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Abstract. The pcsitive mass theorem states that for a nontrivial isolated
physical system, the total energy, which includes contributions from both
matter and gravitation is positive. This assertion was demonstrated in our
previous paper in the important case when the space-time admits a maximal
slice. Here this assumption is removed and the general theorem is
demonstrated. Abstracts of the results of this paper appeared in [11] and [13].

Introduction

An initial data set for a space-time consists of a three-dimensional manifold N, a
positive definite metric gip @ symmetric tensor p;;, a local mass density x, and a
local current density J'. The constraint equations which determine N to be a
spacelike hypersurface in a space-time with second fundamental form p;; are given
by

u=%{R— ;jp”p,ﬁ (Z piﬂ
Ji= ;Dj[p”— (;p,ﬁ) g"’},

where R is the scalar curvature of the metric g;;. As usual, we assume that g and J'
obey the dominant energy condition

K (L0012,

An initial data set will be said to be asymptotically flat if for some compact set
C, N\C consists of a finite number of components N, ..., N, such that each N, is
diffeomorphic to the complement of a compact set in R*. Under such diffeomor-
phisms, the metric tensor will be required to be written in the form

and the scalar curvature of N will be assumed to be O(r %)
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With each N, we associate a total mass M, defined by the flux integral
1
M=~ Oj; iZj(gi,-,j—gjj,i)dgi

which is the limit of surface integrals taken over large two spheres in N,.

This number M, is called the ADM mass of N, (see Arnowitt, Deser, and
Misner [1]). Classically it was assumed that the first term in the asymptotic
expansion of g,; is spherical. It was pointed out by York [11] that physically it is
more desirable to relax this assumption to the one mentioned above. The method
in this paper will work assuming only this general asymptotic condition of York.

In order for the total mass to be a conserved quantity, one assumes p;;=O(r~ 2

and ) p,,=0("3).

1
In this formulation, the (generalized) positive mass theorem states that for an
asymptotically flat initial data set, each end has nonnegative total mass. If one of
the ends has zero total mass, the initial data set can be obtained from the metric
tensor and the second fundamental form of a spacelike hypersurface in the
Minkowski space-time. (In particular u and J* must be identically zero.)
We proved the positive mass theorem assuming the condition that ) pi=0 in

1
our previous paper. In this paper, we demonstrate the validity of the general
theorem by reducing it to the previous case. It should be mentioned that the
classical attempts in proving the positive mass theorem have been to treat the
important case ) pi=0 first and then reduce the general case to this case by

13

asserting the existence of maximal slices (see, e.g. [2]). While we have similar steps,
the basic ingredients are very different. For example, in the former method, it is
necessary to prove that the space-time admits a slice with > pi=0. Not only is the

1

existence of such a slice unknown, but also the space-time is expected to be more
restrictive if such a slice does exist. Our approach can be described as follows.

We deform the metric g;; and p;; in two steps. In the first step, we consider the
product manifold N x R with the product metric and extend p;; trivially to be a
tensor defined over N x R. We want to find a hypersurface N in N xR which
projects one to one onto N and whose mean curvature is the same as the trace of
p;; over N. One of the motivations for considering such a hypersurface is that if N
is a spacelike hypersurface in Minkowski space-time, the solution N can be
identified with a linear slice of the Minkowski space-time. The second step is to
observe that if such a hypersurface exists, the induced metric on this hypersurface
can be deformed conformally to one with zero scalar curvature. If we can prove the
existence of the hypersurface which is asymptotic to N in a suitable manner, we
can prove that the total mass of N is the same as that of the hypersurface N. We
have then reduced the positive mass theorem to the case that we treated in our
previous paper.

It happens that the hypersurface does not exist in general. Surprisingly its
existence is closely related to the existence of apparent horizons in the initial data
set (even if we assume the initial data set is nonsingular). The relation can be
explained as follows. We perturb the equation that governs the hypersurface and
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prove that the perturbed equation admits an entire solution with the required
asymptotic behavior. When the perturbation tends to zero, we prove that the
hypersurfaces defined by the perturbed equations converge smoothly to a
hypersurface. Although the hypersurface satisfies the required asymptotic con-
ditions, it need not be a graph over N. The set over which it is not a graph has
boundary consisting of spheres which are apparent horizons. By conformally
closing these apparent horizons, we carry through the argument outlined above.

It should be pointed out that in a previous attempt by Jang to solve the
positive mass theorem, the equation defining the above hypersurface was con-
sidered. However, our geometric interpretation of the equation and our way of
using it are completely different from his. (He used a method outlined by Geroch
which up to now has been unsuccessful in proving positivity of mass.) While Jang
observes that the equation is not solvable in general, he provides no method to
circumvent this situation. It should be emphasized that the major effort of this
paper is to overcome this difficulty. For a historical account of the previous efforts
to prove the mass theorem, see the references in [9]. We wish to point out that our
method in this paper also works to prove the mass is positive for an initial data set
with singularities, provided they are surrounded by apparent horizons.

For the reader’s convenience, we suggest the reader to skip sections two and
three for the first reading. They can read the first two paragraphs of pp. 238-240,
statements of Propositions 1-3.

1. Statement of Results

As in the introduction, let N be an oriented asymptotically flat three dimensional
manifold without boundary. Let ds? be a positive definite metric on N. Suppose
that N is of smoothness class C#, and that ds? is C3. Assume that on each N, there

3
exist coordinates x', x*, x* in which ds® has the expansion ds*= ) g, dx'dx/
i,j=1
with the g;; satisfying the following inequalities for positive constants k,,k,, k,

gy =0;+by, IblSk (1471, m

|0b,| Sk, (1+73)71,  |00by|Sks(1+79)71,

3
where r?= ) (x')? and 0 is the Euclidean gradient. Note that (1.1) implies that the

Christoffel s;/mbols I’J‘k fall off as O(r~2) and the curvature tensor as O(r~3) as
r—c0. We assume that the scalar curvature (Ricci scalar) R falls off like r 4, ie.,

RISk, (1471,  |0R|<k (1+r%)" (1.2)

for constants k,, k.
We suppose also that on N we are given a symmetric two-tensor p;; which on
each N, satisfy the inequalities

Ipil+rlop; ) +200p | S kg(1+77) ™1 (1.3)
for a constant ks. We assume the trace of p;; satisfies the faster falloff

[Z Pl Sko(14+73)7 1. (1.4)
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As was mentioned in the introduction we will be assuming the dominant energy
condition holds on N, ie.,

Uz @Jvi)l/z. (1.5)

We will refer to the triple (N, ds?, p, ;) satisfying (1.1)-(L.5) as an initial data set. Note
that we have weakened the asymptotic assumption on g,; from that assumed in
[9]. In [10] we have established the main result of [9] under this weaker
assumption. We state our first theorem.

Theorem 1. Let (N, ds?, p;j) be an initial data set. For 1 <k <p, we have M, =0.

We will also prove that if some M, is zero, the initial data set is trivial. For this
we need to assume ds? is C* and expand (1.1) to include the following assumption

|060b, | +16060b,,| < kg(1+r%) 1, (1.6)

Theorem 2. If (N, ds?, p;;) is an initial data set satisfying (1.6), and M, =0 for some k,
then (N,ds? p, ;) can be isometrically embedded into four dlmenswnal Minkowski
space M as a spacelzke hypersurface so that ds” is the induced metric from M and p;;
is the second fundamental form. In particular N is topologically R>,

2. The Basic Equation and Local Formulae

In this section we derive the basic formulae describing the local geometry of
hypersurfaces in N xR, Suppose (N, dsz,pl.j) is an initial data set as defined in
Sect. 1. We form the Riemannian product N xR with (positive definite) metric
ds*+dt* where telR is a coordinate. We suppose that Z*CN xR is a smooth
hypersurface, and let e,,e,,e5,e, be a local orthonormal frame for 2 with e,
normal to 2 and e, e,, e, tangential. Let w,, w,, w,, w, be the corresponding dual
orthonormal coframe of one-forms. We may write the structural equations for
N xR

