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1 Introduction and summary

In a quantum theory of gravity, soft graviton theorem gives an amplitude with a set of

finite energy external particles and one or more low energy external gravitons, in terms

of the amplitude without the low energy gravitons [1–14]. However when we take the

classical limit, there is a different manifestation of the same theorem — it determines

the low frequency component of the gravitational wave-form produced during a scattering
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process in terms of the momenta and spin of the incoming and outgoing objects, without

any reference to the interactions responsible for the scattering [15]. Although initially this

result was derived by taking the classical limit of quantum amplitudes, this has now been

proved directly in the classical theory [16] in five or more space-time dimensions.

In four space-time dimensions there are additional subtleties. In quantum theory these

are related to infrared divergences of the S-matrix. In the classical limit these manifest

themselves in the logarithmic corrections to the asymptotic trajectories of the objects

due to the long range force operating between these objects. Due to these logarithmic

corrections, the orbital angular momenta of external objects, that enter the expression

for the gravitational wave-form, become ill defined. Refs. [17, 18] proposed a specific way

of regulating these logarithmic divergences by suggesting that we use the wave-length of

the soft graviton as the infrared cut-off. This introduced terms proportional to ln ω in

the soft graviton theorem where ω is the angular frequency of the soft graviton. After

Fourier transformation, these terms control the gravitational wave-form produced during

a scattering at late and early retarded time [19].1

Our goal in this paper will be to prove the classical soft graviton theorem in four

space-time dimensions directly in the classical theory. In particular we prove the following

result. Let us consider a scattering process in which a set of m objects carrying four

momenta p′1, · · · , p′m come together, scatter via some (unknown) interactions and disperse

as n objects carrying momenta p1, · · · , pn. The special case m = 1 will describe an explosion

in which a single bound system fragments into many objects, including radiation. We shall

choose the origin of the space-time coordinate system so that the scattering takes place

within a finite neighborhood of the origin. Let us also suppose that we have a gravitational

wave detector placed at a faraway point ~x, and define

R = |~x|, n̂ =
~x

R
, n = (1, n̂) . (1.1)

We shall consider the limit of large R and analyze only the terms of order 1/R in the

gravitational wave-form. We define the retarded time at the detector:

u ≡ t−R+ 2G lnR
n∑
b=1

pb.n . (1.2)

Here t − R is the usual retarded time and the 2G lnR
∑n

b=1 pb.n takes into account the

effect of the long range gravitational force on the gravitational wave as it travels from the

scattering center to the detector. G denotes the Newton’s constant. We have used units

in which the velocity of light c has been set equal to 1, — this is the unit we shall use

throughout the paper. We also define the deviation of the metric gµν from flat metric via:

hµν ≡ (gµν − ηµν)/2, eµν ≡ hµν −
1

2
ηµν η

ρσ hρσ . (1.3)

Let us first assume that the objects do not carry charge so that gravity is the only long

range force acting on the objects at late and early time, although during the scattering

1A possible explanation of these logarithmic terms using asymptotic symmetries has been discussed

recently [20, 21].
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they may undergo complicated interactions. Then at late and early retarded time, our

result for the gravitational wave-form at the detector is given by:

Late time : eµν(t,R, n̂) =
2G

R

[
−

n∑
a=1

pµa p
ν
a

1

n.pa
+

m∑
a=1

p′µa p
′ν
a

1

n.p′a

]

− 4G2

Ru

[
n∑
a=1

n∑
b=1
b 6=a

pa.pb
{(pa.pb)2−p2ap2b}3/2

{
3

2
p2ap

2
b−(pa.pb)

2

}
nρp

µ
a

n.pa
(pρbp

ν
a−pνbpρa)

−
n∑
b=1

pb.n

{
n∑
a=1

1

pa.n
pµap

ν
a−

m∑
a=1

1

p′a.n
p′µa p

′ν
a

}]
+O(u−2) , as u→∞

Early time : eµν(t,R, n̂) =
4G2

Ru

[
m∑
a=1

m∑
b=1
b 6=a

p′a.p
′
b

{(p′a.p′b)2−p′2a p′2b }3/2

{
3

2
p′2a p

′2
b −(p′a.p

′
b)

2

}

× nρp
′µ
a

n.p′a
(p′ρb p

′ν
a −p′νb p′ρa )

]
+O(u−2) , as u→−∞ , (1.4)

where O(u−2) includes terms of order u−2 ln |u|. The term on the right hand side of the first

line represents a constant jump in hµν during the passage of the gravitational wave, and is

known as the memory effect [22–31]. This is related to the leading soft theorem [32]. The

terms of order 1/u are related to logarithmic corrections to the subleading soft theorem.

These have been verified in various examples via explicit calculations [33–35]. The sum

over a in (1.4) also includes the contribution from finite frequency radiation emitted during

the scattering. Different limits of the Fourier transforms of these results have been studied

in section 2.3 of [18].

As already discussed in [18, 19], in case of decay (m = 1), if at most one of the

final objects is massive and the rest are massless, including radiation, then the terms

proportional to 1/u in the expression for eµν cancel. This will be the case for binary black

hole merger where the initial state is a single bound system, and the final state consists of

a single massive black hole and gravitational radiation. Therefore absence of 1/u tails in

such decays can be taken as a test of general theory of relativity.

If the objects participating in the scattering process are charged, with the incoming

objects carrying charges q′1, · · · , q′m and outgoing objects carrying charges q1, · · · , qn, then

there are further corrections to (1.4) due to long range electromagnetic forces between the

incoming and the outgoing objects. These corrections have been given in (4.30).

A similar result can be given for the profile of the electromagnetic vector potential aµ
at the detector at late and early retarded time. The results are given in (4.23), (4.24).

Although these results are derived in this paper for the first time, they have been

conjectured earlier from soft graviton theorem following the chain of arguments given at

the beginning of this section. Emboldened by the success of these arguments, we describe

in section 5 a new conjecture for terms of order u−2 ln |u| at late and early retarded time.

These have been given in (5.7), (5.8) and (5.9).
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2 Some useful results

In this section we shall set up some notations and collect some mathematical results that

will be used in our analysis. The derivation of these results can be found in appendix A.

We begin by setting up our notation for different Fourier transforms that we shall use

in our analysis. We shall deal with functions of four variables x ≡ (t, ~x) ≡ (x0, x1, x2, x3)

describing the space-time coordinates. Given any such function F (x), we shall introduce

the following different kinds of Fourier transforms:

F̂ (k) ≡
∫
d4x e−ik.x F (t, ~x),

F̄ (t,~k) ≡
∫
d3x e−i

~k.~x F (t, ~x),

F̃ (ω, ~x) ≡
∫
dt eiωt F (t, ~x) .

(2.1)

The inverse relations are

F (t, ~x) =

∫
d4k

(2π)4
eik.x F̂ (k),

F (t, ~x) =

∫
d3k

(2π)3
ei
~k.~x F̄ (t,~k),

F (t, ~x) =

∫
dω

2π
e−iωt F̃ (ω, ~x) .

(2.2)

Note that we are using the convention k.x ≡ ηµνkµxν = −k0x0 + ~k.~x.

Let us consider a differential equation of the form:

�F (x) = −j(x), � ≡ ηαβ ∂α ∂β , (2.3)

where j(x) is some given function. Then one can show that, at large distance R,

F̃ (ω, ~x) ' 1

4πR
eiωR ĵ(k) , R ≡ |~x|, n̂ ≡ ~x

R
, k ≡ ω(1, n̂), (2.4)

The derivation of this relation has been reviewed in appendix A.1.

We shall now give the results of Fourier transforms of some functions that are singular

at the origin. Let f(ω) be some function that is analytic on the real axis with f(0) = 1,

and assume that it falls of sufficiently fast at large |ω| so as to render finite the various

integrals that will appear below. Then we have the following results:

1

2π

∫
dω e−iωu

1

ω + iε
f(ω) = −iH(u) +O(e−u) , (2.5)

where H is the Heaviside step function. Changing the sign of the iε or using principal value

only adds a constant to the expression, so that the jump in the function as we change u
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from large negative to large positive value remains unchanged. We also have,

∫
dω

2π
e−iωu ln(ω+iε)f(ω)→

−
1

u
for u→∞,

0 for u→−∞,∫
dω

2π
e−iωu ln(ω−iε)f(ω)→

0 for u→∞,
1

u
for u→−∞,

(2.6)

∫
dω

2π
e−iωuω{ln(ω+iε)}2 f(ω)→

{
−2 iu−2 ln |u|+O(u−2) for u→∞,
0 for u→−∞,∫

dω

2π
e−iωuω{ln(ω−iε)}2 f(ω)→

{
0 for u→∞,
2 iu−2 ln |u|+O(u−2) for u→−∞ ,

(2.7)

∫
dω

2π
e−iωuω ln(ω+iε) ln(ω−iε)f(ω)→

{
− iu−2 ln |u|+O(u−2) for u→∞ ,

iu−2 ln |u|+O(u−2) for u→−∞ .
(2.8)

Eqs. (2.5)–(2.8) have been proved in appendix A.2.

3 Proof of classical soft graviton theorem

We consider a scattering event in asymptotically flat space-time in which m objects carrying

masses {m′a}, four velocities {v′a} and four momenta {p′a = m′a v
′
a} for 1 ≤ a ≤ m come

close, undergo complicated interactions, and disperse as n objects carrying masses {ma},
four velocities {va} and four momenta {pa} for 1 ≤ a ≤ n. We do not assume that

the interactions are weak, and they could involve exchange of energy and other quantum

numbers, fusion and splitting. Our goal will be to compute the gravitational wave-form

emitted during this scattering event at early and late retarded time. As discussed in

section A.2, this is related to the behaviour of the Fourier transform of the wave-form in

the low frequency limit.

Since we shall be interested in the long wavelength gravitational waves emitted by the

system, we can represent the leading contribution to the energy momentum tensor of the

incoming and outgoing objects by the energy momentum tensor of point particles, and

include the effect of internal structure of the objects by adding subleading contributions

involving higher derivative terms [37–45]. In fact, to the order at which we shall be working,

it will be sufficient to keep just the leading term. For this reason, we shall henceforth refer

to the incoming and outgoing objects as particles.

The strategy we shall follow will be to iteratively solve the coupled equations of motion

of matter and gravity using Feynman diagram like techniques. This method has been widely

used in recent years [46–50], most notably in [36, 51–53]. However the main difference

between our approach and the earlier ones is in setting up the boundary conditions. In

the usual approach we set the initial condition and evolve the system using the equations

of motion, computing both the trajectories and the emitted radiation during this process.
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r1
r2

r′1r′2

R

Figure 1. A scattering process in which the particles interact strongly inside the region R via

some unspecified forces, but outside the region R the only force operative between the particles is

the long range gravitational force.

In our approach we take the initial and final momenta as given, but allow the interactions

during the scattering to be arbitrary. Therefore while solving the equations we need to

evolve the initial particle trajectories forward in time and the final particle trajectories

backward in time, and compute the net gravitational wave emitted during the scattering.

For simplicity, in this section we shall consider the situation where the particles are

uncharged so that there are no long range electromagnetic interactions between the asymp-

totic particles. The effect of such interactions will be incorporated in section 4.4.

3.1 General set-up

We choose the origin of the space-time coordinate system to be somewhere within the

region where the scattering takes place and denote by R a large but finite region of space-

time so that the non-trivial part of the scattering occurs within the region R. In particular

we shall choose R to be sufficiently large so that outside the region R the only interaction

that exists between the particles is the long range gravitational interaction. This has been

shown in figure 1. We shall denote by L the linear size of R and analyze gravitational

radiation at retarded time u for |u| � L.

We define:

hµν =
1

2
(gµν − ηµν), eµν = hµν −

1

2
ηµν η

ρσhρσ ⇔ hµν = eµν −
1

2
ηµν η

ρσeρσ . (3.1)

We denote by Xa(σ) for 1 ≤ a ≤ n the outgoing particle trajectories parametrized by

the proper time2 σ in the range 0 ≤ σ < ∞, with σ = 0 labelling the point where the

trajectory exits the region R. Similarly X ′a(σ) for 1 ≤ a ≤ m will denote the incoming

particle trajectories parametrized by the proper time σ in the range −∞ < σ ≤ 0, with

σ = 0 labelling the point where the trajectory enters the region R. We now consider the

2More precisely, σ is a parameter labelling the trajectory, that is set equal to the proper time after

deriving the equations of motion.

– 6 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
3

Einstein’s action coupled to these particles:

S =
1

16πG

∫
d4x

√
− det g R−

n∑
a=1

∫ ∞
0

dσma

{
−gµν(X(σ))

dXµ
a

dσ

dXν
a

dσ

}1/2

−
m∑
a=1

∫ 0

−∞
dσm′a

{
−gµν(X ′(σ))

dX ′µa
dσ

dX ′νa
dσ

}1/2

. (3.2)

Note that we have included in the action the contribution only from part of the particle

trajectories that lie outside the region R. We shall argue later that this action is sufficient

for determining the gravitational wave-form at late and early time. We now derive the

equations of motion for eµν by extremizing the action (3.2) with respect to eµν . This takes

the form: √
− det g

(
Rµν − 1

2
gρσRρσ g

µν

)
= 8πGTXµν , (3.3)

where,

TXµν ≡
n∑
a=1

ma

∫ ∞
0

dσ δ(4)(x−Xa(σ))
dXµ

a

dσ

dXν
a

dσ

+
m∑
a=1

m′a

∫ 0

−∞
dσ δ(4)(x−X ′a(σ))

dX ′µa
dσ

dX ′νa
dσ

.

(3.4)

Note the factor of
√
− det g and the raised indices on the left hand side of (3.3) — this

makes the right hand side independent of the metric. After imposing the de Donder gauge:

ηµν∂µhνλ −
1

2
∂λ (ηρσhρσ) = 0 ⇔ ηµν ∂µ eνλ = 0 , (3.5)

and expanding the left hand side of (3.3) in power series in hµν , we can express the equations

of motion of the metric as:

ηαµ ηβν ηρσ∂ρ∂σeαβ = −8πGTµν(x), Tµν ≡ TXµν + T hµν , (3.6)

where T hµν denotes the gravitational stress tensor, defined as what we obtain by taking

all eαβ dependent terms on the left hand side of (3.3), except the terms linear in eαβ , to

the right hand side and dividing it by 8 πG. In all subsequent equations, the indices will

be raised and lowered by ηµν .

