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PROOF OF THE 1-FACTORIZATION AND HAMILTON

DECOMPOSITION CONJECTURES IV: EXCEPTIONAL SYSTEMS

FOR THE TWO CLIQUES CASE

DANIELA KÜHN, ALLAN LO AND DERYK OSTHUS

Abstract. In a sequence of four papers, we prove the following results (via a
unified approach) for all sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D ≥ 2⌈n/4⌉ − 1.
Then every D-regular graph G on n vertices has a decomposition into perfect
matchings. Equivalently, χ′(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D ≥ ⌊n/2⌋. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles
in a graph of given minimum degree.

According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions
of Nash-Williams from 1970. The above bounds are best possible. In the current
paper, we prove results on the decomposition of sparse graphs into path systems.
These are used in the proof of (i) and (ii) in the case when G is close to the union
of two disjoint cliques.

1. Introduction

1.1. Background and results. In a sequence of four papers, we develop a uni-
fied approach to prove the following results on Hamilton decompositions and 1-
factorizations. The first of these results confirms the so-called 1-factorization conjec-
ture for all sufficiently large graphs. (A 1-factorization of a graph G consists of a set
of edge-disjoint perfect matchings covering all edges of G.) This conjecture was first
stated explicitly by Chetwynd and Hilton [1, 2]. However, they wrote that according
to Dirac, it was already discussed in the 1950s.

Theorem 1.1. There exists an n0 ∈ N such that the following holds. Let n,D ∈ N

be such that n ≥ n0 is even and D ≥ 2⌈n/4⌉ − 1. Then every D-regular graph G on
n vertices has a 1-factorization. Equivalently, χ′(G) = D.

The bound on the degree in Theorem 1.1 is best possible. Nash-Williams [9, 10]
raised the related problem of finding a Hamilton decomposition in an even-regular
graph. Here a decomposition of an (even-regular) graph G into Hamilton cycles
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consists of a set of edge-disjoint Hamilton cycles covering all edges of G. If G is a
regular graph of odd degree, it is natural to ask for a perfect matching in G together
with a decomposition of the remaining edges into Hamilton cycles.

Theorem 1.2. There exists an n0 ∈ N such that the following holds. Let n,D ∈ N

be such that n ≥ n0 and D ≥ ⌊n/2⌋. Then every D-regular graph G on n vertices
has a decomposition into Hamilton cycles and at most one perfect matching.

Again, the bound on the degree in Theorem 1.2 is best possible and so the theorem
confirms the conjecture of Nash-Williams for all sufficiently large graphs.

Finally (in combination with [6]), we also prove an optimal result on the number of
edge-disjoint Hamilton cycles one can guarantee in a graph of given minimum degree,
which (as a special case) answers another question of Nash-Williams. For a detailed
discussion of the results and their background we refer to [7].

1.2. Overall structure of the argument. For all of our main results, we split the
argument according to the structure of the graph G under consideration:

(i) G is close to the complete balanced bipartite graph Kn/2,n/2;
(ii) G is close to the union of two disjoint copies of a clique Kn/2;
(iii) G is a ‘robust expander’.

Roughly speaking, G is a robust expander if for every set S of vertices, the neighbour-
hood of S is at least a little larger than |S|, even if we delete a small proportion of the
edges of G. The main result of [8] states that every dense regular robust expander
has a Hamilton decomposition. This immediately implies Theorems 1.1 and 1.2 in
Case (iii).

Case (i) is proved in [3]. Most of the argument for Case (ii) is contained in [7],
which also includes a more detailed discussion of the overall structure of the proof.
Some of the results needed for Case (ii) (on decompositions into ‘exceptional path
systems’) are proved in the current paper. Case (ii) is by far the hardest case for
Theorems 1.1 and 1.2, as the extremal examples are all close to the disjoint union
of two cliques. The arguments in [3, 7] make use of an ‘approximate decomposition’
result, which is proved in [4].

1.3. Contribution of the current paper. As mentioned above, the current paper
is concerned with Case (ii), i.e. when G is close to the union of two cliques. More
precisely, we say that a graph G on n vertices is ε-close to the union of two disjoint
copies of Kn/2 if there exists A ⊆ V (G) with |A| = ⌊n/2⌋ and such that e(A,V (G) \
A) ≤ εn2.

We will prove results which are used in [7] to prove the following theorem, which is
a common generalization of Theorems 1.1 and Theorems 1.2 in Case (ii). Essentially,
this theorem guarantees a decomposition into Hamilton cycles and perfect matchings
which contains as many Hamilton cycles as possible.

Theorem 1.3. For every εex > 0 there exists n0 ∈ N such that the following holds
for all n ≥ n0. Suppose that D ≥ n − 2⌊n/4⌋ − 1 and that G is a D-regular graph
on n vertices which is εex-close to the union of two disjoint copies of Kn/2. Let F
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be the size of a minimum cut in G. Then G can be decomposed into ⌊min{D,F}/2⌋
Hamilton cycles and D − 2⌊min{D,F}/2⌋ perfect matchings.

When constructing the Hamilton cycles (and perfect matchings) guaranteed by
Theorem 1.3, a crucial step is to obtain a decomposition of the ‘exceptional edges’. To
define exceptional edges, we consider a suitable partition of V (G) into setsA,A0, B,B0

so that A and B induce almost complete graphs on close to n/2 vertices and A0, B0

contain the (small number of) ‘exceptional vertices’ which have many neighbours in
both A′ := A∪A0 and B′ := B ∪B0. The exceptional edges are all those edges inci-
dent to A0 and B0 as well as all those edges joining A′ to B′. These exceptional edges
will be decomposed into ‘exceptional (path) systems’, and each such exceptional sys-
tem will be extended into a Hamilton cycle. (Actually, the exceptional systems may
contain some non-exceptional edges as well.)

The exceptional systems are constructed in the current paper. If we want to extend
an exceptional system into a Hamilton cycle, one obvious necessary property is that
the exceptional system needs to contain two independent edges between A′ and B′.
Another requirement will be that these exceptional systems are ‘localized’, i.e. given
a partition of A and B into clusters, each exceptional system uses only vertices from
A0∪B0 as well as from one of the clusters in both A and B. Some further constraints
are due to the overall structure of the argument, which we outline below.

In [4], we show how one can extend a suitable set of exceptional systems to obtain
an approximate decomposition of G, i.e. a set of edge-disjoint Hamilton cycles cover-
ing almost all edges of G. However, one does not have any control over the ‘leftover’
graph H, i.e. it is not clear how to extend this into a decomposition. In [8] this prob-
lem was solved by introducing the concept of a ‘robustly decomposable graph’ Grob.
Roughly speaking, this is a sparse regular graph with the following property: given
any very sparse regular graph H with V (H) = V (Grob) which is edge-disjoint from
Grob, one can guarantee that Grob ∪H has a Hamilton decomposition. This leads to
a natural (and very general) strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph Grob in G and let G′ denote the
leftover;

(2) find an approximate Hamilton decomposition of G′ and let H denote the (very
sparse) leftover;

(3) find a Hamilton decomposition of Grob ∪H.

Grob is constructed in [7] using the ‘robust decomposition lemma’ of [8]. As an
‘input’ this lemma needs a suitable set of exceptional systems, which will be part of
the decomposition found in this paper.

The nature of the decomposition of the exceptional edges into exceptional systems
depends on the structure of the bipartite subgraph G[A′, B′] of G: we say that G is
‘critical’ if many edges of G[A′, B′] are incident to very few (exceptional) vertices. In
our decomposition into exceptional systems, we will need to distinguish between (a)
the non-critical case when G[A′, B′] contains contains many edges, (b) the critical
case when G[A′, B′] contains contains many edges, and (c) the case when G[A′, B′]
contains only a few edges. The three lemmas guaranteeing this decomposition are the
main results of this paper. In these lemmas, we will be able to assume that A0 and
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B0 are independent sets of vertices, as suitable Hamilton cycles covering all edges of
G[A0] and G[B0] are already found in [7].

2. Notation and tools

2.1. Notation. Given a graph G, we write V (G) for its vertex set, E(G) for its edge
set, e(G) := |E(G)| for the number of its edges and |G| := |V (G)| for the number
of its vertices. We write δ(G) for the minimum degree of G, ∆(G) for its maximum
degree and χ′(G) for the edge-chromatic number of G. Given a vertex v of G and a
set A ⊆ V (G), we write dG(v,A) for the number of all those neighbours of v in G
which lie in A. Given A,B ⊆ V (G), we write eG(A) for the number of all those edges
of G which have both endvertices in A and eG(A,B) for the number of AB-edges of
G, i.e. for the number of all those edges of G which have one endvertex in A and its
other endvertex in B. If A ∩ B = ∅, we denote by G[A,B] the bipartite subgraph
of G whose vertex classes are A and B and whose edges are all AB-edges of G. We
often omit the index G if the graph G is clear from the context.

Given a vertex set V and two edge-disjoint graphs G and H with V (G), V (H) ⊆ V ,
we write G+H for the graph whose vertex set is V (G) ∪ V (H) and whose edge set
is E(G) ∪ E(H). We write G −H for the subgraph of G which is obtained from G
by deleting all the edges in E(G) ∩E(H). Given A ⊆ V (G), we write G−A for the
graph obtained from G by deleting all vertices in A.

We say that a graph G has a decomposition into H1, . . . ,Hr if G = H1 + · · ·+Hr

and the Hi are pairwise edge-disjoint.
A path system is a graph Q which is the union of vertex-disjoint paths (some of

them might be trivial). We say that P is a path in Q if P is a component of Q and,
abusing the notation, sometimes write P ∈ Q for this. We often view a matching M
as a graph (in which every vertex has degree precisely one).

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n ≪ a ≪ b ≪ c ≤ 1 (where
n is the order of the graph), then this means that there are non-decreasing functions
f : (0, 1] → (0, 1], g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such that the result holds
for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b) and 1/n ≤ h(a). We will
not calculate these functions explicitly. Hierarchies with more constants are defined
in a similar way. We will write a = b± c as shorthand for b− c ≤ a ≤ b+ c.

2.2. Tools. We will need the following Chernoff bound for binomial distribution (see
e.g. [5, Corollary 2.3]). Recall that the binomial random variable with parameters
(n, p) is the sum of n independent Bernoulli variables, each taking value 1 with
probability p or 0 with probability 1− p.

Proposition 2.1. Suppose X has binomial distribution and 0 < a < 3/2. Then

P(|X − EX| ≥ aEX) ≤ 2e−a2EX/3.
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We will also use the following special cases of Propositions 6.1 and 6.3 in [7] which,
given a suitable graph G and a partition A′, B′ of V (G), provide bounds on the
number eG(A

′, B′) of edges between A′ and B′.

Proposition 2.2. Let G be a graph on n vertices with δ(G) ≥ D and let A′, B′ be a
partition of V (G). If D ≥ n−2⌊n/4⌋−1, then eG(A

′, B′) ≥ D unless n = 0 (mod 4),
D = n/2− 1 and |A′| = |B′| = n/2.

Proposition 2.3. Let G be a D-regular graph on n vertices with D ≥ ⌊n/2⌋. Let
A′, B′ be a partition of V (G) with |A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2. Then

eG−U (A
′, B′) ≥

{
D − 28 if D ≥ n/2,

D/2− 28 if D = (n − 1)/2

for every U ⊆ V (G) with |U | ≤ 3.

Finally, we will also need the following result, which is a simple consequence of
Vizing’s theorem and was first observed by McDiarmid and independently by de
Werra (see e.g. [11]).

Proposition 2.4. Let G be a graph with χ′(G) ≤ m. Then G has a decomposition
into m matchings M1, . . . ,Mm with |e(Mi)− e(Mj)| ≤ 1 for all i, j ≤ m.

3. Exceptional systems, (K,m, ε0)-partitions and exceptional schemes

In this section, we formally introduce ‘exceptional (path) systems’. Their first
property is that the (interiors of) their paths cover all exceptional vertices.

Suppose that A,A0, B,B0 forms a partition of a vertex set V of size n such that
|A| = |B|. Let V0 := A0 ∪ B0. An exceptional cover J is a graph which satisfies the
following properties:

(EC1) J is a path system with V0 ⊆ V (J) ⊆ V .
(EC2) dJ(v) = 2 for every v ∈ V0 and dJ(v) ≤ 1 for every v ∈ V (J) \ V0.
(EC3) eJ(A), eJ (B) = 0.

We say that J is an exceptional system with parameter ε0, or an ES for short, if J
satisfies the following properties:

(ES1) J is an exceptional cover.
(ES2) One of the following is satisfied:

(HES) The number of AB-paths in J is even and positive. In this case we say
J is a Hamilton exceptional system, or HES for short.

(MES) eJ(A
′, B′) = 0. In this case we say J is a matching exceptional system,

or MES for short.
(ES3) J contains at most

√
ε0n AB-paths.

Note that by (EC2) every AB-path in J must be a maximal path in J . In [7] we will
extend each Hamilton exceptional system J into a Hamilton cycle using only edges
induced by A and edges induced by B. This is the reason for condition (HES) since
the number of AB-paths in J corresponds to the number of genuine ‘connections’
between A and B. In [7], matching exceptional systems will always be extended into
two edge-disjoint perfect matchings.
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In general, we construct an exceptional system by first choosing an exceptional
system candidate (defined below) and then extending it to an exceptional system.
More precisely, suppose that A,A0, B,B0 forms a partition of a vertex set V . Let
V0 := A0 ∪ B0. A graph F is called an exceptional system candidate with parameter
ε0, or an ESC for short, if F satisfies the following properties:

(ESC1) F is a path system with V0 ⊆ V (F ) ⊆ V and such that eF (A), eF (B) = 0.
(ESC2) dF (v) ≤ 2 for all v ∈ V0 and dF (v) = 1 for all v ∈ V (F ) \ V0.
(ESC3) eF (A

′, B′) ≤ √
ε0n/2. In particular, |V (F )∩A|, |V (F )∩B| ≤ 2|V0|+

√
ε0n/2.

(ESC4) One of the following holds:
(HESC) Let b(F ) be the number of maximal paths in F with one endpoint in A′

and the other in B′. Then b(F ) is even and b(F ) > 0. In this case we say
that F is a Hamilton exceptional system candidate, or HESC for short.

(MESC) eF (A
′, B′) = 0. In this case, F is called a matching exceptional system

candidate or MESC for short.

Note that if dF (v) = 2 for all v ∈ V0, then F is an exceptional system. Also, if F
is a Hamilton exceptional system candidate with e(F ) = 2, then F consists of two
independent A′B′-edges. Moreover, note that (EC2) allows an exceptional cover J
(and so also an exceptional system J) to contain vertices in A∪B which are isolated
in J . However, (ESC2) does not allow for this in an exceptional system candidate F .

Similarly to condition (HES), in (HESC) the parameter b(F ) counts the number of
‘connections’ between A′ and B′. In order to extend a Hamilton exceptional system
candidate into a Hamilton cycle without using any additional A′B′-edges, it is clearly
necessary that b(F ) is positive and even.

The following result shows that we can extend an exceptional system candidate
into a exceptional system by adding suitable A0A- and B0B-edges. Its easy proof is
included in [7, Lemma 7.2].