4
dwa: Z Wab /\Wb’ Wab+wba=0> (21)
b=1
4
- Z Wac/\wcb:_% Z Rabcdwc/\wd7 (22)
c,d=1

where R, , is the curvature tensor of N x R. We adopt the convention that letters

a,b,c, ... run from 1 to 4 while the letters i,j, k, ... denote indices between 1 and 3.
We defme the second fundamental form of X, whlch we denote A=(h;}); .; ;<3 by
W4L|E Zhu Jj° hijzhji’ (23)

where (-)|; indicates restriction of a one-form to 2. The mean curvature H of X is
then given by H= ) h,. Restricting (2.2) to ¥ and using (2.3) we derive the

curvature equation

Rijka’ =R+ (hyhy,—hihy) (2.4)
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where R, xe denotes the intrinsic curvature of X. Applying the exterior derivative to
(2.3) and using (2.2) we derive the Codazzi equation

Dyhij—Djhy =Ry (2.5)

where D is used to denote covariant differentiation with respect to the metric of X,
and D,h;; is defined by

lekhijwk=dhij+ 2 W+ D B Wi - (2.6)

k k h
We now exploit the special structure of N xIR. Let v be the downward unit
parallel vector field tangent to the IR factor, and consider the function <{e,,v)

defined on X, where (-,-) is the inner product of N xIR. For a smooth function ¢
on X, the covariant derivatives D,p, D,D 9, and the Laplacian 4¢ are given by

deo= Z(Ei(P)Wi: d(Di§0)+ Z(DJ’(P)W,';': Z(Diﬁjw)wj
i Jj i
A¢=3. DDy

We calculate 4<e,, v by observing that v= ) (v, e, >e, is parallel, so the covariant
derivative D,v in N xR is

0= ;(va)awb =d{v,e,>+ ;@, eOWy, - 2.7)
Using (2.3) we then get
d{e ) =— ;(v DWia= Zhu@
Thus by (2.6) and (2.7) we have
DD v, e,y = ;(ﬁihﬂ{)(zj, e — ;hjkhik<v’ ey
Taking the trace and using (2.5) we get
Av,e,> = iZ;:‘R‘““@’ e+ ;(DkH)@, e — (Zk hfk) (v,e,). (2.8)

We will need to compute D,D,};,, so we define

l}’

Z (D h ) d(D_khij) + Z (thij)wfk
3

4

+ ) (15kh{j)w,i + > (Bkhi,)wfj. (2.9)

Applying the exterior derivative to (2.6) we then have
Z (Dt’D_khij)W/ AW, =—3 Z hijkimef AWy
k,£,m

k.2

N _
—2 Z hikRkj/mWf AWy
k,f,m
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Equating coefficients then gives
DID—kh D Dz - th, mitk Zhlm mjlk* (2‘10)

We wish to calculate Ahy;= Y D,D/h;; in terms of the mean curvature H, so
k

we use (2.5)

Ahy;= Y DD}, +

ij—

’*M
*M

5R4ijk, (2.11)
where DR, is defined by
;5,R4ijkw[=dR4ijk+ ;R4ijw4,i+ ;R4i[kw,j+ ;RMMWM.
We may express this in terms of D,R,;; by using (2.3)
DR yi50=D,R 45— Rysarhy—Ryijaly + ng,.jkhM. (2.12)
We now use (2.10) in (2.11) to get
Ahy;= ;5 D+ ;DkRMjk_ mz,khmklimkj Z PR
Finally, we apply (2.5) once more, together with the symmetry of (h;;) to obtain
Ahij:ﬁiDjH+ ZD_kthijk'" mzkhmkﬁmikj
- Z h:m mkkj+ ;D—ijtkik‘
Using (2.4) and (2.12) we finally have
Ahij=5i5jH—<mzkh2 )h +H2h,m mj
-2 ';c hniRminj— Z himRonas
+ ;z)kRMijr ;D Rk
- ;R4i4khjk"HR4ij4 - ;R4k4khij
_ ;R4ki4hjk+ %{Rmkikhmj.

We are not especially interested in the particular form for this equation, but we
want estimates independent of X, so we note that we have the matrix inequality

AhifzﬁiﬁjH—(Zk h )h o+ H L iy =41+ D3y,

where ¢, depends only on ky, k,, k; (not on X). We are using [4|*= } h}. We now
Lj
calculate A]A)? as follows:

SAIAP = Y A+ .Zk(ﬁkh,.j)?
L LJs
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Therefore, we have

3A1AP 2 3 (Dihy)* —|A1*—H| 4P

i,jk

+ Y DD H (417 +1) (2.13)
ij
for a constant c,. Since 34|4[*=|4]4|A|+|D|A||?, we get
|4]4]|A4| =z (Zk (Dyhy)* — |5lA|[2) —|4[*
LU,

—|H||A]? + Zh.D.D H—c (|42 +1). (2.14)
i J

ymrry

We now record the following observation of [8]. We may write the first term T on
the right of (2.14) as

T= ) (D_khij)z— (4]~ 2 Z(Z hijﬁkhij)z.
ik K \i,j
This implies that
AP T=3 Z (hijﬁkhzm_hfmﬁkhij)z-

i ik tim

Setting k=i and m=j in the sum implies

i (2 el Wt 7

éﬁ;(_‘;huﬁihﬁ_ th’jﬁihij>23 (215)
i,j i,j

APT24 Y. (D~ b, Dby
i, j, ¢

where we have used the Schwarz inequality. By (2.5),
lzjh"iﬁihii: ;hijjH+ ;hﬁRMﬁ
iz;hijﬁihﬁ= izj‘{hijf)fhijwt ghURMﬁ.
Putting these into (2.15) and using the inequality (a—b)*=1a?—b* we get
[A[Znglg(Z hijﬁ,hij)z—c3|D’H|2|A|2—c3|A|2.
ij

This implies that

) 36c. -
LY (D)~ 3;3 \DH|? -

i,j,k

36¢,

T 37

v
wh

Combining this with (2.14) then gives

lAl4]A]Zz55 Y. (Dyy)? —1A1* = [H| 4P
i,j,k
+ 3 hyDD;H—c,\DH? —c, (A +1). (2.16)

Inequality (2.16) will be important for the estimates of the next section.
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For the remainder of this section we specialize to the case when 2 is the graph
of a function f defined on N. In this case we may extend our orthonormal frame
e;,€,.€5,e, to N xR in such a way as to be parallel along the R factor. We also
suppose that the given data, p;;, u, and J are extended parallel along the R factor.
We assume that e, is taken to be the downward unit normal to X so that
{v,e,»> >0 everywhere on 2. Thus the following hold on N xIR.

e,=(1+|Df*)""2(+ Df —v)

R= zl;Rabab

2M:R—- Zp3b+ (Zpaa)z
ab q

‘]bz ZDapab_ ZDbpaa’

where R, _, is the curvature tensor of N xIR. Since ¢, ¢,, ¢5, ¢, is now extended in a
natural way to all of N xR, we introduce the following notation [cf. (2.3)]

Wy= ) hiwi4hygwy . (2.17)
J
This defines Y h;,w; as a one-form on X. We wish to refine (2.8) in our setting. First

i
note that since N xR is given the product metric, and H is constant along the R
factor, we have

0= ;R4iki<v5 e+ Ry, ey
0= ;(DkH)<U, ey +(e H)v,e,,

where e, H is the directional derivative of H in direction ¢,. Putting these into (2.8)
then gives

A v e,y = (— ZR4i4i—e4H—|A|2> {v,e,). (2.18)
We now notice that
R:22R4i4i+ ZRijij’
i i, j
so by (2.4) we have
R=2) R,y +R—-H*+|4,

where R is the intrinsic scalar curvature of X. Thus by the definition of u we have
LRy =pt (= Rot 2 vl (L)’ — AP ). (219)
i a, b a

We will also need to have an expression for e, (Z Pii) in terms of J, so we notice
that i

2 Dpi= Y Dpi—Js, (2.20)



Positive Mass Theorem. II 239

and we have
2. Dpw,=dp;+2 Z PiW;it 2P Wa;-
a J

Summing on i and equating coefficients of w, we have by (2.17) and the symmetry
of p;;

