtai-Dwork cryptosystem
(and its extension by Regev [24]) are the only known public-key cryptosystems
with the property that breaking a random instance of it is as hard as solving the
worst-case instance of problem on which the system security is based. As such it
present a particularly interesting and unique system to study from a complexity
theoretic point of view.

Much study has been dedicated to the number theory based encryption sys-
tems (e.g. Cramer-Shoup, Paillier, RSA ), showing how to incorporate them effi-
ciently into larger protocols (e.g. designated confirmer signatures, e-cash proto-
cols), extending their basic functionality (e.g. threshold decryption, verifiable en-
cryption, group encryption, key-escrow versions), and extending them to achieve
stronger security definitions (e.g. chosen cipher-text security, interactive encryp-
tion with efficient proofs of plaintext knowledge).

In contrast, the work on AD cryptosystems has been restricted to attempting
cryptanalysis of the original scheme( [23], showing chosen cipher text attacks [19],
and proofs tightening the worst case versus average security reductions [24]. To
date, there has been no protocol work involving the usage of AD encryption.

We can only speculate why this study is missing. Possibly, since the math-
ematics underlying the AD systems seemingly does not lend itself to simple
treatment as in the case of the number theoretic schemes. Possibly, because AD
is viewed largely of interest as a theoretical case study rather than one envi-
sioned useful within other application. Or, perhaps, because it is a secondary
order concern which naturally will follows the basic study of security. In any
case, as by enlarge all existing number theoretic cryptosystems stand and fall
together whereas the security of AD seems unrelated and could hold even if the
former does not, we feel it is time to begin such treatment. Certainly, we will
only be able develop intuition about the usability of this system, by attempting
to do so. We initiate this study in this paper.

We begin with investigating very simple questions, which seem fundamental
to many applications of public-key encryption schemes.

– First, we show how AD can be augmented to be a verifiable encryption
scheme, by providing statistical zero knowledge proofs for basic statements
about the plaintext of AD ciphertexts, such as ‘ciphertexts c and c’ decrypt
to the same plaintext’ and ‘ciphertext c decrypts to plaintext m’. The witness
for these proofs is the randomness used in the encryption.

– Second, we show a zero-knowledge interactive proof of plaintext knowledge
for AD ciphertexts. Again the witness for this proof is the randomness used
in the encryption. The construction is simple and direct, and does not uti-
lize general ZK interactive proof constructions or general tools such as the
existence of one-way functions. Rather it exploits the statistical zero knowl-
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edge protocols constructed above to prove statements which arise within the
interactive proof of plaintext knowledge. The computational zero knowledge
property is proved assuming the security of the AD cryptosystem itself. The
existence of a zero-knowledge interactive proof of plaintext knowledge, es-
tablishes in turn an interactive encryption variant of AD cryptosystem which
is CCA1 secure ([13, 16]) costing reasonable overhead beyond the complex-
ity of AD encryption itself. In contrast Hall, Goldberg, Schneier [19] showed
that the secret key of the AD cryptosystem can be recovered using a CCA1
attack.

Previously, computational zero knowledge protocols for all the statements we
prove were only known by utilizing general ZK interactive proofs for NP [17].

Throughout our work, instead of using the original Ajtai-Dwork construction
which has non-zero decryption error probability, we use the decryption-error-free
variant of Goldreich, Goldwasser and Halevi [15]. The semantic security of the
modified cryptosystem holds under under the same assumption as the original
cryptosystem. We refer to it as the AD cryptosystem throughout.

We make technical use of two prior works. The work of Micciancio and
Vadhan[21] which shows a statistical zero-knowledge protocol with efficient
provers for approximate versions of the SVP and CVP problems where the wit-
ness is a short vector in a lattice (or a point close to the target in the CVP
case). And the work of Nguyen and Stern [23] which show how to use a CVP
oracle to cryptanalyze the AD cryptosystem. Although Nguyen and Stern’s work
was aimed at cryptanalysis and showed that AD cryptosystem is no harder to
break than the CVP problem, we use it as a positive result, using it as a tool to
generate ‘good instances’ of an AD public key and ciphertexts for our verifiable
encryption protocols for which our protocols will work. This continues the tradi-
tional pattern of research on lattices in cryptography, where progress on lattice
research is used on one hand to cryptanalyze existing schemes and on the other
hand to provide security proofs for lattice based cryptographic schemes.

We proceed to elaborate on related work and concepts, and our results in
some detail.

1.1 Related Results and Conepts

Verifiable Encryption. Verifiable encryption was introduced by Stadler in
[26] in the context of publicly verifiable secret sharing, and in more general
form by Asokan, Shoup and Waidner in [2] for the purpose of fair exchange of
digital signatures. In the verifiable encryption setting, there are three parties. A
party who generates the secret/public key pair (PK, SK), an encryptor which
we refer to as the prover who creates a ciphertext of some plaintext, and a
verifier who on input a public-key and a ciphertext verifies some application-
driven properties of the plaintext. Verifiable encryption is defined with respect
to some binary relation R defined on plaintext messages. Informally, a verifiable
encryption with respect to relation R is a zero-knowledge protocol which, on
public inputs ciphertext c, δ, and PK allows a prover to convince a verifier
that the ciphertext c is an encryption of a message m with public key PK such
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that (m, δ) ∈ R (as in [4]). The prover uses the randomness which was used to
generate the ciphertext c as auxilary input.

By using zero knowledge interactive proofs for NP [17], it is clearly possi-
ble to turn all known encryption schemes into verifiable encryption schemes for
any R ∈ NP . However, for specific relations R of interest we may be able to
get much more efficient protocols, with stronger security properties (e.g. sta-
tistical vs. computational zero-knowledge). For example, in recent work of Ca-
menisch and Shoup [5], they propose a modification of the Cramer-Shop cryp-
tosystem [7] based on the Paillier’s decision composite residuosity assumption,
for which they show an efficient verifiable encryption scheme for the relation
R = {(m, (δ, γ))|γm = δ}. Namely, they demonstrate efficient statistical ZK
proofs on input a public key, ciphertext c (of the modified encryption scheme),
and γ, δ pair, that c is the encryption of an m for which γm = δ.

Plaintext Proofs of Knowledge Given an instance of a public-key encryp-
tion scheme with public key pk, a proof of plaintext knowledge(PPK) allows an
encryptor (or prover) to prove knowledge of the plaintext m of some ciphertext
C ∈ Epk(m) to a receiver. A proof of plaintext knowledge should guarantee that
no additional knowledge about m is revealed to the receiver or an eavesdropper.
Customarily, this requirement is captured by requiring the plaintext proof of
knowledge to be a zero-knowledge proof.

For the Rabin, RSA, Goldwasser-Micali, Paillier, El-Gamal encryption
schemes, well known 3-round zero-knowledge public-coin proofs of knowledge
protocols (often referred to as Σ protocols) can be easily adapted to achieve
efficient PPKs.

When both the sender and the receiver are on-line, interactive public-key
encryption protocols may be used. Starting with an underlying semantically se-
cure public-key encryption scheme which has a zero-knowledge proof of plaintext
knowledge, the sender of the ciphertext c in addition engages in a proof of plain-
text knowledge with the receiver. The result is a CCA1 secure public-key encryp-
tion scheme [13, 16]. Utilizing efficient PPKs for specific number theoretic based
semantically secure public-key encryption schemes such as the Blum-Goldwasser,
Paillier, and El Gamal scheme, thus yields efficient CCA1 secure interactive
public-key encryption variants of these schemes. Better yet, Katz[20] shows how
design efficient interactive non-malleable proofs of plaintext knowledge for the
RSA, Rabin, Paillier, and El-Gamal encryption schemes. Using these, one obtains
efficient CCA2 secure interactive public-key encryption variants of the underly-
ing schemes.

Naturally, if one-way functions exist, PPKs can be achieved using complete-
ness results [17] for interactive zero-knowledge proofs for NP, proofs of knowl-
edge for NP[12], and non-malleable interactive zero knowledge PPK for NP[8].
However, these general constructions are prohibitively inefficient as they require
as a preliminary step polynomial time reductions to instances of NP-complete
problems.