Lemma 3.1. Suppose that 0 < 1/n ≪ ε0 ≪ 1 and that n ∈ N. Let G be a graph on
n vertices so that

(i) A,A0, B,B0 forms a partition of V (G) with |A0 ∪B0| ≤ ε0n;
(ii) d(v,A) ≥ √

ε0n for all v ∈ A0 and d(v,B) ≥ √
ε0n for all v ∈ B0.

Let F be an exceptional system candidate with parameter ε0. Then there exists an
exceptional system J with parameter ε0 such that F ⊆ J ⊆ G + F and such that
every edge of J − F lies in G[A0, A] + G[B0, B]. Moreover, if F is a Hamilton
exceptional system candidate, then J is a Hamilton exceptional system. Otherwise J
is a matching exceptional system.

As mentioned earlier, the exceptional systems we seek will need to be ‘localized’.
For a formal definition, let K,m ∈ N and ε0 > 0. A (K,m, ε0)-partition P of a set
V of vertices is a partition of V into sets A0, A1, . . . , AK and B0, B1, . . . , BK such
that |Ai| = |Bi| = m for all i ≥ 1 and |A0 ∪ B0| ≤ ε0|V |. The sets A1, . . . , AK and
B1, . . . , BK are called clusters of P and A0, B0 are called exceptional sets. We often
write V0 for A0 ∪B0 and think of the vertices in V0 as ‘exceptional vertices’. Unless
stated otherwise, whenever P is a (K,m, ε0)-partition, we will denote the clusters
by A1, . . . , AK and B1, . . . , BK and the exceptional sets by A0 and B0. We will also
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write A := A1 ∪ · · · ∪ AK , B := B1 ∪ · · · ∪ BK , A′ := A0 ∪ A1 ∪ · · · ∪ AK and
B′ := B0 ∪B1 ∪ · · · ∪BK .

Given a (K,m, ε0)-partition P and 1 ≤ i, i′ ≤ K, we say that J is an (i, i′)-
localized Hamilton exceptional system (abbreviated as (i, i′)-HES ) if J is a Hamilton
exceptional system and V (J) ⊆ V0 ∪Ai ∪Bi′ . In a similar way, we define

• (i, i′)-localized matching exceptional systems ((i, i′)-MES ),
• (i, i′)-localized exceptional systems ((i, i′)-ES ),
• (i, i′)-localized Hamilton exceptional system candidates ((i, i′)-HESC ),
• (i, i′)-localized matching exceptional system candidates ((i, i′)-MESC ),
• (i, i′)-localized exceptional system candidates ((i, i′)-ESC ).

To make clear with which partition we are working, we sometimes also say that J is
an (i, i′)-localized Hamilton exceptional system with respect to P etc.

Finally, we define an ‘exceptional scheme’, which will be the structure within which
we find our localized exceptional systems. Given a graph G on n vertices and a
partition P of V (G), we call (G,P) a (K,m, ε0, ε)-exceptional scheme if the following
properties are satisfied:

(ESch1) P is a (K,m, ε0)-partition of V (G).
(ESch2) e(A), e(B) = 0.
(ESch3) If v ∈ A then d(v,B′) < ε0n and if v ∈ B then d(v,A′) < ε0n.
(ESch4) For all v ∈ V (G) and all 1 ≤ i ≤ K we have d(v,Ai) = (d(v,A)± εn)/K and

d(v,Bi) = (d(v,B) ± εn)/K.
(ESch5) For all 1 ≤ i, i′ ≤ K we have

e(A0, Ai) = (e(A0, A)± εmax{e(A0, A), n})/K,

e(B0, Ai) = (e(B0, A)± εmax{e(B0, A), n})/K,

e(A0, Bi) = (e(A0, B)± εmax{e(A0, B), n})/K,

e(B0, Bi) = (e(B0, B)± εmax{e(B0, B), n})/K,

e(Ai, Bi′) = (e(A,B) ± εmax{e(A,B), n})/K2.

4. Constructing localized exceptional systems

Given a D-regular graph G and a (K,m, ε0)-partition P of V (G), let G′ := G −
G[A] −G[B] and suppose that (G′,P) is an exceptional scheme. Roughly speaking,
the aim of this section is to decompose G′ into edge-disjoint exceptional systems.
In [7], each of these exceptional systems J will then be extended into a Hamilton
cycle (in the case when J is a Hamilton exceptional system) or into two perfect
matchings (in the case when J is a matching exceptional system). We will ensure
that all but a small number of these exceptional systems are localized (with respect
to P).

Rather than decomposing G′ in a single step, we actually need to proceed in two
steps: initially, we find a small number of exceptional systems J which have some
additional useful properties (e.g. the number of A′B′-edges of J is either zero or two).
In [7] these exceptional systems will be used to construct the robustly decomposable
graph Grob. (Recall that the role of Grob in [7] was also discussed in Section 1.3.)
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Some of the additional properties of the exceptional systems contained in Grob then
allow us to find the desired decomposition of G⋄ := G′−Grob into exceptional systems.

In order to construct the required (localized) exceptional systems, we will distin-
guish three cases:

(a) the case when G is ‘non-critical’ and contains at least D A′B′-edges (see
Lemma 4.2 in Section 4.2);

(b) the case when G is ‘critical’ and contains at least D A′B′-edges (see Lemma
4.10 in Section 4.3);

(c) the case when G contains less than D A′B′-edges (see Lemma 4.14 in Sec-
tion 4.4).

Each of the three lemmas above is formulated in such a way that we can apply it
twice in [7]: firstly to obtain the small number of exceptional systems needed for the
robustly decomposable graph Grob and secondly for the decomposition of the graph
G⋄ := G−Grob −G[A]−G[B] into exceptional systems.

4.1. Critical graphs. Let G be a D-regular graph and let A′, B′ be a partition of
V (G). Roughly speaking, G is critical if most of its A′B′-edges are incident to only
a few vertices. More precisely, we say that G is critical (with respect to A′, B′ and
D) if both of the following hold:

• ∆(G[A′, B′]) ≥ 11D/40;
• e(H) ≤ 41D/40 for all subgraphs H of G[A′, B′] with ∆(H) ≤ 11D/40.

One example of a critical graph is the following: Gcrit consists of two disjoint cliques
on (n − 1)/2 vertices with vertex set A and B respectively, where n = 4k + 1 for
some k ∈ N. In addition, there is a vertex a which is adjacent to exactly half of the
vertices in each of A and B. Also, add a perfect matching M between those vertices
of A and those vertices in B not adjacent to a. Let A′ := A ∪ {a}, B′ := B and
D := (n − 1)/2. Then Gcrit is critical, and D-regular with e(A′, B′) = D. Note that
e(M) = D/2.

To obtain a Hamilton decomposition ofGcrit, we will need to decomposeGcrit[A
′, B′]

into D/2 Hamilton exceptional system candidates Fs (which need to be matchings
of size exactly two in this case). In this example, this decomposition is essentially
unique: every Fs has to consist of exactly one edge in M and one edge incident to
a. Note that in this way, every edge between a and B yields a ‘connection’ (i.e. a
maximal path) between A′ and B′ required in (ESC4).

The following lemma collects some properties of critical graphs. In particular, there
is a set W consisting of between one and three vertices with many neighbours in both
A and B (such as the vertex a in Gcrit above). As in the example of Gcrit, we will
need to use A′B′-edges incident to one or two vertices in W to provide connections
between A′ and B′ when constructing the Hamilton exceptional system candidates
in the critical case (b).
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Lemma 4.1. Suppose that 0 < 1/n ≪ 1 and that D,n ∈ N are such that

(4.1) D ≥ n− 2⌊n/4⌋ − 1 =





n/2− 1 if n = 0 (mod 4),

(n− 1)/2 if n = 1 (mod 4),

n/2 if n = 2 (mod 4),

(n+ 1)/2 if n = 3 (mod 4).

Let G be a D-regular graph on n vertices and let A′, B′ be a partition of V (G) with
|A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2. Suppose that G is critical. Let W be
the set of vertices w ∈ V (G) such that dG[A′,B′](w) ≥ 11D/40. Then the following
properties are satisfied:

(i) 1 ≤ |W | ≤ 3.
(ii) Either D = (n−1)/2 and n = 1 (mod 4), or D = n/2−1 and n = 0 (mod 4).

Furthermore, if n = 1 (mod 4), then |W | = 1.
(iii) eG(A

′, B′) ≤ 17D/10 + 5 < n.
(iv)

eG−W (A′, B′) ≤





3D/4 + 5 if |W | = 1,

19D/40 + 5 if |W | = 2,

D/5 + 5 if |W | = 3.

(v) There exists a set W ′ of vertices such that W ⊆ W ′, |W ′| ≤ 3 and for all
w′ ∈ W ′ and v ∈ V (G) \W ′ we have

dG[A′,B′](w
′) ≥ 21D

80
, dG[A′,B′](v) ≤

11D

40
and dG[A′,B′](w

′)− dG[A′,B′](v) ≥
D

240
.

Proof. Let w1, . . . , w4 be vertices of G such that

dG[A′,B′](w1) ≥ · · · ≥ dG[A′,B′](w4) ≥ dG[A′,B′](v)

for all v ∈ V (G)\{w1 , . . . , w4}. LetW4 := {w1, . . . , w4}. Suppose that dG[A′,B′](w4) ≥
21D/80. Let H be a spanning subgraph of G[A′, B′] such that dH(wi) = ⌈21D/80⌉
for all i ≤ 4 and such that every vertex v ∈ V (G) \W4 satisfies NH(v) ⊆ W4. Thus
∆(H) = ⌈21D/80⌉ and so e(H) ≤ 41D/40 since G is critical. On the other hand,
e(H) ≥ 4 · ⌈21D/80⌉ − 4, a contradiction. (Here we subtract four to account for the
edges of H ′ between vertices in W .) Hence, dG[A′,B′](w4) < 21D/80 and so |W | ≤ 3.
But |W | ≥ 1 since G is critical. So (i) holds.

Let j be minimal such that dG[A′,B′](wj) ≤ 21D/80. So 1 < j ≤ 4. Choose an index
i with 1 ≤ i < j such that W ⊆ {w1, . . . , wi} and dG[A′,B′](wi) − dG[A′,B′](wi+1) ≥
D/240. Then the set W ′ := {w1, . . . , wi} satisfies (v).

Let H ′ be a spanning subgraph of G[A′, B′] such that G[A′ \W,B′ \W ] ⊆ H ′ and
dH′(w) = ⌊11D/40⌋ for all w ∈ W . Similarly as before, e(H ′) ≤ 41D/40 since G is
critical. Thus

41D/40 ≥ e(H ′) ≥ e(H ′ −W ) + ⌊11D/40⌋|W | − 2

= eG−W (A′, B′) + ⌊11D/40⌋|W | − 2.
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This in turn implies that

eG−W (A′, B′) ≤ (41 − 11|W |)D/40 + 5.(4.2)

Together with (i) this implies (iv). If D ≥ n/2, then by Proposition 2.3 we have
eG−W (A′, B′) ≥ D−28. This contradicts (iv). Thus (4.1) implies that D = (n−1)/2
and n = 1 (mod 4), or D = n/2 − 1 and n = 0 (mod 4). If n = 1 (mod 4) and
D = (n−1)/2, then Proposition 2.3 implies that eG−W (A′, B′) ≥ D/2−28. Hence, by
(iv) we deduce that |W | = 1 and so (ii) holds. Since |W | ≤ 3 and ∆(G[A′, B′]) ≤ D/2,
we have

eG(A
′, B′) ≤ eG−W (A′, B′) +

|W |D
2

(4.2)
≤ (41 + 9|W |)D

40
+ 5 ≤ 17D

10
+ 5 < n.

(The last inequality follows from (ii).) This implies (iii). �

4.2. Non-critical case with e(A′, B′) ≥ D. Recall from the beginning of Section 4
that our aim is to find a decomposition of G−G[A]−G[B] into suitable exceptional
systems (in particular, most of these exceptional systems have to be localized). The
following lemma implies that this can be done if G is not critical and e(A′, B′) ≥ D.
We will prove this lemma in this subsection and will then consider the remaining two
cases in the next two subsections.

Lemma 4.2. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ λ, 1/K ≪ 1, that D ≥ n/3,
that 0 ≤ φ ≪ 1 and that D,n,K,m, λn/K2, (D − φn)/(2K2) ∈ N. Suppose that the
following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that D ≤ eG(A

′, B′) ≤ ε0n
2 and

∆(G[A′, B′]) ≤ D/2. Furthermore, G is not critical.
(iii) G0 is a subgraph of G such that G[A0] +G[B0] ⊆ G0, eG0

(A′, B′) ≤ φn and
dG0

(v) = φn for all v ∈ V0.
(iv) Let G⋄ := G − G[A] − G[B] − G0. eG⋄(A′, B′) is even and (G⋄,P) is a

(K,m, ε0, ε)-exceptional scheme.

Then there exists a set J consisting of (D−φn)/2 edge-disjoint Hamilton exceptional
systems with parameter ε0 in G⋄ which satisfies the following properties:

(a) Together all the Hamilton exceptional systems in J cover all edges of G⋄.
(b) For all 1 ≤ i, i′ ≤ K, the set J contains (D − (φ+ 2λ)n)/(2K2) (i, i′)-HES.

Moreover, λn/K2 of these (i, i′)-HES J are such that eJ(A
′, B′) = 2.

Note that (b) implies that J contains λn Hamilton exceptional systems which
might not be localized. On the other hand, the lemma is ‘robust’ in the sense that we
can remove a sparse subgraph G0 before we find the decomposition J into Hamilton
exceptional systems. (In particular, as discussed at the beginning of the section, we
can remove the graph Grob before applying the lemma.)

We will split the proof of Lemma 4.2 into the following four steps:

Step 1 We first decompose G⋄ into edge-disjoint ‘localized’ subgraphs H(i, i′) and
H ′(i, i′) (where 1 ≤ i, i′ ≤ K). More precisely, each H(i, i′) only contains
A0Ai-edges and B0Bi′-edges of G⋄ while all edges of H ′(i, i′) lie in G⋄[A0 ∪
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Ai, B0 ∪ Bi′ ], and all the edges of G⋄ are distributed evenly amongst the
H(i, i′) and H ′(i, i′) (see Lemma 4.3). We will then move a small number of
A′B′-edges between the H ′(i, i′) in order to obtain graphs H ′′(i, i′) such that
e(H ′′(i, i′)) is even (see Lemma 4.4).

Step 2 We decompose each H ′′(i, i′) into (D−φn)/(2K2) Hamilton exceptional sys-
tem candidates (see Lemma 4.6).

Step 3 Most of the Hamilton exceptional system candidates constructed in Step 2
will be extended into an (i, i′)-HES (see Lemma 4.7).

Step 4 The remaining Hamilton exceptional system candidates will be extended into
Hamilton exceptional systems, which need not be localized (see Lemma 4.8).
(Altogether, these will be the λn Hamilton exceptional systems in J which
are not mentioned in Lemma 4.2(b).)

4.2.1. Step 1: Constructing the graphs H ′′(i, i′). The next lemma from [7, Lemma 9.2]
will be used to find a decomposition of G⋄ into suitable ‘localized subgraphs’ H(i, i′)
and H ′(i, i′) as decribed in Step 1 above.