;D4pii =e, (Z p,.i) +2 Z Pishis - (2.21)
We also have
‘a:, (Dopig)w,=dpyy + ; PaaWait ; PiaWaa
which gives
Dpiy=ep)+ ;p jaWiile) + paahy— iiji s
Summing on i and using the definition of D we have
Zi:DiPM = ;Dil’m + P H— iz;pijhij'
Combining this with (2.20) and (2.21) implies
e <Z p,-l-> = 2 Dipra =T st pacH
— IZJ: pijhy;—2 ;pmhi4 . (2.22)
We now combine (2.18), (2.19), and (2.22)
2v,e,) " M A{v, ey =R~ iZj(hij—pij)z - 2;171-24
+4 Zi:pmhm -2 gﬁipm + (Z p,.i)z
—H? +2P44<Zpii_H) +2€4<Zpii_H>
—2Au—Jy). (2.23)

We now observe that since e, has been extended to be parallel along v we have by
(2.17)

0=><v,e D, +<v, e oD, e,
= Z (v edhy e +<v,e,> ) hyge, .
iJ i
Since D ,(v,e,> = Z {v,e;>h;;, we have

hi= — <0, D (v,e,> = — D, (log {v,e,) . (2.24)
Hence if we compute Alog<{v,e,> we have

Alog{v,e,>=— ZD_ihM:(v, e > T A v e, — Zhi24 )
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Putting this into (2.23) and using the energy condition (1.5) we have
0=2(u—|J)<R- Z(hij_pij)z_zz(hm_pm)z
LJ i

+2 ;Di(hi‘t — D)+ (; pii>2 -
+2p4s (;pii_H) +2e, (;Pn’_H) . (2.25)

We now introduce the equation which 2 will be required to satisfy. It is an
equation proposed by Jang [5]. We will study the solutions of this equation later
in this paper. The equation is

H=Yp,. (2.26)
More explicitly, if X is the graph of a function f, it is the equation
(1+Df*~ 1Y g9D,D,f =3 §p;; (2.27)
i )
where g;; is the induced metric on X
_"=g"+fxifx.i
ff
1+|Df?
f= Zgij x7
J
Geometrically (2.27) says that we prescribe the mean curvature at each point of Z

to be equal to the trace of the restriction of p;; (extended to N xR) to 2. We will
study solutions of (2.27) having the asymptotic behavior

IfI=00G"17), 18f1=0("%%), [00f|=0(">"?), |000f|=0("""7) (2.28)

at each inifinity of N.
The inequality (2.25) is closely related to Eq. (2.27). In fact, (2.27) expresses the
fact that H— Z p;; does not change along vertical lines, so that v(H Z p”)

g‘ij = gij _

Assuming ~ satlsﬁes (2.27), by (2.25) we have
0=2(u—-|J)=R- Z(hij—pij)z—ZZ(hM—pm)z
1,7 i

+2 Z Dyhiy—Dia) - (2.29)

It will afford us some convenience in the proof of Theorem 1 to assume strict
inequality in (1.5). We prove a simple perturbation result which allows us to
do so.

Lemma 1. Let (N,ds?, p;;) be an initial data set. Given a number ¢>0, there is a
function ¢ >0 on N satisfying

A
p=1+ 7'5 +0(7%),  [0p|=0("7), [00¢|=0("")
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on N, with |4,] <e so that (N, p*ds?, ¢ pU) is an initial data set with mass density
and current density J satisfying > |J).

Proof. If ¢ >0 is a function on N, then we can compute
@ Hu—49~49)

¢ *(L9"KK )

where K;=J,+43 ¢~ '¢’p,, Thus if we let
2

=
I =

T¢=A</)+ifp[(zg“KiK,-)”z—u} :
ij
we have T1=|J|—u=0, and
To=3¢(J|—0) .
The linearization of Te at @=1 is given by

A+ 30—+ Yt L0
i, |‘]|
which is an isomorphism on suitable spaces, so by the implicit function theorem
we can find ¢ near 1 so that Tp <0, hence i>|J|. [For example, one exhausts N by
compact subdomains € and solves the inequality To= f <0 on Q with ¢ =1 on
0€Q. Once one solves this equation, one can see easily that ¢ converges to the
require solution when € tends to N. The existence on compact subdomains follows
by applying the implicit functions to the map T: H*(Q)— I*(Q).] The asymptotic
conditions for ¢ are easily shown.

3. The a Priori Estimates

In this section we prove the estimates which are needed to show existence of
solutions to (2.27). We concentrate first on the local interior estimates, and then we
construct suitable “barrier” functions [see (3.20)] to control the behavior of
solutions at infinity.

We study a slightly more general equation then (2.27). Let F(x) be a given C?
function on N and suppose u,, i,, and u, are constants so that

sup|F|sp,, sup|DF|su,, sup|DDF|sy;. (3.1)
N N N

Suppose f is a given C? solution of

S i e D.D;f B _
) '2—11 (g 1+|Df[2) ((1+|Df|2)1/2 pij) =F. (3.2)

L=

We propose to derive suitable estimates on f and its derivatives in terms of u,, p,,
and u,. We let ¢, c,,... throughout this section be constants depending only on
(N, gy, p;)) and py, s, 3. We will not explicitly denote the dependence on iy, p,, ps.
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We will use the notation of Sect. 2 for the graph of f. We first observe that by (2.4),
(3.1), and (3.2) we have

IR+]4P ¢, ,
so inequality (2.25) implies

141+ Z (hig _Pi4)2 = Z Di(hm — D)+, (l4l+1) .

Multiplying this inequality by ¢* where ¢ has compact support on the graph X of
f, and integrating by parts, we find

j |A]?¢? ]/gdx + .f Z (hiy—pia)? Védx
b PR
—2[ @Y (D) (i —p;4) |/dx+c2j(|A|+1 21/gdx .
z i
Using the inequality 2ab <a?+b?, we get

j|A|2<p2 deq]z)(p[zl/dﬁczj (14]+ 1)p? |/gdx (3.3)

for any ¢ with compact support on 2. We now replace ¢ in (3.3) by the function
|A]- @ to obtain

[141*0* [/ Gdx < [ ID|Alol® | Gdx +¢, [ (AP +|AP)* Fdx . (3.4)
z X z
Expanding, and integrating by parts, the first term on the right becomes
f(lflizlﬁfpl2 +2¢]4|<(Do, DIAl +¢*|D|4|]?) |/ Gdx

—j|A| \Dol? /3 dx_% 2414)% |/ Gdx+|9*DIAl? |/ gdx

£|A| \Dol? |/gdx— | @*AlA|A] )/ Gdx .
Putting this into (3.4) then gives
[ AIAIA+14F) ) Gdx s [14P Dol |/ Gdx+ e [(AF + 1) |/dx .
where we have absorbed |4|? into |A]> +1. We now use (2.16) to get
£ ,Z (Dyh,)0? de<c4§|A| IDol? |/gdx
——c4£ S h;;,D,D;H¢? \/5dx+c4£|5H|2q02 1/gdx
L,
+c4£(|JA|3+1)q)2 1/gdx .
We integrate by parts the second term on the right and absorb to get

| T (Dhyo? |/Gdxses [ 147 Dol |/ dx

Z i,k
+cs [IDH9? )/Gdx +c5 [ (AP + 1)p? |/Gdx .
z z
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We now get rid of the second term on the right by observing that (3.2) says
H=) p,+F, and we have

Z Dp;w,=dp;+2 Z Piiw;it2pWay s
a j

SO summing on i we get
Z Djpii :D—j (Z pii) +2 Zpi4hij

which implies PZpii 2<¢(|A]*+1), and hence by (3.1) and (3.5) we have

[ Y (Dh)*0? Gdx=cq g |A*|Dol? |/ gdx

2 ik

+ ¢4 i (AP +1)¢? |/ gdx . (3.6)
We observe that (3.4) directly implies
£|A|4¢2 )/Gdx<2 g ”Zk (Duh;)9? |/ gdx
+2£|A|2|D¢;2 1/5dx+c7£(|,4|3 +1))/gdx .