Our goal is to compute eµν(t, ~x) at a point far away from the scattering center. We

shall label ~x as R n̂ where n̂ is a unit vector and R ≡ |~x|. It follows from (A.2) and (2.4)

that the retarded solution to (3.6) is given by [15]3

ẽµν(ω,R, n̂) =
2G

R
eiωR T̂µν(k) +O(R−2) , (3.7)

where

T̂µν(k) ≡
∫
d4x e−ik.x Tµν(x) , (3.8)

3(3.7) can also be written as

eµν(t, R, n̂) =
2G

R
T̄µν(t−R,~k) +O(R−2) .
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is the Fourier transform of Tµν(x) in all the variables and k = ω(1, n̂) as defined in (A.8).

Therefore we need to compute T̂µν(k). Furthermore, it follows from the analysis of sec-

tion A.2 that to extract the late and early time behaviour of eµν(t, ~x) we need to examine

the non-analytic part of ẽµν(ω,R, n̂) as a function of ω — in particular terms of order 1/ω

and lnω. For this, we can restrict the integration over x in (3.8) to outside the region R,

since integration over a finite region of space-time will give an infrared finite contribution

and cannot generate a singularity as ω → 0. This justifies the omission of the contribution

to the action (3.2) from particle trajectories inside the region R.

We shall compute T̂µν by solving the following equations iteratively:

Tµν(x) = TXµν(x) + T hµν(x),

TXµν(x) ≡
n∑
a=1

ma

∫ ∞
0

dσ δ(4)(x−Xa(σ))
dXµ

a

dσ

dXν
a

dσ

+
m∑
a=1

m′a

∫ 0

−∞
dσ δ(4)(x−X ′a(σ))

dX ′µa
dσ

dX ′νa
dσ

,

� eµν = −8πGTµν ≡ −8πGηµα ηνβ T
αβ ,

d2Xµ
a

dσ2
= −Γµνρ(X(σ))

dXν
a

dσ

dXρ
a

dσ
,

d2X ′µa
dσ2

= −Γµνρ(X
′(σ))

dX ′νa
dσ

dX ′ρa
dσ

, (3.9)

with boundary conditions:

Xµ
a (σ = 0) = rµa , lim

σ→∞

dXµ
a

dσ
= vµa =

1

ma
pµa ,

X ′µa (σ = 0) = r′µa , lim
σ→−∞

dX ′µa
dσ

= v′µa =
1

m′a
p′µa .

(3.10)

Here Γµνρ denotes the Christoffel symbol constructed from the metric ηµν+2hµν . ra denotes

the point where the trajectory of the a-th outgoing particle intersects the boundary of R
and r′a denotes the point where the trajectory of the a-th incoming particle intersects the

boundary of R. T h is the stress tensor of gravity, as defined below (3.6). hµν and hence eµν
is required to satisfy retarded boundary condition. The starting solution for the iteration

is taken to be

eµν = 0, Xµ
a (σ) = rµa + vµa σ = rµa +

1

ma
pµa σ, X ′µa (σ) = r′µa + v′µa σ = r′µa +

1

m′a
p′µa σ .

(3.11)

We can give a uniform treatment of the incoming and the outgoing particles by defining:

Xµ
a+n(σ) = X ′µa (−σ), ma+n = m′a, vµa+n = −v′µa , rµa+n = r′µa , pµa+n = −p′µa ,

for 1 ≤ a ≤ m. (3.12)

In this case we can express (3.9) and (3.10) as:

Tµν(x) =TXµν(x)+T hµν(x),

TXµν(x)≡
m+n∑
a=1

ma

∫ ∞
0

dσδ(4)(x−Xa(σ))
dXµ

a

dσ

dXν
a

dσ

�eµν =−8πGTµν ,
d2Xµ

a

dσ2
=−Γµνρ(X(σ))

dXν
a

dσ

dXρ
a

dσ
, for 1≤ a≤m+n, (3.13)

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
3

and

Xµ
a (σ = 0) = rµa , lim

σ→∞

dXµ
a

dσ
= vµa =

1

ma
pµa , for 1 ≤ a ≤ m+ n . (3.14)

Also the starting solution (3.11) for iteration may be written as

eµν = 0, Xµ
a (σ) = rµa + vµa σ = rµa +

1

ma
pµa σ, for 1 ≤ a ≤ m+ n . (3.15)

From now on we shall follow this convention, with the understanding that the sum over a

always runs from 1 to (m+ n) unless stated otherwise.

3.2 Leading order contribution

At the leading order in the expansion in powers of G, T hµν vanishes, and we have:

T̂µν(k) = T̂Xµν(k) =

∫
d4x e−ik.x

m+n∑
a=1

ma

∫ ∞
0

dσ δ(4)(x−Xa(σ))
dXµ

a

dσ

dXν
a

dσ

=
m+n∑
a=1

ma

∫ ∞
0

dσ e−ik.X(σ) dX
µ
a

dσ

dXν
a

dσ
, (3.16)

where, as mentioned earlier, we have restricted the region of integration over x to outside

the region R. Using the leading order solution (3.15) we get

T̂µν(k) =

m+n∑
a=1

ma

∫ ∞
0

dσ e−ik.(va σ+ra) vµav
ν
a =

m+n∑
a=1

ma
1

i(k.va − iε)
e−ik.ra vµav

ν
a

=
m+n∑
a=1

pµa p
ν
a e
−ik.ra 1

i(k.pa − iε)
. (3.17)

The iε prescription is obtained by noting that addition of a small negative imaginary part

to k.va makes the σ integrals convergent. Therefore the poles must be in the upper half

k.va plane. Note that the iε prescription is independent of whether k.pa is positive or

negative, i.e. whether pa represents an ingoing or an outgoing momentum, since after the

redefinition (3.12), σ always runs from 0 to ∞. A Feynman diagram like representation

of (3.17) in the spirit of [36, 51–53] can be found in figure 2.

Since we are looking for terms that are singular at ω → 0, i.e. kµ → 0, we can replace

the e−ik.ra factors by 1. This gives the leading soft factor associated with the memory effect.

3.3 First order correction to the gravitational field

We now turn to the next order contribution. We first solve for eµν satisfying the third

equation in (3.13) as

êµν(k) = −8πGGr(k) T̂µν(k) = −8πG
m+n∑
a=1

paµ paν e
−ik.ra Gr(k)

1

i(k.pa − iε)
,

Gr(k) ≡ 1

(k0 + iε)2 − ~k2
. (3.18)
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pa

k

pa + k

· · ·

Figure 2. A Feynman diagram like representation of (3.17), with the external thin line carrying

momentum k labelling the argument of T̂µν(k), the external thick lines representing the incoming

and the outgoing particles and the internal propagator carrying momentum pa +k representing the

1/{i(pa.k− iε)} factor. All momenta are labelled as outgoing, so an incoming particle is represented

with negative p0a. The vertex where the lines representing incoming and outgoing particles meet

represent the interaction region R in figure 1. The vertex where the external thin line representing

T̂µν(k) meets the a-th thick line carries the pµap
ν
a factor in (3.17).

One comment is in order here. The expression (3.16) for T̂µν(k), which we are using

in (3.18), ignores the contribution from the region of integration R. This was justified

earlier since we were computing the singular part of T̂µν . However, now we need the

contribution to êµν from the full T̂µν since our goal will be to use this to compute T hµν , and

also to compute the corrections to the particle trajectories, which, in turn, give corrections

to TXµν . Once we compute these, we use (3.7) to compute ẽµν . At this stage, we can

again restrict the integration region to outside R while taking the Fourier transform to

compute the corrected T̂µν . To address this issue, we first analyze the possible correction

δTXµν to TXµν due to gravitational fields generated from inside R. Since in four space-time

dimensions the retarded Green’s function has support on the future light-cone, the field

sourced by energy momentum tensor inside R will have support on the future light-cone

emerging from points inside R. These intersect the time-like trajectories of the outgoing

(or incoming) particles emerging from R only within a distance of order L — the size of

R. Therefore δTXµν is affected only in this region. Since integration over this region will not

produce a singular contribution to T̂Xµν(k) in the ω → 0 limit, this effect may be ignored.

However the gravitational field produced from the sources inside R could give significant

contribution to T h, since we are not assuming the interactions inside R to be weak. We

take this into account by regarding the contribution to êµν(k) = −8πGGr(k)T̂µν(k) from

inside the region R as a flux of finite wavelength gravitational waves produced by Tµν(x)

inside R, and include this in the sum over a. Therefore the outgoing momenta {pa} not

only will include finite mass particles, but also the finite wave-length ‘massless gravitons’

emitted during the scattering process.

Using (3.18) we can calculate, at the next order,

e(b)µν (x) = −8πG

∫
d4`

(2π)4
ei`.(x−rb)Gr(`) pbµ pbν

1

i(`.pb − iε)
,

h(b)µν (x) = −8πG

∫
d4`

(2π)4
ei`.(x−rb)Gr(`)

{
pbµ pbν −

1

2
p2b ηµν

}
1

i(`.pb − iε)
, (3.19)
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where e
(b)
µν is the gravitational field due to the b-th particle. This gives

Γ(b)µ
νρ (x) = ηµα

{
∂ν h

(b)
αρ + ∂ρ h

(b)
αν − ∂α h(b)νρ

}
= −8πG

∫
d4`

(2π)4
ei`.(x−rb)Gr(`)

1

(`.pb − iε)

[ {
`νp

µ
b pbρ + `ρp

µ
b pbν − `

µpbνpbρ
}

− 1

2
p2b
{
`νδ

µ
ρ + `ρδ

µ
ν − `µ ηνρ

} ]
. (3.20)

These results will be used for two purposes. We shall substitute (3.20) into the last equation

in (3.13) to compute the correction to the outgoing particle trajectories and hence to TXµν .

We shall also use (3.19) to compute the leading contribution to T hµν .

Note that e
(b)
µν (x) given in (3.19) satisfies:

∂µe
µν =

m+n∑
b=1

∂µ e
(b)µν(x) = −8πG

m+n∑
b=1

∫
d4`

(2π)4
ei`.(x−rb)Gr(`) p

ν
b . (3.21)

As long as we restrict the integration range of ` to values for which `.(rc − ra) is small

for every pair a, c, we can take e−i`.rb to be approximately independent of b, and the right

hand side of (3.21) vanishes due to momentum conservation law
∑m+n

b=1 pµb = 0. Therefore

eµν at this order satisfies the de Donder gauge condition:

∂µeµν = 0 . (3.22)

At the next order there is apparent violation of this condition due to the `.rb factors coming

from the expansion of the exponential factor. This can be compensated by some boundary

terms on ∂R coming from integration inside the region R [16], but since these terms will

not contribute to the singular terms that are of interest to us, we shall ignore them.

In the next two subsections we shall compute the correction to T̂X and T̂ h using these

results. It is also possible to argue that in order to calculate the logarithmic terms of

interest, we can stop at this order. The natural dimensionless expansion parameter is

GMω where M denotes the typical energy of the incoming / outgoing particles. Since the

leading term (3.17) is of order 1/ω, the subleading corrections that we shall compute will

be of order ω0 multiplied by powers of lnω. Higher order terms will involve higher powers

of ω and will not be needed for our analysis.

3.4 Subleading contribution to the matter stress tensor

We begin by computing correction to the particle trajectory (3.15). Let Y µ
a denote the

correction:

Xµ
a (σ) = vµa σ + rµa + Y µ

a (σ) . (3.23)

Then Y µ
a satisfies the differential equation and boundary conditions:

d2Y µ
a

dσ2
= −Γµνρ(va σ + ra) v

ν
a v

ρ
a, Y µ

a → 0 as σ → 0,
dY µ

a

dσ
→ 0 as σ →∞ , (3.24)
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where4

Γµνρ =
m+n∑
b=1
b 6=a

Γ(b)µ
νρ , (3.25)

captures the effect of the gravitational field produced by all particles other than a. Some

of these terms must vanish, e.g. the gravitational field produced by an outgoing particle

should not affect an incoming particle. This however will follow automatically from the

equations that we shall derive, and need not be imposed externally. Integrating (3.24)

we get
dY µ

a (σ)

dσ
=

∫ ∞
σ

dσ′ Γµνρ(va σ
′ + ra) v

ν
a v

ρ
a , (3.26)

and

Y µ
a (σ) =

∫ σ

0
dσ′

∫ ∞
σ′

dσ′′ Γµνρ(va σ
′′ + ra) v

ν
a v

ρ
a . (3.27)

Substituting (3.23) into (3.16) we get T̂Xµν to subleading order:

T̂Xµν(k) =
m+n∑
a=1

ma

∫ ∞
0

dσe−ik.(vaσ+ra) {1−ik.Ya(σ)}
{
vµa+

dY µ
a

dσ

}{
vνa+

dY ν
a

dσ

}
(3.28)

=

m+n∑
a=1

ma

∫ ∞
0

dσe−ik.(vaσ+ra)
[
vµav

ν
a−ik.Ya(σ)vµav

ν
a+

dY µ
a

dσ
vνa+vµa

dY ν
a

dσ

]
.

Using (3.26), (3.27), we can express this as,

T̂Xµν(k) =
m+n∑
a=1

ma

∫ ∞
0

dσ e−ik.(va σ+ra)

×

[
vµav

ν
a − ikρ

∫ σ

0
dσ′

∫ ∞
σ′

dσ′′ Γραβ(va σ
′′ + ra)v

α
a v

β
a v

ν
a v

µ
a (3.29)

+

∫ ∞
σ

dσ′ Γµαβ(va σ
′ + ra) v

α
a v

β
a v

ν
a +

∫ ∞
σ

dσ′ Γναβ(va σ
′ + ra) v

α
a v

β
a v

µ
a

]
.