For the Ajtai-Dwork cryptosystem, these general completeness constructions
of PPK were the only one knows prior to our work.
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Finally, we note that in contrast to the interactive case, known constructions
of non-interactive zero-knowledge proofs (NIZK) [8] for NP languages (which are
a central tool in constructing CCA2 secure non-interactive public-key encryption
given semantically secure public-key encryption algorithms) require trapdoor
permutations. The intractability assumption on which the security of the Ajtai-
Dwork cryptosystem is based, however, is not known to imply the existence
of trapdoor permutations. It remains a central open problem to find a non-
interactive CCA2 secure public-key encryption algorithm (efficient or otherwise)
based on the AD-cryptosystem assumption.

Lattice Tools. Our work uses as tools the results of [21] and [23]. In [21]
Micciancio and Vadhan provide a zero-knowledge proof system for the GapCVPγ

problem for γ = Ω(
√

n
log(n) ) where n is the dimension of the lattice. An instance

of the GapCVPγ is a triple consisting of a lattice L, a vector x and a value t. An
instance is a YES instance if the distance between the vector x and the lattice L
is less than t. If the distance is greater than γt the instance is a NO instance. In
the proof zero-knowledge system of Micciancio and Vadhan [21] a prover proves
to a verifier that an instance of the GapCVPγ is a YES instance. If the instance
is NO instance, the verifier rejects with high probability.

Nguyen and Stern showed in [23] how to use a CVP oracle to distinguish be-
tween ciphertexts of ‘0’ and ‘1’ of the Ajtai-Dwork cryptosystem (with decryption
errors). For a random public key and a random ciphertext of the Ajtai-Dwork
cryptosystem, Nguyen and Stern construct some lattice L and some vector x.
They show that for ciphertexts of ‘0’ the distance between the lattice L and the
vector x is likely to be small, whereas for ciphertexts of ‘1’ the distance is likely
to be large.

1.2 Our Results in Detail

Verifiable Encryption for the AD Cryptosystem. The first result of
this paper is the design of statistical zero-knowledge protocol for proving that
ciphertexts decrypt to given plaintexts for the AD public key cryptosystems.
Namely, on public inputs ciphertext c, δ, and public-key PK a verifiable encryp-
tion scheme for the equivalence relation R = {(m, δ)|m = δ}.

The encryption method of Ajtai and Dwork is bit-by-bit. Thus, to prove
statement of the form “c is the ciphertext corresponding to m” it suffices to
construct two zero-knowledge protocols: one to prove that a ciphertext decrypts
to ‘0’ and the other is to prove that a ciphertext decrypts to ‘1’. We construct
two separate but in principle similar protocols for these tasks.

Ciphertexts of the AD cryptosystem are vectors in some public key dependent
domain. The decryption algorithm decrypts every vector of the domain to ‘0’ or
‘1’, but not all vectors can be obtained by encrypting ‘0’ or ‘1’. We say that a
ciphertext is legal if it can be legally obtained by running encryption algorithm.
The protocol for proving that a ciphertext c decrypts to ’b’ (for b ∈ {0, 1}
respectively) has the following properties of completeness and soundness: if c is
a legal ciphertext of ’b’, then the verifier always accepts; if the decryption of c is
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not ’b’ (regardless whether c is a legal encryption of ’b’ or not), then the verifier
rejects with high probability. Thus, completeness holds only for c’s which were
obtained legally by applying the encryption algorithm, whereas soundness of the
protocols holds for any input c from the prescribed domain.

We remark that the completeness of the protocols we present here requires
some technical condition to hold for the public-key and the input ciphertext on
which it is applied. Luckily, theorems proved in [23] show that with good prob-
ability, random public-keys produced by the AD key generation algorithm and
random ciphertexts produced by the AD encryption algorithm obey these tech-
nical conditions. Moreover, it is easy to check if these conditions hold for a given
public-key at key generation time, and for a given ciphertext at encryption time
(using the randomness used by the algorithm to generate the ciphertext). Thus,
we modify the AD key generation algorithm and encryption algorithm to ensure
that all legally generated public-keys and ciphertext obey the desired conditions.
We emphasize that the soundness of our protocols hold for all ciphertexts and
public keys, regardless of whether they obey the said conditions.

The idea behind the protocol for proving that a ciphertext decrypts to ‘0’
is as follows. We show a transformation of AD public-keys and ciphertexts to
instances of the GapCVPγ problem, such that (1) a legal AD public key and
legal AD ciphertext which decrypts to ‘0’, transforms to a YES instance of the
GapCVPγ ; and (2) any AD public key and any ciphertext which decrypts to
‘1’ transforms to a NO instance of the GapCVPγ . On common input, a public
key and a ciphertext, the prover and verifier transform it to the appropriate
instance of GapCVPγ and run the Micciancio and Vadhan [21] zero-knowledge
protocol for proving that the constructed instance is a YES instance. The value
of γ = Ω(

√
n

log(n) ) where n is polynomially related to the value of the security

parameter. The same approach is used to design the protocol proving that a
ciphertext decrypts to ‘1’.

The second result of this paper is the design of a verifiable encryption scheme
on inputs PK and ciphertext c for the encrypted equivalence relation R1 =
{(m, c′)|c′ is a legal AD encryption with public key PK of m}. Again, as the AD
cryptosystem is bit-by-bit, it will suffice to construct a statistical zero-knowledge
protocol to prove that given two ciphertexts c and c′, encryped with public key
PK, decrypt to the same bit. The prover’s auxilary inputs are the random bits
used by the encryption algorithm to generate c and c′.

We take advantage of the observation that if c and c′ are legal AD ciphertexts
of the same bit under the same AD public-key PK, then with high probability
c = (c + c′) mod P (w1, . . . , wn)) decrypts to ‘0’ (where P (w1, . . . , wn) is the
parallelepiped spanned by the wi’s specified in the public key PK, see section
2.2). Thus, the prover need only prove is that c decrypts to ‘0’ , using the sta-
tistical zero-knowledge protocol above for proving that AD ciphertext decrypts
to ‘0’. If c is a legal ciphertext which decrypts to the same bit as c′ the prover
will succeed, whereas for any c which does not decrypt to the same bit as c′

the prover will fail with high probability. Due to lack of space in this extended
abstract further treatment of this result is omitted.
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ZK Proofs of Plaintext Knowledge for AD Cryptosystem. We pro-
vide a direct (without using general results about NP in Zero-knowledge) zero-
knowledge interactive proof of knowledge of the plaintext(PPK) for the AD
cryptosystem.

As AD cryptosystem is a bit-by-bit encryption scheme, it suffices to describe
how to prove on input public key PK, and ciphertext c of a single-bit plaintext
b that the prover ‘knows’ b.

We prove that if c and c′ are legal encryptions of b and b′ respectively under
AD public key PK, then with high probability c+ c′ mod P (w1 . . . wn) decrypts
to b ⊕ b′. The proof of plaintext knowledge for the AD cryptosystem follows
naturally. On input (PK, c) where c is an encryption of b, the prover sends the
verifier a random encryption c′ of a random bit b′. The verifier then asks the
prover to either prove that it knows the decryption of c′ or to prove that it
knows a decryption of c + c′ mod P (w1 . . . wn). The former can be done simply
by revealing the randomness used to encrypt c′ and the latter can be done by
proving in statistical zero-knowledge that c + c′ decrypts to b ⊕ b′ using the
statistical zero knowledge protocols designed in the first part of this work.

We prove that the resulting protocol is computational zero-knowledge under
the same worst case intractability ISVP assumption of the AD cryptosystem.

Assumption ISVP: (Infeasibility of Shortest Vector Problem): There is no
polynomial time algorithm, which given an arbitrary basis for an n-dimensional
lattice which has a ”unique poly(n)-shortest” vector, finds the shortest non-zero
vector in the lattice. By ”unique poly(n)-shortest” vector we mean that any
vector in the lattice of length at most ”poly(n)” times bigger than the shortest
vector, is parallel to the shortest vector.

Combining the zero-knowledge PPK protocol with the AD cryptosystem,
where the sender/encryptor (along with sending the ciphertext) interactively
proves to the receiver that he knows the plaintext, yields automatically an in-
teractive encryption scheme which is CCA1 secure based on ISVP. Previousy,
Hall, Goldberg, Schneier [19] show how to completely recover the secret key of
AD cryptosystem under a CCA1 attack.1

We believe that addressing the smaller problem of zero-knowledge PPK for
AD cryptosystem as we have done here, is a promising first step in the pursuit
of an CCA2 secure lattice based public-key encryption scheme, possibly first in
an interactive setting by extending our protocol to be non-malleable.