Combining this with (3.6) and absorbing the term involving |A|® back to the left we
get

[1A4]*? ]/g?dxécg {1412 |De|? ]/gdx—i-cgf(pz ]/de )
z X z
Finally, we may replace ¢ by ¢? and absorb to get

£|A|4<p4 V{?dx <co [ |Dol* ]/gdx +co g o* ]/de (3.7

for any Lipschitz function ¢ with compact support on 2.

We now choose g, with 0<g,=1 so that for any point x,e N, the geodesic
exponential map is a diffeomorphism on the ball with center at x, of radius g,,.
That such g, exists follows from the conditions (1.1). We let BX(X,) denote the
geodesic ball in N xR centered at a point X,eN xR For any point
X o =(x4, f(x,)) in Z, we will give estimates on XnB*(X ) for suitable o >0. We first
bound the volume of XNB*(X ) by observing that (3.2) implies

divy,gle)=F+ ) g"f——fii Di:
NxR\*4. = 1+|Df|2 ij
so we apply the divergence thcorem on the four dimensional volume
B¥X o) {(x,x*) : x* < f(x)} to obtain
Vol (3. nBj(X,))S¢;o0° (3.8)

for any 0 =<¢,, X,€2. The results of Hoffman and Spruck [4], generalizing the
methods of Michael and Simon [6], now show that there is a number g, with
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0<g, =0, so that the Sobolov inequality holds on X mB‘Q‘l(X o)- In particular, it is
true that

(j @° Vﬁdx)“ <c,, [ (Dol + H*¢?))/Gdx
3 z

for any Lipschitz ¢ vanishing outside X ﬂle(X o) Since H? is bounded by (3.2), we
may apply Holder’s inequality and (3.8) to prove

(0°V/adx) 2 s ers [IDol? Vg +craet ([0°Y 5]

> z z

If we take g, small enough that c,,07 <1, we get
<§<p61/§dx)1/3 <c,;[IDol? |/ gdx (3.9)
z z

for any Lipschitz ¢ with support of ¢ contained in X mB‘;l(X o). We emphasize that
both ¢, and ¢, are independent of X, 2.

We let ¢ denote the geodesic distance function to X, in N xR, and observe that
|Do|=1 and hence |Dg|<1 on X. We choose ¢ in (3.7) to be a function of ¢
satisfying

1 for ,< Q1

= Dop| <307t <1.
=10 for 020, Dol=3e; ", lol=

With this choice of ¢, (3.7) and (3.8) imply

[ 141*)gdx<c,, . (3.10)
ZAB2, (Xo)
Note that we are taking ¢, to be fixed, so we have not bothered to explicitly
denote the dependence of ¢,, on g,.
We now show that |4|? is pointwise bounded. To see this, let u=|A4|*+1, and
observe that by (2.13), (3.1), and (3.2)

Auz —cs(|A*+1u+2Y h,.D,DH .
iJ

ijri

Multiplying both sides by a nonnegative function { vanishing outside XnB&,(X ),
and integrating by parts we get ?

§[<Dg,5u>—c15(|A|z +1u-2Y B¢ (Z hiijH)—2ZﬁihijﬁjHC] 1/gdx <0

z

for any such ¢ It follows from (2.5) that ‘Zﬁih. <c(DH|+1), and from the

lj‘
discussion preceding inequality (3.6) that |DH|? < c(|A|? + 1). We therefore have the
following inequality

) [(’Dc, Duy+ ¥ (D, )b+ Ceu} )/gdx=<0 (3.11)
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for each nonnegative { vanishing outside X B%,(X ), where the functions b,, e are
2
bj=-2u"tY hijﬁjH
J

e=—c,(4P+1)—2u"*Y DD .H.
i

i

Since b; and e satisfy
lbil=cy6
lel<c (141> +1)
by (3.8) and (3.10) we have
sup (Z |bi|2> + [ lelPYgdx<c,, . (3.12)

InBY (Xo) \ i B4 (Xo)
2 z

A standard iteration technique (see [7, Theorem 5.3.1] now gives the mean value-
type inequality

u(XO)gcls( [ u?)/gdx 1/2) (3.13)

S B3, (Xo)
2

for a constant c, 4. Note that this iteration technique works because we have the
Sobolev inequality (3.9), and we may use the distance function ¢ in place of
standard Euclidean distance. Also, it is crucial that |ef is bounded in

I (ZmB% (x0)>

and 2>3dimZ...3, so that the structural conditions [7, 5.1.3] are satisfied. It
now follows from (3.8), (3.10), and (3.13) that [A|*(X,) is bounded, so we have an
extrinsic curvature bound

sup|A)> ey, . (3.14)
z

We summarize what we have proven in the following proposition.

Proposition 1. Suppose f is a C* solution of (3.2) with function F satisfying (3.1).
There is a constant ¢, 4 depending only on the initial data (N, g,;, p;;) and on piy, py, ity
so that (3.14) holds.

We discuss the consequences of this result. If X, e, we let (y!, y% »*, y*) be
normal coordinates in N x R centered at X, so that the tangent space to 2 at X is
the y'y?y3-space. Thus, if the metric ds? +dt? for N xR is given by

ds?+di* =Y §,,dy"dy’
a,b

we have

0g
Gu0)=0,, —%(0)=0
b b ay )
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for 1=<a,b,c<4. In a neighborhood of X, X is given by the graph of a function
w(y), y=(", % y%) on the y'y?

space. The equation (3.2) satisfied by X is
4 . WaWb
>, = o)

b=1

4

D,D,W o
. W)\ ipw| ~Pe) T
where W(Y)=w(y)—y*, Y=(y!, % vy, y*). This gives an equation for w of the form
3
D By, w, oww, ;= C(y, w, Ow) (3.15)
l,]:
for y near 0, where B,(y,w,p) and C(y,w,p) are smooth functions of their
arguments, 0w=(w,;,w,,,W,s) is the Euclidean gradient, and (B;) is positive
definite with
B;{0,0,0)=6;;, C(0,0,0)=0. (3.16)
The length of the second fundamental form of X is given by
& wewe wew*\ (D_.D,W\ (D.D
|A|2= Z (gac_ 2) (gbd_ 2)( a”b )( ¢ dW)
abod=1 W] IDWI*/\ [DW| ]\ |DW|
From this expression, one sees that (3.14) implies

3
PIRL

3 3
VgﬂHZmﬂ
i,j=1 i=1

by

(3.17)
in a neighborhood of 0. We can now prove a gradient bound on w as follows
Given a Euclidean unit vector & in the y'y

-space, and a radus ¢, we define S.(0)
S4@= max zw@

By the mean value theorem, (3.17), and the fact that u ,(0)=0, we have for all small

=

rg,

q

Sd@)=c,1(@°(1+542)°" .
Elementary calculus now implies that there is a ¢, >0 (depending only on ¢,,) so

that S(g) remains bounded for 0<g =g, (thus w is also defined on the ball of

radius g,). Because of this and (3.17), we then have

sup ((w(y)l +low(y)l +100w(y)) S ¢,
|yl§az

1hlla,e=

(3.18)
for constants ¢, >0, c,, independent of ~. We will want to improve (3.18) a little so
we define for 0 <o =1, the HSlder norm on {|y| <@} by
;= sup |y, -

Iyil<@

Iyal <@
We can now prove

Yol Iy ) —h(y,)l -

Proposition 2 (Local Parametric Estimate). Under the hypotheses of Proposition 1
there is a ¢,>0 depending only on the initial data and p, u,, ity so that for any
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Xo€2Z, the local defining function w for X (as discussed above) is defined on
1yl 205}, and satisfies for any ac(0,1)

sup ([w(y)|+|ow(y)l +|00w(y)| +|0dow(y)| + || 00w ]|

yI=es

1,03)§623(06) s
where ¢, depends only on a, the initial data, and u,, u,, 1y, Moreover, we may
require
ZABs (X ) S{Y y*=w(y)} .
2