Substituting (3.20) and (3.25) into (3.29), and dropping the leading term given in (3.17),

we get the first order correction to T̂X :

∆T̂Xµν(k) =−8πG

m+n∑
a=1

∑
b 6=a

ma

∫
d4`

(2π)4
1

`.pb−iε
Gr(`)

[∫ ∞
0

dσ

∫ σ

0
dσ′

∫ ∞
σ′

dσ′′

e−ik.vaσ ei`.vaσ
′′
{
−iva.pb (2k.pb va.`−k.`va.pb)+

i

2
p2b(2k.va va.`−k.`v2a)

}
vνa v

µ
a

+

∫ ∞
0

dσ

∫ ∞
σ

dσ′ e−ik.vaσ ei`.vaσ
′

{
2`.va va.pb

(
vνap

µ
b +vµap

ν
b

)
−(va.pb)

2
(
`µvνa+`νvµa

)
−2`.va p

2
b v

µ
a v

ν
a+

1

2
v2ap

2
b

(
`µvνa+`νvµa

)}]
e−ik.ra−i`.(rb−ra) . (3.30)

4The self-force effects [54] will not be important at this order.
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After carrying out the integrations over σ, σ′, σ′′, and using pµa = mav
µ
a , we get

∆T̂Xµν(k) = −8πG

m+n∑
a=1

∑
b 6=a

∫
d4`

(2π)4
1

`.pb − iε
Gr(`) e

−ik.ra−i`.(rb−ra)

[(
2 pa.pb k.pb pa.`− k.` (pa.pb)

2 − p2b pa.k pa.`+
1

2
k.` p2a p

2
b

)
pνa p

µ
a

1

`.pa

1

k.pa

1

(`− k).pa

−
{

2 pa.pb `.pa

(
pνap

µ
b + pµap

ν
b

)
− (pa.pb)

2
(
`µpνa + `νpµa

)
− 2 p2b `.pa p

µ
a p

ν
a

+
1

2
p2a p

2
b

(
`µpνa + `νpµa

)}
× 1

`.pa

1

(`− k).pa

]
. (3.31)

For |rµa − rµb | ∼ L, the ultraviolet divergence in the integration over ` is cut-off at L−1

due to the oscillatory phase factor e−i`.(rb−ra). This contribution can be interpreted as the

effect of first order correction to figure 2, induced by the correction to the trajectory of the

a-th particle due to the gravitational field of the other particles.

In order to evaluate the integral, we need to determine the iε prescription for the

poles in (3.31). The iε prescription for the 1/`.pb term has already been determined before.

Similarly, since the 1/`.pa factor comes from an integral in (3.30) of the form
∫∞
σ′ dσ

′′ ei`.vaσ
′′

or
∫∞
σ dσ′ ei`.vaσ

′
, the iε prescription will be to replace 1/`.pa by 1/(`.pa + iε). The 1/k.pa

factor comes from an integral of the form
∫∞
0 dσ e−ik.vaσ, and the iε prescription will be

to replace 1/k.pa by 1/(k.pa − iε). Finally, the 1/(` − k).pa factor in (3.31) arises from

an integral of the form
∫∞
0 dσ ei(`−k).vaσ, and the correct iε prescription for this term is

1/((`− k).pa + iε). Therefore, (3.31) should be written as

∆T̂Xµν(k) =−8πG
m+n∑
a=1

∑
b 6=a

∫
d4`

(2π)4
1

`.pb−iε
Gr(`)e

−ik.ra−i`.(rb−ra)

[(
2pa.pb k.pb pa.`−k.`(pa.pb)

2−p2b pa.k pa.`+
1

2
k.`p2a p

2
b

)
pνa p

µ
a

× 1

`.pa+iε

1

k.pa−iε
1

(`−k).pa+iε

−
{

2pa.pb `.pa

(
pνap

µ
b +pµap

ν
b

)
−(pa.pb)

2
(
`µpνa+`νpµa

)
−2p2b `.pa p

µ
a p

ν
a+

1

2
p2a p

2
b

(
`µpνa+`νpµa

)}
× 1

`.pa+iε

1

(`−k).pa+iε

]
. (3.32)

Since we are interested in the singular term proportional to ln ω, we can simplify the

analysis of the integral as follows. Since the expression is Lorentz covariant, we could

evaluate it in a special frame in which pa and pb have only third component of spatial

momenta. Let us denote by `⊥ = (`1, `2) the transverse component of `. Now since pa.`

and pb.` are both linear in `0 and `3, we can use pa.` and pb.` as independent variables

instead of `0 and `3. Then, if we ignore the poles of Gr(`), we see that we have one pole in

the pb.` plane and two poles on the same side of the real axis in the pa.` plane. Therefore
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we can deform the pa.` and pb.` integration contours away from the poles. However due to

the presence of the Gr(`) factor there are also poles at

(`0 + iε+ `3)(`0 + iε− `3) = `2⊥ . (3.33)

Therefore, for small but fixed `⊥, if we deform the (`0 + `3) contour to a distance of order

|`⊥| away from the origin, a pole will approach the origin within a distance of order | `⊥|
in the complex (`0 − `3) plane. The integration contour could then be pinched between

this pole and one of the poles of the (`.pa + iε)−1{(` − k).pa + iε}−1(`.pb − iε)−1 factor.

However it is clear that in the complex `0 and complex `3 plane, the integration contour

can be deformed so that the contour maintains a minimum distance of order |`⊥| from all

the poles, which themselves are situated within a distance of order |`⊥| of the origin. This

shows that while estimating the integrand to examine possible sources of singularity of the

integral, we can take all the components of ` to be of order `⊥ and need not worry about

the regions where one or more components are smaller than the others. Since for `µ ∼ `⊥
the integration measure gives a factor of |`⊥|4, we see that in order to get a logarithmic

correction, the integrand must be of order |`⊥|−4.
We now note that in both terms the integrand of (3.32) grow as |`⊥|−3 for |`µ| ∼

|`⊥| � ω and therefore there are no logarithmic corrections from this region. For |rµb −
rµa |−1 ∼ L−1 � |`µ| � ω we can replace (k − `).pa by −`.pa, and drop the e−i`.(rb−ra)

factor. In this case the integrand is of order |`⊥|−4 and the integral could have logarithmic

contributions. To compute this, we note that in this region of integration the integral may

be approximated as

∆T̂Xµν(k) ' −8πG
∑
a

∑
b 6=a

∫
d4`

(2π)4
1

`.pb − iε
Gr(`) e

−ik.ra

[(
2 pa.pb k.pb pa.`− k.` (pa.pb)

2 − p2b pa.k pa.`+
1

2
k.` p2a p

2
b

)
pνa p

µ
a

1

(`.pa + iε)2
1

k.pa − iε

−
{

2 pa.pb `.pa

(
pνap

µ
b + pµap

ν
b

)
− (pa.pb)

2
(
`µpνa + `νpµa

)
− 2 p2b `.pa p

µ
a p

ν
a

+
1

2
p2a p

2
b

(
`µpνa + `νpµa

)}
× 1

(`.pa + iε)2

]
. (3.34)

It will be understood that in this integral the integration over ~̀⊥ is restricted to the region

L−1 � |~̀⊥| � ω. Since for fixed ~̀⊥, the integration over `0 and `3 are finite, we do not

need to impose separate cut-off on the `0 and `3 integrals. All the terms in (3.34) can be

expressed in terms of the basic integral∫
d4`

(2π)4
1

`.pb − iε
Gr(`)

1

(`.pa + iε)2
`α = − ∂

∂pαa
Jab , (3.35)

where

Jab =

∫
d4`

(2π)4
1

`.pb − iε
Gr(`)

1

`.pa + iε
. (3.36)
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It has been shown in appendix B that Jab vanishes when a represents an incoming particle

and b represents an outgoing particle or vice versa. On the other hand when a and b are

both ingoing particles or both outgoing particles, we have, from (B.6),

Jab =
1

4π
ln{L(ω + iεηa)}

1√
(pa.pb)2 − p2ap2b

, (3.37)

where ηa is a number that takes value 1 for outgoing particles (1 ≤ a ≤ n) and −1 for

incoming particles (n+ 1 ≤ a ≤ m+ n).5 Using (3.37) we can express (3.35) as∫
d4`

(2π)4
1

`.pb−iε
Gr(`)

1

(`.pa+iε)2
`α =− 1

4π
ln{L(ω+iεηa)}

∂

∂pαa

1√
(pa.pb)2−p2ap2b

=− 1

4π
ln{L(ω+iεηa)}

p2b paα−pa.pb pbα
{(pa.pb)2−p2ap2b}3/2

. (3.38)

We now use this to evaluate the right hand side of (3.34). We can also replace eik.ra by 1

since the difference is higher order in the small ω limit. This gives

∆T̂Xµν(k) = 2G

m+n∑
a=1

∑
b 6=a

ηaηb=1

ln{L(ω + iεηa)}
{(pa.pb)2 − p2ap2b}3/2

[
k.pb
k.pa

pµap
ν
a pa.pb

{
3

2
p2ap

2
b − (pa.pb)

2

}

+
1

2
pµap

ν
a p

2
a (p2b)

2 − {pµapνb + pνap
µ
b } pa.pb

{
3

2
p2ap

2
b − (pa.pb)

2

}]
. (3.39)

The constraint ηaηb = 1 means that the sum over b runs over incoming particles if a

represents an incoming particle and runs over outgoing particles if a represents an outgoing

particle.

3.5 Subleading contribution from the gravitational stress tensor

Let us now turn to the computation of T hµν defined via (3.6). A detailed calculation shows

that to quadratic order in hµν , it has the form:

8πGT hµν =−2

[
1

2
∂µhαβ∂

νhαβ+hαβ∂µ∂νhαβ−hαβ∂ν∂βh µ
α −hαβ∂µ∂βh ν

α +hαβ∂α∂βh
µν

+∂βhνα∂βh
µ
α −∂βhαν∂αh

µ
β

]
+hµν∂ρ∂

ρh−2hµρ∂
σ∂σh

νρ−2hνρ∂
σ∂σh

µρ

+ηµν
[

3

2
∂ρhαβ∂ρh

αβ+2hαβ∂ρ∂ρhαβ−∂βhαρ∂αhβρ
]
+h

[
∂ρ∂ρh

µν− 1

2
∂ρ∂ρhη

µν

]
,

(3.40)

where we have used de Donder gauge condition to simplify the expression. To the order

that we shall be working, this is allowed due to the observation made below (3.21). This

expression differs from some of the more standard expressions given e.g. in [55], since

5This is opposite to the convention used in [18].
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pb pa

· · ·

k

` k − `

pb + ` pa + k − `

g g

Figure 3. A pictorial representation of (3.41). The internal thin lines marked by g represent the

retarded graviton propagators Gr(`) and Gr(k − `) respectively. The vertex where the three thin

lines meet is proportional to Fµν,αβ,ρσ, encoding the contribution to the stress tensor due to the

gravitational field, and the vertices where the internal gravitons meet the thick lines correspond

to the leading contribution to the trace reversed stress tensors of these particles, proportional to

pµap
ν
a − p2aηµν/2 and pµb p

ν
b − p2bηµν/2 respectively.

we have defined 8 πGT hµν as the collection of the quadratic terms in the expansion of

−
√
− det g (Rµν − gµνR/2). As already mentioned, all indices in (3.40) are raised and

lowered using the flat metric η.

We shall manipulate (3.40) by expressing hαβ in the momentum space as given in (3.19).

This gives a general expression of the form:

T̂ hµν(k) = −8πG
∑
a,b

e−ik.ra
∫

d4`

(2π)4
ei`.(ra−rb) Gr(k − `)Gr(`)

1

pb.`− iε
1

pa.(k − `)− iε

×
{
pbαpbβ −

1

2
p2bηαβ

}
Fµν,αβ,ρσ(k, `)

{
paρpaσ −

1

2
p2aηρσ

}
, (3.41)

where,

Fµν,αβ,ρσ(k,`)

= 2

[
1

2
`µ(k−`)νηραησβ+(k−`)µ(k−`)νηραησβ−(k−`)ν(k−`)βηραησµ

−(k−`)µ(k−`)βηραησν+(k−`)α(k−`)βηρµησν+(k−`).`ηβνηαρησµ

−`ρ(k−`)αηβνησµ− 1

2
(k−`)2ηαµηβνηρσ +ηαµηβρηνσ(k−`)2 + ηανηβρηµσ(k−`)2

]
−ηµν

[
3

2
(k−`).`ηραησβ+2(k−`)2ηραησβ−`σ(k−`)αηρβ

]
−ηαβ(k−`)2ηρµησν+

1

2
ηαβ(k−`)2ηρσηµν . (3.42)

In the `µ → 0 limit the integrand diverges as |`µ|−4 and therefore the integral has logarith-

mic infrared divergence. As discussed below (2.4), the lower cut-off on the `µ integral in this

case is provided by R−1 where R is the distance to the detector (measured in flat metric).

Formally, this can be achieved by adding to k0 = ω a small imaginary part proportional

to R−1. A diagrammatic representation of (3.41) has been shown in figure 3.
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Now in (3.41) the Gr(`)Gr(k − `) factor takes the form:

Gr(`)Gr(k − `) =
1

(`0 + iε)2 − ~̀2
1

(k0 − `0 + iε)2 − (~k − ~̀)2
. (3.43)

As a result the poles of the two denominators in the `0 plane are on the opposite sides of

the integration contour lying along the real axis. We shall express this as:

Gr(`)
∗Gr(k − `)− 2 i π δ(`2)

{
H(`0)−H(−`0)

}
Gr(k − `) , (3.44)

where H is the Heaviside step function. In this case in the first term the poles in both

factors are in the upper half `0 plane. This allows us to deform the `0 contour away

from these poles till we hit the zeros of the other denominators. In particular, following

the argument given in the paragraph containing (3.33), one can argue that for |`⊥| > ω,

we can deform the contours such that it maintains a distance of order `⊥ from all the

poles. We shall show in appendix C that the contribution from the terms proportional

to δ(`2) in (3.44) represents the contribution to T̂µν from the gravitational radiation (real

gravitons) emitted during the scattering. Since this contribution has already been included

by including the radiation contribution in the sum over a, we shall not discuss them any

further in this section.