2 Preliminaries
2.1 Notations

We let x ∈R S denote choosing x at random with uniform probability in set S.
Given a parallelepiped P = P (w1, . . . , wn) and a vector v, we reduce v modulo

P by obtaining a vector v′ ∈ P so that v′ = v +
∑

i ciwi, where the ci are all
integers. We denote it by v′ = v mod P .

1 Their work explicitly addresses the [15] variant with eliminated decryption.
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All distances in this paper, are the Euclidean distances in R
n. Let dist(v1, v2)

denote the distance between vectors v1 and v2 in R
n, and dist(v, S) denote the

distance between vector v and a set S in R
n.

Let v1, . . . , vm be linearly independent vectors in R
n. An m-dimensional lat-

tice with the basis {v1, . . . , vm} is the set of all integer linear combinations of
vi’s, {∑m

i=1 aivi : ai ∈ Z} .
For linearly independent vectors w1, . . . , wn in R

n the parallelepiped spanned
by wi’s is the set

P (w1, . . . , wn) =

{
n∑

i=1

aiwi : ai ∈ [0, 1)

}
.

The width of the parallelepiped P (w1, . . . , wn) is the maximum over i of distances
between wi and the subspace spanned by other wi’s.

For every v ∈ R
n there is only one v′ ∈ P (w1, . . . , wn) such that v − v′ =∑n

i=1 aiwi for some integers a1, . . . , an. We denote this by v′ = v mod P (w1, . . . ,
wn). Note, that we can consider n to be dimension of the lattice L. We can always
consider a lattice to be enclosed in a subspace spanned by it’s basis vectors.

For interactive protocols involving two parties A (the prover) and B (the
verifier), we let the notation (A(a), B(b))(x) be the random variable denoting
whether B accepts or rejects common input x following an execution of the
protocol where B has private private input b and A has private input a.

2.2 The Ajtai-Dwork Cryptosystem with Eliminated Decryption
Errors

Let the security parameter be denoted by n.
In order to simplify the construction we present the scheme in terms of real

numbers, but we always mean numbers with some fixed finite precision. We
need to define several parameters which will be used throughout the paper. For
a security parameter n let m = n3, ρn = 2n log n. We denote by Bn the n-
dimensional cube of side-length ρn. We also denote by Sn the n-dimensional ball
of radius n−8.

The errorless Ajati-Dwork cryptosystem [15] consists of three algorithms
(K, E , D), where K is a key generation algorithm, E is an encryption algorithm,
and D is a decryption.

The encryption algorithm encrypts strings in a bit-by-bit fashion and thus in
this paper we shall assume henceforth that all messages are single bits.

Key Generating algorithm K on input 1n:
The private key SK = vector u chosen at random from the n-dimensional

unit ball.
The public key PK = {w1, . . . , wn, v1, . . . , vm, k}, where v1, . . . , vm,w1,. . . ,wn

are vectors in R
n generated as follows.

v’s: For i=1. . .n (1) Pick vector ai at random from the set {x∈Bn :〈x, u〉∈Z};
(2) For j = 1, . . . , n select δj at random in Sn; (3) Output vi = a +

∑n
j=1 δj .
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w’s: The vectors w1, . . . , wn are obtained according to the same procedure
as vectors v1, . . . , vm, subject to the additional constraint that the width of
the parallelepiped P (w1, . . . , wn) is at least n−2ρn. Remark: It is shown in [1]
that the width of P (w1, . . . , wn) will be large enough with probability at least
1 − n−1/2.

k: Choose k at random from the set of {i : 〈ai, u〉 is an odd integer}. We note
that such an index exists with probability 1 − 2−Ω(m).

We let (SK, PK) ∈ K(1n) denote picking a pair of keys according to generat-
ing algorithm K on input 1n, and call such pair an instance of AD cryptosystem.
In various definitions and theorems in this paper, given an instance (SK, PK)
of the AD cryptosystem, we often refer directly to components of PK and SK
as u,v1, . . . , vn etc.

At times our algorithms may take as input keys K = {w1,. . . ,wn, v1,. . . ,vm, k}
which may not have been generated by K, in which case we refer to them as AD
public-key’s.

Encryption algorithm E on input public key PK and message bit b:
Choose r = r1, . . . , rm, ri ∈R {0, 1}.
If b = ‘0′, set ciphertext c =

∑m
i=1 rivi mod P (w1, . . . , wn).

If b = ‘1′, set ciphertext c = (vk

2 +
∑m

i=1 rivi) mod P (w1, . . . , wn).
Denote ciphertext c obtained by encrypting b under public key PK using ran-
domness r, as c = Epk(b; r).
Decryption algorithm D on input ciphertext c and secret key u:

If dist (〈c, u〉 , Z) < 1
4 , output ‘0’, otherwise output ‘1’.

We let DSK(c) = b, denote the event that c decrypts to b, under secret key SK.

Note that the cryptosystem (K, E , D) is errorless. Namely, a legal encryption
of ‘0’ will always be decrypted as ‘0’ and analogously an encryption of ‘1’ is
always decrypted as ‘1’.

2.3 Generating Good Public-Keys and Ciphertexts

We note that completeness of the protocols we design in this paper, will only hold
for public-keys and ciphertexts which obey certain ‘good’ technical conditions
defined below.

By theorems proved by Nguyen and Stern in [23] (for the purposes of crypt-
analysis of AD cryptosystem), it follows that such good public-keys and cipher-
texts will come up with high probability in the natural course of running the
generating algorithm K and encryption algorithm E . Moreover, the parties who
run K and E can check that the outputs are good, and if not repeat the process
till a good output is computed.

We will thus modify the definition of algorithms K (for key generation) and
E (for encryption) to to ensure they always output public-keys and ciphertexts
which are good.

Formally,
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Definition 21. Let ε ∈ (0, 1). We say that a public key PK = {w1, . . . , wn, v1,
. . . , vm, k} where v1, . . . , vm, w1, . . . , wn are vectors in R

n of AD is ε-good if

E

⎡
⎣ n∑

j=1

〈
m∑

i=1

(bivi), w⊥
j

〉2
⎤
⎦ ≤ n4ρ2

n

2ε
, (2.1)

where w⊥
j is a unit vector orthogonal to the hyperplane spanned by other wj’s.

Expectation is taken over independent uniform choices of b1, . . . , bm from {0, 1}.

Claim 22. [23] For sufficiently large n, for any ε ∈ (0, 1), a public key PK of
AD picked at random according to the key generating protocol of section (2.2) is
ε-good with probability at least 1 − ε.

Definition 23. Let ε, ε1 ∈ (0, 1), and PK be an ε-good public key of AD.
We say that a ciphertext c of ‘0’ is (ε, ε1) − good if for ai, bi’s such that c =∑m

i=1 bivi +
∑n

i=1 aiwi

dist
((

n6√nc
0

)
, BPK(a1, . . . , an, b1, . . . , bm)t

)
≤
√

1 +
1

2εε1
n4 (2.2)

Claim 24. [23] For sufficiently large n, for any ε, ε1 ∈ (0, 1) and an ε-good
public key PK of AD the following holds: a random ciphertext c of ‘0’ is (ε, ε1)-
good with probability at least 1 − ε1. Probability is taken over random bits used
by the encryption algorithm E to encrypt c.

Definition 25. Let ε, ε1 ∈ (0, 1) and PK be an ε-good public key of AD. We say
that a ciphertext c of ‘1’ is (ε, ε1)−good if and only (c− vk

2 ) mod P (w1, . . . , wn)
is a (ε, ε1)-good ciphertext of ‘0’.

Since, a random ciphertext c of ‘1’ (c− vk

2 ) mod P (w1, . . . , wn) is distributed
as a random ciphertext of ‘0’, we automatically get an analogous claim for ran-
dom ciphertexts of ‘1’.

Claim 26. For sufficiently large n, for any ε, ε1 ∈ (0, 1) and for an ε-good public
key PK of AD the following holds: a random ciphertext c of ‘1’ is (ε, ε1)-good
with probability at least 1 − ε1. Probability is taken over random bits used by the
encryption algorithm to encrypt c.