Lemma 4.3. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ 1/K ≪ 1 and that n,K,m ∈ N. Let
(G,P) be a (K,m, ε0, ε)-exceptional scheme with |G| = n and eG(A0), eG(B0) = 0.
Then G can be decomposed into edge-disjoint spanning subgraphs H(i, i′) and H ′(i, i′)
of G (for all 1 ≤ i, i′ ≤ K) such that the following properties hold, where G(i, i′) :=
H(i, i′) +H ′(i, i′):

(a1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(a2) All edges of H ′(i, i′) lie in G[A0 ∪Ai, B0 ∪Bi′ ].
(a3) e(H ′(i, i′)) = (eG(A

′, B′)± 4εmax{n, eG(A′, B′)})/K2.
(a4) dH′(i,i′)(v) = (dG[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a5) dG(i,i′)(v) = (dG(v) ± 4εn)/K2 for all v ∈ V0.

Let H(i, i′) and H ′(i, i′) be the graphs obtained by applying Lemma 4.3 to G⋄. As
mentioned before, we would like to decompose eachH ′(i, i′) into Hamilton exceptional
system candidates. In order to do this, e(H ′(i, i′)) must be even. The next lemma
shows that we can ensure this property without destroying the other properties of
the H ′(i, i′) too much by moving a small number of edges between the H ′(i, i′).

Lemma 4.4. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ ε′ ≪ λ, 1/K ≪ 1, that D ≥ n/3,
that 0 ≤ φ ≪ 1 and that D,n,K,m, (D − φn)/(2K2) ∈ N. Define α by

2αn :=
D − φn

K2
and let γ := α− 2λ

K2
.(4.3)

Suppose that the following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that D ≤ eG(A

′, B′) ≤ ε0n
2 and

∆(G[A′, B′]) ≤ D/2. Furthermore, G is not critical.
(iii) G0 is a subgraph of G such that G[A0] +G[B0] ⊆ G0, eG0

(A′, B′) ≤ φn and
dG0

(v) = φn for all v ∈ V0.
(iv) Let G⋄ := G − G[A] − G[B] − G0. eG⋄(A′, B′) is even and (G⋄,P) is a

(K,m, ε0, ε)-exceptional scheme.
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Then G⋄ can be decomposed into edge-disjoint spanning subgraphs H(i, i′) and H ′′(i, i′)
of G⋄ (for all 1 ≤ i, i′ ≤ K) such that the following properties hold, where G′(i, i′) :=
H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b2) H ′′(i, i′) ⊆ G⋄[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie in

G⋄[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) is even and 2αn ≤ e(H ′′(i, i′)) ≤ 11ε0n

2/(10K2).
(b4) ∆(H ′′(i, i′)) ≤ 31αn/30.
(b5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

(b6) Let H̃ be any spanning subgraph of H ′′(i, i′) which maximises e(H̃) under

the constraints that ∆(H̃) ≤ 3γn/5, H ′′(i, i′)[A0, B0] ⊆ H̃ and e(H̃) is even.

Then e(H̃) ≥ 2αn.

Proof. Since φ ≪ 1/3 ≤ D/n, we deduce that

α ≥ 1/(7K2), (1− 14λ)α ≤ γ < α and ε ≪ ε′ ≪ λ, 1/K,α, γ ≪ 1.(4.4)

Note that (ii) and (iii) together imply that

eG⋄(A′, B′) ≥ D − φn
(4.3)
= 2K2αn

(4.4)
≥ n/4.(4.5)

By (i) and (iii), each v ∈ V0 satisfies

(4.6) dG⋄(v) = D − φn
(4.3)
= 2K2αn.

Apply Lemma 4.3 to decompose G⋄ into subgraphsH(i, i′), H ′(i, i′) (for all 1 ≤ i, i′ ≤
K) satisfying the following properties, where G(i, i′) := H(i, i′) +H ′(i, i′):

(a′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(a′2) All edges of H ′(i, i′) lie in G⋄[A0 ∪Ai, B0 ∪Bi′ ].
(a′3) e(H ′(i, i′)) = (1± 16ε)eG⋄ (A′, B′)/K2. In particular,

2(1− 16ε)αn ≤ e(H ′(i, i′)) ≤ (1 + 16ε)ε0n
2/K2.

(a′4) dH′(i,i′)(v) = (dG⋄[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a′5) dG(i,i′)(v) = (2α± 4ε/K2)n for all v ∈ V0.

Indeed, (a′3) follows from (4.5), Lemma 4.3(a3) and (ii), while (a′5) follows from (4.6)
and Lemma 4.3(a5). We now move some A′B′-edges of G⋄ between the H ′(i, i′) such
that the graphs H ′′(i, i′) obtained in this way satisfy the following conditions:

• EachH ′′(i, i′) is obtained fromH ′(i, i′) by adding or removing at most 32K2εαn ≤√
εn edges.

• e(H ′′(i, i′)) ≥ 2αn and e(H ′′(i, i′)) is even.

Note that this is possible by (a′3) and since αn ∈ N and eG⋄(A′, B′) ≥ 2K2αn is even
by (iv).

We will show that the graphs H(i, i′) and H ′′(i, i′) satisfy conditions (b1)–(b6).
Clearly both (b1) and (b2) hold. (a

′
3) implies that

(4.7) e(H ′′(i, i′)) = (1±16ε)eG⋄ (A′, B′)/K2±√
εn

(4.4),(4.5)
= (1±ε′)eG⋄(A′, B′)/K2.
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Together with (ii) and our choice of the H ′′(i, i′) this implies (b3). (b5) follows from
(a′5) and the fact that dG′(i,i′)(v) = dG(i,i′)(v)±

√
εn. Similarly, (a′4) implies that for

all v ∈ V0 we have

(4.8) dH′′(i,i′)(v) = (dG⋄[A′,B′](v)± ε′n)/K2.

Recall that ∆(G[A′, B′]) ≤ D/2 by (ii). Thus

∆(H ′′(i, i′))
(4.8)

≤ D/2 + ε′n

K2

(4.3)
=

(
α+

φ+ 2ε′

2K2

)
n

(4.4)

≤ 31αn

30
,

so (b4) holds.
So it remains to verify (b6). To do this, fix 1 ≤ i, i′ ≤ K and set H ′′ := H ′′(i, i′).

Let H̃ be a subgraph of H ′′ as defined in (b6). We need to show that e(H̃) ≥ 2αn.

Suppose the contrary that e(H̃) < 2αn. We will show that this contradicts the

assumption that G is not critical. Roughly speaking, the argument will be that if H̃
is sparse, then so is H ′′. This in turn implies that G⋄ is also sparse, and thus any
subgraph of G[A′, B′] of comparatively small maximum degree is also sparse, which
leads to a contradiction.

Let X be the set of all those vertices x for which d
H̃
(x) ≥ 3γn/5 − 2. So X ⊆ V0

by (iv) and (ESch3). Note that if X = ∅, then H̃ = H ′′ and so e(H̃) ≥ 2αn by (b3).

If |X| ≥ 4, then e(H̃) ≥ 4(3γn/5 − 2) − 4 ≥ 2αn by (4.4). Hence 1 ≤ |X| ≤ 3. Note

that H̃ −X contains all but at most one edge from H ′′ −X. Together with the fact

that H̃[X] contains at most two edges (since |X| ≤ 3 and H̃ is bipartite) this implies
that

2αn > e(H̃) ≥ e(H̃ −X) +

(
∑

x∈X

dH̃(x)

)
− 2 ≥ e(H ′′ −X)− 1 + |X|(3γn/5 − 2)− 2

≥ e(H ′′)−
∑

x∈X

dH′′(x) + |X|(3γn/5 − 2)− 3

= e(H ′′)−
∑

x∈X

(dH′′(x)− 3γn/5 + 2)− 3(4.9)

and so

e(H ′′)
(4.8)
< 2αn+

∑

x∈X

(
dG⋄[A′,B′](x) + ε′n

K2
− 3γn/5 + 2

)
+ 3.(4.10)

Note that (b4) and (4.9) together imply that if e(H ′′) ≥ 4αn then e(H̃) ≥ e(H ′′) −
|X|(31αn/30 − 3γn/5 + 2) − 3 ≥ 2αn. Thus e(H ′′) < 4αn and by (4.7) we have
eG⋄(A′, B′) ≤ 4K2αn/(1− ε′) ≤ 5K2αn ≤ 3n. Hence

eG⋄(A′, B′)
(4.7)
≤ K2e(H ′′) + ε′eG⋄(A′, B′) ≤ K2e(H ′′) + 3ε′n

(4.10)
≤ D − φn+ 7ε′n+

∑

x∈X

(
dG⋄[A′,B′](x)−K2(3γn/5)

)
.(4.11)
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Let G′ be any subgraph of G⋄[A′, B′] which maximises e(G′) under the constraint
that ∆(G′) ≤ K2(3γ/5 + 2ε′)n. Note that if dG⋄[A′,B′](v) ≥ K2(3γ/5 + 2ε′)n, then
v ∈ V0 (by (iv) and (ESch3)) and so dH′′(v) > 3γn/5 by (4.8). This in turn implies
that v ∈ X. Hence

e(G′) ≤ eG⋄(A′, B′)−
∑

x∈X

(
dG⋄[A′,B′](x)−K2(3γ/5 + 2ε′)n

)
+ 2

(4.11)

≤ D − φn+ 7K2ε′n.(4.12)

Note that (4.8) together with the fact that X 6= ∅ implies that

∆(G[A′, B′]) ≥ ∆(G⋄[A′, B′]) ≥ K2(3γn/5 − 2)− ε′n
(4.3),(4.4)

≥ 11D/40.

Since G is not critical this means that there exists a subgraph G′′ of G[A′, B′] such
that ∆(G′′) ≤ 11D/40 ≤ K2(3γ/5 + 2ε′)n and e(G′′) ≥ 41D/40. Thus

D − φn+ 7K2ε′n
(4.12)
≥ e(G′) ≥ e(G′′)− eG0

(A′, B′) ≥ 41D/40 − φn,

which is a contradiction. Therefore, we must have e(H̃) ≥ 2αn. Hence (b6) is
satisfied. �

4.2.2. Step 2: Decomposing H ′′(i, i′) into Hamilton exceptional system candidates.
Our next aim is to decompose each H ′′(i, i′) into αn Hamilton exceptional system
candidates (this will follow from Lemma 4.6). Before we can do this, we need the
following result on decompositions of bipartite graphs into ‘even matchings’. We say
that a matching is even if it contains an even number of edges, otherwise it is odd.

Proposition 4.5. Suppose that 0 < 1/n ≪ γ ≤ 1 and that n, γn ∈ N. Let H be
a bipartite graph on n vertices with ∆(H) ≤ 2γn/3 and where e(H) ≥ 2γn is even.
Then H can be decomposed into γn edge-disjoint non-empty even matchings, each of
size at most 3e(H)/(γn).

Proof. First note that since e(H) ≥ 2γn, it suffices to show that H can be
decomposed into at most γn edge-disjoint non-empty even matchings, each of size at
most 3e(H)/(γn). Indeed, by splitting these matchings further if necessary, one can
obtain precisely γn non-empty even matchings.

Set n′ := ⌊2γn/3⌋. König’s theorem implies that χ′(H) ≤ n′. So Proposition 2.4
implies that there is a decomposition ofH into n′ edge-disjoint matchingsM1, . . . ,Mn′

such that |e(Ms)− e(Ms′)| ≤ 1 for all s, s′ ≤ n′. Hence we have

2 ≤ e(H)

n′
− 1 ≤ e(Ms) ≤

e(H)

n′
+ 1 ≤ 3e(H)

γn

for all s ≤ n′. Since e(H) is even, there are an even number of odd matchings. Let
Ms and Ms′ be two odd matchings. So e(Ms), e(Ms′) ≥ 3 and thus there exist two
disjoint edges e ∈ Ms and e′ ∈ Ms′ . Hence, Ms − e, Ms′ − e′ and {e, e′} are three
even matchings. Thus, by pairing off the odd matchings and repeating this process,
the proposition follows. �
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Lemma 4.6. Suppose that 0 < 1/n ≪ ε0 ≪ γ < 1, that γ + γ′ < 1 and that
n, γn, γ′n ∈ N. Let H be a bipartite graph on n vertices with vertex classes A∪̇A0

and B∪̇B0, where |A0|+ |B0| ≤ ε0n. Suppose that

(i) e(H) is even, ∆(H) ≤ 16γn/15 and ∆(H[A,B]) < (3γ/5 − ε0)n.

Let H ′ be a spanning subgraph of H which maximises e(H ′) under the constraints
that ∆(H ′) ≤ 3γn/5, H[A0, B0] ⊆ H ′ and e(H ′) is even. Suppose that

(ii) 2(γ + γ′)n ≤ e(H ′) ≤ 10ε0γn
2.

Then there exists a decomposition of H into edge-disjoint Hamilton exceptional system
candidates F1, . . . , Fγn, F

′
1, . . . , F

′
γ′n with parameter ε0 such that e(F ′

s) = 2 for all

s ≤ γ′n.

Since we are in the non-critical case with many edges between A′ and B′, we will
be able to assume that the subgraph H ′ satisfies (ii).

Roughly speaking, the idea of the proof of Lemma 4.6 is to apply the previous
proposition to decompose H ′ into a suitable number of even matchings Mi (using
the fact that it has small maximum degree). We then extend these matchings into
Hamilton exceptional system candidates to cover all edges of H. The additional edges
added to each Mi will be vertex-disjoint from Mi and form vertex-disjoint 2-paths
uvw with v ∈ V0. So the number of connections from A′ to B′ remains the same (as
H is bipartite). Each matching Mi will already be a Hamilton exceptional system
candidate, which means that Mi and its extension will have the correct number of
connections from A′ to B′ (which makes this part of the argument simpler than in
the critical case).

Proof of Lemma 4.6. Set A′ := A0 ∪A and B′ := B0 ∪B. We first construct the
F ′
s. If γ

′ = 0, there is nothing to do. So suppose that γ′ > 0. Note that each F ′
s has

to be a matching of size 2 (this follows from the definition of a Hamilton exceptional
system candidate and the fact that e(F ′

s) = 2). Since H ′ is bipartite and so

e(H ′)

χ′(H ′)
=

e(H ′)

∆(H ′)
≥ 2(γ + γ′)n

3γn/5
>

10

3
,

we can find a 2-matching F ′
1 in H ′. Delete the edges in F ′

1 from H ′ and choose
another 2-matching F ′

2. We repeat this process until we have chosen γ′n edge-disjoint
2-matchings F ′

1, . . . , F
′
γ′n.

We now construct F1, . . . , Fγn in two steps: first we construct matchingsM1, . . . ,Mγn

in H ′ and then extend each Mi into the desired Fi. Let H1 and H ′
1 be obtained from

H and H ′ by removing all the edges in F ′
1, . . . , F

′
γ′n. So now 2γn ≤ e(H ′

1) ≤ 10ε0γn
2

and both e(H1) and e(H ′
1) are even. Thus Proposition 4.5 implies that there is a de-

composition of H ′
1 into edge-disjoint non-empty even matchings M1, . . . ,Mγn, each

of size at most 30ε0n.
Note that each Mi is a Hamilton exceptional system candidate with parameter ε0.