We shall now analyze possible logarithmic contribution to (3.41) with Gr(`) replaced

by Gr(`)
∗. These can arise from three regions: R−1 � |kµ − `µ| � ω, R−1 � |`µ| � ω

and L−1 � |`µ| � ω. Since each term in (3.42) has at least one power of (k − `), one

finds by simple power counting that there is no logarithmic contribution from the region

R−1 � |kµ − `µ| � ω. For R−1 � |`µ| � ω the integrand has four powers of ` in

the denominator and could give logarithmic contribution. In this region we can replace

the integrand by its leading term in the ` → 0 limit. In particular Fµναβ;ρσ(k, `) may be

approximated as

Fµναβ;ρσ(k, `) ' 2 kµ kν ηαρ ηβσ − 2 kν kβ ηρα δ
µ
σ − 2 kµ kβ ηρα δ

ν
σ + 2kα kβ δ

µ
ρ δ

ν
σ , (3.45)

where we have used kρkρ = 0. A further simplification is possible by noting that eventually

we shall use the T̂ hµν(k) computed from (3.41) to calculate its contribution to sublead-

ing correction to asymptotic ẽµν via (3.7). Since ẽµν is determined only up to a gauge

transformation

ẽµν → ẽµν + kµξν + kνξµ − k.ξ ηµν , (3.46)

for any vector ξ, addition of a similar term to T̂ hµν and hence to Fµναβ;ρσ(k, `) will not have

any effect of ẽµν . Using this we can simplify (3.45) to:

Fµναβ;ρσ(k, `) ' −2 kσ kβ ηρα η
µν + 2 kα kβ δ

µ
ρ δ

ν
σ . (3.47)

We can also make the approximations:

1

pa.(k − `)− iε
' 1

pa.k − iε
, Gr(`)

∗ =
1

(`0 − iε)2 − ~̀2
,

Gr(k − `) =
1

(k0 − `0 + iε)2 − (~k − ~̀)2
' 1

2(k.`+ iεω)
' 1

2(k.`+ iε)
. (3.48)
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Substituting these into (3.41), we get the logarithmic contribution from the R−1 � |`µ| � ω

region, denoted by T̂ (1)µν(k):

T̂ (1)µν(k) = 8πG
m+n∑
a,b=1

1

pa.k − iε

∫
d4`

(2π)4
1

k.`+ iε

1

pb.`− iε
1

(`0 − iε)2 − ~̀2{
pa.pb k.pa k.pb η

µν − 1

2
p2b (k.pa)

2 ηµν − (k.pb)
2 pµa p

ν
a

}
. (3.49)

This integral, called K ′b in (B.10), has been evaluated in (B.11), and gives:∫
d4`

(2π)4
1

k.`+ iε

1

pb.`− iε
1

(`0 − iε)2 − ~̀2
=

1

4π
δηb,1 ln{(ω + iε)R} 1

k.pb
. (3.50)

Using this, we get:

T̂ (1)µν(k) = 2G ln{(ω + iε)R}
m+n∑
a=1

n∑
b=1

1

pa.k − iε
1

pb.k − iε{
pa.pb k.pa k.pb η

µν − 1

2
p2b (k.pa)

2 ηµν − (k.pb)
2 pµa p

ν
a

}
. (3.51)

The terms proportional to pa.k pb.k and (k.pa)
2 inside the curly bracket cancel the denom-

inator factor of k.pa, and the result vanishes by momentum conservation after summing

over a. Therefore we have

T̂ (1)µν(k) = −2G ln{(ω + iε)R}
m+n∑
a=1

n∑
b=1

pb.k

pa.k − iε
pµap

ν
a . (3.52)

Next we turn to the contribution from the region L−1 � |`µ| � ω. Simple power

counting shows that the integrand goes as |`|−4 in this region. Therefore, in order to

extract the logarithmic term, we need to keep only the leading term in the integrand for

large `µ. In particular, in the expression for Fµν,αβ,ρσ(k, `), we need to keep only quadratic

terms in `. Therefore we need to evaluate the integral:

Iαβab ≡
∫

d4`

(2π)4
ei`.(ra−rb) Gr(k − `)Gr(`)∗

1

pb.`− iε
1

pa.(`− k) + iε
`α `β . (3.53)

Using L−1 � |`µ| � ω, we can further approximate (3.53) by

Iαβab '
∫

d4`

(2π)4
1

{(`0 − iε)2 − ~̀2}2
1

pb.`− iε
1

pa.`+ iε
`α`β

=
1

2

∫
d4`

(2π)4
∂

∂`α

{
1

(`0 − iε)2 − ~̀2

}
1

pb.`− iε
1

pa.`+ iε
`β

= −1

2

∫
d4`

(2π)4
1

(`0 − iε)2 − ~̀2
1

pb.`− iε
1

pa.`+ iε

{
ηαβ − pαa `

β

pa.`+ iε
−

pαb `
β

pb.`− iε

}
= −1

2

{
ηαβ + pαa

∂

paβ
+ pαb

∂

∂pbβ

}∫
d4`

(2π)4
1

(`0 − iε)2 − ~̀2
1

pa.`+ iε

1

pb.`− iε
. (3.54)
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In the third step we have carried out an integration by parts.6 We can now evaluate the

integral using the result for Jab given in (B.1). The result vanishes when a represents an

ingoing particle and b represents an outgoing particle or vice versa. When both particles

are ingoing or both particles are outgoing, the result is given in (B.6). This gives

Iαβab ' −
1

8π
ln{L (ω + iεηa)}

{
ηαβ + pαa

∂

paβ
+ pαb

∂

∂pbβ

}
1√

(pa.pb)2 − p2ap2b

= − 1

8π
ln{L (ω + iεηa)}

1{
(pa.pb)2 − p2ap2b

}3/2
×
[
ηαβ{(pa.pb)2 − p2ap2b}+ p2a p

α
b p

β
b + p2b p

α
a p

β
a − pa.pb (pαa p

β
b + pβa p

α
b )
]
. (3.55)

Note that the result diverges for a = b. This can be traced to the fact that if we replace

the pa.(`− k) + iε factor in the denominator of (3.53) by pa.`+ iε from the beginning, then

for b = a the contour is pinched by the poles from both sides with separation of order ε, and

we shall get a divergence in the ε→ 0 limit. This shows that for a = b we have to be more

careful in evaluating the integral. We proceed by working with (3.53) without making any

approximation at the beginning. If we work in the rest frame of pa, then we can evaluate

the `0 integral by closing the contour in the lower half plane, picking the residue at `0 = 0

for outgoing pa = pb and at `0 = k0 for incoming pa = pb. Let us for definiteness consider

the case where the particle is outgoing, so that we pick up the residue from the pole at

`0 = 0. This reduces the integral to

Iαβaa = −2π i
1

p0a

1

pa.k − iε

∫
d3`

(2π)4
1

~̀2

1

~̀2 − 2~k.~̀− iε
`α `β . (3.56)

Since this is potentially linearly divergent from the region of large |~̀|, we expand the

integrand in power series expansion in inverse powers of `, keeping up to the first sublead-

ing term:

Iαβaa ' −2π i
1

p0a

1

pa.k − iε

∫
d3`

(2π)4
1

~̀2

[
1

~̀2
+

2~k.~̀

(~̀2)2

]
`α `β . (3.57)

The leading linearly divergent term, where we pick the `α`β term from the numerator,

represents the usual infinite self energy of a classical point particle, and is regulated by the

intrinsic size of the particle. In any case, this does not lead to any logarithmic terms. The

potentially logarithmically divergent subleading contribution actually vanishes by ~̀→ −~̀
symmetry since it has to be evaluated at `0 = 0. Therefore we conclude that Iαβaa does not

have any logarithmic correction. A similar analysis can be carried out for the incoming

particles, leading to the same conclusion.

6This can be justified as follows. First, following arguments similar to the one given below (3.32), we

can consider the integration region to be ω � |`⊥| � L−1, without any restriction on `0 and `3. Integration

by parts will then give boundary contributions from |`⊥| = ω and |`⊥| = L−1. These involve angular

integration and do not generate any logarithmic terms.
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Substituting (3.55) into (3.41) for a 6= b, we get the logarithmic contribution to T̂ hµν(k)

from the region ω � |`µ| � L−1, which we shall denote by T̂ (2)µν(k):

T̂ (2)µν(k) = G

m+n∑
a=1

ln{L(ω + iεηa)}
m+n∑
b=1

b 6=a,ηaηb=1

1

{(pa.pb)2 − p2ap2b}3/2

×

[
− pµb p

ν
b (p2a)

2 (p2b) + {pµapνb + pνap
µ
b } pa.pb

{
3

2
p2ap

2
b − (pa.pb)

2

}]
. (3.58)

3.6 Gravitational wave-form at early and late time

Adding (3.17), (3.39), (3.52) and (3.58) we get the net logarithmic contribution to T̂µν(k)

to the subleading order in the small ω expansion:7

T̂µν(k)

=

n∑
a=1

pµa p
ν
a

1

i(k.pa−iε)
−

m∑
a=1

p′µa p
′ν
a

1

i(k.p′a+iε)

+2G ln{L(ω+iε)}
n∑
a=1

n∑
b=1
b 6=a

pa.pb
{(pa.pb)2−p2ap2b}3/2

{
3

2
p2ap

2
b−(pa.pb)

2

}
kρp

µ
a

k.pa
(pρbp

ν
a−pνbpρa)

+2G ln{L(ω−iε)}
m∑
a=1

m∑
b=1
b 6=a

p′a.p
′
b

{(p′a.p′b)2−p′2a p′2b }3/2

{
3

2
p′2a p

′2
b −(p′a.p

′
b)

2

}
kρp
′µ
a

k.p′a
(p′ρb p

′ν
a −p′νb p′ρa )

−2G ln{(ω+iε)R}
n∑
b=1

pb.k

[
n∑
a=1

1

pa.k−iε
pµap

ν
a−

m∑
a=1

1

p′a.k−iε
p′µa p

′ν
a

]
. (3.59)

In (3.59) we can replace k by ω n with n = (1, n̂). Comparing the second and last line

of (3.59) we see that the term proportional to lnR exponentiates to a multiplicative factor of

exp

[
−2 i ω G lnR

n∑
b=1

pb.n

]
. (3.60)

Using (3.7), (2.5) and (2.6) we get the late and early time behaviour of the gravitational

wave-form:

Late time : eµν(t,R, n̂) =
2G

R

[
−

n∑
a=1

pµa p
ν
a

1

n.pa
+

m∑
a=1

p′µa p
′ν
a

1

n.p′a

]

− 4G2

Ru

 n∑
a=1

n∑
b=1
b 6=a

pa.pb
{(pa.pb)2−p2ap2b}3/2

{
3

2
p2ap

2
b−(pa.pb)

2

}
nρp

µ
a

n.pa
(pρbp

ν
a−pνbpρa)

−
n∑
b=1

pb.n

{
n∑
a=1

1

pa.n
pµap

ν
a−

m∑
a=1

1

p′a.n
p′µa p

′ν
a

}]
, as u→∞ ,

7The quantum computation of [18] gave rise to additional terms in the soft factor, but they do not seem

to play any role in the classical gravitational wave-form found here.
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Early time : eµν(t,R, n̂) =
4G2

Ru

[
m∑
a=1

m∑
b=1
b 6=a

p′a.p
′
b

{(p′a.p′b)2−p′2a p′2b }3/2

{
3

2
p′2a p

′2
b −(p′a.p

′
b)

2

}

×nρp
′µ
a

n.p′a
(p′ρb p

′ν
a −p′νb p′ρa )

]
, as u→−∞ , (3.61)

where, from (A.12) and (3.7), (3.60),

u = t−R+ 2G lnR

n∑
b=1

pb.n . (3.62)

In (3.61) we have adjusted the overall additive constant in the expression for eµν such that

it vanishes in the far past.

4 Generalizations

In this section we shall derive the classical soft photon theorem. We shall also generalize

the soft graviton theorem to include the effect of electromagnetic interactions among the

incoming and the outgoing particles. In order to simplify our formulæ we shall drop the

regulator factors of ei`.(ra−rb), eik.ra etc., with the understanding that momentum integrals

have an upper cut-off L−1 and a lower cut-off R−1.

4.1 Soft photon theorem with electromagnetic interactions

As in section 3, we consider a scattering event in asymptotically flat space-time in which

m particles carrying masses {m′a; 1 ≤ a ≤ m}, four velocities {v′a}, four momenta {p′a =

m′a v
′
a} and charges {q′a} come close, undergo interactions, and disperse as n particles

carrying masses {ma; 1 ≤ a ≤ n}, four velocities {va}, four momenta {pa} and charges

{qa}. Our goal will be to compute the early and late time electromagnetic wave-form

emitted during this scattering event. In this section we shall proceed by ignoring the

gravitational interaction between the particles, but this will be included in section 4.2.

Since the analysis proceeds as in section 3, we shall be brief, pointing out only the main

differences. In particular, as in section 3, we can treat the incoming particles as outgoing

particles with four velocities {−v′a}, four momenta {−p′a} and charges {−q′a}. This allows

us to drop the sum over incoming particles by extending the sum over a from 1 to m+ n.

In the Lorentz gauge ηαβ∂αaβ = 0, the equations replacing (3.13) are:

jµ(x) =
∑
a

qa

∫
dσ δ(4)(x−Xa(σ))

dXµ
a

dσ
, � aµ = −jµ,

ma
d2Xµ

a

dσ2
= qaF

µ
ν(Xa(σ))

dXν
a

dσ
.

(4.1)

We introduce the Fourier transforms via:

aµ(x) =

∫
d4k

(2π)4
eik.x âµ(k), jµ(x) =

∫
d4k

(2π)4
eik.x ĵµ(k) . (4.2)
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This gives:

ĵµ(k) =

∫
d4x e−ik.x jµ(x) =

∑
a

qa

∫
dσ e−ik.X(σ) dX

µ
a

dσ
. (4.3)

The generalization of (3.7) for the asymptotic electromagnetic field is:

ãµ(ω,R, n̂) =
1

4πR
eiωR ĵµ(k) +O(R−2) . (4.4)

We proceed to find iterative solutions to (4.1) in a power series expansion in the

charges, beginning with the leading order solution for Xµ given in (3.11). Substituting this

into (4.3) we find the leading order expression for ĵµ(k):

ĵµ(k) =
m+n∑
a=1

qa p
µ
a

1

i(k.pa − iε)
. (4.5)

This is the leading soft factor. Using this we can get the analogs of (3.19) and (3.20):

a(b)µ (x) = −
∫

d4`

(2π)4
ei`.xGr(`)qb pbµ

1

i(`.pb − iε)
, (4.6)

F (b)
νρ (x) = ∂ν a

(b)
ρ − ∂ρ a(b)ν = −

∫
d4`

(2π)4
ei`.xGr(`)

qb
(`.pb − iε)

(`νpbρ − `ρpbν) , (4.7)

where a
(b)
µ and F

(b)
µν denote the gauge field and field strength produced by the b-th particle.