2.4 Modified AD Key Generation and Encryption Algorithms

We modify K and E to enforce the output of K to be ε-good and the output of
E to be (ε, ε1)-good.

For the protocols of section 3 we need ε, ε1 ∈ (0, 1) to satisfy√
1 +

1
2εε1

≤
(

1
4

− 2
n2

)
n
√

log(n + n3)
3
√

2
, (2.3)
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For the protocol of section 4 we need ε, ε1 ∈ (0, 1) to satisfy√
1 +

1
2εε1

≤
(

1
4

− 2
n2

)
n
√

log(n + n3)
12

√
2

. (2.4)

Modified Key Generating algorithm K′ on input 1n:
Repeat
Let (SK, PK) ∈R K(1n)
Until E

[∑n
j=1

〈∑m
i=1(bivi), w⊥

j

〉2] ≤ n4ρ2
n

2ε (where PK = {w1, . . . , wn, v1, . . . ,

vm, k})
Output (SK, PK)

We let (SK, PK) ∈ K′(1n) denote generating instance (SK, PK) according to
key generation algorithm K′(1n).

Modified Encryption algorithm E ′ on input public key PK and message
bit b:

Repeat
Pick r = r1, . . . , rm, ri ∈R {0, 1}.
Let c =

∑m
i=1 rivi mod P (w1, . . . , wn).

Compute ai’s such that c =
∑m

i=1 rivi +
∑n

i=1 aiwi.

Until dist
((

n6√nc
0

)
, BPK(a1, . . . , an, b1, . . . , bm)t

)
≤
√

1 + 1
2εε1

n4

Output c + b vk

2 mod P (w1, . . . , wn).

We let c ∈ E ′
PK(b) denote generating c by running algorithm E ′ on inputs

PK and b, let c ∈ E ′
PK(·) denote c being in the domain of E ′

PK , and let
c = E ′

PK(b, r) denote generating c by running algorithm E ′
PK on input b using

randomness r.

2.5 Zero-Knowledge Proof System for Approximate Closest Vector
Problem

The protocols presented in this paper, exploit heavily the recent zero-knowledge
protocol with for promise closest vector problem presented by Micciancio and
Vadhan in [21].

Definition 27. For γ > 1 instances of the promise closest vector problem
GapCVPγ are tuples (L, t, x) where L is a lattice in R

n specified by its basis,
t > 0, and vector x in R

n.

– (L, t, x) is a YES instance of the GapCVPγ if dist (L, x) ≤ t
– (L, t, x) is a NO instance of the GapCVPγ if dist (L, x) > γt

The promise is that an instance of the GapCVPγ is restricted to be YES or
NO instance, any other tuples are not instances of the GapCVPγ .

In the protocol described by Micciancio and Vadhan [21] the prover proves
to the verifier in zero-knowledge that a given instance of the GapCVPγ is a YES
instance.
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The protocol is statistical zero-knowledge for γ = Ω(
√

n
log(n) ), where n is the

dimension of the vector space containing the lattice L. Moreover, for such a γ
the prover runs in polynomial time.

3 Verifiable Encryption for AD Cryptosystem

The ultimate goal of this section is to present two zero-knowledge protocols
which form verifiable encryption schema for the equivalence relation. The first
protocol is for proving that a ciphertext of AD decrypts to ‘0’, and the second is
for proving that a ciphertext of AD decrypts to ‘1’. In both protocols a common
input to the prover and the verifier is a pair (PK, c) – public key of AD and a
ciphertext. In addition, the prover has access to an auxiliary input consisting of
random bits used to encrypt the ciphertext.

We will show a mapping from a pair (PK, c) to an instance (L, t, x) of
GapCVPγ such that for good public keys and ciphertexts of bit ‘0’ the pair
maps to a YES instance of GapCVPγ , whereas for any ciphertext which de-
scrypts to ‘1’ the pair maps to a NO instance of GapCVPγ . Then, to prove that
c decrypts to ‘0’, simply run the ZK protocol of [21] to prove that (L, t, x) is
a YES instance of GapCVPγ . The case of ciphertext which decrypts to ‘1’, is
similarly handled.

Throughout this section n denotes the security parameter, m = n3, and
γ =

√
n+m

log(n+m) .

3.1 Mapping AD Ciphertexts to GapCVP Instances

We define a mapping from pairs (PK, c) consisting of a public key and a cipher-
text of AD to instances of GapCVPγ .

Definition 31. Let PK = {w1, . . . , wn, v1, . . . , wm, k} be a public key of AD.
Let c be a vector from P ((w1, . . . , wn). Define mapping F(PK, c) = (LPK , t, xc)
where

xc =
(

n6√nc
0

)
∈ R

n+2m, t = n4

√
1 +

1
2εε1

(3.1)

And LPK is an (n+m)-dimensional lattice in R
2n+m spanned by the columns

of the following matrix BPK ,

BPK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n6√nw1 . . . n6√nwn n6√nv1 . . . n6√nvm

1 0 . . . 0

0
. . .

... 1
. . .

...
. . . n2√n

. . . 0
0 . . . 0 n2√n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.2)
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3.2 Connection Between AD Ciphertexts of ‘0’ and the GapCVPγ

Problem

We next state the theorem which forms a theoretical basis for the protocol for
proving that a ciphertext decrypts to ‘0’. The theorem states that good public
keys and ciphertexts of ‘0’ map under F to a YES instance of GapCVPγ , whereas
any ciphertext which decrypts to ‘1’, will map under F to a NO instance of
GapCVPγ .

Theorem 32. For sufficiently large n,

1. For (SK, PK) ∈ K′(1n) and c ∈ E ′
PK(0), F(PK, c) is a YES instance of

GapCVPγ .
2. for any instance (SK, PK) of AD and c ∈ P (w1, . . . , wn) such that DSK(c) =

‘1′, F(PK, c) is a NO instance of GapCVPγ .

Proof. (1) The first statement directly follows from the definition of an (ε, ε1)-
good ciphertext of ‘0’.

(2) Let c ∈ P (w1, . . . , wn) be any vector which decrypts to ‘1’. Let T = tγ.
From (2.3) it follows that

3T

n6
√

n
= 3

√
1 + 1

2εε1

√
n + n3

n2
√

n
√

log(n + n3)
<

3
√

1 + 1
2εε1

√
2

n
√

log(n + n3)
≤ 1

4
− 2

n2 <
1
4

<dist (〈c, u〉 , Z) .

By theorem 33 (proved below) dist
((

n6√nc
0

)
, LPK

)
≤ T can not hold.

Thus
(

LPK , t,

(
n6√nc

0

))
is a NO instance of the GapCVPγ .

Theorem 33. Let T > 0, PK be a public key of AD, and c ∈ P (w1, . . . , wn) .
For sufficiently large n,

If dist
((

n6√nc
0

)
, LPK

)
≤ T then dist (〈u, c〉 , Z) ≤ 3T

n6
√

n
(3.3)

Proof. Let c ∈ P (w1, . . . , wn) be such that dist
((

n6√nc
0

)
, LPK

)
≤ T ,

hence there are integers a1, . . . , an, b1, . . . , bm such that∥∥∥∥
(

n6√nc
0

)
− BPK(a1, . . . , an, b1, . . . , bm)t

∥∥∥∥
2

≤ T 2.

Observing the construction of the matrix BPK (3.2) we get that for the vector
e = n6√nc − n6√n (

∑n
i=1 aiwi +

∑m
i=1 bivi)

n∑
i=1

a2
i +

m∑
i=1

n5b2
i + ‖e‖2 ≤ T 2. (3.4)

‖e‖ ≤ T , thus | 〈u, e〉 | ≤ T . It follows that dist (〈u, e〉 , Z) ≤ T .
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Note that c =
∑n

i=1 aiwi +
∑m

i=1 bivi + e
n6

√
n
, hence

dist (〈u, c〉 , Z) ≤
n∑

i=1

|ai| dist (〈u, wi〉 , Z)+
m∑

i=1

|bi| dist (〈u, vi〉 , Z)+
T

n6
√

n
. (3.5)

Let us upper bound the first term of (3.5). According to the construction of AD
for all i = 1, . . . , n dist (〈u, wi〉 , Z) ≤ 1

n7 . From (3.4) it follows that
∑n

i=1 a2
i ≤

T 2. Thus, by the Cauchy-Schwartz inequality we have that
∑n

i=1 |ai|
dist (〈u, wi〉 , Z) ≤ √∑n

i=1 a2
i ×

√∑n
i=1 dist (〈u, wi〉 , Z)2 ≤ T

√
n × n−14 = T

n6
√

n
.