We also have the following Harnack-type inequalities

sup (e, vr=c,y, inf ey, v
InBj, (Xo) B4, (Xo)
z 2

sup |[Dlog<{e,,vdI<c,s .
2rB 3, (Xo)
Proof. The estimate for [000w| and [[00dw], ,, (for g, < 30,) follows from (3.15),
(3.16), (3.18) and standard Schauder estimates for linear elliptic equations with
Lipschitz coefficients (see [ 7, 5.5]). Because of this estimate, Eq. (2.18) represents a
uniformly elliptic equation on {Jy| £19,}, so the following Harnack inequality (see
[7,5.3]) holds
Sup Wep(ywin)Scys inf <ve > (. w(y)

for ¢, small enough. It is also standard (see [7, 5.51) that
sup |0<v, e, (y, WY =6 Sup [<v, e, (v, w(¥))| -

[yl =es V<203

Combining this with the Harnack inequality on {[y|<2¢,} we have
sup (D0 00N Scar il €040, )
y|Zes = g3

which implies the stated estimate on [D log (v, e, >|. Finally, we note that by (2.24)
D, e 1> = Z h?, =|Dlog<e,,v)|?

on X. Also, [A]*=Y"|D,, e,]?, so we have

i
4
Z |Dea€4|2 SCyp
a=1 .

on X, and hence on N xR, Recall that e, is extended to N xR by parallel trans-
lation along vertical lines. From this it follows that we may take XnB,  (X,)
C{Y :y*=w(y)} since any adjacent components of XN B, , (X,) would necessarily
have a normal vector e, bounded away from e,(X,) hence for ¢, small such a
component could not exist. This completes the proof of Proposition 2.

Our next task is to discuss the behavior of f at each infinity of N. For this
purpose, we add to our hypotheses (3.1), (3.2) the following assumption on F

F(x)=tf(x)+ G(x) on N
G| Spu(L+7%)7", 06| Sps(L+7%)71 on N, (3.19)
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for each k, where te[0,1]. Assuming that f(x) tends to zero on each N,, we will
give estimates on the fall-off of f and its derivatives. We first give a bound on f by

constructing suitable “barrier” functions near each infinity. For A>0, fe(0,1), we
1

define a function f(r) for r= AB+1 on each N, by
J)=A [ (s A%~ 12s . (3.20)

The following properties of f are easily checked

1

0 () Scyodr™ for rzAPTL,

(3.21)

:—rf(A)”l—l> =—00.

The Euclidean mean curvature He, (with respect to the downward normal), and
square length |49 of the second fundamental form of the graph of f are given by

He(x, J(x)=— (1= pAr=2*
|A(x, fO)? = (B> +2p+3)A%r 472,

We wish to compute the mean curvature H of the graph of f with respect to ds>.
Using (1.1), it is not difficult to see

H(x, f() < HeCx, FO) + 500~ A, F(x))
r?0f ()]
1 P YT R
for r=AP*1 on each N,. This implies
Hx, fo) S —(1=PAr 2Py Ar=37F (3.22)
for rg/ll”%.

We will show that f is a supersolution of (3.2) for suitably large A. For this
purpose, we estimate the trace of the restriction of p,, to the graph of f. Using (1 4)

we have ;
I I O Y DO ¥
L+IDfJ?) 0] =73 1+|0f1?

iJ

N e T L

where we have denoted the trace of the restriction of p,, to the graph of f by P, so
by (3.19) and (3.22)

H—P-G<—(1-BAr > P hcyy(r 3+ Ar 37 F)
_ip b
é—(l"ﬁ)/lrgz_ﬂ‘*%s(/l 1+ﬁ+A1+ﬁ)r_2_ﬂ,
1

where we have used r>AP+1 to get the last inequality. From here we sce that if
A= A4, is chosen sufficiently large (depending on f as well as the other data), then

A-P<G (3.23)
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1
for r=A7*1 on each N,. In a similar way we see that for A large we have

—-H-P>G, (3.24)
so that the function — f is a subsolution of (3.2). We can now estimate f and its
derivatives near infinity.

Proposition 3. Suppose fis a C* solution of (3.2), with function F satisfying (3.1) and
(3.19). Suppose also that lim f(x)=0 for each N,. For any Pe(0,1), thete is a

constant ¢y3=C53(f) depending only on B, the initial data (N,g,;,p;;), and the
CONSLants Uy, Uy, Uy, Uy, s SO that

Lf )l +Ixlaf Go)l =+ [x12100f ()] + 1x[*100af (x)| < ¢35 (B)IxI 7
for any xeN,, any k.

Proof. The estimate of | f(x)| comes directly from the properties of f. Indeed, for any

positive number L we observe that (3.23) implies that f + L is also a supersolution

since the equation H— P =G is insensitive to translation in the vertical direction.

Since f tends to zero at each infinity, we observe that for L sufficiently large we
1

have f(x)+ L> f(x) for each x with r=|x|= A#+1. Define L, by
Ly=inf{L:f+L>f}.

Then L, =0, and we show that L, =0. To see this, we suppose on the contrary that

L, >0. Since f tends to zero at each infinity, it follows that there is a point x,e N
1
with [xo| = A#*1 such that f, 4(x,)+ L, = f(x,). We note that it is impossible that
1

|xg| =ABFT since f + L, has infinite slope for such points by (3.21) and hence the
inequality f+L,=/ would be violated at points near x, Thus we have
1

|xo|>A#*1 and the function f— f has a minimum at x, so we have

o _o

axi (XO)_ éxi (xo)a
3*(f—/) . . . .
( i )(xo) is a nonnegative definite matrix.

It follows that
_ fi(xo)fj(xo) =gij(x )— fi(xo)jj(xo)
1+[Df(xo)l? O 1D ()

We denote this matrix by BY, and we see that by subtracting (3.2) from (3.23) we
get

gij(xo)

i'az(.f_ f)
;BJW(XO)<—ZJ{(XO)§O-
Since BY is positive definite, this contradicts the nonnegativity of the matrix of
second partial derivatives. Therefore L,=0, and we have shown f(x)=< f(x) for
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1
|x|2 A%+ which implies by (3.21) that f <c(f)r%. A similar method using (3.24)
shows — < f hence

Ifl S c34(B)lx| 7P (3.25)

on each N.

Itisnow elementary from Proposition 2 and (3.25) that |df |, |00/ |, and |000f | are
bounded near infinity. In fact, standard Schauder estimates (see [ 7, 5.5]) applied to
(3.2) in the ball U(x)={y:|ly—x| <1} then give

|0f ()] +100f ()| +1000f | < ¢35 (Blx| ~# (3.26)
on each N,. We now view (3.2) as the following linear equation
Zau(x) la ; +zb(x) f —if =G
T
a;=(1+IDf1?) 1/2(g1_1_+|lW , Zakj kis

G=G+ z< 1_|f_i£;2)pij.

To improve the bounds (3.26) on the derivatives of f, we fix a point x,e N, and
define coordinates X =(x —x,)/o, a=|x0l/2. In terms of X, our equation becomes

2 a; -la—J“LZ ab(x —tazf o*G(x) (3.27)

i
for Xe U, (0)= {|x| < 1}. It follows from (3.26) that the Holder coefficient 19f 115, 5,0)
satisfies _ _
[of(x) — of (3

|3:c)<1 |)_§—S’|ﬁ
[pl<1

Therefore, Eq. (3.27) is uniformiy elliptic, and the coefficients satisfy [by (1.1), (1.3)]
Z a5, 5.0+ Z lobillg, 3,0

¢34(B) sup |°'2G(x)|+” 26”/} U1(0)<633(ﬁ)0_ﬂ-

xelUy(0

Haf“ﬁ,ﬁl(m: Scy4(f).

Standard methods (see [7, 5.57) then show
O @I+100/ (= 20 3up (f1+0°G)+ [5Gl 0,00

for xe U, 12(0). Writing this in terms of the original coordinates x and using (3.25)

[xXolldf (xo) + Ixolzlaaf(xo)l S cuo(B)Ixol -

[Note that in dealing with (3.27), we do not have a bound on t¢?, the coefficient of
£ but we are using the fact that t6? =0 which makes the sign of this term helpful in
deriving the estimates.] A similar method by differentiating the equation gives
estimates for |00df|. This completes the proof of Proposition 3.
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4. Proof of the Existence

In this section we prove existence of solutions of (2.27), asymptotic to zero at

infinity, and defined on the exterior of a finite family of apparent horizons. We also

study the asymptotic behavior of these solutions on the apparent horizons,

showing that they are asymptotic to the cylinder in N xIR over the horizons.
To solve (2.27) we introduce an auxilliary equation for se[0,1], te[0,1].