The analogs of (3.26), (3.27) take the form:

dY µ
a (σ)

dσ
= − qa

ma

∫ ∞
σ

dσ′ Fµν(va σ
′ + ra) v

ν
a , (4.8)

and

Y µ
a (σ) = − qa

ma

∫ σ

0
dσ′

∫ ∞
σ′

dσ′′ Fµν(va σ
′′ + ra) v

ν
a . (4.9)

Using these results we can proceed as in section 3.4 to compute the next order correction

∆ĵµ(k) to ĵµ(k). Since the analysis is identical to those in section 3.4 we only quote the

analog of (3.32):

∆ĵµ(k) =
m+n∑
a=1

m+n∑
b=1
b 6=a

q2aqb

∫
d4`

(2π)4
1

`.pb − iε
Gr(`)

×

[
kρ

1

(k − `).pa − iε
1

k.pa − iε
1

`.pa + iε
(`νpbρ − `ρpbν) pνa p

µ
a

− 1

(k − `).pa − iε
1

`.pa + iε
(`νp

µ
b − `

µpbν)pνa

]
. (4.10)
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This can be evaluated exactly as in section 3.4, leading to the final result analogous

to (3.39):

∆ĵµ(k) =
1

4π
ln(ω+iε)

n∑
a=1

n∑
b=1
b 6=a

q2aqb p
2
a p

2
b

1

{(pa.pb)2−p2ap2b}3/2
kρ

k.pa

{
pbρp

µ
a−paρp

µ
b

}
(4.11)

+
1

4π
ln(ω−iε)

m∑
a=1

m∑
b=1
b 6=a

q′2a q
′
b p
′2
a p
′2
b

1

{(p′a.p′b)2−p′2a p′2b }3/2
kρ

k.p′a

{
p′bρp

′µ
a −p′aρp

′µ
b

}
.

4.2 Gravitational contribution to the soft photon theorem

We shall now study the effect of gravitational interaction on the soft photon theorem. This

modifies the last two equations in (4.1) as follows. First of all the equation for aµ get

modified to:

∂ν

(√
− det ggνρgµσFρσ

)
= −jµ . (4.12)

Using Lorentz gauge condition ηρσ∂ρaσ = 0, this may be written as

ηµν ηρσ ∂ρ ∂σ aν = −jµ − jµh , (4.13)

where

jµh ≡ ∂ν
{
ηαβ hαβ η

νρηµσFρσ − 2 (hνρηµσ + ηνρhµσ)Fρσ

}
+ higher order terms . (4.14)

The equation for Xµ is modified to:

ma
d2Xµ

a

dσ2
= qaF

µ
ν(Xa(σ))

dXν
a

dσ
−ma Γµνρ(Xa(σ))

dXν
a

dσ

dXρ
a

dσ
. (4.15)

We shall now expand the above equations in powers of hαβ and then raise and lower

all indices by the flat metric η. We begin with the analysis of (4.15). To the order that

we are working, we can study the effect of the two terms on the right hand side of (4.15)

separately. The effect of the first term on ĵµ has already been analyzed in section 4.1. The

effect of the second term on T̂Xµν has been studied in section 3.4, but this can be easily

extended to ĵµ. The additional contribution to ĵµ is given by:

∆(1)ĵµ (k) = −8πG

m+n∑
a=1

m+n∑
b=1
b 6=a

qa

∫
d4`

(2π)4
Gr(`)

1

` · pb − iε−
{

2k · pb ` · pa pa · pb − k · ` (pa · pb)2 − 1
2

(
2k · pa ` · pa − k · ` p2a

)
p2b

}
pµa

[k · pa − iε] [(k − `) · pa − iε] [` · pa + iε]

+
2pµb ` · pa pa · pb − `

µ (pa · pb)2 − 1
2

(
2pµa ` · pa − `µ p2a

)
p2b

[(k − `) · pa − iε] [` · pa + iε]

. (4.16)
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This integral can be evaluated as in section 3.4 and yields the result:

∆(1)ĵµ (k) (4.17)

=− G log(ω+iε)
n∑
a=1

n∑
b=1
b 6=a

qa
kρ
k ·pa

pa ·pb{
(pa ·pb)2−p2ap2b

} 3
2

(
pµap

ρ
b−p

ρ
ap
µ
b

){
2(pa ·pb)2−3p2ap

2
b

}

−G log(ω−iε)
m∑
a=1

m∑
b=1
b 6=a

q′a
kρ
k ·p′a

p′a ·p′b{(
p′a ·p′b

)2−p′2a p′2b } 3
2

(
p′µa p

′ρ
b −p

′ρ
a p
′µ
b

){
2
(
p′a ·p′b

)2−3p′2a p
′2
b

}
.

We now turn to the evaluation of jµh given in (4.14). Using the expressions for hµν and

Fµν given in (3.19) and (4.7), we get:

ĵµh (k) = 8πG

m+n∑
a,b=1

qb

∫
d4`

(2π)4
Gr (`)Gr (k − `) 1

[` · pa − iε] [(k − `) · pb − iε]
Fµ (k, `) ,

(4.18)

where

Fµ ≡ pµb
{
p2a k.(k − `)− 2 pa.(k − `) pa.k

}
+ (kµ − `µ)

{
2 k.pa pa.pb − p2a k.pb

}
+ pµa {2 pa.(k − `) k.pb − 2 k.(k − `) pa.pb} . (4.19)

We shall analyze this by expressing Gr(`)Gr(k − `) as in (3.44). The term proportional

to δ(`2) can be analyzed as in appendix C, and one can show that in this case there is no

contribution from this term. This gives

ĵµh (k) = 8πG
m+n∑
a,b=1

qb

∫
d4`

(2π)4
Gr (`)∗Gr (k − `) 1

[` · pa − iε] [(k − `) · pb − iε]
Fµ (k, `) .

(4.20)

This integral could give logarithmic contributions from three regions: R−1 � |`µ| � ω,

R−1 � |kµ− `µ| � ω and ω � |`µ| � L−1. However, since Fν vanishes as k− `→ 0, there

is no logarithmic divergence from the R−1 � |kµ − `µ| � ω region. Furthermore, since

Fν does not have any quadratic term in `, this rules out logarithmic contribution from the

region ω � |`µ| � L−1. Therefore the only possible source of logarithmic divergence is the

region R−1 � |`µ| � ω. In this region,

Fν ' − 2

{
(k · pa)2 pνb − k · pa k · pb pνa

}
. (4.21)
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We have ignored the terms proportional to kν because such terms can be removed by

gauge transformation aµ → aµ + ∂µφ for appropriate function φ. We can now evaluate the

logarithmic contribution to the integral using the method described below (3.47), and the

result is

ĵµh (k) = − 2G ln(ω + iε)

n∑
a=1

k.pa

[
n∑
b=1

qb p
µ
b

1

k.pb
−

m∑
b=1

q′b p
′µ
b

1

k.p′b

]
, (4.22)

after using charge conservation
∑m+n

b=1 qb = 0.

4.3 Electromagnetic wave-form at early and late time

Adding (4.5), (4.11), (4.17) and (4.22), and using k = ω n and (4.4), (2.5), (2.6) we get

4πRaµ(t,R, n̂)'−
n∑
a=1

qa p
µ
a

1

n.pa
+

m∑
a=1

q′a p
′µ
a

1

n.p′a

+
1

u

[
− 1

4π

n∑
a=1

n∑
b=1
b 6=a

q2aqb p
2
a p

2
b

1

{(pa.pb)2−p2ap2b}3/2
nρ

n.pa

{
pbρp

µ
a−paρp

µ
b

}

+G
n∑
a=1

n∑
b=1
b 6=a

qa
nρ
n·pa

pa ·pb{
(pa ·pb)2−p2ap2b

} 3
2

(
pµap

ρ
b−p

ρ
ap
µ
b

){
2(pa ·pb)2−3p2ap

2
b

}

+2G

n∑
a=1

n.pa

{
n∑
b=1

qb p
µ
b

1

n.pb
−

m∑
b=1

q′b p
′µ
b

1

n.p′b

}]
, as u→∞ , (4.23)

and

4π Raµ(t, R, n̂) ' 1

u

[
1

4π

m∑
a=1

m∑
b=1
b 6=a

q′2a q
′
b p
′2
a p
′2
b

1

{(p′a.p′b)2 − p′2a p′2b }3/2
nρ

n.p′a

{
p′bρp

′µ
a − p′aρp

′µ
b

}

− G
m∑
a=1

m∑
b=1
b 6=a

q′a
nρ
n · p′a

p′a · p′b{(
p′a · p′b

)2 − p′2a p′2b } 3
2

(
p′µa p

′ρ
b − p

′ρ
a p
′µ
b

) {
2
(
p′a · p′b

)2 − 3p′2a p
′2
b

}]
,

as u→ −∞ . (4.24)

This gives the wave-form of the electromagnetic field at early and late time. The term on

the right hand side of the first line gives the constant shift in the vector potential, and is

responsible for electromagnetic memory [56–58]. The rest of the terms are tail terms.

4.4 Electromagnetic contribution to the soft graviton theorem

We shall now analyze the effect of electromagnetic interaction on the soft graviton theorem.

This affects our earlier analysis of soft graviton theorem in two ways. First of all, the

Lorentz force on the outgoing and incoming particles changes the particle trajectories,

producing an additional contribution to T̂Xµν . Analysis of this follows the same procedure
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that led to (3.32), (4.16), and the final result is given by:

∆(1)T̂µν(k) =

m+n∑
a=1

m+n∑
b=1
b 6=a

qaqb

∫
d4`

(2π)4
1

`.pb − iε
Gr(`)

[
1

(k − `).pa − iε
1

k.pa − iε
1

`.pa + iε
(pa.` k.pb − k.` pa.pb) pµapνa

− 1

(k − `).pa − iε
1

`.pa + iε
(pa.` p

µ
b − `

µ pa.pb) p
ν
a

− 1

(k − `).pa − iε
1

`.pa + iε
(pa.` p

ν
b − `ν pa.pb) pµa

]
. (4.25)

Evaluation of this using the method described below (3.32), gives

∆(1)T̂µν(k) =
1

4π
ln{L (ω + iε)}

n∑
a=1

n∑
b=1
b 6=a

qaqb
1

{(pa.pb)2 − p2ap2b}3/2

[
k.pb
k.pa

p2a p
2
b p

µ
a p

ν
a

+ p2b pa.pb p
µ
a p

ν
a − p2a p2b (pµap

ν
b + pνap

µ
b )

]

+
1

4π
ln{L (ω − iε)}

m∑
a=1

m∑
b=1
b 6=a

q′aq
′
b

1

{(p′a.p′b)2 − p′2a p′2b }3/2

[
k.p′b
k.p′a

p′2a p
′2
b p
′µ
a p
′ν
a

+ p′2b p
′
a.p
′
b p
′µ
a p
′ν
a − p′2a p′2b (p′µa p

′ν
b + p′νa p

′µ
b )

]
. (4.26)

Second, there is an additional contribution to the stress tensor due to the electromag-

netic field. Using the form of the electromagnetic field produced by the charged particle as

given in (4.7), this additional contribution takes the form:

∆(2)T̂µν(k) =

∫
d4x e−ik.x

[
ηµρ ηνσ ηαβ Fρα Fσβ −

1

4
ηµν ηρσ ηαβ Fρα Fσβ

]
+ higher order terms

'
m+n∑
a=1

m+n∑
b=1

qaqb

∫
d4`

(2π)4
1

`.pb − iε
1

(k − `).pa − iε
Gr(`)Gr(k − `)[

`µ(k − `)ν pa.pb − `µpνa pb.(k − `)− p
µ
b (k − `)ν `.pa + pµb p

ν
a `.(k − `)

− 1

2
ηµν {`.(k − `) pa.pb − `.pa (k − `).pb}

]
. (4.27)

We shall analyze this by expressing Gr(`)Gr(k− `) as in (3.44). The term proportional to

δ(`2) can be analyzed as in appendix C, and one can show that the contribution from this

term can be interpreted as the soft graviton emission from electromagnetic wave produced

during scattering. Since this is included in the sum over a in the soft factor, we do not need
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to include its contribution. This allows us to replace Gr(`) by Gr(`)
∗ in (4.27). Since each

term in the numerator of the integrand carries a factor of ` and a factor of (k − `), there

is no logarithmic contribution from the |`µ| � ω and |kµ − `µ| � ω regions. Therefore we

focus on the |`µ| � ω region, and analyze the contribution using (3.53), (3.55). The final

result is:

∆(2)T̂µν(k) = − 1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b 6=a

qaqb pa.pb
1

{(pa.pb)2 − p2ap2b}3/2
pµa(p2b p

ν
a − pa.pb pνb )

− 1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b 6=a

q′aq
′
b p
′
a.p
′
b

1

{(p′a.p′b)2 − p′2a p′2b }3/2
p′µa (p′2b p

′ν
a − p′a.p′b p′νb )

− 1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b 6=a

qaqb
1

{(pa.pb)2 − p2ap2b}1/2
pµb p

ν
a

− 1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b 6=a

q′aq
′
b

1

{(p′a.p′b)2 − p′2a p′2b }1/2
p′µb p

′ν
a . (4.28)

Adding (4.26) and (4.28) we get the net electromagnetic contribution to the soft graviton

theorem:

∆(1)T̂µν(k) + ∆(2)T̂µν(k)

=
1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b 6=a

qaqb
p2a p

2
b

{(pa.pb)2 − p2ap2b}3/2

[
k.pb
k.pa

pµa p
ν
a − pµapνb

]

+
1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b 6=a

q′aq
′
b

p′2a p
′2
b

{(p′a.p′b)2 − p′2a p′2b }3/2

[
k.p′b
k.p′a

p′µa p
′ν
a − p′µa p′νb

]
. (4.29)

From (3.7), (2.6), we can read out the additional contribution to the gravitational wave-

form at early and late retarded time due to electromagnetic interactions:

∆em e
µν → − G

2π Ru

n∑
a=1

n∑
b=1
b 6=a

qaqb
1

{(pa.pb)2 − p2ap2b}3/2

[
k.pb
k.pa

p2a p
2
b p

µ
a p

ν
a − p2a p2b pµapνb

]

as u→∞,

→ G

2π Ru

m∑
a=1

m∑
b=1
b 6=a

q′aq
′
b

1

{(p′a.p′b)2 − p′2a p′2b }3/2

[
k.p′b
k.p′a

p′2a p
′2
b p
′µ
a p
′ν
a − p′2a p′2b p′µa p′νb

]

as u→ −∞. (4.30)

5 New conjectures at the subsubleading order

Emboldened by the success of soft theorem in correctly predicting the tail of the gravi-

tational wave-form at the subleading order, we shall now propose new conjectures at the
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subsubleading order. It is known that in quantum gravity, the subsubleading soft factors

are not universal. Nevertheless there are some universal terms that we could utilize [8].