Let us now upper bound the second term of (3.5). Similarly, for all i = 1, . . . , m

dist (〈u, vi〉 , Z) ≤ 1
n7 . From (3.4) we have that

∑m
i=1 b2

i ≤ T 2

n5 . Applying the
Cauchy-Schwartz inequality we get that

∑m
i=1 |bi| dist (〈u, vi〉 , Z) ≤ √∑m

i=1 b2
i ×√∑m

i=1 dist (〈u, vi〉 , Z)2 ≤ T
n2

√
n

√
n3 × n−14 = T

n8 ≤ T
n6

√
n
.

Combining all together we obtain that dist (〈c, u〉 , Z) ≤ 3T
n6

√
n

We are ready to present the protocol which form verifiable encryption schema
for the equivalence relation when the claimed plaintext is ‘0’.

Protocol0 : proving that a ciphertext decrypts to ‘0’.
Let P0 and V0 denote the prover and the verifier. Let the common input to P0
and V0 be a pair (PK, c) where PK = {w1, . . . , wn, v1, . . . , vm, k} is a public
key of AD and c is a vector from P (w1, . . . , wn). The prover’s auxiliary input is
b1, . . . , bm ∈ {0, 1} such that c =

∑m
i=1 bivi mod P (w1, . . . , wn).

– Prover P0 Calculates integers a1, . . . , an such that c=
∑m

i=1 bivi+
∑n

i=1 aiwi.
Invokes the [21] prover (with auxiliary input BPK(a1, . . . , an, b1, . . . , bm)t)
to prove that input F(PK, c) is a YES instance of GapCVPγ .

– Verifier V0 Invoke the [21] verifier to verify that input F(PK, c) is a YES
instance of GapCVPγ .

Claim 34. Protocol (P0, V0) satisfy the following completeness, soundness, and
zero-knowledge properties:

– Completeness: If (SK, PK) ∈ K′(1n) and c ∈ E ′
PK(0), then Prob((P0, V0)

(PK, c) = accepts) = 1.
– Soundness If (PK, SK) is an instance of AD and c ∈ P (w1, . . . , wn)

such that DSK(c) = ‘1′, then for all prover P ′
0, Prob((P ′

0, V0)(PK, c) =
rejects) > 1

2 .
– Zero-Knowledge : statistical zero-knowledge.

Proof. The soundness condition relies on the part (2) of the theorem 32 and
the soundness condition of the proof system from [21]. The completeness condi-
tion follows from the part (1) of the theorem 32 and completeness condition of
the proof system from [21]. The lattice LPK is an (n + m)-dimensional lattice,
hence, the approximation factor γ =

√
n+m

log(n+m) is as required for statistical

zero-knowledge property of the proof system from [21].
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3.3 Connection Between AD ‘1’ Ciphertexts and the GapCVPγ

Problem

In this subsection we construct a zero-knowledge protocol for proving that a ci-
phertext of AD decrypts to ‘1’. We use the nice observation that for a random ci-
phertext of AD of ‘1’ the distribution of vector (c− vk

2 ) mod P (w1, . . . , wn) is the
same as distribution of a random ciphertext of ‘0’. Thus, to prove that a cipher-
text c decrypts to ‘1’, we will prove that (c − vk

2 ) mod P (w1, . . . , wn) decrypts
to ‘0’, by running protocol0 on inputs PK and (c − vk

2 ) mod P (w1, . . . , wn).
To prove soundness however, we must be careful, as we notice that for a

c which decrypts to ‘0’, (c − vk

2 ) mod P (w1, . . . , wn) is not distributed as a
random ciphertext of ‘1’, however as shown by the the following theorem it is
quite close to it.

Theorem 35. For any (SK, PK) instance of AD, for any vector c ∈ P (w1, . . . ,
wn) such that DSK(c) = ‘0′, for sufficiently large n, the dist (〈y, u〉 , Z) > 1

4 − 2
n2

for y = (c − vk

2 ) mod P (w1, . . . , wn)

Proof. Let c ∈ P (w1, . . . , wn) decrypts to ‘0’.
There is a representation (c− vk

2 ) mod P (w1, . . . , wn) = c− vk

2 +
∑n

i=1 aiwi.

dist

(〈
c − vk

2
+

n∑
i=1

aiwi, u

〉
, Z

)
≥ dist

(〈vk

2
, u
〉

, Z
)

−

dist (〈c, u〉 , Z) − dist

(〈
n∑

i=1

aiwi, u

〉
, Z

)
(3.6)

Let us bound the terms of (3.6).

dist

(〈
n∑

i=1

aiwi, u

〉
, Z

)
≤

n∑
i=1

|ai| dist (〈wi, u〉 , Z) ≤ 1
n7

n∑
i=1

|ai|. (3.7)

Note, that ai = 	θi
 for θi defined as c − vk

2 =
∑n

i=1 θiwi. Since the width of
the parallelepiped P (w1, . . . , wn) is greater than ρn

n2 , (3.7) can be bounded by

1
n7

n∑
i=1

|ai| ≤ 1
n7

n∑
i=1

|θi| ≤ 1
n5ρn

n∑
i=1

∣∣∣〈c − vk

2
, w⊥

i

〉∣∣∣ ≤ 1
n4ρn

∥∥∥c − vk

2

∥∥∥ ≤ 1
n2 .

dist (〈c, u〉 , Z) ≤ 1
4 and dist

(〈
vk

2 , u
〉
, Z
) ≥ 1

2 − 1
n7 . Collecting all together we

get that (3.6) is greater than 1
2 − 1

n7 − 1
4 − 1

n2 which is greater than 1
4 − 2

n2 for
sufficiently large n.

The following theorem forms the theoretical basis for the protocol for proving
that a ciphertext decrypts to ‘1’
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Theorem 36. For sufficiently large n,

– If (SK, PK) ∈ K′(1n) and c ∈ E ′
PK(1), then F(PK, y) is a YES instance

of the GapCVPγ for y = (c − vk

2 ) mod P (w1, . . . , wn) .
– If (PK, SK) is an instance of AD cryptosystem and c ∈ P (w1, . . . , wn) such

that DSK(c) = ‘0′, then F(PK, y) is a NO instance of the GapCVPγ for
y = (c − vk

2 ) mod P (w1, . . . , wn) .

(1) The statement directly follows from the definition of an (ε, ε1) − good
ciphertext of ‘1’.

(2) Let c ∈ P (w1, . . . , wn) be any vector which decrypts to ‘0’. Define y =
(c − vk

2 ) mod P (w1, . . . , wn). From (2.3) it follows that

3tγ

n6
√

n
= 3

√
1 + 1

2εε1

√
n + n3

n2
√

n
√

log(n + n3)
<

3
√

1 + 1
2εε1

√
2

n
√

log(n + n3)
≤ 1

4
− 2

n2 <

[By the theorem 35]< dist (〈y, u〉 , Z) .

Thus, by the theorem 33 dist
((

n6√ny
0

)
, LPK

)
≤ tγ can not hold, and(

LPK , t,

(
n6√ny

0

))
is a NO instance of the GapCVPγ .

We are ready to present the protocol for proving that a ciphertext decrypts
to ‘1’.

Protocol1 : proving that a ciphertext decrypts to ‘1’.
Let P1 and V1 denote the prover and the verifier. Let the common input to P1
and V1 be a pair (PK, c) where PK = {w1, . . . , wn, v1, . . . , vm, k} is a public
key of AD and c is a vector from P (w1, . . . , wn). Let P1 auxiliary input be
b1, . . . , bm ∈ {0, 1} such that c = (vk

2 +
∑m

i=1 bivi) mod P (w1, . . . , wn).

– Prover P1: Calculate y = (c − vk

2 ) mod P (w1, . . . , wn). Calculate integers
a1, . . . , an such that y =

∑m
i=1 bivi +

∑n
i=1 aiwi. Invoke the [21] prover (with

auxiliary input BPK(a1, . . . , an, b1, . . . , bn)) to prove that input F(PK, y) is
a YES instance of GapCVPγ .