H(f)—sP(f)=tf, (4.1)
where H(f), P(f) are given by
vl S\ DD
H(f)_;,(g 1+|Df|2>]/1+|Df|2’

P(f)=iz<g‘7— ﬁjil_gj’?)p”'

We first solve (4.1) for >0, and then study the limit as t—0. We will look for
solutions of (4.1) in a weighted Holder space B*# for any fe(0, 1) defined in the
following way. We let 1(x) be a weight function on N satisfying t=1 on N, and
7(x)=r{x) on each end N,. We then define a norm

1 12,5 =Sup (L (0] 4+ 0D )
+ 2 A )IDDf (x)| + 12 F2A(x)| DDS Il ) »
where | DDf |, , denotes the Holder coefficient in the ball B, ,(x)

|DDf (x,) — DDf(x,)|
X1, X26Br(xy2(x) d(xp xz)ﬁ |

IDDf ||y, o=

where d(x,, x,) is distance. We let B?# be the Banach space of C*# functions on N
with finite || f|, ;. We first solve (4.1) for ¢ >0. This turns out to be straightforward
because in this case we can derive a priori bounds on f and |Df]. To see this note
that we have )
fl
H(f)=Y.D, <_— .
; /14 |Df?

Differentiating (4.1) in the direction of x*, we have

oo L) 2

2 fr (D;D NP ij i _
+S[2i,§;<g - 1+|Df|2) 1_1;_'Df|2 ¢ +§<g - W)kaij}_tDkf’
42)

where R;, is the Ricci tensor of N, arising from the commuting of covariant
derivatives. This implies in particular that the function u=|Df)? satisfies an
inequality of the form

Y. D{AD )+ Y B'Du+cu'? = tu, (4.3)

i,j i
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where AY is positive definite, B', C are bounded on N (independent of s,¢). If
fe B*# satisfies (4.1), then we have the following bounds

sup 1= uy, sup tDf 1S u,, 4.4

where u,, 4, are constants depending only on (N, g;;, p;))- To prove (4.4), we simply
note that since f tends to zero at infinity, either sup f <0, or f has an interior
N

maximum point. Using (4.1) at this point we would have

maxtf Zc¢,.
N

Similarly we show max (—tf)=c,, thus proving the first inequality of (4.4). The
N

second comes from the fact that u=|Df|? tends to zero at infinity, so using (4.3) at
its maximum point we find

sup ¢|Df|* < c; sup |Df|
N N
which gives the second part of (4.4). The following lemma can now be proved.

Lemma 2. Suppose t >0, and fe B> satisfies (4.1) for some Be(0,1). Then there is a
constant c¢,(f,t) depending on B,t as well as (N, g;;, p;)) so that || f|, ;=c,(B,1).

Proof. This lemma is a straightforward consequence of (4.4). We note that since
|Df] is bounded, (4.1) and (4.2) are uniformly elliptic equations. In particular,
standard estimates (see [7,5.3]) applied to (4.2) imply a Holder estimate on D, f
with exponent ae(0, 1) for some a. Thus f has a C** bound. This implies a bound
on the Holder modulus of continuity for the coefficients of (4.1), so we have (see
[7,5.5]) a C** bound on f In particular, we get Lipschitz bounds on the
coefficients of (4.1), so we can bound the C*# norm of f for any Be(0, 1). The decay
near infinity can be derived, for example, using the barrier method of
Proposition 3. This completes the proof of Lemma 2.
We can now easily solve (4.1) for 0.

Lemma 3. For t>0, there exists a solution fe B*? of the equation H(f)— P(f)=tf.

Proof. We use a standard continuity method. Let S={se [0, 1]: (4.1) has a solution
f.e B2#}. We will show that S=[0,1] by noting first that OeS since f=0is a
solution of H(f)=tf. We then show that S is both open and closed (hence
S=[0,1]). The fact that S is closed follows from Lemma 2, since if {s,} is a
sequence in S with s,—s, and f; is a solution in B*# of H(f, )—s,P(f, )=tf, , then
by Lemma 2

[FSPWEIAGRIE

In particular, this bound is independent of 1, so we can choose a subsequence of f,_
converging uniformly along with its first and second derivatives on compact
subsets of N to a limit f; satisfying H(f,) —sP(f,)=tf,. Moreover, || fl, ;<c4(B,?),
so that f,e B>*# for any Be(0,1). Thus seS, and S is a closed subset of [0,1].
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To prove that S is an open subset of [0, 1], we use results for linear equations
together with the implicit function theorem. Let s,€ S, and f,e B>* be a solution of
H(fo)—soP(fy)=tf,- We will show that there is ¢,>0 so that if se[0,1] and
s —so| <&y, then seS. We define a Banach space B# for Be(0,1) to be those
Holder continuous functions 4 on N so that the following norm is finite

21,5 =sup (T()* AR + () T2 LAl )

where as before |- |5 , denotes the Holder coefficient taken on the ball B, ,(x).
We then observe that T:B%># xR—-B>? xR defined by
T(f.s)=(H(f)—tf —sP(f),s) is a C* mapping and T(fy,s,)=(0,s,). The lineariza-
tion of T at (fy,s,) is the operator L,:B*#f xR—B%# xR given by Ly(1,1)
=(Lg(n), t) where

Ly =Y. AYD,Dyy+ Y. BDy— tn—P(f,)

i,j
N il i
AV = 1_|_ D 2 1/2( ij 0J0

=Y DAY +2s, Y (L+Dfp|*)~ 2 A% fip, .
j ok

It is fairly elementary to show that L, is a linear isomorphism from B*# xR to
B%#? xR. Applying the inverse function theorem for Banach space, we see that T
maps a neighborhood of (f,, s,) onto a neighborhood of (0, s,). In particular, there
is &,>0 so that (0,s) is in the image of T for [s—s,|<é,; ic., there exists f,
satisfying H(f,)—sP(f)=tf.. This shows that S is an open subset of [0,1], and
completes the proof of Lemma 3.

We now study the limit of the solutions constructed in Lemma 3 as ¢ tends to 0.
For this purpose, the estimates of Lemma 2 give no information since the
constants become large when ¢ is near 0. In fact, it is not generally true that the
solutions of the perturbed equation converge as t tends to zero. Instead we use the
parametric estimates of Sect. 3 to analyze the limit.

Proposition 4. There is a sequence {t;} converging to zero and open sets Q_, Q_, Q,
so that if f; satisfies H(f;)— P(f}) =t,f; we have:

(1) The sequence {f;} converges uniformly to + co (respectively — o) on the set
Q. (respectively Q_ ), and {f;} converges to a smooth function f, on , satisfying
(2. 27) on Q,, and (2.28) on each N,.

(2) The sets Q, and Q_ have compact closure, and N=Q_ uQ_ UQ Each
boundary component 2 of Q@ (respectively Q_) is a smooth embedded two-sphere
satisfying Hy~Try(p;)=0 (respectively Hy+Try(p;)=0) where Hy is the mean
curvature of X taken with respect to the inward normal to Q, (respectively Q_ ) and
Try(p;;) is the trace of the restriction of p;; to X. Moreover, no two connected
components of Q, can share a common boundary.

(3) The graphs G, of f; converge smoothly to a properly embedded limit
submanifold M, SN xIR. Each connected component of M, is either a component of
the graph of f,, or the cylinder Z xIRCN x IR over a boundary component X of Q. or
Q_. Any two connected components of M are separated by a positive distance.
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Remark. The two-spheres making up the boundary components of Q, and Q_ will
be referred to as apparent horizons in N (see [3] for explanation).

Corollary 1. If the initial data (N, g,;, p;;) contains no apparent horizons then (2.27)
has a solution on N satisfying the asymptotic conditions (2.28).