So if H ′
1 = H1, then we are done by setting Fs := Ms for each s ≤ γn. Hence, we

may assume that H ′′ := H1 −H ′
1 = H −H ′ contains edges. Let X be the set of all

those vertices x ∈ A0 ∪ B0 for which dH′′(x) > 0. Note that each x ∈ X satisfies
NH′′(x) ⊆ A ∪ B (since H[A0, B0] ⊆ H ′). This implies that each x ∈ X satisfies



16 DANIELA KÜHN, ALLAN LO AND DERYK OSTHUS

dH′(x) ≥ ⌊3γn/5⌋ − 1 or dH′′(x) = 1. (Indeed, suppose that dH′(x) ≤ ⌊3γn/5⌋ − 2
and dH′′(x) ≥ 2. Then we can move two edges incident to x from H ′′ to H ′. The
final assumption in (i) and the assumption on dH′(x) together imply that we would
still have ∆(H ′) ≤ 3γn/5, a contradiction.) Since ∆(H) ≤ 16γn/15 by (i) this in
turn implies that dH′′(x) ≤ 7γn/15 + 2 for all x ∈ X.

Let M be a random subset of {M1, . . . ,Mγn} where each Mi is chosen indepen-
dently with probability 2/3. By Proposition 2.1, with high probability, the following
assertions hold:

r := |M| = (2/3 ± ε0)γn

|{Ms ∈ M : dMs(v) = 1}| = 2dH′

1
(v)/3 ± ε0γn for all v ∈ V (H).(4.13)

By relabeling if necessary, we may assume that M = {M1,M2, . . . ,Mr}. For each
s ≤ r, we will now extend Ms to a Hamilton exceptional system candidate Fs with
parameter ε0 by adding edges from H ′′. Suppose that for some 1 ≤ s ≤ r we have
already constructed F1, . . . , Fs−1. Set H

′′
s := H ′′ −∑j<s Fj . Let Ws be the set of all

those vertices w ∈ X for which dMs(w) = 0 and dH′′
s
(w) ≥ 32ε0n ≥ 2|A0∪B0|+e(Ms).

Recall that X ⊆ A0 ∪B0 and NH′′
s
(w) ⊆ NH′′(w) ⊆ A ∪B for each w ∈ X and thus

also for each w ∈ Ws. Thus there are |Ws| vertex-disjoint 2-paths uwu′ with w ∈ Ws

and u, u′ ∈ NH′′
s
(w)\V (Ms). Assign these 2-paths to Ms and call the resulting graph

Fs. Observe that Fs is a Hamilton exceptional system candidate with parameter ε0.
Therefore, we have constructed F1, . . . , Fr by extending M1, . . . ,Mr.

We now construct Fr+1, . . . , Fγn. For this, we first prove that the above construc-
tion implies that the current ‘leftover’ H ′′

r+1 has small maximum degree. Indeed, note
that if w ∈ Ws, then dH′′

s+1
(w) = dH′′

s
(w)− 2. By (4.13), for each x ∈ X, the number

of Ms ∈ M with dMs(x) = 0 is

r − |{Ms ∈ M : dMs(x) = 1}| ≥ (2/3 − ε0)γn− (2dH′

1
(x)/3 + ε0γn)

≥ 2γn/3 − 2dH′(x)/3 − 2ε0γn

≥ 2γn/3 − 2/3 · ⌊3γn/5⌋ − 2ε0γn

≥ (4/15 − 2ε0)γn > dH′′(x)/2.

Hence, we have dH′′

r+1
(x) < 32ε0n for all x ∈ X (as we remove 2 edges at x each time

we have dMs(x) = 0 and dH′′
s
(x) ≥ 32ε0n). Note that by definition of H ′, all but at

most one edge in H ′′ must have an endpoint in X. So for x /∈ X, dH′′(x) ≤ |X|+1 ≤
|A0 ∪B0|+ 1 ≤ ε0n+ 1. Therefore, ∆(H ′′

r+1) < 32ε0n.
Let H ′′′ := H1 − (F1 + · · · + Fr). So H ′′′ is the union of H ′′

r+1 and all the Ms

with r < s ≤ γn. Since each of H1 and F1, . . . , Fr contains an even number of edges,
e(H ′′′) is even. In addition, Ms ⊆ H ′′′ for each r < s ≤ γn, so e(H ′′′) ≥ 2(γn − r).
By (4.13), since ∆(H ′′

r+1) ≤ 32ε0n, we deduce that for every vertex v ∈ V (H ′′′), we
have

dH′′′(v) ≤
(
dH′

1
(v)

3
+ ε0γn

)
+∆(H ′′

r+1) ≤
3γn/5

3
+ ε0γn+ 32ε0n ≤ 2(γn − r)

3



PROOF OF THE 1-FACTORIZATION & HAMILTON DECOMPOSITION CONJECTURES IV 17

In the second inequality, we used that dH′

1
(v) ≤ dH′(v). Moreover, we have

e(H ′′′) = e(H ′′
r+1) + e(Mr+1 + · · ·+Mγn) ≤ 32ε0n

2 + 30ε0n(γn− r) ≤ 62ε0n
2.

Thus, by Proposition 4.5 applied with H ′′′ and γ− r/n playing the roles of H and γ,
there exists a decomposition of H ′′′ into γn− r edge-disjoint non-empty even match-
ings Fr+1, . . . , Fγn, each of size at most 3e(H ′′′)/(γn− r) ≤ √

ε0n/2. Thus each such
Fs is a Hamilton exceptional system candidate with parameter ε0. This completes
the proof. �

4.2.3. Step 3: Constructing the localized exceptional systems. The next lemma will be
used to extend most of the exceptional system candidates guaranteed by Lemma 4.6
into localized exceptional systems. These extensions are required to be ‘faithful’ in
the following sense. Suppose that F is an exceptional system candidate. Then J is a
faithful extension of F if the following holds:

• J contains F and F [A′, B′] = J [A′, B′].
• If F is a Hamilton exceptional system candidate, then J is a Hamilton excep-
tional system and the analogue holds if F is a matching exceptional system
candidate.

Lemma 4.7. Suppose that 0 < 1/n ≪ ε0 ≪ 1, that 0 ≤ γ ≤ 1 and that n,K,m, γn ∈
N. Let P be a (K,m, ε0)-partition of a set V of n vertices. Let 1 ≤ i, i′ ≤ K. Suppose
that H and F1, . . . , Fγn are pairwise edge-disjoint graphs which satisfy the following
conditions:

(i) V (H) = V and H contains only A0Ai-edges and B0Bi′-edges.
(ii) Each Fs is an (i, i′)-ESC with parameter ε0.
(iii) Each v ∈ V0 satisfies dH+

∑
Fs
(v) ≥ (2γ +

√
ε0)n.

Then there exist edge-disjoint (i, i′)-ES J1, . . . , Jγn with parameter ε0 in H +
∑

Fs

such that Js is a faithful extension of Fs for all s ≤ γn.

Proof. For each s ≤ γn in turn, we extend Fs into an (i, i′)-ES Js with parameter
ε0 in H +

∑
Fs such that Js and Js′ are edge-disjoint for all s′ < s. Since H does

not contain any A′B′-edges, the Js will automatically satisfy Js[A
′, B′] = Fs[A

′, B′].
Suppose that for some 1 ≤ s ≤ γn we have already constructed J1, . . . , Js−1. Set
Hs := H −∑s′<s Js′ . Consider any v ∈ V0. Since v has degree at most 2 in an
exceptional system and in an exceptional system candidate, (iii) implies that

dHs(v) ≥ dH+
∑

Fs
(v)− 2γn ≥ √

ε0n.

Together with (i) this shows that condition (ii) in Lemma 3.1 holds (with Hs playing
the role of G). Since P is a (K,m, ε0)-partition of V , Lemma 3.1(i) holds too. Hence
we can apply Lemma 3.1 to obtain an exceptional system Js with parameter ε0 in
Hs + Fs such that Js is a faithful extension of Fs. (i) and (ii) ensure that Js is an
(i, i′)-ES, as required. �
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4.2.4. Step 4: Constructing the remaining exceptional systems. Due to condition (iii),
Lemma 4.7 cannot be used to extend all the exceptional system candidates returned
by Lemma 4.6 into localized exceptional systems. The next lemma will be used
to deal with the remaining exceptional system candidates (the resulting exceptional
systems will not be localized).

Lemma 4.8. Suppose that 0 < 1/n ≪ ε0 ≪ ε′ ≪ λ ≪ 1 and that n, λn ∈ N. Let
A,A0, B,B0 be a partition of a set V of n vertices such that |A0| + |B0| ≤ ε0n and
|A| = |B|. Suppose that H,F1, . . . , Fλn are pairwise edge-disjoint graphs which satisfy
the following conditions:

(i) V (H) = V and H contains only A0A-edges and B0B-edges.
(ii) Each Fs is an exceptional system candidate with parameter ε0.
(iii) For all but at most ε′n indices s ≤ λn the graph Fs is either a matching

exceptional system candidate with e(Fs) = 0 or a Hamilton exceptional system
candidate with e(Fs) = 2. In particular, all but at most ε′n of the Fs satisfy
dFs(v) ≤ 1 for all v ∈ V0.

(iv) All v ∈ V0 satisfy dH+
∑

Fs
(v) = 2λn.

(v) All v ∈ A ∪B satisfy dH+
∑

Fs
(v) ≤ 2ε0n.

Then there exists a decomposition of H+
∑

Fs into edge-disjoint exceptional systems
J1, . . . , Jλn with parameter ε0 such that Js is a faithful extension of Fs for all s ≤ λn.

Proof. Let V0 := A0 ∪ B0 and let v1, . . . , v|V0| denote the vertices of V0. We will

decompose H into graphs J ′
s in such a way that the graphs Js := J ′

s + Fs satisfy
dJs(vi) = 2 for all i ≤ |V0| and dJs(v) ≤ 1 for all v ∈ A ∪ B. Hence each Js will be
an exceptional system with parameter ε0. Condition (i) guarantees that Js will be a
faithful extension of Fs. Moreover, the Js will form a decomposition of H +

∑
Fs.

We construct the decomposition of H by considering each vertex vi of A0 ∪ B0 in
turn.

Initially, we set V (J ′
s) = E(J ′

s) = ∅ for all s ≤ λn. Suppose that for some
1 ≤ i ≤ |V0| we have already assigned (and added) all the edges of H incident with
each of v1, . . . , vi−1 to the J ′

s. Consider vi. Without loss of generality assume that
vi ∈ A0. Note that NH(vi) ⊆ A by (i). Define an auxiliary bipartite graph Qi with
vertex classes V1 and V2 as follows: V1 := NH(vi) and V2 consists of 2−dFs(vi) copies
of Fs for each s ≤ λn. Moreover, Qi contains an edge between v ∈ V1 and Fs ∈ V2 if
and only if v /∈ V (Fs + J ′

s).
We now show that Qi contains a perfect matching. For this, note that |V1| =

2λn − d∑Fs
(vi) = |V2| by (iv). (v) implies that for each v ∈ V1 ⊆ A we have

d∑(Fs+J ′
s)
(v) ≤ dH+

∑
Fs
(v) ≤ 2ε0n. So v lies in at most 2ε0n of the graphs Fs + J ′

s.
Therefore, dQi

(v) ≥ |V2| − 4ε0n ≥ |V2|/2 for all v ∈ V1. (The final inequality follows
since (iii) and (iv) together imply that dH(vi) = 2λn − d∑Fs

(vi) ≥ 2λn − (λn −
ε′n) − 2ε′n ≥ λn/2 and so |V2| = |V1| ≥ λn/2.) On the other hand, since each
Fs + J ′

s is an exceptional system candidate with parameter ε0, (ESC3) implies that
|V (Fs + J ′

s) ∩ A| ≤ (
√
ε0/2 + 2ε0)n ≤ √

ε0n for each Fs ∈ V2. Therefore dQi
(Fs) ≥

|V1| − |V (Fs + J ′
s) ∩A| ≥ |V1|/2 for each Fs ∈ V2. Thus we can apply Hall’s theorem

to find a perfect matching M in Qi. Whenever M contains an edge between v and
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Fs, we add the edge viv to J ′
s. This completes the desired assignment of the edges of

H at vi to the J ′
s. �

4.2.5. Proof of Lemma 4.2. In our proof of Lemma 4.2 we will use the following result,
which is a consequence of Lemmas 4.7 and 4.8. Given a suitable set of exceptional
system candidates in an exceptional scheme, the lemma extends these into exceptional
systems which form a decomposition of the exceptional scheme. We prove the lemma
in a slightly more general form than needed for the current case, as we will also use
it in the other two cases.

Lemma 4.9. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ ε′ ≪ λ, 1/K ≪ 1, that 1/(7K2) ≤
α < 1/K2 and that n,K,m,αn, λn/K2 ∈ N. Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Suppose that the following conditions hold:

(i) (G∗,P) is a (K,m, ε0, ε)-exceptional scheme with |G∗| = n.
(ii) G∗ is the edge-disjoint union of H(i, i′), F1(i, i

′), . . . , Fγn(i, i
′) and F ′

1(i, i
′), . . . , F ′

γ′n(i, i
′)

over all 1 ≤ i, i′ ≤ K.
(iii) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(iv) Each Fs(i, i

′) is an (i, i′)-ESC with parameter ε0.
(v) Each F ′

s(i, i
′) is an exceptional system candidate with parameter ε0. Moreover,

for all but at most ε′n indices s ≤ γ′n the graph F ′
s(i, i

′) is either a matching
exceptional system candidate with e(F ′

s(i, i
′)) = 0 or a Hamilton exceptional

system candidate with e(F ′
s(i, i

′)) = 2.
(vi) dG∗(v) = 2K2αn for all v ∈ V0.
(vii) For all 1 ≤ i, i′ ≤ K let G∗(i, i′) := H(i, i′)+

∑
s≤γn Fs(i, i

′)+
∑

s≤γ′n F
′
s(i, i

′).

Then dG∗(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

Then G∗ has a decomposition into K2αn edge-disjoint exceptional systems

J1(i, i
′), . . . , Jγn(i, i

′) and J ′
1(i, i

′), . . . , J ′
γ′n(i, i

′)

with parameter ε0, where 1 ≤ i, i′ ≤ K, such that Js(i, i
′) is an (i, i′)-ES which is

a faithful extension of Fs(i, i
′) for all s ≤ γn and J ′

s(i, i
′) is a faithful extension of

F ′
s(i, i

′) for all s ≤ γ′n.

Proof. Fix any i, i′ ≤ K and set H := H(i, i′) and Fs := Fs(i, i
′) for all s ≤ γn.

Our first aim is to apply Lemma 4.7 in order to extend each of F1, . . . , Fγn into a
(i, i′)-HES. (iii) and (iv) ensure that conditions (i) and (ii) of Lemma 4.7 hold. To
verify Lemma 4.7(iii), note that by (v) and (vii) each v ∈ V0 satisfies

dH+
∑

Fs
(v) = dG∗(i,i′)(v)− d∑

s F
′
s(i,i

′)(v) ≥ (2α − ε′)n − (γ′ − ε′)n− 2ε′n

= (2α− γ′ − 2ε′)n ≥ (2γ +
√
ε0)n.