These are terms that are quadratic in the orbital angular momenta. Our goal will be

to make use of these universal terms to arrive at new conjectures on the late and early

time tail of gravitational radiation. The non-universal terms do not involve orbital angular

momenta and therefore do not have logarithmic divergences. Hence they will not affect

our analysis.

Using the relation between quantum soft factors and classical gravitational wave-forms

derived in [15], and ignoring the non-universal terms, we can write down the following form

of the gravitational wave-form to subsubleading order:8

ẽµν(ω, ~x) =
2G

R
eiωR exp

[
−2 iG ln{R(ω + iε)}

n∑
b=1

pb.k

]

×
m+n∑
a=1

[
−i p

µ
apνa
pa.k

− 1

pa.k
Jρ(νa pµ)a kρ +

i

2

1

pa.k
kρ kσ J

µρ
a Jνσa

]
, (5.1)

where k has been defined in (A.8) and Jρσa is the sum of the orbital and spin angular

momenta of the a-th external particle:

Jρσa = Xρ
a p

σ
a −Xσ

a p
ρ
a + Σρσ

a . (5.2)

The second term in the last line of (5.1) differs by a sign from the expressions used e.g.

in [15]. This can be traced to the fact that in [15] we treated the charges / momenta /

angular momenta carried by ingoing particles as positive and of the outgoing particles as

negative, whereas here we are following the opposite convention. Following (3.12), the spin

Σ′µνa for incoming particles are given by:

Σ′µνa = −Σµν
a+n for 1 ≤ a ≤ m. (5.3)

The phase factor exp [−2 iG ln{R(ω + iε)}
∑n

b=1 pb.k] in (5.1) is not determined by soft

theorem, but is determined by independent computation [33, 47, 59], and is consistent

with the term in the last line of (3.59). Due to the long range gravitational force between

the outgoing / incoming particles, Xρ
a has logarithmic corrections at late / early time [17],

leading to [18]

Xρ
a p

σ
a −Xσ

a p
ρ
a = −G

∑
b 6=a

ηaηb=1

ln |σa|
pb.pa

{(pb.pa)2 − p2ap2b}3/2
(pρbp

σ
a − pσb pρa)

{
2(pb.pa)

2 − 3p2ap
2
b

}
+ (rρap

σ
a − rσapρa) , (5.4)

where σa denotes the proper time of the a-th particle, and ra is the constant that appeared

in (3.23). The contribution proportional to ln |σa| arises from the correction term Ya
in (3.23). The conjecture of [17, 18] was that the ln |σa| factor should be replaced by

8A non-trivial test of this formula for the scattering of massless particles can be found in [34].
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lnω−1 in (5.1). After including the iε prescription described in this paper, this conjecture

translates to the rule that in (5.1), Jρσa should be replaced by:

Jρσa = G
∑
b 6=a

ηaηb=1

ln(ω + iεηa)
pb.pa

{(pb.pa)2 − p2ap2b}3/2
(pρbp

σ
a − pσb pρa)

{
2(pb.pa)

2 − 3p2ap
2
b

}
+ (rρap

σ
a − rσapρa) + Σρσ

a . (5.5)

We now substitute (5.5) into (5.1) and expand the expression in powers of ω, including

the exp [−2 iG ln{R(ω + iε)}
∑n

b=1 pb.k] term. Terms proportional to ln(ω± iε) reproduce

correctly (3.59). We shall focus on terms proportional to ω(lnω)2. In the ω space these

terms are subdominant compared to the order ω0 terms that we have left out from the

subleading terms in the gravitational wave-form. However after Fourier transformation,

polynomials in ω produce local terms in time, while terms involving ln ω produce tail

terms that survive at late and early retarded time. Therefore the corrections to (3.61)

at late and early time will be dominated by the terms proportional to ω(lnω)2 in the

expression for ẽµν . The order ω0 terms may have other observational signature, e.g. the

spin memory discussed in [60].

Expanding (5.1) in powers of ω, with Jρσa given by (5.5), we get the corrections pro-

portional to ω(lnω)2. These take the form:

∆subsubleading ẽ
µν = eiωR−2 iωG lnR

∑n
d=1 pd.n i

G3

R
ω[

4{ln(ω+iε)}2
n∑
b=1

pb.n
n∑
c=1

pc.n
m+n∑
a=1

pµapνa
pa.n

+4 ln(ω+iε)

n∑
c=1

pc.n

m+n∑
a=1

m+n∑
b=1

b 6=a,ηaηb=1

ln(ω+iεηa)
1

pa.n

pa.pb
{(pa.pb)2−p2ap2b}3/2

{2(pa.pb)
2−3p2ap

2
b}{n.pb pµa pνa−n.pa pµa pνb}

+

m+n∑
a=1

m+n∑
b=1

b 6=a,ηaηb=1

m+n∑
c=1

c 6=a,ηaηc=1

{ln(ω+iεηa)}2
1

pa.n

pa.pb
{(pa.pb)2−p2ap2b}3/2

{2(pa.pb)
2−3p2ap

2
b}

pa.pc

{(pa.pc)2−p2ap2c}3/2
{2(pa.pc)

2−3p2ap
2
c}

{n.pb pµa−n.pa p
µ
b }{n.pc p

ν
a−n.pa pνc}

]
. (5.6)

Using (2.7), (2.8), we now get,

∆subsubleading eµν →

{
u−2 ln |u|Fµν as u→∞
u−2 ln |u|Gµν as u→ −∞

, (5.7)
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where

Fµν = 2
G3

R

[
4

n∑
b=1

pb.n

n∑
c=1

pc.n

{
n∑
a=1

pµapνa
pa.n

−
m∑
a=1

p′µa p′νa
p′a.n

}

+4

n∑
c=1

pc.n

n∑
a=1

n∑
b=1
b 6=a

1

pa.n

pa.pb
{(pa.pb)2−p2ap2b}3/2

{2(pa.pb)
2−3p2ap

2
b}{n.pb pµa pνa−n.pa pµa pνb}

+2
n∑
c=1

pc.n
m∑
a=1

m∑
b=1
b 6=a

1

p′a.n

p′a.p
′
b

{(p′a.p′b)2−p′2a p′2b }3/2
{2(p′a.p

′
b)

2−3p′2a p
′2
b }{n.p′b p′µa p′νa −n.p′a p′µa p′νb }

+
n∑
a=1

n∑
b=1
b 6=a

n∑
c=1
c 6=a

1

pa.n

pa.pb
{(pa.pb)2−p2ap2b}3/2

{2(pa.pb)
2−3p2ap

2
b}

pa.pc

{(pa.pc)2−p2ap2c}3/2

{2(pa.pc)
2−3p2ap

2
c}{n.pb pµa−n.pa p

µ
b }{n.pc p

ν
a−n.pa pνc}

]
, (5.8)

and

Gµν = −2
G3

R

[
2

n∑
c=1

pc.n
m∑
a=1

m∑
b=1
b 6=a

1

p′a.n

p′a.p
′
b

{(p′a.p′b)2 − p′2a p′2b }3/2
{2(p′a.p

′
b)

2 − 3p′2a p
′2
b }

{n.p′b p′µa p′νa − n.p′a p′µa p′νb }

−
m∑
a=1

m∑
b=1
b 6=a

m∑
c=1
c 6=a

1

p′a.n

p′a.p
′
b

{(p′a.p′b)2 − p′2a p′2b }3/2
{2(p′a.p

′
b)

2 − 3p′2a p
′2
b }

p′a.p
′
c

{(p′a.p′c)2 − p′2a p′2c }3/2

{2(p′a.p
′
c)

2 − 3p′2a p
′2
c }{n.p′b p′µa − n.p′a p

′µ
b } {n.p

′
c p
′ν
a − n.p′a p′νc }

]
. (5.9)

One can check that in case of binary black hole merger, regarded as a process in which a sin-

gle massive object decays into a massive object and many massless particles (gravitational

waves), Fµν and Gµν vanish.

One could attempt to prove these results following the same procedure employed in

this paper. For this we need to iteratively solve the equations of motion to one order

higher than what has been done in this paper. Terms of order ω lnω would also receive

contributions from the expansion of the factors of eik.ra in various expressions in this paper,

e.g. in (3.32), to first order in k, and will therefore depend on the additional data {ra}.
However the ω(lnω)2 terms given in (5.6) do not suffer from any such ambiguity.

It may be possible to find higher order generalization of these results using the expo-

nentiated soft factor discussed in [45, 61].

6 Numerical estimate

Before concluding the paper, we shall give estimates of the coefficient of the 1/u term

in (1.4) in some actual physical processes.

1. Hypervelocity stars: When a binary star system comes close to the supermassive

black hole at the center of the milky way, often one of them gets captured by the
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black hole and the other escapes with a high velocity, producing a hypervelocity

star [62]. This can be taken as a two body decay of a single bound object. Using the

mass of the central black hole to be of order 105M�, the mass of the hypervelocity

star to be of order M�, its velocity to be of order 3 × 10−3c, and the distance of

the earth from the galactic center to be of order 25000 light-years, one can estimate

the coefficient of the 1/u term in (1.4) to be of order 10−22 days. The minimum

value of u needed for (1.4) to hold — namely when the kinetic energy dominates

the gravitational potential energy [19] — in this case is about a day. This gives a

strain of order 10−22, which is at the edge of the detection sensitivity of the future

space-based gravitational wave detectors.

2. Core collapse supernova: This case was already discussed in [19]. During this process

the residual neutron star often gets a high velocity kick which could be of the order of

1000 km/sec, balanced by ejected matter in opposite direction at a speed up to 5000

km/sec. [63]. Taking the neutron star to have a mass of order M� and the supernova

to be in our galaxy so that its distance from the earth is of the order of 105 light

years, the coefficient of the 1/u term was computed to be of order 10−22 sec. The

minimum value of u for which the asymptotic formula holds was found to be of order

1 sec. Therefore the strain at this time will be of order 10−22, which is at the edge

of the detection limit of the current gravitational wave detectors.

3. Binary black hole merger: As already pointed out, for binary black hole merger,

the coefficient of the 1/u term vanishes due to cancellation between various terms.

However the individual terms in (1.4) have the same order of magnitude as the

memory effect when the asymptotic formula can be trusted, which is of the order of

the light crossing time of the horizon. Therefore the observation of the memory effect

without observation of the 1/u tail is a prediction of general theory of relativity that

can be tested in future gravitational wave experiments.

4. Bullet cluster: The bullet cluster [64] consists of a pair of galaxy clusters, each with

mass of about 1014M� [65], passing through each other at a speed of about 10−2 c.

The system is situated at a distance of about 4×109 light-years from the earth. Using

this data we get the coefficient of the 1/u term in (1.4) to be of the order of 10−6

year. The retarded time u for this system, — the time that has elapsed since the

centers of the two clusters passed each other, — is about 1.5× 108 years. This gives

the current value of the strain produced by the bullet cluster in our neighborhood

to be about 10−14. While this is much larger than the sensitivity of the current

gravitational wave detectors, what the latter detect is not the strain but the change

in the strain — more precisely its second u derivative that enters the expression for

the Riemann tensor. For the bullet cluster this is too small an effect to be observed

by the conventional gravitational wave detectors.
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A Derivation of some useful mathematical results

In this appendix we give the derivation of the results described in section 2.

A.1 Radiative field at large distance

Let us consider a differential equation of the form:

�F (x) = −j(x), � ≡ ηαβ ∂α ∂β , (A.1)

where j(x) is some given function. The retarded solution to this equation is given by

F (x) = −
∫
d4y Gr(x, y) j(y) , (A.2)

where Gr(x, y) is the retarded Green’s function:

Gr(x, y) =

∫
d4`

(2π)4
ei`.(x−y)

1

(`0 + iε)2 − ~̀2
. (A.3)

Using (2.1) we get

F̃ (ω, ~x) = −
∫
d4y j(y)

∫
d3`

(2π)3
eiωy

0+i~̀.(~x−~y) 1

(ω + iε)2 − ~̀2
. (A.4)

For large |~x|, we can evaluate this integral using a saddle point approximation as follows [15].

Defining ~̀‖ and ~̀⊥ as components of ~̀ along ~x − ~y and transverse to ~x − ~y respectively,

we get

F̃ (ω, ~x) = −
∫
d4y j(y)

∫
d2`⊥
(2π)2

d`‖

2π
eiωy

0+i`‖ |~x−~y| 1

(ω + iε)2 − `2‖ − ~̀
2
⊥
. (A.5)

First consider the case ω > 0. We now close the `‖ integration contour in the upper half

plane, picking up residue at the pole at
√

(ω + iε)2 − ~̀2⊥. This gives

F̃ (ω, ~x) = i

∫
d4y j(y)

∫
d2`⊥
(2π)2

e
iωy0+i |~x−~y|

√
(ω+iε)2−~̀2⊥ 1

2
√

(ω + iε)2 − ~̀2⊥
. (A.6)

For large |~x−~y| the exponent is a rapidly varying function of ~̀⊥ and therefore we can carry

out the integration over ~̀⊥ using saddle point approximation. The saddle point is located
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at ~̀⊥ = 0. Expanding the exponent to order ~̀2⊥ and carrying out gaussian integration over
~̀⊥ we get:

F̃ (ω,~x) = i

∫
d4y j(y)eiωy

0+i (ω+iε) |~x−~y| ω+ iε

2π i |~x−~y|
1

2(ω+ iε)
' 1

4πR
eiωR

∫
d4y e−ik.y j(y) ,

(A.7)

where we have made the approximation |~x| � |~y|, and,

k ≡ ω(1, n̂), n̂ ≡ ~x/|~x|, R ≡ |~x| . (A.8)

A similar analysis can be carried out for ω < 0, leading to the same final expression.