– Verifier V1: Calculate y = (c − vk

2 ) mod P (w1, . . . , wn). Invoke the [21]
verifier to verify that F(PK, y) is a YES instance of GapCVPγ .

It is evident that the soundness, completeness, and Zero-knowledge properties
of Protocol1 are similar to the soundness and Zero-Knowledge properties of
Protocol0.

4 Proof of AD Plaintext Knowledge

4.1 Definition of Proofs of Knowledge

We use the definition of a proof of knowledge from [18]
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Definition 41. Let Q(·) be a polynomial, x the common input for the prover
P and verifier V , and r a uniformly selected random tape of prver P . Run the
protocol between P and V , Q(|x|) times, each time runniing prover P on the
same random tape r and the verifier V on a newly selected uniformly chosen
random tape. Let (P, V, x, Q) denote the sequence of the verifier’s views obtaind
from the above execution. We call the distribution over such sequences a valid
(P, V, x, Q) - distribution.

Definition 42. Let η ∈ {0, 1}, an interactive protocol (P, V ) with prover P and
a verifier V is a proof of knowledge system with knowledge error η for a relation
R if the following holds:

Completeness: For every common input x for which there exists y such that
(x, y) ∈ R the verifier V always accepts interacting with the prover P .
Validity with error η: There exists a polynomial time interacting oracle Tur-
ing machine Sample and a polynomial time algorithm Extract, a constant
c > 0 and a polynomial Q(·) such that for every x ∈ {0, 1}∗ such that
R(x) �= ∅ and for every prover P ′ the following holds:
– SampleP ′

(x) outputs a valid (P ′, V, x, Q)- distribution of verifier’s view.
– Extract(SampleP ′

(x)) ∈ R(x) ∪ {”fail”}
– Pr[Extract(SampleP ′

(x)) ∈ R(x)] ≥ (p − η)c, where p > η is a proba-
bility that V accepts while interacting with P ′ on common input x.

We call the pair (Sample, Extract) a knowledge extractor.

4.2 The Plaintext Knowledge Relation for AD Cryptosystem

Throughout the rest of section 4 we assume that n denotes the security param-
eter, and m, LPK , and γ, are as defined in section 3 whereas t = 4

√
1 + 1

2εε1
n4.

Define relation RAD corresponding to knowing a plaintext of an AD ciphertext
as follows.

Definition 43. Let PK = {w1, . . . , wn, v1, . . . , vm, k} be a public key of AD, c
and c′ vectors from P (w1, . . . , wn), b′ and b′′ ∈ {0, 1}, r′ ∈ {0, 1}m, and p be a
point from LPK . We say that input (PK, c) and witness (c′, b′, r′, b′′, p) are in
RAD if:

– c′ = EPK(b′; r′)

– dist
((

n6√n((c′ + c − b′′ vk

2 ) mod P (w1, . . . , wn))
0

)
, p

)
≤ γt (i.e. (c + c′)

mod P (w1, . . . , wn)) decrypts to b′′)

Intuitively, proving knowledge of a witness for (PK, c), implies knowledge of
plaintext of c under PK. This is formally captured by the following theorem.

Theorem 44. Let (PK, SK) be an instance of the AD cryptosystem. If ((PK, c),
w) ∈ RAD for w = (c′, b′, r′, b′′, p), then b′ ⊕ b′′ = DSK(c).
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Proof. Let PK = {w1, . . . , wn, v1, . . . , vm, k}.
Consider the case when b′′ = 0. In this case

dist
((

n6√n((c′ + c) mod P (w1, . . . , wn))
0

)
, p

)
≤ γt,

By theorem 33, dist (〈(c + c′) mod P (w1, . . . , wn), SK〉 , Z) ≤ 3T
n6

√
n

=

12

√
1+ 1

2εε1

√
n+n3

n2
√

n
√

log(n+n3)
≤

√
n+n3

8n
√

2
√

n
≤ 1

8 .

Suppose b′ = 0. Since c′ is a legal ciphertext, dist (〈c′, SK〉 , Z) ≤ 1
n which

implies that dist (〈c, SK〉 , Z) < 1
4 and DSK(c) = ‘0′.

Suppose b′ = 1. Since c′ is a legal ciphertext, dist (〈c′, SK〉 , Z) ≥ 1
2 − 1

n which
implies that dist (〈c, SK〉 , Z) > 1

4 and DSK(c) = ‘1′.
A similar case analysis follows when b′′ = 1.

Note, that one can easily check whether a pair (PK, c) and a particular
witness are in the relation RAD. Since AD is semantically secure, for a public
key PK of AD generated in random according to the key generating algorithm
and a random ciphertext c of a uniformly chosen bit encrypted under the public
key PK it is impossible to construct a witness for (PK, c) with non-negligible
probability.

4.3 Protocol for Proof of Plaintext Knowledge for AD

Let us first provide a sketch of the protocol. For public key PK = {w1, . . . , wn, v1,
. . . , vm, k} and ciphertext c, we distill the following nice homomorphic properties
of AD:

– If c is an encryption of the bit b, then c+ vk

2 mod P (w1 . . . wn) is decrypted
to b̄

– If c, c′ are encryptions of b, b′ (respectively) then c + c′ mod P (w1 . . . wn) is
decrypted to b ⊕ b′.

Using these properties, it is simple to design a proof of knowledge of bit b
encrypted by ciphertext c: the prover sends a random encryption c′ of a random
bit b′, and the verifier asks the prover to show either that it knows the decryption
of c′ or that it knows a decryption of c + c′. The former can be done simply
revealing the randomness used to encrypt c′ and the latter can be done by
proving in zero-knowledge that c + c′ decrypts to b ⊕ b′. This is achieved by
utilizing a variant of the protocols of section 3.2 to show that (c+c′) decrypts to
zero (in case of b⊕b′ = 0) or that (c+c′)+ vk

2 decrypts to zero (when b⊕b′ = ‘1′).

Protocol PPK
Let PPPK and VPPK denote the prover and the verifier respectively. The
common input to PPPK and VPPK is (PK, c) where
PK = {w1, . . . , wn, v1, . . . , vm, k} is an AD public-key and c is a vector from
P (w1, . . . , wn). The prover’s auxiliary input is plaintext b and randomness r
such that c = E ′

PK(b; r) .
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– Step (P1): PPPK selects b′ ∈R {0, 1}, computes c′ ∈R E ′
PK(b′) and sends

c′ to VPPK .
– Step (V1): VPPK sends a random challenge bit δ ∈R {0, 1} to PPPK .
– Step (P2):

• If δ = 0, PPPK sends pair (b′, r′) where c′ = E ′
PK(b′; r′) to VPPK .

• If δ = 1, PPPK computes b′′ = b⊕ b′; sends b′′ to verifier; lets c = (c+c′)
mod P (w1, . . . , wn)) and runs the prover of Protocol′b′′ on input (PK, c)

– Step (V2):
• If δ = 0, then (c′, r′) has been received in step (P2). VPPK rejects if

c′ �= E(b′; r′), else it accepts.
• If δ = 1, let b′′ be bit received in step P2. VPPK set c = (c + c′)

mod P (w1, . . . , wn)); run the verifier of Protocol’b′′ on input (PK, c).

The flow of message communication is presented in picture 1.
Protocol PPK (in steps P2,V2) makes calls to two zero-knowledge protocols

Protocol′0 and Protocol′1 which enable the prover to prove that a given sum of
two ciphertexts of AD decrypt to ‘0’ (or ‘1’ respectively). These protocols are
identical in structure to the protocols of section 3.2 and 3.3, except for a slight
difference in the YES instances of GapCVPγ constructed.

Define 2 mapping G(PK, c) = (LPK , t, xc) where t = 4
√

1 + 1
2εε1

n4 and xc,
LPK are as in section 3.1

Protocol′0 on input (PK, c) is the statistical ZK protocol of [21] proving that
input G(PK, c) is a YES instance of GapCVPγ .

Protocol′1 on input (PK, c) is the statistical ZK protocol of [21] proving that
input G(PK, (c − vk

2 ) mod P (w1, . . . , wn)) is a YES instance of GapCVPγ .
The following properties of these protocols are needed for larger protocol

PPK. Note the similarity with theorem 32 and 36.