(Here the first inequality follows since (v) implies that dF ′
s(i,i

′)(v) ≤ 1 for all but at

most ε′n indices s ≤ γ′n.) Thus we can indeed apply Lemma 4.7 to find edge-disjoint
(i, i′)-ES J1(i, i

′), . . . , Jγn(i, i
′) with parameter ε0 in H +

∑
Fs such that Js(i, i

′) is a
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faithful extension of Fs for all s ≤ γn. We repeat this procedure for all 1 ≤ i, i′ ≤ K
to obtain K2γn edge-disjoint (localized) exceptional systems.

Our next aim is to apply Lemma 4.8 in order to construct the J ′
s(i, i

′). Let H0

be the union of H(i, i′) − (J1(i, i
′) + · · · + Jγn(i, i

′)) over all i, i′ ≤ K. Relabel the
F ′
s(i, i

′) (for all s ≤ γ′n and all i, i′ ≤ K) to obtain exceptional system candidates
F ′
1, . . . , F

′
λn. Note that by (vi) each v ∈ V0 satisfies

(4.14) dH0+
∑

F ′
s
(v) = dG∗(v)− 2K2γn = 2K2αn− 2K2γn = 2λn.

Thus condition (iv) of Lemma 4.8 holds with H0, F
′
s playing the roles of H,Fs. (iii)

and (v) imply that conditions (i)–(iii) of Lemma 4.8 hold with K2ε′ playing the
role of ε′. To verify Lemma 4.8(v), note that each v ∈ A satisfies dH0+

∑
F ′
s
(v) ≤

dG∗(v,A0)+dG∗(v,B′) ≤ 2ε0n by (iii), (i) and (ESch3). Similarly each v ∈ B satisfies
dH0+

∑
F ′
s
(v) ≤ 2ε0n. Thus we can apply Lemma 4.8 with H0, F

′
s,K

2ε′ playing the
roles of H,Fs, ε

′ to obtain a decomposition of H0 +
∑

s F
′
s into λn edge-disjoint

exceptional systems J ′
1, . . . , J

′
λn with parameter ε0 such that J ′

s is a faithful extension
of F ′

s for all s ≤ λn. Recall that each F ′
s is a F ′

s′(i, i
′) for some i, i′ ≤ K and some

s′ ≤ γ′n. Let J ′
s′(i, i

′) := J ′
s. Then all the Js(i, i

′) and all the J ′
s(i, i

′) are as required
in the lemma. �

We will now combine Lemmas 4.4, 4.6 and 4.9 in order to prove Lemma 4.2.

Proof of Lemma 4.2. Let G⋄ be as defined in Lemma 4.2(iv). Choose a new
constant ε′ such that ε ≪ ε′ ≪ λ, 1/K. Set

2αn :=
D − φn

K2
, γ1 := α− 2λ

K2
and γ′1 :=

2λ

K2
.(4.15)

Similarly as in the proof of Lemma 4.4, since φ ≪ 1/3 ≤ D/n, we have

α ≥ 1/(7K2), (1− 14λ)α ≤ γ1 < α and ε ≪ ε′ ≪ λ, 1/K,α, γ1 ≪ 1.

(4.16)

Apply Lemma 4.4 with γ1 playing the role of γ in order to obtain a decomposition of
G⋄ into edge-disjoint spanning subgraphs H(i, i′) and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K)
which satisfy the following properties, where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b2) H ′′(i, i′) ⊆ G⋄[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie in

G⋄[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) is even and 2αn ≤ e(H ′′(i, i′)) ≤ 11ε0n

2/(10K2).
(b4) ∆(H ′′(i, i′)) ≤ 31αn/30.
(b5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

(b6) Let H̃ any spanning subgraph of H ′′(i, i′) which maximises e(H̃) under the

constraints that ∆(H̃) ≤ 3γ1n/5, H
′′(i, i′)[A0, B0] ⊆ H̃ and e(H̃) is even.

Then e(H̃) ≥ 2αn.

Fix any 1 ≤ i, i′ ≤ K. Set H := H(i, i′) and H ′′ := H ′′(i, i′). Our next aim is
to decompose H ′′ into suitable ‘localized’ Hamilton exceptional system candidates.
For this, we will apply Lemma 4.6 with H ′′, γ1, γ

′
1 playing the roles of H, γ, γ′. Note

that ∆(H ′′) ≤ 31αn/30 ≤ 16γ1n/15 by (b4) and (4.16). Moreover, ∆(H ′′[A,B]) ≤



PROOF OF THE 1-FACTORIZATION & HAMILTON DECOMPOSITION CONJECTURES IV 21

∆(G⋄[A,B]) ≤ ε0n by (iv) and (ESch3). Since e(H ′′) is even by (b3), it follows that
condition (i) of Lemma 4.6 holds. Condition (ii) of Lemma 4.6 follows from (b6) and

the fact that any H̃ as in (b6) satisfies e(H̃) ≤ e(H ′′) ≤ 11ε0n
2/(10K2) ≤ 10ε0γ1n

2

(the last inequality follows from (4.16)). Thus we can indeed apply Lemma 4.6 in
order to decomposeH ′′ into αn edge-disjoint Hamilton exceptional system candidates
F1, . . . , Fγ1n, F

′
1, . . . , F

′
γ′

1
n with parameter ε0 such that e(F ′

s) = 2 for all s ≤ γ′1n. Next

we set

γ2 := α− λ

K2
and γ′2 :=

λ

K2
.

Condition (b2) ensures that by relabeling the Fs’s and F ′
s’s we obtain αn edge-disjoint

Hamilton exceptional system candidates F1(i, i
′), . . . , Fγ2n(i, i

′), F ′
1(i, i

′), . . . , F ′
γ′

2
n(i, i

′)

with parameter ε0 such that properties (a′) and (b′) hold:

(a′) Fs(i, i
′) is an (i, i′)-HESC for every s ≤ γ2n. Moreover, at least γ′2n of the

Fs(i, i
′) satisfy e(Fs(i, i

′)) = 2.
(b′) e(F ′

s(i, i
′)) = 2 for all but at most ε′n of the F ′

s(i, i
′).

Indeed, we can achieve this by relabeling each Fs which is a subgraph of G⋄[A0 ∪
Ai, B0 ∪ Bi′ ] as one of the Fs′(i, i

′) and each Fs for which is not the case as one of
the F ′

s′(i, i
′).

Our next aim is to apply Lemma 4.9 with G⋄, γ2, γ
′
2 playing the roles of G∗, γ, γ′.

Clearly conditions (i) and (ii) of Lemma 4.9 hold. (iii) follows from (b1). (iv) and
(v) follow from (a′) and (b′). (vi) follows from Lemma 4.2(i),(iii). Finally, (vii) fol-
lows from (b5) since G′(i, i′) plays the role of G∗(i, i′). Thus we can indeed apply
Lemma 4.9 to obtain a decomposition of G⋄ into K2αn edge-disjoint Hamilton ex-
ceptional systems J1(i, i

′), . . . , Jγ2n(i, i
′) and J ′

1(i, i
′), . . . , J ′

γ′

2
n(i, i

′) with parameter

ε0, where 1 ≤ i, i′ ≤ K, such that Js(i, i
′) is an (i, i′)-HES which is a faithful exten-

sion of Fs(i, i
′) for all s ≤ γ2n and J ′

s(i, i
′) is a faithful extension of F ′

s(i, i
′) for all

s ≤ γ′2n. Then the set J of all these Hamilton exceptional systems is as required in
Lemma 4.2. �

4.3. Critical case with e(A′, B′) ≥ D. The aim of this section is to prove the
following analogue of Lemma 4.2 for the case when G is critical and eG(A

′, B′) ≥ D.
For this, recall that G is critical if ∆(G[A′, B′]) ≥ 11D/40 and e(H) ≤ 41D/40 for
all subgraphs H of G[A′, B′] such that ∆(H) ≤ 11D/40. By Lemma 4.1(ii) we know
that in this case D = (n− 1)/2 or D = n/2− 1.

Lemma 4.10. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ λ, 1/K ≪ 1, that D ≥ n−2⌊n/4⌋−
1, that 0 ≤ φ ≪ 1 and that n,K,m, λn/K2, (D − φn)/(400K2) ∈ N. Suppose that
the following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that eG(A

′, B′) ≥ D and ∆(G[A′, B′]) ≤
D/2. Furthermore, G is critical. In particular, eG(A

′, B′) < n and D =
(n− 1)/2 or D = n/2− 1 by Lemma 4.1(ii) and (iii).

(iii) G0 is a subgraph of G such that G[A0] +G[B0] ⊆ G0, eG0
(A′, B′) ≤ φn and

dG0
(v) = φn for all v ∈ V0.
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(iv) Let G⋄ := G − G[A] − G[B] − G0. eG⋄(A′, B′) is even and (G⋄,P) is a
(K,m, ε0, ε)-exceptional scheme.

(v) Let w1 and w2 be (fixed) vertices such that dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥
dG[A′,B′](v) for all v ∈ V (G) \ {w1, w2}. Suppose that

(4.17) dG⋄[A′,B′](w1), dG⋄[A′,B′](w2) ≤ (D − φn)/2.

Then there exists a set J consisting of (D−φn)/2 edge-disjoint Hamilton exceptional
systems with parameter ε0 in G⋄ which satisfies the following properties:

(a) Together the Hamilton exceptional systems in J cover all edges of G⋄.
(b) For each 1 ≤ i, i′ ≤ K, the set J contains (D− (φ+2λ)n)/(2K2) (i, i′)-HES.

Moreover, λn/K2 of these (i, i′)-HES are such that
(b1) eJ(A

′, B′) = 2 and
(b2) dJ [A′,B′](w) = 1 for all w ∈ {w1, w2} with dG[A′,B′](w) ≥ 11D/40.

Similarly as for Lemma 4.2, (b) implies that J contains λn Hamilton exceptional
systems which might not be localized. Another similarity is that when constructing
the robustly decomposable graph Grob in [7], we only use those Js which have some
additional useful properties, namely (b1) and (b2) in this case. This gives us a way of
satisfying (4.17) in the second application of Lemma 4.10 in [7] (i.e. after the removal
of Grob), by ‘tracking’ the degrees of the high degree vertices w1 and w2. Indeed, if
dG[A′,B′](w2) ≥ 11D/40, then (b2) will imply that dGrob[A′,B′](wi) is large for i = 1, 2.

This in turn means that after removing Grob, in the leftover graph G⋄, dG⋄[A′,B′](wi)
is comparatively small, i.e. condition (4.17) will hold in the second application of
Lemma 4.10.

Condition (4.17) itself is natural for the following reason: suppose for example
that it is violated for w1 and that w1 ∈ A0. Then for some Hamilton exceptional
system J returned by the lemma, both edges of J incident to w1 will have their other
endpoint in B′. So (the edges at) w1 cannot be used as a ‘connection’ between A′

and B′ in the Hamilton cycle which will extend J , and it may be impossible to find
such a connection elsewhere.

The overall strategy for the proof of Lemma 4.10 is similar to that of Lemma 4.2. As
before, it consists of four steps. In Step 1, we use Lemma 4.11 instead of Lemma 4.4.
In Step 2, we use Lemma 4.13 instead of Lemma 4.6. We still use Lemma 4.9 which
combines Steps 3 and 4.

4.3.1. Step 1: Constructing the graphs H ′′(i, i′). The next lemma is an analogue of
Lemma 4.4. We will apply it with the graph G⋄ from Lemma 4.10(iv) playing the
role of G. Note that instead of assuming that our graph G given in Lemma 4.10
is critical, the lemma assumes that eG⋄(A′, B′) ≤ 2n. This is a weaker assumption,
since if G is critical, then eG⋄(A′, B′) ≤ eG(A

′, B′) < n by Lemma 4.1(iii). Using
only this weaker assumption has the advantage that we can also apply the lemma in
the proof of Lemma 4.14, i.e. the case when eG(A

′, B′) < D. (b7) is only used in the
latter application.

Lemma 4.11. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ 1/K ≪ 1 and that n,K,m ∈ N.
Let (G,P) be a (K,m, ε0, ε)-exceptional scheme with |G| = n and eG(A0), eG(B0) = 0.
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Let W0 be a subset of V0 of size at most 2 such that for each w ∈ W0, we have

(4.18) K2 ≤ dG[A′,B′](w) ≤ eG(A
′, B′)/2.

Suppose that eG(A
′, B′) ≤ 2n is even. Then G can be decomposed into edge-disjoint

spanning subgraphs H(i, i′) and H ′′(i, i′) of G (for all 1 ≤ i, i′ ≤ K) such that the
following properties hold, where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b2) H ′′(i, i′) ⊆ G[A′, B′]. Moreover, all but at most 20εn/K2 edges of H ′′(i, i′)

lie in G[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) = 2

⌈
eG(A

′, B′)/(2K2)
⌉
or e(H ′′(i, i′)) = 2

⌊
eG(A

′, B′)/(2K2)
⌋
.

(b4) dH′′(i,i′)(v) = (dG[A′,B′](v)± 25εn)/K2 for all v ∈ V0.

(b5) dG′(i,i′)(v) = (dG(v)± 25εn) /K2 for all v ∈ V0.

(b6) Each w ∈ W0 satisfies dH′′(i,i′)(w) = ⌈dG[A′,B′](w)/K
2⌉ or dH′′(i,i′)(w) =

⌊dG[A′,B′](w)/K
2⌋.

(b7) Each w ∈ W0 satisfies 2dH′′(i,i′)(w) ≤ e(H ′′(i, i′)).

Proof. Since eG(A
′, B′) is even, there exist unique non-negative integers b and q

such that eG(A
′, B′) = 2K2b + 2q and q < K2. Hence, for all 1 ≤ i, i′ ≤ K, there

are integers bi,i′ ∈ {2b, 2b+ 2} such that
∑

i,i′≤K bi,i′ = eG(A
′, B′). In particular, the

number of pairs i, i′ for which bi,i′ = b + 2 is precisely q. We will choose the graphs
H ′′(i, i′) such that e(H ′′(i, i′)) = bi,i′ . (In particular, this will ensure that (b3) holds.)
The following claim will help to ensure (b6) and (b7).

Claim. For each w ∈ W0 and all i, i′ ≤ K there is an integer ai,i′ = ai,i′(w) which
satisfies the following properties:

• ai,i′ = ⌈dG[A′,B′](w)/K
2⌉ or ai,i′ = ⌊dG[A′,B′](w)/K

2⌋.
• 2ai,i′ ≤ bi,i′.
• ∑i,i′≤K ai,i′ = dG[A′,B′](w).

To prove the claim, note that there are unique non-negative integers a and p such
that dG[A′,B′](w) = K2a+ p and p < K2. Note that a ≥ 1 by (4.18). Moreover,

2(K2a+ p) = 2dG[A′,B′](w)
(4.18)
≤ eG(A

′, B′) = 2K2b+ 2q.(4.19)

This implies that a ≤ b. Recall that bi,i′ ∈ {2b, 2b + 2}. So if b > a, then the claim
holds by choosing any ai,i′ ∈ {a, a + 1} such that

∑
i,i′≤K ai,i′ = dG[A′,B′](w). Hence

we may assume that a = b. Then (4.19) implies that p ≤ q. Therefore, the claim
holds by setting ai,i′ := a + 1 for exactly p pairs i, i′ for which bi,i′ = 2b + 2 and
setting ai,i′ := a otherwise. This completes the proof of the claim.