Using (2.1), eq. (A.7) may be written as

F̃ (ω, ~x) ' 1

4πR
eiωR ĵ(k) . (A.9)

This is a known formula (see e.g. [36]), but the derivation given above also gives its

limitations. In arriving at the right hand side of (A.7) we used the approximation |~x| � |~y|.
Therefore in the integration over ~y there is a natural infrared cut-off given by |~x| = R. If

the y integral is convergent then there is no need of such a cut-off, but in case the y

integral diverges from the large y region, we need to explicitly impose the cut-off. We can

implement the cut-off by putting a cut-off on y0, since typically the source j(y) will have

support inside the light-cone |~y| ≤ |y0| for large y. For example, for positive y0 we can

implement the infrared cut-off by adding to k0 an imaginary part iΛR−1 for some fixed

number Λ. In that case for y0 � R/Λ this additional factor has no effect on (A.7), but for

y0 � R/Λ there is an exponential suppression factor that cuts off the integration over y.

For negative y0 the corresponding modification of k corresponds to adding an imaginary

part −iΛR−1 to k0.

A.2 Late and early time behaviour from Fourier transformation

In our analysis we shall encounter functions F̃ (ω, ~x) that are non-analytic as ω → 0, —

having singularities either of the form 1/ω or of the form lnω. On general grounds we expect

these singular small ω behaviour to be related to the behaviour of F (t, ~x) as t→ ±∞. We

shall now determine the precise correspondence between the small ω behaviour of F̃ (ω, ~x)

and large |t| behaviour of F (t, ~x). Since the analysis will be carried out at fixed ~x, we shall

not display the ~x dependence of various quantities in subsequent discussions.

First we shall consider singularities of the form 1/ω for small ω. For this consider a

function of the form:

F̃ (ω) = C eiωφ
1

ω
f(ω) . (A.10)

Here C and φ are constants that could depend on ~x. f(ω) is a function of ω that is smooth

at ω = 0 with f(0) = 1 and falls off sufficiently fast as ω → ∞ so as to make the Fourier

integral over ω well defined. Our final result will not depend on f(ω), but for definiteness

we shall choose

f(ω) =
1

ω2 + 1
. (A.11)
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This gives

F (t) =

∫
dω

2π
e−iωtF̃ (ω) = C

∫
dω

2π
e−iωu

1

ω
f(ω), u ≡ t− φ . (A.12)

In order to define the integral around ω = 0, we need to choose an appropriate iε prescrip-

tion. However since 1/(ω+ iε) and 1/(ω− iε) differ by a term proportional to δ(ω), whose

Fourier transform is a u independent constant, the difference will not be of interest to us.

For definiteness, we shall work with 1/(ω + iε). Then we have

F (t) = C
1

2π

∫
dω e−iωu

1

ω + iε
f(ω) = −i C H(u) +O(e−u) , (A.13)

where H is the Heaviside step function. This result is obtained by closing the contour in

the lower (upper) half plane for positive (negative) u, and picking up the residues at the

poles. The order e−u contribution comes from the residues at the poles of f(ω). The step

function H(u) gives a jump in eµν between u → −∞ and u → ∞, leading to the memory

effect [22–25].

Let us now turn to the Fourier transform of the logarithmic terms. We consider

functions of the form:

F̃ (ω) = C eiωφ lnω f(ω) . (A.14)

Again we need to consider the different iε prescriptions, and this time the difference between

the two choices is not trivial. Therefore we consider9

F±(t) = C

∫
dω

2π
e−iωt eiωφ ln(ω ± iε) f(ω) = C

∫
dω

2π
e−iωu ln(ω ± iε) f(ω) . (A.15)

For u > 0 we can close the contour in the lower half plane. In this case F− gets contribution

only from the poles of f(ω) and therefore is suppressed by factors of e−u. Similarly for

u < 0, F+ is suppressed by powers of e−u. Furthermore, using ln(ω + iε) = ln(ω − iε) +

2π iH(−ω), we have

F+ − F− = i C

∫ 0

−∞
dω e−iωuf(ω) ' −C

u
, for u→ ±∞ . (A.16)

Using these results we get

F+ ≡ C
∫
dω

2π
e−iωu ln(ω + iε) f(ω)→

−
C

u
for u→∞,

0 for u→ −∞,

F− ≡ C
∫
dω

2π
e−iωu ln(ω − iε) f(ω)→

0 for u→∞,
C

u
for u→ −∞.

(A.17)

9If F (t) is real, we must have from (2.1) F̂ (ω) = F̂ (−ω)∗. Now since ln(−ω + iε)∗ = ln(−ω − iε) =

ln(ω + iε)− iπ, we see that ln(ω + iε) is not a good candidate for F̃ (ω). This can be rectified by averaging

over ln(ω+ iε) and ln(−ω− iε). However since the two differ by a constant, whose Fourier transform, being

proportional to δ(u), does not affect the behavior at large |u|, we shall ignore this complication. A similar

remark holds for ln(ω − iε).

– 34 –



J
H
E
P
0
6
(
2
0
2
0
)
1
5
3

Next we shall consider the integrals:

G± ≡ C
∫
dω

2π
e−iωu ω {ln(ω ± iε)}2 f(ω) . (A.18)

As before, G+ vanishes for large negative u and G− vanishes for large positive u up to

exponentially suppressed corrections. Furthermore we have

G+ −G− = 4π iC

∫ 0

−∞

dω

2π
e−iωu ω {ln(ω − iε) + iπ} f(ω)

= −4π C
d

du

∫ 0

−∞

dω

2π
e−iωu {ln(ω − iε) + iπ} f(ω) . (A.19)

Changing integration variable to v = ω u we can express this as

G+ −G− = −2C
d

du

[
u−1

∫ 0

−∞×signu
dv e−iv {ln(v − iε)− lnu+ iπ} f(v/u)

]
= −2C

d

du

[
−i u−1 lnu+O(u−1)

]
= −2 i C u−2 ln |u|+O(u−2) . (A.20)

This gives

G+ ≡ C
∫
dω

2π
e−iωu ω{ln(ω + iε)}2 f(ω)→

− 2 i C u−2 ln |u| for u→∞,

0 for u→ −∞,

G− ≡ C
∫
dω

2π
e−iωu ω{ln(ω − iε)}2 f(ω)→

0 for u→∞,

2 i C u−2 ln |u| for u→ −∞ ,
(A.21)

up to corrections of order u−2.

Finally we consider the integral:

H ≡ C
∫
dω

2π
e−iωu ω ln(ω + iε) ln(ω − iε) f(ω) . (A.22)

For evaluating this we use the result:

G+ +G− − 2H = C

∫
dω

2π
e−iωu ω {ln(ω + iε)− ln(ω − iε)}2 f(ω)

= − 2π C

∫ 0

−∞
dω e−iωu ω f(ω) = O(u−2) . (A.23)

Using (2.7) we now get:

H ≡C
∫
dω

2π
e−iωuω ln(ω+iε) ln(ω−iε)f(ω)→

− iC u
−2 ln |u| for u→∞ ,

iC u−2 ln |u| for u→−∞ .
(A.24)
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B Evaluation of some integrals

In this appendix we shall review the evaluation of several integrals following [18].

We begin with the integral

Jab =

∫
d4`

(2π)4
1

`.pb− iε
Gr(`)

1

(`−k).pa+ iε
'
∫

d4`

(2π)4
1

`.pb− iε
1

(`0+ iε)2− ~̀2
1

`.pa+ iε
,

(B.1)

with the understanding that the integration over ` is restricted to the region L−1 � |~̀⊥| �
ω. Simple power counting, together with the contour deformation arguments given in the

paragraph containing (3.33), then shows that the logarithmic contribution can come only

from the region |`µ| ∼ |`⊥| for all µ. However, since the `0 and `3 integrals converge for

fixed `⊥, we shall take the range of these integrals to be unrestricted.

First consider the case where a represents an incoming particle and b represents an

outgoing particle. In this case p0a = −p′0a−n < 0 and p0b > 0. In the `0 plane the poles of

Gr(`) are in the lower half plane, and the zeroes of `.pa + iε and `.pb − iε are also in the

lower half plane. Therefore we can close the `0 integration contour in the upper half plane

and the integral vanishes.

If a represents an outgoing particle and b represents an incoming particle, then the

zeroes of `.pa + iε and `.pb − iε are in the upper half plane. Therefore the `0 integral does

not vanish automatically. We can evaluate this by choosing a special frame in which pa
and −pb both carry spatial momenta along the third direction, with velocities βa and βb
respectively. Then the integral takes the form:∫

d4`

(2π)4
1

p0a p
0
b

1

`0 − βa`3 − iε1
1

`0 − βb `3 − iε2
1

(`0 + iε)2 − ~̀2
(B.2)

= i

∫
d3`

(2π)3
1

p0a p
0
b

1

(βa − βb)`3 + i(ε1 − ε2)

[
− 1

(1− β2a)(`3)2 + ~̀2
⊥

+
1

(1− β2b )(`3)2 + ~̀2
⊥

]
,

where `⊥ ≡ (`1, `2). In the second step we have evaluated the `0 integral by closing its

integration contour in the upper half plane. Since βa, βb ≤ 1, the denominators of the

terms inside the square bracket never vanish and we have dropped the iε factors in that

term. If we now express {(βa − βb) `3 + i(ε1 − ε2)}−1 as a sum of its principal value and a

term proportional to δ((βa−βb) `3), then the contribution to the integral from the principle

value term vanishes due to `3 → −`3 symmetry. The term proportional to δ((βa − βb) `3)
forces `3 to vanish, in which case the two terms inside the square bracket cancel. Therefore

Jab vanishes also in this case.

If a and b both refer to outgoing particles, then the zero of `.pa+ iε is in the upper half

plane and the zero of `.pb− iε is in the lower half plane. Therefore if we close the contour in

the upper half plane so as to avoid contribution from the residues at the poles of Gr(`), we

only pick up the residue at `.pa + iε = 0. If we choose a frame in which pa = p0a(1, 0, 0, βa)

and pb = p0b(1, 0, 0, βb), then the pole is at `0 = βa`
3 + iε, and the resulting integrand takes

the form

− i
∫

d3`

(2π)3
1

p0a p
0
b

1

(βa − βb) `3 + iε

1

(1− β2a)(`3)2 + `2⊥
. (B.3)
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If we express ((βa−βb) `3+iε)−1 term as a sum of its principal value and −iπδ((βa−βb) `3),
then the contribution from the principal value part vanishes due to `3 → −`3 symmetry.

The term proportional to δ((βa − βb) `3) forces `3 to vanish. Integration over `⊥ ≡ (`1, `2)

in the range ω � |`⊥| � L−1 now generates a factor of 2π ln(ω L)−1. This gives

Jab =
1

4π
ln(ω L)

1

p0ap
0
b

1

|βa − βb|
=

1

4π
ln(ω L)

1√
(pa.pb)2 − p2ap2b

, (B.4)

where in the last step we have reexpressed the result in the covariant form.

If a and b both refer to incoming particles, then the zero of `.pa+ iε is in the lower half

plane and the zero of `.pb − iε is in the upper half plane. Therefore if we close the contour

in the upper half plane, we only pick up the residue at `.pb − iε = 0. The integral can be

evaluated similarly using the same frame as used above and yields the same result (B.4).

We can also determine the iε prescription for the lnω term by noting that in (B.1),

the factor

{(k − `).pa − iε}−1 = {−p0aω + ~pa.~k − `.pa − iε}−1 (B.5)

preserves the iε prescription under addition of a positive (negative) imaginary part to ω for

positive (negative) p0a. Therefore the singularity in the complex ω plane must be located in

the lower (upper) half plane for positive (negative) p0a. This shows that lnω in (B.4) stands

for ln(ω + iεηa) where ηa = 1 for outgoing particles and ηa = −1 for incoming particles.

The final result may be written as:

Jab =
1

4π
δηa,ηb ln{(ω + i ε ηa)L}

1√
(pa.pb)2 − p2ap2b

. (B.6)

Next we consider the integral:

Kb ≡ 2

∫
d4`

(2π)4
Gr(k − `)

1

pb.`− iε
Gr(`) '

∫
d4`

(2π)4
1

k.`+ iε

1

pb.`− iε
1

(`0 + iε)2 − ~̀2
,

(B.7)

with ω providing the upper cut-off to the integral and R−1 providing the lower cut-off. The

last expression is obtained by making the approximation |`µ| � ω since the logarithmic

contribution arises from this region. This integral has the same structure as (B.1) with pa
replaced by k and can be evaluated similarly. There are however a few differences:

1. Due to the changes in the cut-off, ln(ω L) factor in (B.4) will be replaced by − ln(ωR).

2. The iε prescription for the integral can be determined by noting that in the expression

for Gr(k− `) = {(k0− `0 + iε)2− (~k− ~̀)2}−1 in (B.7), if we add a positive imaginary

part to k0 = ω then it does not change the iε prescription for the poles, but adding a

negative imaginary part will change the iε prescription. Therefore the factors of lnω

will correspond to ln(ω + iε).

3. Since k represents an outgoing momentum, it follows from the arguments given be-

low (B.2) that in order for the integral in (B.7) to be non-vanishing, pb must also

represent an outgoing momentum.
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4. Since k2 = 0, the denominator factor in (B.6) simplifies to√
(k.pb)2 − k2 p2b = −k.pb , (B.8)

with the minus sign arising from the fact that when k and pb both represent outgoing

momenta, k.pb is negative.

With these ingredients we can express the final result for Kb as:

Kb =
1

4π
δηb,1 ln{(ω + iε)R} 1

k.pb
. (B.9)

Finally we shall analyze the integral

K ′b ≡ 2

∫
d4`

(2π)4
Gr(k − `)

1

pb.`− iε
Gr(`)

∗ '
∫

d4`

(2π)4
1

k.`+ iε

1

pb.`− iε
1

(`0 − iε)2 − ~̀2
,

(B.10)

with ω providing the upper cut-off to the integral and R−1 providing the lower cut-off.

To evaluate this integral, note that (K ′b)
∗ is formally equal to Kb with (k, pb) replaced by

(−k,−pb). The latter result can be read out for those of Jab with incoming momenta. This

gives

K ′b =
1

4π
δηb,1 ln{(ω + iε)R} 1

k.pb
. (B.11)

C Contribution from real gravitons

In the analysis in section 3.5, we had left out the contribution of the second term of (3.44)

in (3.41). This is given by:

T̂µνextra(k) = 16 iπ2G
∑
a,b

∫
d4`

(2π)4
Gr(k−`)δ(`2)

{
H(`0)−H(−`0)

}
(C.1)

× 1

pb.`−iε
1

pa.(k−`)−iε
Fµν,αβ,ρσ(k,`)

{
pbαpbβ−

1

2
p2bηαβ

}{
paρpaσ−

1

2
p2aηρσ

}
,

where Fµν,αβ,ρσ(k, `) has been defined in (3.42), and it is understood that the integration

over the momenta `µ is restricted to the range much below the cut-off L−1, so that we can

drop the exponential factors of e−ik.ra and ei`.(ra−rb) that regulate the ultraviolet diver-

gence in (3.41). We shall now analyze possible logarithmic contributions to this term from

different regions of integration.