Proof of Proposition 4. The assertions of (3) are a direct consequence of
Propositions 2 and 3, for by the local estimate of Proposition 2 we can find a
sequence {t,} so that the G, converge to a properly embedded limiting submanifold
M,. The fact that M, is nonempty, and is a graph near infinity satisfying (2.28) on
each N, then follows from Proposition 3. The Harnack inequalities of Proposition
2 immediately imply that any connected component of M, has everywhere finite
slope and hence is a graph, or has everywhere infinite slope and hence is a cylinder
2 xR over a compact surface ZCN. We will show that X is a two-sphere
momentarily. We first note that the convergence of G, to M,, also determines Q2 ,
Q_, Q,. Our other assertions are clear except for the analysis of the boundary
components of @, and ©_.

We first analyze the boundary 0€2, of Q. In order to do this, we observe that
the Eq. (2.27) is translation invariant in the sense that for any a€lR, f,—ais also a
solution of (2.27) defined on £, Let G, , denote the graph of f,—a, and note that
by the estimates of Proposition 2 there is a sequence g; tending to + oo so that the
graphs G, , converge smoothly on compact subsets of N xR to a limiting three
dimensional submanifold of N xR. By the Harnack inequality of Proposition 2,
each component of this limiting submanifold is a cylinder over a compact surface
in N. We denote this limit by 2, xR where X is a family of compact surfaces in
N. It also follows from (2.27) that X satisfies the equation Hy —Tr, (p;))=0
where Hy , is computed with respect to the normal pointing outward from Q,. We
show that each component X of X, is a two-sphere by using (2.29) on G ,,.. We let
¢ be a smooth function of compact support on G, , and multiply (2.29) by ¢? and
integrate by parts as in the derivation of (3.3) to arrive at

[ (=R +P)¢p?)/gdxs2 | |Dol*)/gdx,

Go,a, Go,a,

where P=2(u—|J|) can be taken strictly positive by Lemma 1. It follows that for
any ¢ with compact support on ¥ xR we have

4.5)

i 1=K+ Pip?de]dx <2 i [§|qu|2 (; 4) dold

— —© Ly
where do is the area elements of X, and K, V are the intrinsic Gauss curvature of 2
and the covariant derivative operator of Z. Let y(x*) be a function satisfying y(x*)

5 .
=1 for |x* =T, y(x*)=0if |x* = T+1, and 6—x4 <2. Let { be any function on %,
x

and choose ¢ =y{ in (4.5) to obtain

(i(— K+ P)C2d0> (_}0 xzdx4)

gz(jwazda)(j Xde4)+16jwa.



Positive Mass Theorem. 11 255

Dividing both sides by | x*dx* and letting T tend to infinity we get
[(—K+P)2de<2[|V{|*do (4.6)
3 ¥

for any smooth function { on X. Choosing {=1, we get

jPde< dea.
X x

Since P is positive, by the Gauss-Bonnet theorem we conclude that X is a two-
sphere.

By similar reasoning we can choose a sequence a; converging to — o so that
G, ,, converges to a cylinder 2_ xR where X_ is a collection of two-spheres X in
N satisfying Hy—Tr,(p;)=0 where H; is computed with respect to the inward
normal to @,. The fact that the graph G, is properly embedded implies that f,(x)
converges either to + co or — co as x tends to a boundary point of Q. Using this
fact, it is clear that 0Q,=2,UZ _.

From the construction of M, it follows that any boundary point of @ or Q_
which does not lie in €2, must liec on a cylindrical component 2~ xR of M. For
such a X, we can verify (4.6) by using (2.29) on the graphs G,, so we conclude that
such X are two-spheres satisfying the appropriate equations. This concludes the
proof of Proposition 4.

We can derive a little more information about the behavior of f; near €2, from
the preceding result. In fact, if we let X be a boundary component of €, say for
definiteness that f, tends to + oo near . (A similar argument works if f, tends to
—00.) If we let 8 be a coordinate on the two dimensional sphere X, and teIR be
along the linear factor of ¥ xR, then we can define a coordinate system on a
neighborhood of £ xR in N xR by taking the fourth coordinate ¢ to be the
distance function to £ xR, say ¢ >01in 2, xIR. Let ¢ be a small neighborhood of X
in N such that the coordinates (8,t,0) are nonsingular on ¢ xR. It is a
consequence of Proposition 4 that for T>0 sufficiently large, the 3-dimensional
manifold G, (0 x (T, 0)) can be expressed by the equation g=g,(8,t) for a
smooth function g, on X x(T;0). Moreover, it follows that lim g,(6,£)=0

t—=o
uniformly for 8e 2. Using this information and the equation that g, satisfies, it is
easy to show that the derivatives of g, up to second order also tend to zero as ¢
goes to infinity. We summarize this information.

Corollary 2. If X is a boundary component of Q, on which f, tends to + oo
(respectively — o), then for T sufficiently large, the 3-manifold G, (O x(T, c0))
(respectively GoN(O x(— oo, — T)) can be represented in the form 9=g,(0,t) for a
smooth positive function g, defined on X x(T, 00) (respectively ¥ x(— oo, —T)).
Moreover, given ¢>0, there is a number T.=T so that

90(07 t) + IDgo(Ba t)l + lDDgO(H’ t)' <é

for all 0 X and t = T, (respectively t< —T,).
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5. Proof of Theorem 1

We use the function f;, constructed in the previous section to prove Theorem 1. We
want to prove that M, =0, so we consider only that component of Q, which
contains N,. For simplicity we denote the corresponding component of G, also as
G,. Let ¢ be a bounded Lipschitz function on G, which tends to zero and is square
integrable near (6Q,) x R. Multiplying (2.29) by ¢? and integrating by parts we
have

G,( (P—R)Q’Z ]/gdxé _sz <P22(hi4”l7i4)2 ]/gdx
—4§ <Pz¢i(hi4_l’i4) ]/de.

Note that no boundary terms appear in the above inequality because by (2.28) we
have

1hiy—Dial = 0(7'7/2) .

and ¢—0 near 0Q, xR whereas by Proposition 2, |h,,| is bounded near €2, xIR.
By the arithmetic-geometric mean inequality,

’4(/’ Z Qb — pm)l = 2‘/’2 Z (hi4 - pi4)2 + 2'D(P]2 .

Combining these inequalities we have
[ (P—R)p*|/gax<2 | IDol* |/ Fdx
Go Go

for any bounded Lipschitz ¢ on G, tending to zero and square integrable near
(0Q,) xR, We next observe that by Corollary 2 we can deform G, slightly in
O x (1, 0) or ¢ x(—oo0, —T) for each boundary component of @, so that G,
coincides with Z xR in O x(T, ) or O x(— oo, —T) and so that G, satisfies

— | Rp?|/gdx<3 | |Dg|* |/Gdx (5.1)
Go Go

for ¢ as above. Making G, equal to (0€2,) xR near infinity will, of course, destroy
the Eq. (2.27) which G, satisfies, but we need only (5.1) to finish the proof, and this
modification of G, will afford us technical convenience. We next remove all
infinities of G, except that asymptotic to N,. This can be done by a conformal
change of metric. Let 2 be a component of €2, and note that by inequality (4.6),
the first eigenvalue 4, of the operator A—%K on X is strictly positive. Let {, be the
first eigenfunction, say {,(x)>0 for xe X. It follows that the functions e*V*1{ (x)
are solutions of A—1R=0o0n X xR. Let ¥ denote those components of %2, on
which f;, has limit + co, and &~ those on which f, has limit — co. Let G denote
the infinity of G, asymptotic to N, i.e., G5 =G,n(N, xIR). For each £ #k, let y, be
a positive solution of A—LR=0 on N, satisfying

A
w=%+wﬂ)%rﬁw
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Such solutions 1, can be constructed easily because of (5.1). Let y be a positive
smooth function on G, satisfying the following

1 on G

v, on GY, [*k
e Vi, on Gyn(Z xR) for Xest
etVHI  on Gyn(ExR) for TeS .