Apply Lemma 4.3 to decompose G into subgraphs H(i, i′), H ′(i, i′) (for all i, i′ ≤ K)
satisfying the following properties, where G(i, i′) = H(i, i′) +H ′(i, i′):

(a′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(a′2) All edges of H ′(i, i′) lie in G[A0 ∪Ai, B0 ∪Bi′ ].
(a′3) e(H ′(i, i′)) = (eG(A

′, B′)± 8εn)/K2.
(a′4) dH′(i,i′)(v) = (dG[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a′5) dG(i,i′)(v) = (dG(v) ± 4εn)/K2 for all v ∈ V0.
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Indeed, (a′3) follows from Lemma 4.3(a3) and our assumption that eG(A
′, B′) ≤ 2n.

Clearly, (a′1) implies that the graphs H(i, i′) satisfy (b1). We will now move some
A′B′-edges of G between the H ′(i, i′) such that the graphs H ′′(i, i′) obtained in this
way satisfy the following conditions:

• EachH ′′(i, i′) is obtained fromH ′(i, i′) by adding or removing at most 20εn/K2

edges of G.
• e(H ′′(i, i′)) = bi,i′ .
• dH′′(i,i′)(w) = ai,i′(w) for each w ∈ W0, where ai,i′(w) are integers satisfying
the claim.

Write W0 =: {w1} if |W0| = 1 and W0 =: {w1, w2} if |W0| = 2. If W0 6= ∅, then
(a′4) implies that dH′(i,i′)(w1) = ai,i′(w1)± (2εn/K2 + 1). For each i, i′ ≤ K, we add

or remove at most 2εn/K2 + 1 edges incident to w1 such that the graphs H ′′(i, i′)
obtained in this way satisfy dH′′(i,i′)(w1) = ai,i′(w1). Note that since ai,i′(w1) ≥
⌊dG[A′,B′](w1)/K

2⌋ ≥ 1 by (4.18), we can do this in such a way that we do not move

the edge w1w2 (if it exists). Similarly, if |W0| = 2, then for each i, i′ ≤ K we add
or remove at most 2εn/K2 + 1 edges incident to w2 such that the graphs H ′′(i, i′)
obtained in this way satisfy dH′′(i,i′)(w2) = ai,i′(w2). As before, we do this in such a
way that we do not move the edge w1w2 (if it exists).

Thus dH′′(i,i′)(w1) = ai,i′(w1) and dH′′(i,i′)(w2) = ai,i′(w2) for all 1 ≤ i, i′ ≤ K (if
w1, w2 exist). In particular, together with the claim this implies that dH′′(i,i′)(w1), dH′′(i,i′)(w2) ≤
bi,i′/2. Thus the number of edges of H ′′(i, i′) incident to W0 is at most

∑

w∈W0

dH′′(i,i′)(w) ≤ bi,i′ .(4.20)

(This holds regardless of the size of W0.) On the other hand, (a′3) implies that for all
i, i′ ≤ K we have

e(H ′′(i, i′)) = (eG(A
′, B′)± 8εn)/K2 ± 2(2εn/K2 + 1) = bi,i′ ± 13εn/K2.

Together with (4.20) this ensures that we can add or delete at most 13εn/K2 edges
which do not intersectW0 to or from eachH ′′(i, i′) in order to ensure that e(H ′′(i, i′)) =
bi,i′ for all i, i

′ ≤ K. Hence, (b3), (b6) and (b7) hold. Moreover,

(4.21) e(H ′′(i, i′)−H ′(i, i′)) ≤ |W0|(2εn/K2 + 1) + 13εn/K2 ≤ 20εn/K2.

So (b2) follows from (a′2). Finally, (b4) and (b5) follow from (4.21), (a′4) and (a′5).
�

4.3.2. Step 2: Decomposing H ′′(i, i′) into Hamilton exceptional system candidates.
Before we can prove an analogue of Lemma 4.6, we need the following result. It
will allow us to distribute the edges incident to the (up to three) vertices wi of high
degree in G[A′, B′] in a suitable way among the localized Hamilton exceptional system
candidates Fj . The degrees of these high degree vertices wi will play the role of the ai.
The cj will account for edges (not incident to wi) which have already been assigned
to the Fj . (b) and (c) will be used to ensure (ESC4), i.e. that the total number of
‘connections’ between A′ and B′ is even and positive.
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Lemma 4.12. Let 1 ≤ q ≤ 3 and 0 ≤ η < 1 and r, ηr ∈ N. Suppose that a1, . . . , aq ∈
N and c1, . . . , cr ∈ {0, 1, 2} satisfy the following conditions:

(i) c1 ≥ · · · ≥ cr ≥ c1 − 1.
(ii)

∑
i≤q ai +

∑
j≤r cj = 2(1 + η)r.

(iii) 31r/60 ≤ a1, a2 ≤ r and 31r/60 ≤ a3 ≤ 31r/30.

Then for all i ≤ q and all j ≤ r there are ai,j ∈ {0, 1, 2} such that the following
properties hold:

(a)
∑

j≤r ai,j = ai for all i ≤ q.

(b) cj +
∑

i≤q ai,j = 4 for all j ≤ ηr and cj +
∑

i≤q ai,j = 2 for all ηr < j ≤ r.

(c) For all j ≤ r there are at least 2− cj indices i ≤ q with ai,j = 1.

Proof. We will choose ai,1, . . . , ai,r for each i ≤ q in turn such that the following

properties (αi)–(ρi) hold, where we write c
(i)
j := cj +

∑
i′≤i ai′,j for each 0 ≤ i ≤ q

(so c
(0)
j = cj):

(αi) If i ≥ 1 then
∑

j≤r ai,j = ai.

(βi) 4 ≥ c
(i)
1 ≥ · · · ≥ c

(i)
r .

(γi) If
∑

j≤r c
(i)
j < 2r, then |c(i)j − c

(i)
j′ | ≤ 1 for all j, j′ ≤ r.

(δi) If
∑

j≤r c
(i)
j ≥ 2r, then c

(i)
j ≥ 2 for all j ≤ ηr and c

(i)
j = 2 for all ηr < j ≤ r.

(ρi) If 1 ≤ i ≤ q and c
(i−1)
j < 2 for some j ≤ r, then ai,j ∈ {0, 1}.

We will then show that the ai,j defined in this way are as required in the lemma.
Note that (i) and the fact that c1, . . . , cr ∈ {0, 1, 2} together imply (β0)–(δ0).

Moreover, (α0) and (ρ0) are vacuously true. Suppose that for some 1 ≤ i ≤ q we
have already defined ai′,j for all i′ < i and all j ≤ r such that (αi′)–(ρi′) hold. In
order to define ai,j for all j ≤ r, we distinguish the following cases.

Case 1:
∑

j≤r c
(i−1)
j ≥ 2r.

Recall that in this case c
(i−1)
j ≥ 2 for all j ≤ r by (δi−1). For each j ≤ r in turn we

choose ai,j ∈ {0, 1, 2} as large as possible subject to the constraints that

• ai,j + c
(i−1)
j ≤ 4 and

• ∑j′≤j ai,j′ ≤ ai.

Since c
(i)
j = ai,j + c

(i−1)
j , (βi) follows from (βi−1) and our choice of the ai,j. (γi) is

vacuously true. To verify (δi), note that c
(i)
j ≥ c

(i−1)
j ≥ 2 by (δi−1). Suppose that the

second part of (δi) does not hold, i.e. that c
(i)
ηn+1 > 2. This means that ai,ηn+1 > 0.

Together with our choice of the ai,j this implies that c
(i)
j = 4 for all j ≤ ηn. Thus

2(1 + η)r = 4ηr + 2(r − ηr) <
∑

j≤r

c
(i)
j =

∑

j≤r

ai,j +
∑

i′<i

ai′ +
∑

j≤r

cj ≤
∑

i′≤i

ai′ +
∑

j≤r

cj
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contradicting (ii). Thus the second part of (δi) holds too. Moreover, c
(i)
ηn+1 = c

(i−1)
ηn+1 =

2 also means that ai,ηn+1 = 0. So
∑

j′≤ηn ai,j′ = ai, i.e. (αi) holds. (ρi) is vacuously

true since c
(i−1)
j ≥ 2 by (δi−1).

Case 2: 2r − ai ≤
∑

j≤r c
(i−1)
j < 2r.

If i ∈ {1, 2} then together with (iii) this implies that

(4.22)
∑

j≤r

c
(i−1)
j ≥ r ≥ ai.

If i = 3 then

(4.23)
∑

j≤r

c
(i−1)
j ≥

∑

j≤r

∑

i′≤2

ai′,j = a1 + a2 ≥
31r

30
≥ a3

by (iii). In particular, in both cases we have
∑

j≤r c
(i−1)
j ≥ r. Together with (γi−1)

this implies that c
(i−1)
j ∈ {1, 2} for all j ≤ r. Let 0 ≤ r′ ≤ r be the largest integer

such that c
(i−1)
r′ = 2. So r′ < r and

∑
j≤r c

(i−1)
j = r + r′. Together with (4.22) and

(4.23) this in turn implies that ai ≤ r + r′ (regardless of the value of i).
Set ai,j := 1 for all r′ < j ≤ r. Note that

∑

r′<j≤r

ai,j = r − r′ = 2r −
∑

j≤r

c
(i−1)
j ≤ ai,

where the final inequality comes from the assumption of Case 2. Take ai,1, . . . , ai,r′
to be a sequence of the form 2, . . . , 2, 0, . . . , 0 (in the case when ai −

∑
r′<j≤r ai,j is

even) or 2, . . . , 2, 1, 0, . . . , 0 (in the case when ai−
∑

r′<j≤r ai,j is odd) which is chosen

in such a way that
∑

j≤r′ ai,j = ai −
∑

r′<j≤r ai,j = ai − r + r′. This can be done

since ai ≤ r + r′ implies that the right hand side is at most 2r′.

Clearly, (αi), (βi) and (ρi) hold. Since
∑

j≤r c
(i)
j = ai +

∑
j≤r c

(i−1)
j ≥ 2r as we

are in Case 2, (γi) is vacuously true. Clearly, our choice of the ai,j guarantees that

c
(i)
j ≥ 2 for all j ≤ r. As in Case 1 one can show that c

(i)
j = 2 for all ηr < j ≤ r.

Thus (δi) holds.

Case 3:
∑

j≤r c
(i−1)
j < 2r − ai.

Note that in this case

2r >
∑

j≤r

c
(i−1)
j + ai =

∑

i′≤i

ai′ +
∑

j≤r

cj ,

and so i < q by (ii). Together with (iii) this implies that ai ≤ r. Thus for all j ≤ r
we can choose ai,j ∈ {0, 1} such that (αi)–(γi) and (ρi) are satisfied. (δi) is vacuously
true.

This completes the proof of the existence of numbers ai,j (for all i ≤ q and all
j ≤ r) satisfying (αi)–(ρi). It remains to show that these ai,j are as required in

the lemma. Clearly, (α1)–(αq) imply that (a) holds. Since c
(q)
j = cj +

∑
i≤q ai,j the
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second part of (b) follows from (δq). Since c
(q)
j ≤ 4 for each j ≤ ηr by (βq), together

with (ii) this in turn implies that the first part of (b) must hold too. If cj < 2, then
(ρ1)–(ρq) and (b) together imply that for at least 2 − cj indices i we have ai,j = 1.
Therefore, (c) holds. �

We can now use the previous lemma to decompose the bipartite graph induced by
A′ and B′ into Hamilton exceptional system candidates.

Lemma 4.13. Suppose that 0 < 1/n ≪ ε0 ≪ α < 1, that 0 ≤ η < 199/200 and
that n, αn/200, ηαn ∈ N. Let H be a bipartite graph on n vertices with vertex classes
A∪̇A0 and B∪̇B0 where |A0| + |B0| ≤ ε0n. Furthermore, suppose that the following
conditions hold:

(c1) e(H) = 2(1 + η)αn.
(c2) There is a set W ′ ⊆ V (H) with 1 ≤ |W ′| ≤ 3 and such that

e(H −W ′) ≤ 199αn/100 and dH(w) ≥ 13αn/25 for all w ∈ W ′.

(c3) There exists a set W0 ⊆ W ′ with |W0| = min{2, |W ′|} and such that dH(w) ≤
αn for all w ∈ W0 and dH(w′) ≤ 41αn/40 for all w′ ∈ W ′ \W0.

(c4) For all w ∈ W ′ and all v ∈ V (H) \W ′ we have dH(w) − dH(v) ≥ αn/150.
(c5) For all v ∈ A ∪B we have dH(v) ≤ ε0n.

Then there exists a decomposition of H into edge-disjoint Hamilton exceptional system
candidates F1, . . . , Fαn such that e(Fs) = 4 for all s ≤ ηαn and e(Fs) = 2 for all
ηαn < s ≤ αn. Furthermore, at least αn/200 of the Fs satisfy the following two
properties:

• dFs(w) = 1 for all w ∈ W0,
• e(Fs) = 2.

Roughly speaking, the idea of the proof is first to find the Fs which satisfy the
final two properties. Let H1 be the graph obtained from H by removing the edges
in all these Fs. We will decompose H1 −W ′ into matchings Mj of size at most two.
Next, we extend these matchings into Hamilton exceptional system candidates Fj

using Lemma 4.12. In particular, if e(Mj) < 2, then we will use one or more edges
incident to W ′ to ensure that the number of A′B′-connections is positive and even,
as required by (ESC4). (Note that it does not suffice to ensure that the number of
A′B′-edges is positive and even for this.)

Proof. Set H ′ := H −W ′, W0 =: {w1, w|W0|} and W ′ =: {w1, . . . , w|W ′|}. Hence,
if |W ′| = 3, then W ′ \W0 = {w3}. Otherwise W ′ = W0.

We will first construct eH(W ′) Hamilton exceptional system candidates Fs, such
that each of them is a matching of size two and together they cover all edges in
H[W ′]. So suppose that eH(W ′) > 0. Thus |W ′| = 2 or |W ′| = 3. If |W ′| = 2, let f
denote the unique edge in H[W ′]. Note that

e(H ′) ≥ e(H)− (dH(w1) + dH(w2)− 1) ≥ 2(1 + η)αn − (2αn − 1) ≥ 1

by (c1) and (c3). So there exists an edge f ′ in H ′. Therefore, M ′
1 := {f, f ′} is

a matching. If |W ′| = 3, then eH(W ′) ≤ 2 as H is bipartite. Since by (c2) each
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w ∈ W ′ satisfies dH(w) ≥ 13αn/25, it is easy to construct eH(W ′) 2-matchings
M ′

1,M
′
eH (W ′) such that dM ′

s
(w) = 1 for all w ∈ W ′ and all s ≤ eH(W ′) and such that

H[W ′] ⊆ M ′
1 ∪ M ′

eH(W ′). Set Fαn−s+1 := M ′
s for all s ≤ eH(W ′) (regardless of the

size of W ′).
We now greedily choose αn/200−eH (W ′) additional 2-matchings F199αn/200+1, . . . , Fαn−eH (W ′)

in H which are edge-disjoint from each other and from Fαn, Fαn−eH (W ′)+1 and such

that dFs(w) = 1 for all w ∈ W0 and all 199αn/200 < s ≤ αn − eH(W ′). To
see that this can be done, recall that by (c2) we have dH(w) ≥ 13αn/25 for all
w ∈ W ′ (and thus for all w ∈ W0) and that (c1) and (c3) together imply that
e(H −W0) ≥ 2(1 + η)αn − αn > αn if |W0| = 1.