Claim 45. For sufficiently large n,

1. If (SK, PK) ∈ K′(1n), c = (c1+c2) mod P (w1, . . . , wn) such that DSK(c) =
‘0′ and c1, c2 ∈ E ′

PK(·), G(PK, c) is a YES instance of GapCVPγ .
2. Let (SK, PK) be an instance of AD and c ∈ P (w1, . . . , wn). If

dist (〈c, SK〉 , Z) > 1
8 , then G(PK, c) is a NO instance of GapCVPγ .

Proof. We defer the proof to the end of the section.

Claim 46. For sufficiently large n, the following holds:

1. For any (SK, PK) ∈ K′(1n), for any c = (c1 + c2) mod P (w1, . . . , wn) such
that DSK(c) = ‘1′ and where c1, c2 ∈ E ′

PK(·), G(PK, y) is a YES instance
of the GapCVPγ where y = (c − vk

2 ) mod P (w1, . . . , wn).
2. For any instance (SK, PK) of AD, and for any c = P (w1, . . . , wn) such

that dist (〈c, SK〉 , Z) < 3
8 , G(PK, y) is a NO instance of GapCVPγ for

y = (c − vk

2 ) mod P (w1, . . . , wn).
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The proof is similar to the proof of theorem 45 and is omitted.
We are now ready to prove that protocol PPK forms a proof of knowledge

system with error 3
4 for binary relation RAD which is zero-knowledge.

Theorem 47 (Completeness and Soundness of PPK). Interactive protocol
(PPPK , VPPK) is a proof of knowledge system with knowledge error 3

4 for RAD.

Proof. First lets argue completeness. Namely, if PK is an ε-good ciphertext and
c is an ε, ε1-good ciphertext under PK then the VPPK always accepts interacting
with the PPPK .

The completeness property becomes evident, due to the simple fact about
ciphertexts of AD: for two legal ciphertexts c1 and c2 of AD with plaintexts b1
and b2 the vector (c1 + c2) mod P (w1, . . . , wn) decrypts to b1 ⊕ b2.

Second, lets argue validity with knowledge error 3
4 . We will present a knowl-

edge extractor consisting of two algorithms Sample and Extract which satisfy
the conditions of the definition of a proof of knowledge.

Let PK = {w1, . . . , wn, v1, . . . , vm, k} be a public key of AD and c ∈ P (w1,
. . . , wn). Let P ′ be an arbitrary prover making the VPPK accept with probability
3
4 + σ, for σ > 0 on common input (PK, c).

The algorithm Sample: The algorithm Sample is an interactive Turing ma-
chine with oracle access to P ′. The input of Sample is (PK, c). The algorithm

2 The only difference between G and F of section 3 is in the value of t used
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outputs three strings distributed as verifier’s views at the end of the protocol
between P ′ and VPPK run on common input (PK, c) (i.e Sample outputs a
valid (P ′, VPPK , (PK, c), 3)-distribution of verifier’s view). Sample chooses
a random string r which will serve as a random tape for P ′. Smaple outputs
three verifiers views V1, V2, V3 independently according to the following pro-
cedure: Set the random tape of P ′ to r. Generate a random bit δ which will
be used for verifier’s challenge. If δ = 1 the prover and the verifier should be
involved in one of the subprotocols (Protocol′0 or Protocol′1). Each subproto-
col is a three-move interactive proof system with one-bit verifier’s challenge.
Generate a random bit δ1 for the second verifier’s challenge. Simulate the
protocol between P ′ an the VPPK on common input (PK, c) interacting with
P ′ as a verifier and sending challenge bits δ and δ1 (if needed). Output the
verifiers view which consists of common input (PK, c), simulated transcript
of the protocol and random bits δ and δ1 (if needed).

The algorithm Extract: Input of the algorithm Extract consists of three
verifier’s views V1, V2, V3 generated by Sample. Let transcripts of the protocol
involved in the views be denoted as T1, T2 and T3. If one of the transcript is
not accepting, Extract outputs ”fail” and halts. Since the probability that
P ′ makes VPPK accept is 3

4 +σ, Extarct continues with probability at least
σ. The algorithm checks the following conditions:

Verifier’s view V1 involves δ = 0.
Verifier’s view V2 involves δ = 1 and δ1 = 0.
Verifier’s view V3 involves δ = 1 and δ1 = 1.

If at least one of the conditions does not hold then Extract outputs ”fail”
and halts. If the algorithm continues, what happens with probability 1

32 , T1,
T2 and T3 has the following form:

T1 = (c′, 0, b′, r′)
T2 = (c′, 1, b′′, T ′

1)
T3 = (c′, 1, b′′, T ′

2)
Where T ′

1 and T ′
2 are transcripts of Protocol′0 and Protocol′1 respectively.

Note, that the subprotocols are based on the proof system of Micciancio and
Vadhan and actually are aimed to prove that(

LPK , t,

(
n6√n((c′ + c − b′′ vk

2 ) mod P (w1, . . . , wn))
0

))
is not a NO instance of the GapCVPγ problem for LPK , γ and t as defined
in this section. Assume T ′

1 and T ′
2 are accepting transcripts with the same

prover’s random tape and different verifier’s challenges. Then, when b′′ = 0
it is possible to obtain from T ′

1 and T ′
2 a point p in LPK such that

dist
((

n6√n((c′ + c) mod P (w1, . . . , wn))
0

)
, p

)
≤ γt.

When b′′ = 1 it is possible to obtain a point p such that

dist
((

n6√n((c′ + c − vk

2 ) mod P (w1, . . . , wn))
0

)
, p

)
≤ γt.
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Since T1 is an accepting transcript, ciphertext c′ and b′,r′ satisfy c′ =
E ′

PK(b′; r′). Extract outputs the witness (c′, b′, b′
1, . . . , b

′
m, b′′, p). The al-

gorithm succeeds with probability at least 1
32σ.

We prove that the PPK protocol is computational zero-knowledge under the
same intractability assumption of the AD cryptosystem.

Assumption ISVP:

(Infeasibility of Shortest Vector Problem): There is no polynomial time algo-
rithm, which given an arbitrary basis for an n-dimensional lattice, having a
”unique poly(n)-shortest” vector, finds the shortest non-zero vector in the lat-
tice. By having a ”unique poly(n)-shortest” vector we mean that any vector of
length at most ”poly(n)” times bigger than the shortest vector is parallel to the
shortest vector.

Theorem 48 (Zero-Knowledge of PPK). The protocol PPK is computa-
tional zero knowledge under the assumption ISVP.

Proof. For every verifier V ′ we construct an expected polynomial time simulator
S such that on input (PK, c) where PK an ε-good public key of AD and c is
an (ε, ε1)-good ciphertext encrypted under PK the output of the simulator is
computationally indistinguishable from a transcript of the protocol between the
PPPK and the verifier V ′ on common input (PK, c).

The simulator S proceeds as follows:
Simulate prover’s first step: Chose ∆ uniformly from {0, 1}. If ∆ = 0 uni-
formly select a random bit b′ and generate a random (ε, ε1)-good ciphertext
c′ of b′ under PK using uniformly generated random string r′ ∈ {0, 1}m.
If ∆ = 1 uniformly select a bit b′′ and generate a random (ε, ε1)-good ci-
phertext c of b′′, set c′ = (c−c) mod P (w1, . . . , wn). Pass c′ to the verifier V ′.

Simulate verifiers’s first step: Receive a challenge bit δ from V ′.
Simulate prover’s second step and output the transcript of the protocol:

If δ �= ∆ go to the step ”Simulate prover’s first step”.
Let us show that the simulator repeats the step ”Simulate prover’s
first step” only an expected polynomial number of times. Let U be
the uniform distribution in P (w1, . . . , wn). We assume that ISVP holds,
hence according to the security property of AD if ∆ = 0 then c′ is
computationally indistinguishable from U ; if ∆ = 1 then c′ = (c −
c) mod P (w1, . . . , wn) is also indistinguishable from U . c′ generated for
∆ = 0 is computationally indistinguishable from c′ generated for ∆ = 1.
δ equal to ∆ with probability less than 1

2 + v(n) for some negligible
function v(n), otherwise verifier can distinguish between c′ generated
for ∆ = 0 and c′ generated for ∆ = 1. Thus the expected number of
repetitions of the step ”Simulate prover’s first step” is polynomial.