’[p:

Thus v tends to zero at each infinity except G¢. If ds* denotes the induced metric
on G,, we define a new metric ds? by dsZ=wy*ds?. For ¢/ %k, it follows from
(1.1) and (2.28)

A 4
w;gijz (_ré) (5ij+0(r_1))

. x! . . .
on Gj. If we set y'=A2 =, 9 =|y|, and write dsj in terms of the y coordinate system
r

we have

dsg =, (0;;+ O(e)dy'dy’ (5.2)
Lj

for ¢ near zero. On G, (X xRR) for Te ¥ *, we have the expression
ds2 = {¥(x)e™ *VHdt? + do?)

as t— + o0 where do? is the metric of X. If we set ¢=(2]/2,) " 'e*?V*", we then
have

ds? ={4(x) (do? + 44, 0dc?) (5.3)

for ¢ near zero, xe X. If we choose a diffeomorphism of X with the standard S
having metric dog and write the flat metric in the punctured ball as do* + g*da}, we
see that the resulting diffeomorphism establishes a uniform equivalence of
Gon(Z xR) with the punctured ball, i.e., lengths are distorted by at most a fixed
constant.

We see from (5.2) and (5.3) that it is possible to add a point to G, for each
component of dQ, and for each G%, /+k to form a new manifold (N, ds) having
only one infinity N¥ =G§. If {P,, ..., P} are the points we added to G,, it follows
from our construction that the metric ds is uniformly equivalent to a smooth
metric in a neighborhood of each P, and that the scalar curvature R, vanishes
identically for points close to each P, If { is a bounded Lipschitz function on N,
the equation

Ro=y 7 *(Ry—84y)
together with (5.1) for ¢ =1{ implies
5 [ w2 IDWl)Pdvy— [ Ro(Pdvg <8 | [Dol[Pdv, (5.4)
No No No

where D, dv, are the covariant derivative and volume form of N,. We will use
(5.4) in-the following lemma to construct a solution of 4—§R,,.
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Lemma 4. There is a positive function u on N, satisfying Au—3R,u=0 except at

P,,...P}. At each P, uis continuous, and u is weakly harmonic in a neighborhood
1 N J y g
of P;. Moreover, u satisfies

A
u=1+7k+0(r_2) as r—oo

on N¥ where the number A, is negative.

Proof. Let B, be the bounded region of N, determined by {r=0}, and for ¢ large
we can find a function v, satisfying

Av,—§Rov,=4R, on B,
v, =0 on 0B,.
This follows because (5.4) implies that the homogeneous problem Au—4R,u=0

with zero boundary data has only the trivial solution. Moreover, v, is Holder
continuous and weakly harmonic near each P;. Inequality (5.4) then implies

5 I w_leo(an)lszo < j‘ lRol [ ldvy .
B, B,
Since y is a bounded function, we thus have

j. lDo(lpvg)'zéc j IRo' Ivgldvo .
B, Bs

By the Sobolov inequality we thus have
<f vag|6d00>1/3 <c | |Rol|v,ldv,.
B, B,

Since R, vanishes in a neighborhood U of {P,, ..., P }, and y is bounded below on
Ny~ U, we thus have by the Holder inequality

( | Ival6dv)1/3 §c< | |R0|6/5dv0)5/6 < | Ivul6dvo>1/6

B,~U ! No Bs~U
which implies

[ Jv,l%dvy=c
Bs~U

with ¢ independent of ¢. Standard theory then gives a uniform pointwise bound on

lv,] in B, ~ U. The Harnack inequality applied to v,+ 1 gives a uniform estimate of
lv,] in U. It is now straightforward (see [9, Lemma 3.2]) to prove convergence of

. e A -
v, +1 to a function u satisfying Au+§Ru=0 on Ny, u=1+ —r’f +0(r~?) on N§.

The positivity of u follows by using {=min{s,0} in (5.4) and applying Stokes
theorem in a standard way. This implies #=0, and that u>0 follows from the
Harnack inequality.

To show that 4, <0, we use {=u in (5.4) and integrate by parts to obtain

5 _
A E—— j L% 2|D0(W”)|2d00' (5.5)
3277.’ No
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Note that although u may not be Lipschitz near P, we can justify its use in (5.4) by
Lipschitz approximation. This completes the proof of Lemma 4.

We can now complete the proof of Theorem 1. The metric u*ds? on N, has
zero scalar curvature, and is asymptotically flat in the sense of (1.1). If the results of
[9] and [10] were applicable we would conclude that M, is nonnegative. But we
have

M)=M,+24, (5.6)

as can be seen from the definition of mass. Since M} =0 and 4, <0, it would follow
that M, >0. Note that we have been assuming y>|J| to conclude M, >0. In light
of Lemma 1 we would then have M, =0 for an arbitrary initial data set.

It remains for us to justify the use of [9] and [10] to assert My =0. The
problem is that the metric u*ds3 is not smooth at {P,, ..., P,}. We note, however,
that since the Laplace operator is uniformly elliptic near each P, there exists a
positive Green’s function G(p, g) asymptotic to zero on N,. If we define i by

Py =Y G(P,, -), then v satisfies
=1

J

Ap=0 on Ny~{P,,..,P}

B
= 5;" +0(r"%) on N,

cHyP S w(y)Sclyl* " for coordinates y at P;.

For any ¢ >0, consider the metric (1 +ey)*u*ds3. This metric is now smooth with
infinities at each P . It is easy to see that the results of [9] and [10] apply to show
that the mass on N, given by M} +¢B, is nonnegative. Since ¢>0 is arbitrarily
small we have M} =>0. This completes the proof of Theorem 1.

6. Proof of Theorem 2

In this section we prove Theorem 2 which states that if M, =0 for some k then the
initial data set is trivial. We first note that by Lemma 1 we can find a sequence of
initial data sets N converging smoothly to N as £— oo with mass M —0 for the
kth end and with N satisfying u<|J| for each 7. Then we may apply the analysis
of Sect. 4 to construct graphs G’ satisfying (2.27). By the estimates of Propositions
2 and 3 we may assume that the G§’ converge smoothly to a properly embedded
limiting submanifold having a component G, which contains a graph over N,
satisfying (2.27). We now examine the proof of Theorem 1. If we let U“ be an
exhaustion of N xIR by bounded open sets, then we can choose 1, the conformal
factor of Sect. 5 so that y,=1 on G’ "U,. It then follows from (5.6) and the final
arguments of Sect. 5 that M+ A >20. Hence by (5.5) and the fact that M{"—0
we have

lim Du,?/gdx=0. 6.1

imo Go‘”’j;mu, 1D 1/; ©
Since G§ converge to G,, it follows that u, converges to a smooth positive
function u on G, satisfying Au—gRu=0, u~1 on N,. Thus by (6.1) we have that
u=1 on G,, and hence the equation satisfied by u implies that R=0.
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Thus we may apply Theorem 2 of [9] (see also [10]) to assert that G, is
isometric to the flat IR?. In particular, N is diffeomorphic to IR* and the solution f
of (2.27) exists on all of N and has flat graph G,. Now the metric on G, has the
form g,;=g;;+ f. /s, and since G, is R?, we can choose coordinates X = (x*, X%, X°)
on G, so that g;;=4,;, We thus have

gijzéij_ffiffl‘
This shows that if (x!, X%, X3, X*) are coordinates in M*, the Minkowski space with

3
metric Y (dx’)*—(dx*)?, then the mapping N—IM* defined by X—(X, f(X)) is an
i=1
isometric embedding of N. The second fundamental form of this embedding is
given by

”ij:(l - lf)flz)_ l/zfxfxr

Note that [Df]? <1 because g, is positive definite. The corresponding expression
for h, ., the second fundamental form of G, in N xR is

ij
hy=1+IDf1)" friz,

where |Df)? is taken with respect to ds?. Direct calculation shows 1+|Df|?
=(1—|Df1*)~* so that h;=m;, On the other hand, since R=0 we can integrate
(2.29) over G, and apply Stokes theorem to show h;;=p;. Therefore, we have =;;
=p,; and we have shown that the initial data set (N, ds? p,;) is embeddable in IM*,
This completes the proof of Theorem 2.
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