Thus F199αn/200+1, . . . , Fαn are Hamilton exceptional system candidates satisfying

the two properties in the ‘furthermore part’ of the lemma. Let H1 and H ′
1 be the

graphs obtained from H and H ′ by deleting all the αn/100 edges in these Hamilton
exceptional system candidates. Set

r := 199αn/200 and η′ := ηαn/r = 200η/199.(4.24)

Thus 0 ≤ η′ < 1 and we now have

H1[W
′] = ∅, e(H1) = e(H)− αn/100 = 2(1 + η′)r and e(H ′

1) ≤ 2r.(4.25)

(To verify the last inequality note that e(H ′
1) ≤ e(H −W ′) ≤ 2r by (c2).) Also, (c2)

and (c4) together imply that for all w ∈ W ′ and all v ∈ V (H) \W ′ we have

dH1
(w) ≥ αn/2 ≥ 4ε0n and dH1

(w) − dH1
(v) ≥ 2ε0n.(4.26)

Moreover, by (c2) and (c3), each w ∈ W0 satisfies

31r/60 ≤ 13αn/25 − αn/200 ≤ dH(w) − dH−H1
(w) = dH1

(w)

≤ αn − αn/200 = r.(4.27)

Similarly, if |W ′| = 3 and so w3 exists, then

31r/60 ≤ 13αn/25 − αn/200 ≤ dH(w3)− dH−H1
(w3) = dH1

(w3)

≤ 41αn/40 ≤ 31r/30.(4.28)

(4.26) and (4.27) together imply that dH′

1
(v) ≤ dH1

(v) < dH1
(w1) ≤ r for all v ∈

V (H) \W ′. Thus χ′(H ′
1) ≤ ∆(H ′

1) ≤ r. Together with Proposition 2.4 this implies
that H ′

1 can be decomposed into r edge-disjoint matchings M1, . . . ,Mr such that
|mj −mj′ | ≤ 1 for all 1 ≤ j, j′ ≤ r, where we set mj := e(Mj).

Our next aim is to apply Lemma 4.12 with |W ′|, dH1
(wi), mj , η′ playing the

roles of q, ai, cj , η (for all i ≤ |W ′| and all j ≤ r). Since
∑

j≤r mj = e(H ′
1) ≤ 2r

by (4.25) and since |mj − mj′ | ≤ 1, it follows that mj ∈ {0, 1, 2} for all j ≤ r.
Moreover, by relabeling the matchings Mj if necessary, we may assume that m1 ≥
m2 ≥ · · · ≥ mr. Thus condition (i) of Lemma 4.12 holds. (ii) holds too since∑

i≤|W ′| dH1
(wi)+

∑
j≤r mj = e(H1) = 2(1+η′)r by (4.25). Finally, (iii) follows from

(4.27) and (4.28). Thus we can indeed apply Lemma 4.12 in order to obtain numbers
ai,j ∈ {0, 1, 2} (for all i ≤ |W ′| and j ≤ r) which satisfy the following properties:

(a′)
∑

j≤r ai,j = dH1
(wi) for all i ≤ |W ′|.
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(b′) mj +
∑

i≤|W ′| ai,j = 4 for all j ≤ η′r and mj +
∑

i≤|W ′| ai,j = 2 for all

η′r < j ≤ r.
(c′) If mj < 2 then there exist at least 2−mj indices i such that ai,j = 1.

For all j ≤ r, our Hamilton exceptional system candidate Fj will consist of the edges
in Mj as well as of ai,j edges of H1 incident to wi (for each i ≤ |W ′|). So let F 0

j := Mj

for all j ≤ r. For each i = 1, . . . , |W ′| in turn, we will now assign the edges of H1

incident with wi to F i−1
1 , . . . , F i−1

r such that the resulting graphs F i
1, . . . , F

i
r satisfy

the following properties:

(αi) If i ≥ 1, then e(F i
j )− e(F i−1

j ) = ai,j.

(βi) F i
j is a path system. Every vertex v ∈ A ∪B is incident to at most one edge

of F i
j . For every v ∈ V0 \W ′ we have dF i

j
(v) ≤ 2. If e(F i

j ) ≤ 2, we even have

dF i
j
(v) ≤ 1.

(γi) Let bij be the number of vertex-disjoint maximal paths in F i
j with one endpoint

in A′ and the other in B′. If ai,j = 1 and i ≥ 1, then bij = bi−1
j +1. Otherwise

bij = bi−1
j .

We assign the edges of H1 incident with wi to F i−1
1 , . . . , F i−1

r in two steps. In the
first step, for each index j ≤ r with ai,j = 2 in turn, we assign an edge of H1 between

wi and V0 to F i−1
j whenever there is such an edge left. More formally, to do this,

we set N0 := NH1
(wi). For each j ≤ r in turn, if ai,j = 2 and Nj−1 ∩ V0 6= ∅, then

we choose a vertex v ∈ Nj−1 ∩ V0 and set F ′
j := F i−1

j + wiv, Nj := Nj−1 \ {v} and

a′i,j := 1. Otherwise, we set F ′
j := F i−1

j , Nj := Nj−1 and a′i,j := ai,j.
Therefore, after having dealt with all indices j ≤ r in this way, we have that

either a′i,j ≤ 1 for all j ≤ r or Nr ∩ V0 = ∅ (or both).(4.29)

Note that by (b′) we have e(F ′
j) ≤ mj +

∑
i′≤i ai′,j ≤ 4 for all j ≤ r. Moreover, (a′)

implies that |Nr| =
∑

j≤r a
′
i,j. Also, Nr\V0 = NH1

(wi)\V0, and soNH1
(wi)\Nr ⊆ V0.

Hence

|Nr| = |NH1
(wi)| − |NH1

(wi) \Nr| ≥ dH1
(wi)− |V0| ≥ dH1

(wi)− ε0n.(4.30)

In the second step, we assign the remaining edges of H1 incident with wi to
F ′
1, . . . , F

′
r. We achieve this by finding a perfect matching M in a suitable auxil-

iary graph.

Claim. Define a graph Q with vertex classes Nr and V ′ as follows: V ′ consists of
a′i,j copies of F ′

j for each j ≤ r. Q contains an edge between v ∈ Nr and F ′
j ∈ V ′ if

and only v is not an endpoint of an edge in F ′
j . Then Q has a perfect matching M .

To prove the claim, note that

|V ′| =
∑

j≤r

a′i,j = |Nr|
(4.30)

≥ dH1
(wi)− ε0n.(4.31)
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Moreover, since F ′
j ⊆ H is bipartite and so every edge of F ′

j has at most one endpoint
in Nr, it follows that

dQ(F
′
j) ≥ |Nr| − e(F ′

j) ≥ |Nr| − 4(4.32)

for each F ′
j ∈ V ′. Consider any v ∈ Nr. Clearly, there are at most dH1

(v) indices

j ≤ r such that v is an endpoint of an edge of F ′
j . If v ∈ Nr \ V0 ⊆ A ∪ B, then

by (c5), v lies in at most 2dH1
(v) ≤ 2dH(v) ≤ 2ε0n elements of V ′. (The factor 2

accounts for the fact that each F ′
j occurs in V ′ precisely a′i,j ≤ 2 times.) So

dQ(v) ≥ |V ′| − 2ε0n
(4.31)

≥ dH1
(wi)− 3ε0n

(4.26)

≥ ε0n.

If v ∈ Nr ∩ V0, then (4.29) implies that a′i,j ≤ 1 for all j ≤ r. Thus

dQ(v) ≥ |V ′| − dH1
(v)

(4.31)

≥ (dH1
(wi)− dH1

(v))− ε0n
(4.26)

≥ 2ε0n− ε0n = ε0n.

To summarize, for all v ∈ Nr we have dQ(v) ≥ ε0n. Together with (4.32) and the
fact that |Nr| = |V ′| by (4.31) this implies that Q contains a perfect matching M by
Hall’s theorem. This proves the claim.

For each j ≤ r, let F i
j be the graph obtained from F ′

j by adding the edge wiv

whenever the perfect matching M (as guaranteed by the claim) contains an edge
between v and F ′

j .

Let us now verify (αi)–(γi) for all i ≤ |W ′|. Clearly, (α0)–(γ0) hold and b0j = mj.

Now suppose that i ≥ 1 and that (αi−1)–(γi−1) hold. Clearly, (αi) holds by our
construction of F i

1, . . . , F
i
r . Now consider any j ≤ r. If ai,j = 0, then (βi) and

(γi) follow from (βi−1) and (γi−1). If ai,j = 1, then the unique edge in F i
j − F i−1

j

is vertex-disjoint from any edge of F i−1
j (by the definition of Q) and so (βi) holds.

Moreover, bij = bi−1
j + 1 and so (γi) holds. So suppose that ai,j = 2. Then the

unique two edges in F i
j − F i−1

j form a path P = v′wiv
′′ of length two with internal

vertex wi. Moreover, at least one of the edges of P , wiv
′′ say, was added to F i−1

j in

the second step of our construction of F i
j . Thus dF i

j
(v′′) = 1. The other edge wiv

′

of P was either added in the first or in the second step. If wiv
′ was added in the

second step, then dF i
j
(v′) = 1. Altogether this shows that in this case (γi) holds and

(βi) follows from (βi−1). So suppose that wiv
′ was added to F i−1

j in the first step

of our construction of F i
j . Thus v′ ∈ V0 \W ′. But since ai,j = 2, (b′) implies that

e(F i−1
j ) = mj +

∑
i′<i ai′,j ≤ 2. Together with (βi−1) this shows that dF i−1

j
(v) ≤ 1

for all v ∈ V0 \ W ′. Hence dF i−1

j
(v′) ≤ 1 and so dF i

j
(v′) ≤ 2. Together with (βi−1)

this implies (βi). (Note that if e(F i−1
j ) = 0, then the above argument actually shows

that dF i
j (v

′) ≤ 1, as required.) Moreover, the above observations also guarantee that

(γi) holds. Thus F
i
1, . . . , F

i
r satisfy (αi)–(γi).

After having assigned the edges of H1 incident with wi for all i ≤ |W ′|, we have

obtained graphs F
|W ′|
1 , . . . , F

|W ′|
r . Let Fj := F

|W ′|
j for all j ≤ r. Note that by (γ|W ′|)
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for all j ≤ r the number of vertex-disjoint maximal A′B′-paths in Fj is precisely

b
|W ′|
j .

We now claim that b
|W ′|
j is positive and even. To verify this, recall that b0j = mj.

Let oddj be the number of ai,j with ai,j = 1 and i ≤ |W ′|. So b
|W ′|
j = mj + oddj.

Together with (c′) this immediately implies that b
|W ′|
j ≥ 2. Moreover, since ai,j ∈

{0, 1, 2} we have

b
|W ′|
j = mj + oddj = mj +

∑

i≤|W ′|, ai,j is odd

ai,j .

Together with (b′) this now implies that b
|W ′|
j is even. This proves the claim.

Together with (a′), (b′) and (αi), (βi) for all i ≤ |W ′| this in turn shows that
F1, . . . , Fr form a decomposition ofH1 into edge-disjoint Hamilton exceptional system
candidates with e(Fj) = 4 for all j ≤ η′r and e(Fj) = 2 for all η′r < j ≤ r. Recall
that η′r = ηαn by (4.24) and that we have already constructed Hamilton exceptional
system candidates F199αn/200+1, . . . , Fαn which satisfy the ‘furthermore statement’ of
the lemma, and thus in particular consist of precisely two edges. This completes the
proof of the lemma. �

4.3.3. Proof of Lemma 4.10. We will now combine Lemmas 4.11, 4.13 and 4.9 in order
to prove Lemma 4.10. This will complete the construction of the required exceptional
sequences in the case when G is both critical and e(G[A′, B′]) ≥ D.

Proof of Lemma 4.10. Let G⋄ be as defined in Lemma 4.10(iv). Our first aim is
to decompose G⋄ into suitable ‘localized’ subgraphs via Lemma 4.11. Choose a new
constant ε′ such that ε ≪ ε′ ≪ λ, 1/K and define α by

(4.33) 2αn :=
D − φn

K2
.

Recall from Lemma 4.10(ii) that D = (n − 1)/2 or D = n/2− 1. Together with our
assumption that φ ≪ 1 this implies that

(4.34)
1− 2/n− 2φ

4K2
≤ α ≤ 1− 2φ

4K2
and ε ≪ ε′ ≪ λ, 1/K,α ≪ 1.

Note that by Lemma 4.10(ii) and (iii) we have eG⋄(A′, B′) ≥ D − φn = 2K2αn.
Together with Lemma 4.1(iii) this implies that

2K2αn ≤ eG⋄(A′, B′) ≤ eG(A
′, B′) ≤ 17D/10 + 5

(4.33)
≤ 18K2αn/5

(4.34)
< n.(4.35)

Moreover, recall that by Lemma 4.10(i) and (iii) we have

(4.36) dG⋄(v) = 2K2αn for all v ∈ V0.

Let W be the set of all those vertices w ∈ V (G) with dG[A′,B′](w) ≥ 11D/40. So W

is as defined in Lemma 4.1 and 1 ≤ |W | ≤ 3 by Lemma 4.1(i). Let W ′ ⊆ V (G) be as
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guaranteed by Lemma 4.1(v). Thus W ⊆ W ′, |W ′| ≤ 3,

dG[A′,B′](w
′) ≥ 21D

80
, dG[A′,B′](v) ≤

11D

40
and dG[A′,B′](w

′)− dG[A′,B′](v) ≥
D

240
.

(4.37)

for all w′ ∈ W ′ and all v ∈ V (G) \W ′. In particular, W ′ ⊆ V0. (This follows since
Lemma 4.10(iii),(iv) and (ESch3) together imply that dG[A′,B′](v) = dG⋄[A′,B′](v) +
dG0[A′,B′](v) ≤ ε0n + eG0

(A′, B′) ≤ ε0n + φn for all v ∈ A ∪ B.) Let w1, w2, w3 be
vertices of G such that

dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥ dG[A′,B′](w3) ≥ dG[A′,B′](v)

for all v ∈ V (G) \ {w1, w2, w3}, where w1 and w2 are as in Lemma 4.10(v). Hence W
consists of w1, . . . , w|W | and W ′ consists of w1, . . . , w|W ′|. Set W0 := {w1, w2} ∩W ′.
Since dG0

(v) = φn for each v ∈ V0 (and thus for each v ∈ W0), each w ∈ W0 satisfies

K2≤21D/80 − φn
(4.37)
≤ dG⋄[A′,B′](w) ≤ K2αn

(4.35)
≤ eG⋄(A′, B′)/2.(4.38)

(Here the third inequality follows from Lemma 4.10(v).) Apply Lemma 4.11 to G⋄ in
order to obtain a decomposition of G⋄ into edge-disjoint spanning subgraphs H(i, i′)
and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy the following properties, where
G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b′2) H ′′(i, i′) ⊆ G⋄[A′, B′]. Moreover, all but at most 20εn/K2 edges of H ′′(i, i′)

lie in G⋄[A0 ∪Ai, B0 ∪Bi′ ].
(b′3) e(H ′′(i, i′)) = 2

⌈
eG⋄(A′, B′)/(2K2)

⌉
or e(H ′′(i, i′)) = 2

⌊
eG⋄(A′, B′)/(2K2)

⌋
.