First of all, since each term in Fµν,αβ,ρσ(k, `) defined in (3.42) has a factor of (k − `),
a simple power counting shows that there are no logarithmic contributions from the region

|kµ − `µ| � ω. Therefore we need to analyze contributions from the regions R−1 �
|`µ| � ω and ω � |`µ| � L−1. Power counting shows that in order to analyze logarithmic

contribution from the region R−1 � |`µ| � ω, we can replace the numerator by its ` → 0

limit. Therefore we need to analyze an integral of the form

E0 =

∫
d4`

(2π)4
1

pb.`− iε
1

pa.(k − `)− iε
Gr(k − `)δ(`2)

{
H(`0)−H(−`0)

}
. (C.2)
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This can be reexpressed as:

E0 =
1

2πi

∫
d4`

(2π)4
1

pb.`− iε
1

pa.(k − `)− iε
Gr(k − `) {Gr(`)∗ −Gr(`)} . (C.3)

For |`µ| � ω the contribution reduces to one of the integrals defined in (B.7) or (B.10)

and can be evaluated using (B.9) or (B.11). The result vanishes due to the cancellation

between the contributions coming from the Gr(`) and Gr(`)
∗ terms. Therefore there is no

logarithmic contribution from the |`µ| � ω region.

We now focus on the region |`µ| � ω. Power counting shows that the integral has

linear divergence in this region. So we have to evaluate it carefully by keeping also the

subleading terms in this limit. First let us consider the subleading contribution arising

from the terms in Fµν,αβ,ρσ(k, `) that are linear in `. These involve integrals of the form:

E1 =

∫
d4`

(2π)4
1

pb.`− iε
1

pa.(k − `)− iε
Gr(k − `)δ(`2)

{
H(`0)−H(−`0)

}
`κ . (C.4)

In the region |`µ| � ω, we can approximate the integral as:

E1 ' −
∫

d4`

(2π)4
1

pb.`− iε
1

pa.`+ iε

1

2k.`− iε`0
δ(`2)

{
H(`0)−H(−`0)

}
`κ . (C.5)

Now, since δ(`2) factor puts the momentum ` on-shell, pa.` and pb.` never vanish in the

integration region of interest and therefore we can drop the iε factors.10 k.` can vanish only

when ` is parallel to k, but by examining the numerator factor (3.42) we find that there are

always additional suppression factors in this limit that kill potential singularity at k.` = 0.

Therefore the iε`0 factor can be dropped from this term as well. For example the presence

of a pa.k or pa.` factor in the numerator will mean that the ratio pa.k/pa.` or pa.`/pa.`

becomes a independent in the limit when ` is parallel to k, and the result then vanishes after

summing over a using momentum conservation
∑

a pa = 0. A similar result holds for terms

proportional to pb.k or pb.`. Also, a combination of terms of the form kµξν + ξνkµ−k.ξ ηµν

will produce a term in the gravitational wave-form that is pure gauge and therefore can

be removed. Therefore we can remove such terms appearing at the level of the integrand

itself. Once the iε factors are removed from all the denominators, the integrand of (C.5)

becomes an odd function of ` and therefore vanishes after integration over `.

We now turn to the contribution from terms in Fµν,αβ,ρσ(k, `) that are quadratic in `.

The corresponding integrals take the form:

E2 =

∫
d4`

(2π)4
1

pb.`− iε
1

pa.(k − `)− iε
Gr(k − `) δ(`2)

{
H(`0)−H(−`0)

}
`κ`τ . (C.6)

This has potential linear divergence from the region |`µ| � ω. Therefore we need to expand

the (pa.(k − `)− iε)−1 factor in powers of pa.k to the first subleading order:

1

pa.(k − `)− iε
= − 1

pa.`+ iε
− pa.k

(pa.`+ iε)2
. (C.7)

10The only exception is when pa and / or pb represents a massless particle and ` becomes parallel to pa
and / or pb producing a collinear divergence; but such divergences are known to cancel in gravitational

theories [66].
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We can argue as before that due to the presence of the δ(`2) factor we can drop all the iε

factors in the denominator. In this case the contribution from the last term in (C.7) to the

integral (C.6) vanishes by ` → −` symmetry. On the other hand, when we substitute the

first term on the right hand side of (C.7) into (C.6), the integrand is an even function of

`. In this case terms proportional to H(`0) and −H(−`0) give identical contributions, and

we get:

E2 ' −
∫

d4`

(2π)4
1

pb.`− iε
1

pa.`+ iε

1

k.`− iε
δ(`2) H(`0) `κ`τ . (C.8)

Note that we have kept the iε factors even though the presence of δ(`2) makes them

irrelevant.

Now from (C.1) and (3.42) we see that the indices κ and τ must either be free indices

µ, ν, or be contracted with the index of pa or pb, or be contracted with each other. If they

are contracted with each other then we have a factor of `2 and the contribution vanishes

due to the δ(`2) factor. If any one of them is contracted with pb, then we have a factor of

pb.` in the numerator that kills the denominator factor of pb.` − iε. After summing over

b and using momentum conservation law
∑

b pb = 0, this contribution also vanishes. A

similar argument can be given for terms where either `κ or `τ is contracted with pa. The

only term that survives is where (κ, τ) take values (µ, ν). Using this we can bring the

contribution to (C.1) to the form

T̂µνextra =
G

π2

∫ {
d4`δ(`2)H(`0)

}
m+n∑
a,b=1

1

(pa.`−iε)(pb.`+iε)


{

(pa.pb)
2− 1

2
p2ap

2
b

}
`µ`ν

i(k.`−iε)
.

(C.9)

We shall now show that this contribution can be interpreted as the effect of soft

emission from the gravitational radiation produced during the scattering, and is therefore

already accounted for when we include in the sum over a in the soft factor the contribution

from the gravitational radiation produced during the scattering. For this we note that

the flux of radiation in a phase space volume δ(`2)H(`0) d4` carrying polarization εµν is

given by

G

π2
{
d4` δ(`2)H(`0)

}{m+n∑
a=1

pρapσa
pa.`− iε

} {
m+n∑
b=1

pκb p
τ
b

pb.`+ iε

}
(εκτ )∗ερσ . (C.10)

This equation can be derived by using the relation between the leading soft factor (3.17)

and the flux of radiation [15]. In this case the first factor inside the curly bracket gives the

phase space volume, and the rest of the factors gives the flux of radiation produced in the

scattering. Since we shall be interested in only the total flux, we can sum over polarizations

using the formula

∑
ε

(εκτ )∗ερσ =
1

2
(ηκρητσ + ηκσητρ − ηκτηρσ) , (C.11)
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yielding the standard result for the total flux of gravitational radiation given e.g. in

eq. (10.4.22) of [55]:

G

π2
{
d4` δ(`2)H(`0)

}{m+n∑
a=1

pρapσa
pa.`− iε

} {
m+n∑
b=1

pκb p
τ
b

pb.`+ iε

}
1

2
(ηκρητσ + ηκσητρ − ηκτηρσ) .

(C.12)

The leading soft theorem (3.17), applied to this radiation flux, now shows that the contri-

bution to the T̂µν due to the radiation is obtained by multiplying (C.12) by −i/(`.k − iε)
and integrating over `. This gives the net leading contribution to the soft factor due to

radiation to be

T̂Rµν =
G

π2

∫ {
d4`δ(`2)H(`0)

}
m+n∑
a,b=1

1

(pa.`−iε)(pb.`+iε)


{

(pa.pb)
2− 1

2
p2ap

2
b

}
`µ`ν

i(k.`−iε)
.

(C.13)

This agrees with (C.9), showing that the extra contribution (C.1) is already accounted for

by including in the sum over a in the soft factor the contribution due to radiation.11

D Position space analysis of T̂Xµν

In section 3, section 4 we have carried out our analysis in momentum space. This has

the advantage that the expressions we obtain are similar to the ones that appear in the

evaluation of Feynman diagrams, and various general techniques developed for computing

amplitudes in quantum field theory may find applications here. Nevertheless it is instructive

to see how some of these computations can also be performed directly in position space.

In this appendix we shall show how to carry out the analysis of sections section 3.3 and

section 3.4 directly in position space.

Our first task will be to compute the gravitational fields produced by the incoming and

outgoing particles during a scattering, and study their effect on the motion of the other

particles. At the leading order, the incoming and outgoing particle trajectories are given

by (3.11), or equivalently (3.15). Using retarded Green’s function in flat space-time, we

get the following expression for the gravitational field produced by the b-th particle on the

forward light-cone of the trajectory of the particle [18]:

e(b)µν (x) = 2Gmb
vbµvbν√

(vb.x)2 + x2
, h(b)µν = e(b)µν −

1

2
ηµν e

(b)ρ
ρ . (D.1)

The associated Christoffel symbol is given by, in the weak field approximation,

Γ(b)α
ρτ (x) =−2Gmb

1

{(vb.x)2+x2}3/2
ηαµ

[{
vbµvbτ+

1

2
ηµτ

}
{xρ+vb.xvbρ}

+

{
vbµvbρ+

1

2
ηµρ

}
{xτ+vb.xvbτ}−

{
vbρvbτ+

1

2
ηρτ

}
{xµ+vb.xvbµ}

]
. (D.2)

11As in [15], this can also be expressed as angular integrals over appropriate functions of the radiative

gravitational field and its derivatives, but we shall not describe this here.
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Since the field has support on the forward light-cone of the trajectory, it follows that in

sufficiently far future and far past of the scattering event, the outgoing particles are affected

by the gravitational field of the outgoing particles and the incoming particles are affected

by the gravitational field of the incoming particles.

Let Y µ
a denote the correction to the particle trajectory (3.15) due to the gravitational

field produced by the other particles:

Xµ
a (σ) = vµa σ + rµa + Y µ

a (σ) . (D.3)

We shall use the compact notation described in (3.12), and define ηa to be a number

that takes value 1 for outgoing particles (1 ≤ a ≤ n) and −1 for incoming particles

(n+ 1 ≤ a ≤ m+n). Then Y µ
a satisfies the differential equation and boundary conditions:

d2Y µ
a

dσ2
= −Γµνρ(va σ + ra) v

µ
a v

ν
a , Y µ

a → 0 as σ → 0,
dY µ

a

dσ
→ 0 as σ →∞ , (D.4)

where

Γµνρ =

m+n∑
b=1

b 6=a,ηaηb=1

Γ(b)µ
νρ . (D.5)

The constraint ηaηb = 1 reflects that the outgoing particles are affected by the gravitational

field of the outgoing particles and the incoming particles are affected by the gravitational

field of the incoming particles. Using (D.2), (D.4) and (D.5) we get, for σ � |ra| ∼ L:

d2Y α
a (σ)

dσ2
' 2G

σ2

m+n∑
b=1

b 6=a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2

[
−1

2
vαa +

1

2
vαb
{

2(vb.va)
3 − 3vb.va

}]
.

(D.6)

This gives

dY α
a (σ)

dσ
' −2G

σ

m+n∑
b=1

b 6=a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2

[
−1

2
vαa +

1

2
vαb
{

2(vb.va)
3 − 3vb.va

}]
.

(D.7)

Now in (3.28) we have the expression for T̂Xµν to subleading order:

T̂Xµν(k) =
m+n∑
a=1

ma

∫ ∞
0

dσ e−ik.(va σ+ra)
[
vµav

ν
a − ik.Ya(σ) vµav

ν
a +

dY µ
a

dσ
vνa + vµa

dY ν
a

dσ

]
.

(D.8)

As discussed below (3.17), the integration over σ is made well defined by replacing ω by

ω + iε for outgoing particles and by ω − iε for incoming particles. We now manipulate the

second term by writing

e−ik.(va σ+ra) =
i

k.va

d

dσ
e−ik.(va σ+ra) (D.9)

and integrating over σ by parts. The boundary term at infinity vanishes due to the re-

placement of ω by ω + iεηa, while the boundary term at σ = 0 gives a finite contribution
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in the ω → 0 limit and is not of interest to us. With this (D.8) can be expressed as

T̂Xµν(k) =
m+n∑
a=1

ma

∫ ∞
0

dσ e−ik.(va σ+ra)
[
vµav

ν
a −

1

k.va
k.
dYa
dσ

vµav
ν
a +

dY µ
a

dσ
vνa + vµa

dY ν
a

dσ

]
.

(D.10)

After integration over σ the first term gives the leading term. In the other terms we

can substitute the expression (D.7) for dYa/dσ. Since the integrand is proportional to

1/σ in the range L � σ � ω−1, we get contribution proportional to ln((ω + iεηa)
−1/L).

Therefore, with the help of (D.7), the logarithmic correction to T̂X , given by the last three

terms in (D.10), takes the form:

∆T̂Xµν(k) = 2G
m+n∑
a=1

ma ln{L(ω + iεηa)}
m+n∑
b=1

b 6=a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2

×

[
− vµavνa
k.va

kα

{
−1

2
vαa +

1

2
vαb
{

2(vb.va)
3 − 3vb.va

}}
+

{
−1

2
vµa +

1

2
vµb
{

2(vb.va)
3 − 3vb.va

}}
vνa

+

{
−1

2
vνa +

1

2
vνb
{

2(vb.va)
3 − 3vb.va

}}
vµa

]
. (D.11)

After using the relations pa = mava and some simplification we get:

∆T̂Xµν(k) = 2G

m+n∑
a=1

ln{L(ω + iεηa)}
m+n∑
b=1

b 6=a,ηaηb=1

1

{(pa.pb)2 − p2ap2b}3/2

×

[
k.pb
k.pa

pµap
ν
a pa.pb

{
3

2
p2ap

2
b − (pa.pb)

2

}

+
1

2
pµap

ν
a p

2
a (p2b)

2 − {pµapνb + pνap
µ
b } pa.pb

{
3

2
p2ap

2
b − (pa.pb)

2

}]
. (D.12)

This is in perfect agreement with (3.39).
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