– If δ = 0 send bits b′ and r′ to V ′ and receive a verifier’s verdict v
on acceptance or rejectance. Output the transcript (c′, δ, b′, r′, v). Since
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c′ is indeed an (ε, ε1)-good ciphertext of b′ with random bits r′, the
simulator perfectly simulates a real transcript between PPPK-prover and
the verifier V ′.

– Consider the case when δ = 1. Note, that c = (c+c′) mod P (w1, . . . , wn),
hence, according to zero-knowledge property of Protocol′0 and Protocol′1,
there exist simulators S1 and S2 with the following properties: if b′′ = 0
then an output of S1 on input (PK, c) is computationally indistinguish-
able from the real transcript of Protocol′0 run between the PPPK and the
verifier V ′. If b′′ = 1 then output of S2 on input (PK, c) is indistinguish-
able from the real transcript of Protocol′1. If b′′ = 0 set T = S1(PK, c)
otherwise set T = S2(PK, c). Output the transcript (c′, δ, b′′, T ). Since
the ISVP assumption holds, according to the security property of AD the
distribution of c is computationally indistinguishable from U , hence the
distribution of c′ = (c − c) mod P (w1, . . . , wn) is also indistinguishable
from U which is indistinguishable from the distribution of c′ generated
by the PPPK . Therefore, the generated transcript is computationally in-
distinguishable from a real transcript of the protocol between the PPPK

and V ′.

missing proof of claim 46.
(1) The vector c can decrypts to ‘0’ in two cases: when both c1 and c2 are

ciphertexts of ‘0’ and when both c1 and c2 are ciphertexts of ‘1’.

– Let c1 and c2 be (ε, ε1)-good ciphertexts of ‘0’. For c1 and c2 equation (2.2)
holds. Thus for c = (c1 + c2) mod P (w1, . . . , w2) by lemma 49 below

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√

n

which is less then t for sufficiently large n. By the definition of a YES instance
of the GapCVPγ the statement of part (1) holds.

– Let c1 and c2 be (ε, ε1)-good ciphertexts of ‘1’. By the definition of an (ε, ε1)-
good ciphertext of ‘1’ the vectors c1 = (c1 − vk

2 ) mod P (w1, . . . , wn) and
c2 = (c2 − vk

2 ) mod are (ε, ε1)-good ciphertexts of ‘0’, thus for c = (c1 +
c2) mod P (w1, . . . , wn) the following statement holds:

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√

n

The vector c = (c + vk) mod P (w1, . . . , wn) thus by lemma 410 below for
sufficiently large n the following statement holds:

dist
((

n6√nc
0

)
, LPK

)
≤ 2

√
1 +

1
2εε1

n4 +
√

n + n4 (4.1)

Expression (4.1) is less than t for sufficiently large n.



552 S. Goldwasser and D. Kharchenko

(2) Let c ∈ P (w1, . . . , wn) be any vector which decrypts to ‘1’. Let T = tγ.

From (2.4) it follows that 3T
n6

√
n

= 12

√
1+ 1

2εε1

√
n+n3

n2
√

n
√

log(n+n3)
≤ 12

√
2

√
1+ 1

2εε1

n
√

log(n+n3)
≤

1
4 − 2

n2 < dist (〈c, u〉 , Z) .

Hence, by theorem 33 dist
((

n6√nc
0

)
, LPK

)
≤ T can not hold. Thus(

LPK , t,

(
n6√nc

0

))
is a NO instance of the GapCVPγ .

The following lemmas complete the proof.

Lemma 49. Let PK = {w1, . . . , wn, v1, . . . , vm, k} be a public key of AD, p1
and p2 be points from LPK . If for c1, c2 ∈ P (w1, . . . , wn)

dist
((

n6√nc1
0

)
, p1

)
= D1 and dist

((
n6√nc2

0

)
, p2

)
= D2 then

dist
((

n6√n((c1 + c2) mod P (w1, . . . , wn))
0

)
, LPK

)
≤ D1 + D2 +

√
n.

Proof. We can represent n6√n((c1 + c2) mod P (w1, . . . , wn)) = n6√n(c1 + c2 +∑n
i=1 aiwi). Since both vectors c1 and c2 belong to P (w1, . . . , wn) we can bound

|ai| ≤ 1 for all i. Consider a vector p3 = BPK(a1, . . . , an, 0, . . . , 0)t where BPK

is the matrix defined in (3.2).

dist
((

n6√n
∑n

i=1 aiwi

0

)
, p3

)
=

√√√√ n∑
i=1

a2
i ≤ √

n.

The lemma follows.

Lemma 410. Let PK = {w1, . . . , wn, v1, . . . , vm, k} be a public key of AD, and

p be a point from LPK . If for c ∈ P (w1, . . . , wn) dist
((

n6√nc
0

)
, p

)
= D then

for sufficiently large n

dist
((

n6√n((c + vk) mod P (w1, . . . , wn))
0

)
, LPK

)
≤ D + n4.

Proof. We can represent n6√n((c + vk) mod P (w1, . . . , wn)) = n6√n(c + vk +∑n
i=1 aiwi). Consider a point p′ from LPK such that p′ = BPK(a1, . . . , an,

0, . . . , 0, 1, 0, . . . , 0)t (with ‘1’ at the (n + k)-th position). It is easy to see that

dist
((

n6√n(vk +
∑n

i=1 aiwi)
0

)
, p′

)
≤
√√√√n5 +

n∑
i=1

a2
i . (4.2)

Let us bound
∑n

i=1 a2
i . Note, that ai = 	θi
 for θi defined as c + vk =∑n

i=1 θiwi. Since the width of the parallelepiped P (w1, . . . , wn) is greater than
ρn

n2 , we can bound
∑n

i=1 a2
i as follows:
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n∑
i=1

a2
i ≤

n∑
i=1

θ2
i ≤ n4

ρ2
n

n∑
i=1

〈
c + vk, w⊥

i

〉2 ≤ n5

ρ2
n

‖c + vk‖2 ≤ n5

ρ2
n

(‖c‖+‖vk‖)2 ≤ 4n7

Expression (4.2) is less than n4 for sufficiently large n. The lemma follows.

5 Open Problems

There are a great deal of open problems. We highlight a few here.

Verifiable Decryption for AD Cryptosystem. The AD cryptosystem is
a probabilistic scheme for which in the process of decryption, the legal decryp-
tor who knows the private key computes the plaintext without being able to
recover the randomness used by the encryptor. This latter task, requires the
ability to solve subset sum problem instances. A similar situation holds with
respect to the El-Gamal and Cramer-Shoup cryptosystems [10, 6] in which a le-
gal decryptor who knows the private key can decrypt, and yet cannot recover
the randomness used by an encryptor, as that would require solving discrete log
problem instances.

Such cryptosystems raise an interesting challenge: can a legal decryptor, who
knows the private-key of the cryptosystem but does not know the randomness
used in the computation of a given ciphertext, prove to a third party that a
given ciphertext corresponds to a cleartext without revealing his private key?3

A cryptosystem for which this can be done was named a verifiable decryption
scheme by Camenisch and Shoup in [5]. The the challenge is to do this efficiently
for the AD cryptosystem. In principle it is achievable based on the existence of
one-way functions (which is implied in the context of encryption in any case)
using general computational zero-knowledge proofs for NP statements [17].

Non Malleable Proofs of Plaintext Knowledge for the AD Cryp-

tosystem. Katz[20] shows efficient non-malleable PPKs for the Blum-Goldwasser
RSA and Rabin based encryption, Paillier and El-Gamal, and gets as an applica-
tion CCA2 secure efficient interactive encryption schems. A promising open prob-
lem (although far from obvious) is to design an efficient non-malleable PPK for
the AD cryptosysetm, and thus obtain a CCA2 secure efficient interactive encryp-
tion variant of the AD cryptosystem. One obstacle in tackling this problem is that
Katz’s protocol utilizes one-time signatures (which although exist in principle un-
der ISVP) for which there are no efficient constructions under ISVP.

Regev Crytosystem. In this paper we addressed the AD cryptoststem. Design
a PPK for the Regev cryptosystem, and address the above open problems for
the Regev cryptosystem.

Acknowledgment. This work was supported in part by NSF Cybertrust 043045,
a Minerva project grant 8495 and grant from Potters Wheel Foundation.
3 In other words, is there a verifiable encryption scheme for the equivalence relation

by a prover who does not know the randomness used to encrypt.
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