In particular, 2αn ≤ e(H ′′(i, i′)) ≤ 19αn/5 by (4.35).
(b′4) dH′′(i,i′)(v) = (dG⋄[A′,B′](v)± 25εn)/K2 for all v ∈ V0.

(b′5) dG′(i,i′)(v) = (dG⋄(v)± 25εn)/K2 =
(
2α± 25ε/K2

)
n for all v ∈ V0 by (4.36).

(b′6) Each w ∈ W0 satisfies dH′′(i,i′)(w) ≤ ⌈dG⋄[A′,B′](w)/K
2⌉ ≤ αn by (4.38).

Our next aim is to apply Lemma 4.13 to each H ′′(i, i′) to obtain suitable Hamilton
exceptional system candidates (in particular almost all of them will be ‘localized’).
So consider any 1 ≤ i, i′ ≤ K and let H ′′ := H ′′(i, i′). We claim that there exists
0 ≤ η ≤ 9/10 such that H ′′ satisfies the following conditions (which in turn imply
conditions (c1)–(c5) of Lemma 4.13):

(c′1) e(H ′′) = 2(1 + η)αn and ηαn ∈ N.
(c′2) e(H ′′ −W ′) ≤ 199αn/100 and dH′′(w) ≥ 13αn/25 for all w ∈ W ′.
(c′3) dH′′(w) ≤ αn for all w ∈ W0 and dH′′(w′) ≤ 41αn/40 for all w′ ∈ W ′ \W0.
(c′4) For all w ∈ W ′ and all v ∈ V (G) \W ′ we have dH′′(w)− dH′′(v) ≥ αn/150.
(c′5) For all v ∈ A ∪B we have dH′′(v) ≤ ε0n.

Clearly, (b′3) implies the first part of (c′1). Since e(H
′′) is even by (b′3) and αn ∈ N, it

follows that ηαn ∈ N. To verify the first part of (c′2), note that (b
′
3) and (b′4) together
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imply that

e(H ′′ −W ′) = e(H ′′)−
∑

w∈W ′

dH′′(w) + e(H ′′[W ′])

≤ 2
⌈
eG⋄(A′, B′)/(2K2)

⌉
−
∑

w∈W ′

(dG⋄[A′,B′](w) − 25εn)/K2 + 3

≤ (eG⋄−W ′(A′, B′) + 80εn)/K2.

Together with Lemma 4.1(iv) this implies that

e(H ′′ −W ′) ≤ (eG−W ′(A′, B′) + 80εn)/K2 ≤ ((3D/4 + 5) + 80εn)/K2 ≤ 199αn/100.

To verify the second part of (c′2), note that by (4.37) and Lemma 4.10(iii) each w ∈ W ′

satisfies dG⋄[A′,B′](w) ≥ dG[A′,B′](w) − φn ≥ 21D/80 − φn. Together with (b′4) this
implies dH′′(w) ≥ 26αn/50. Thus (c′2) holds. By (b′6) we have dH′′(w) ≤ αn for
all w ∈ W0. If w′ ∈ W ′ \ W0, then Lemma 4.10(ii) implies dG[A′,B′](w

′) ≤ D/2 ≤
51K2αn/50. Thus, dH′′(w′) ≤ 41αn/40 by (b′4). Altogether this shows that (c′3)
holds. (c′4) follows from (4.37), (b′4) and the fact that dG⋄[A′,B′](v) ≥ dG[A′,B′](v)−φn
for all v ∈ V (G) by Lemma 4.10(iii). (c′5) holds since dH′′(v) ≤ dG⋄[A′,B′](v) ≤ ε0n
for all v ∈ A ∪B by (ESch3).

Now we apply Lemma 4.13 in order to decompose H ′′ into αn edge-disjoint Hamil-
ton exceptional system candidates F1, . . . , Fαn such that e(Fs) ∈ {2, 4} for all s ≤ αn
and such that at least αn/200 of Fs satisfy e(Fs) = 2 and dFs(w) = 1 for all w ∈ W0.
Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Recall that by (b′2) all but at most 20εn/K2 ≤ ε′n edges of H ′′ lie in G⋄[A0∪Ai, B0∪
Bi′ ]. Together with (4.34) this ensures that we can relabel the Fs if necessary to obtain
αn edge-disjoint Hamilton exceptional system candidates F1(i, i

′), . . . , Fγn(i, i
′) and

F ′
1(i, i

′), . . . , F ′
γ′n(i, i

′) such that the following properties hold:

(a′) Fs(i, i
′) is an (i, i′)-HESC for every s ≤ γn. Moreover, γ′n of the Fs(i, i

′)
satisfy e(Fs(i, i

′)) = 2 and dFs(i,i′)(w) = 1 for all w ∈ W0.
(b′) e(F ′

s(i, i
′)) = 2 for all but at most ε′n of the F ′

s(i, i
′).

(c′) e(Fs(i, i
′)), e(F ′

s(i, i
′)) ∈ {2, 4}.

For (b′) and the ‘moreover’ part of (a′), we use that αn/200− ε′n ≥ 2λn/K2 = 2γ′n.
Our next aim is to apply Lemma 4.9 with G⋄ playing the role of G∗ to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 4.9 hold. (iii) follows from (b′1). (iv) and (v) follow from
(a′)–(c′). (vi) follows from Lemma 4.10(i),(iii). Finally, (vii) follows from (b′5) since
G′(i, i′) plays the role of G∗(i, i′). Thus we can indeed apply Lemma 4.9 to ob-
tain a decomposition of G⋄ into K2αn edge-disjoint Hamilton exceptional systems
J1(i, i

′), . . . , Jγn(i, i
′) and J ′

1(i, i
′), . . . , J ′

γ′n(i, i
′) with parameter ε0, where 1 ≤ i, i′ ≤

K, such that Js(i, i
′) is an (i, i′)-HES which is a faithful extension of Fs(i, i

′) for
all s ≤ γn and J ′

s(i, i
′) is a faithful extension of F ′

s(i, i
′) for all s ≤ γ′n. Then the

set J of all these exceptional systems is as required in Lemma 4.10. (Since W0
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contains {w1, w2} ∩ W , the ‘moreover part’ of (a′) implies the ‘moreover part’ of
Lemma 4.10(b).) �

4.4. The case when eG(A
′, B′) < D. The aim of this section is to prove the follow-

ing analogue of Lemma 4.2 for the case when eG(A
′, B′) < D. In this case, we do not

need to prove any auxiliary lemmas first, as we can apply those proved in the other
two cases (Lemmas 4.9 and 4.11).

Recall that Proposition 2.2 implies that in the current case we have n = 0 (mod 4),
D = n/2− 1 and |A′| = |B′| = n/2.

Lemma 4.14. Suppose that 0 < 1/n ≪ ε0 ≪ ε ≪ λ, 1/K ≪ 1, that 0 ≤ φ ≪ 1
and that n/4,K,m, λn/K2, (n/2 − 1 − φn)/(2K2) ∈ N. Suppose that the following
conditions hold:

(i) G is an (n/2− 1)-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that ∆(G[A′, B′]) ≤ n/4 and |A′| =

|B′| = n/2.
(iii) G0 is a subgraph of G such that G[A0] +G[B0] ⊆ G0 and dG0

(v) = φn for all
v ∈ V0.

(iv) Let G⋄ := G − G[A] − G[B] − G0. eG⋄(A′, B′) is even and (G⋄,P) is a
(K,m, ε0, ε)-exceptional scheme.

(v) ∆(G⋄[A′, B′]) ≤ eG⋄(A′, B′)/2 ≤ (n/2− 1− φn)/2.

Then there exists a set J consisting of (n/2 − 1 − φn)/2 edge-disjoint exceptional
systems in G⋄ which satisfies the following properties:

(a) Together the exceptional systems in J cover all edges of G⋄. Each Js in J
is either a Hamilton exceptional system with eJs(A

′, B′) = 2 or a matching
exceptional system.

(b) For all 1 ≤ i, i′ ≤ K, the set J contains (n/2−1−(φn+2λ))/(2K2) (i, i′)-ES.

As in the other two cases, in [7] we will use some of the exceptional systems in
(b) to construct the robustly decomposable graph Grob. Unlike the critical case
with eG(A

′, B′) ≥ D, there is no need to ‘track’ the degrees of the vertices wi of
high degree in G[A′, B′] this time (this is due to the very special structure of the
exceptional systems produced in this case).

Proof. Let ε′ be a new constant such that ε ≪ ε′ ≪ λ, 1/K and set

(4.39) 2αn :=
n/2− 1− φn

K2
.

Similarly as in the proof of Lemma 4.10 we have

(4.40) ε ≪ ε′ ≪ λ, 1/K,α ≪ 1.

We claim that G⋄ can be decomposed into edge-disjoint spanning subgraphs H(i, i′)
and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy the following properties, where
G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
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(b′2) H ′′(i, i′) ⊆ G⋄[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie in
G⋄[A0 ∪Ai, B0 ∪Bi′ ].

(b′3) e(H ′′(i, i′)) is even and e(H ′′(i, i′)) ≤ 2αn.
(b′4) ∆(H ′′(i, i′)) ≤ e(H ′′(i, i′))/2.
(b′5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

To see this, let us first consider the case when eG⋄(A′, B′) ≤ 300εn. Apply Lemma 4.3
to G⋄ in order to obtain a decomposition of G⋄ into edge-disjoint spanning subgraphs
H(i, i′) and H ′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy Lemma 4.3(a1)–(a5). Set
H ′′(1, 1) :=

⋃
i,i′≤K H ′(i, i′) = G⋄[A′, B′] and H ′′(i, i′) := ∅ for all other pairs 1 ≤

i, i′ ≤ K. Then (b′1) follows from (a1). (b′2) follows from our definition of the
H ′′(i, i′) and our assumption that eG⋄(A′, B′) ≤ 300εn < ε′n < αn. Together with
Lemma 4.14(iv) this also implies (b′3). (b′4) follows from Lemma 4.14(v). Note that
by Lemma 4.14(i) and (iii), every v ∈ V0 satisfies dG⋄(v) = n/2− 1− φn = 2K2αn.
So, writing G(i, i′) := H(i, i′) +H ′(i, i′), (a5) implies that

dG′(i,i′)(v) = dG(i,i′)(v) ± 300εn = (2α± 4ε/K2)n± 300εn = (2α ± ε′)n.

Thus (b′5) holds too.
So let us next consider the case when eG⋄(A′, B′) > 300εn. Let W0 be the set of

all those vertices v ∈ V (G) for which dG⋄[A′,B′](v) ≥ 3eG⋄(A′, B′)/8. Then clearly
|W0| ≤ 2. Moreover, each v ∈ V (G) \W0 satisfies

dG⋄[A′,B′](v) + 26εn < 3eG⋄(A′, B′)/8 + eG⋄(A′, B′)/8 = eG⋄(A′, B′)/2.(4.41)

Recall from Lemma 4.14(v) that each w ∈ W0 satisfies dG⋄[A′,B′](w) ≤ eG⋄(A′, B′)/2.
So we can apply Lemma 4.11 to G⋄ in order to obtain a decomposition of G⋄ into
edge-disjoint spanning subgraphs H(i, i′) and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which
satisfy Lemma 4.11(b1)–(b7). Then (b1) and (b2) imply (b′1) and (b′2). (b′3) follows
from (b3), (4.39) and Lemma 4.14(v). Note that (b3), (b4) and (4.41) together imply
that

(4.42) dH′′(i,i′)(v) ≤
eG⋄(A′, B′)/2− εn

K2
≤ e(H ′′(i, i′))

2

for all v ∈ V0 \W0. Note that each v ∈ A ∪ B satisfies dH′′(i,i′)(v) ≤ dG⋄[A′,B′](v) ≤
ε0n by Lemma 4.14(iv) and (ESch3). Together with the fact that e(H ′′(i, i′)) ≥
2⌊300εn/(2K2)⌋ ≥ 2ε0n by (b3), this implies that (4.42) also holds for all v ∈ A∪B.
Together with (b7) this implies (b′4). (b′5) follows from (b5) and the fact that by
Lemma 4.14(i) and (iii) every v ∈ V0 satisfies dG⋄(v) = n/2 − 1 − φn = 2K2αn. So
(b′1)–(b

′
5) hold in all cases.

We now decompose the localized subgraphs H ′′(i, i′) into exceptional system can-
didates. For this, fix i, i′ ≤ K and write H ′′ for H ′′(i, i′). By (b′4) we have ∆(H ′′) ≤
e(H ′′)/2 and so χ′(H ′′) ≤ e(H ′′)/2. Apply Proposition 2.4 with e(H ′′)/2 playing the
role of m to decompose H ′′ into e(H ′′)/2 edge-disjoint matchings, each of size 2. Note
that αn − e(H ′′)/2 ≥ 0 by (b′3). So we can add some empty matchings to obtain a
decomposition of H ′′ into αn edge-disjoint M1, . . . ,Mαn such that each Ms is either
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empty or has size 2. Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Recall from (b′2) that all but at most ε′n ≤ γ′n edges of H ′′ lie in G⋄[A0∪Ai, B0∪Bi′ ].
Hence by relabeling if necessary, we may assume that Ms ⊆ G⋄[A0 ∪Ai, B0 ∪Bi′ ] for
every s ≤ γn. So by setting Fs(i, i

′) := Ms for all s ≤ γn and F ′
s(i, i

′) := Mγn+s for
all s ≤ γ′n we obtain a decomposition of H ′′ into edge-disjoint exceptional system
candidates F1(i, i

′), . . . , Fγn(i, i
′) and F ′

1(i, i
′), . . . , F ′

γ′n(i, i
′) such that the following

properties hold:

(a′) Fs(i, i
′) is an (i, i′)-ESC for every s ≤ γn.

(b′) Each Fs(i, i
′) is either a matching exceptional system candidate with e(Fs(i, i

′)) =
0 or a Hamilton exceptional system candidate with e(Fs(i, i

′)) = 2. The ana-
logue holds for each F ′

s′(i, i
′).

Our next aim is to apply Lemma 4.9 with G⋄ playing the role of G∗, to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 4.9 hold. (iii) follows from (b′1). (iv) and (v) follow from
(a′) and (b′). (vi) follows from Lemma 4.14(i),(iii). Finally, (vii) follows from (b′5)
since G′(i, i′) plays the role of G∗(i, i′) in Lemma 4.9. Thus we can indeed apply
Lemma 4.9 to obtain a decomposition of G⋄ into K2αn edge-disjoint exceptional
systems J1(i, i

′), . . . , Jγn(i, i
′) and J ′

1(i, i
′), . . . , J ′

γ′n(i, i
′), where 1 ≤ i, i′ ≤ K, such

that Js(i, i
′) is an (i, i′)-ES which is a faithful extension of Fs(i, i

′) for all s ≤ γn and
J ′
s(i, i

′) is a faithful extension of F ′
s(i, i

′) for all s ≤ γ′n. Then the set J of all these
exceptional systems is as required in Lemma 4.14. �
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