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1. Introduction 

1. I. Notations and Definitions 

For basic graph concepts see the monograph of  Bollobfis [1]. + will sometimes be 

used for disjoint union of  sets. V(G) and E(G) denote the vertex-set and the edge-set 

of the graph G. (A,B,E) denotes a bipartite graph G = (V,E), where V = A +B,  and 

E C A x B. For a graph G and a subset U of its vertices, G[u is the restriction to U of G. 

N(v) is the set of  neighbors o fv  E V. Hence, IN(v) [ = deg(v) = dego(v), the degree of 

v. 5(G) stands for the minimum and A(G) the maximum degree in G. vi(G) denotes the 

size of a maximum set of vertex disjoint paths of length i (counting edges) in G. (Thus, 

vl (G) = v(G) is the size of  a maximum matching.) For A C V(G), we write 

N(A) = A N(v), 
yEA 

the set of common neighbors. N(x,y,z, ...) is shor for N({x,y,z, ...}). When A,B are 

subsets of V(G), we denote by e(A,B) the number of edges of  G with one endpoint in 
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A and the other in B. In particular, we write deg(v,U) = e({v},U) for the number of 

edges from v to U. For non-empty A and B, 

d ( A , B ) -  e(A,B) 
IA[IBI 

is the density of the graph between A and B. In particular, we write d(A) = d(A,A) = 

2te(CIA)t/lal 2 

Definition 1.1. The bipartite graph G = (A,B,E) is e-regular/f 

X CA,  Y CB,  [X I > elAI, IYt > ~IBI imply [d(X,Y)-d(A,B)[  < e ,  

otherwise, it is e-irregular. 

We will often simply say that "the pair (A,B) is e-regular" with the graph G implicit. 

Definition 1.2. (A,B) is (~,8)-super-regular i f  it is z-regular and 

deg(a)>glB 1 VaEA ,  deg(b) >SIA] VbCB.  

1.2. Powers of Cycles 

The kth power of a graph G is the graph obtained from G by joining every pair of 

vertices with a distance of at most k in G. 

Let G be a graph on n > 3 vertices. A classical result of Dirac [2] (see also [1]) 

asserts that if 8(G) > n/2, then G contains a Hamiltonian cycle. As a natural generali- 

zation of Dirac's theorem, P6sa conjectured the following in 1962. 

Conjecture 1.3.(P6sa) Let G be a graph on n vertices, l fS(G) >_ 2n, then G contains 
the square o f  a Hamiltonian cycle. 

Later, in 1974, Seymour [16] generalized this conjecture. 

Conjecture 1.4.[16] Let G be a graph on n vertices. IfS(G) > ~ n  then G contains 
- - k + l  ' 

the kth power o f  a Hamiltonian cycle. 

Seymour indicated the difficulty of the conjecture by observing that the truth of this 

coniecmre would imply the notoriously difficult Hajnal-Szemer6di theorem [ 10] (see 

below). 

The problem received significant attention lately. In the direction of Conjecture 

1.3, Jacobson (unpublished) first showed that if 8(G) > ~n, then the conclusion of the 

conjecture holds. Faudree, et al. [8] confirmed the conclusion that 

8(G) >_ ( 3 + ~ ) n + C ( e ) .  

Later the same authors improved this to 8(G) > 3n. By using a result in [9], Haggkvist 

(unpublished) gave a very simple proof for the case 8(G) > 3n + 1 and n = 0 (rood 

4). Fan and H~iggkvist [3] lowered the bound to 8(G) > 5n. Fan and K_ierstead [4] 
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improved this further to 8(G) > t ~_~_____2, and Faudree, Gould and Jacobson [7] to 8(G) _> 

7n .  Later, Fan and Kierstead [5] improved the condition to the almost optimal 8(G) >__ 

(2 + e) n + C(@ They also proved [6] that the same holds with e = C = 0 if one only 

requires the square of  a Hamiltonianpath. Finally, in [13] we proved the conjecture for 

sufficiently large n. 

For Conjecture 1.4, in [8], it is proved that for any e > 0 and positive integer k, there 

is a C such that, if an n-graph G satisfies 

then G contains the kth power of  a Hamiltonian cycle. 

In [14], we proved the following improvement of  this result. For any e > 0 and 

positive integer k, there is an N(e, k) such that if G has order n with n >_ N(e, k) and 

+>_> 

then G contains the kth power ofa  Hamiltonian cycle. 

Here, the purpose is to prove Conjecture 1.4 for any fixed k and sufficiently large n. 

More precisely: 

Theorem 1.5. For any positive integer k, there is an N(k)  such that, i f  G has order n 

with n >_ N(k)  and 

k 
8(G) _> ~ - ] -n ,  (1.1) 

then G contains the kth power  o f  a Hamiltonian cycle. 

2. The Main Tools 

In the proof, the Regularity Lemma of the third author plays a central role. Here we 

will use the following variation of  the lemma. 

Lemma 2.1.(Regularity Lemma - degree form) For every ~ > O, there is an M = M(e)  

such t h a t , / f G  -- (V,E) is any graph and d E [0, 1] is any real number, then there is a 

partition o f  the vertex-set V into l + 1 sets (so-called clusters) Vo, V1, ..., Vl, and there is 

a subgraph G' = (V,E')  with thefollowingproperties: 

• I < M ,  

• IVol _< ~lVl, 

° allclusters Vi, i >_ I are o f t h e s a m e s i z e L  <_ [~IVl], 

• dega,(v) > dega(v) - ( d +  ~ ) l V l f o r  all v E V, 

• Gqv, = 0 (V~. are independentin G'), 

• al lpairs G'lv,.× vj, 1 < i < j <__ l are ~-regular, each with a density 0 or exceeding d. 
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This form can easily be obtained by applying the original Regularity Lemma (with 

a smaller value of e), adding to the exceptional set V0 alt clusters incident to many 

irregular pairs, and then deleting all edges between any other clusters where the edges 

either do not form a regutar pair or they do but with a density of at most d. 

The other main tool is a coloring theorem of Hajnal and Szemer6di which states 

that every graph with n vertices and maximum degree A(G) _< k is (k+ 1)-colorable 

with all color classes of size Ln/(k + 1) J or [n/(k + 1)]. We have already pointed out 

the close connection between Seymour's problem and the Hajnal-Szemer6di theorem, 

namely, the truth of Conjecture 1.4 would imply the latter theorem. We use the theorem 

in the following complementary form. 

Lemma 2.2.[10] Let G be a graph on n = s(k + 1) vertices. If~(G) >_ A n ,  then G 
contains s vertex-disjoint cliques of order k + 1. 

In fact, we are going to use the following easy consequence of this lemma. 

k - x for some natural Lemma 2.3. Let G be a graph on n vertices. I f  6(G) >_ ~4-~n 

number x, then apart from at most k( k + 1)x +/c 2 exceptional vertices, V ( G) can be 
covered by vertex-disjoint cliques o f  order k + 1. 

Indeed, add (k + 1)x extra vertices to G and possibly a few (_< k) more to achieve 

that the new number of vertices is divisible by k + 1. Connect the new vertices to all 

other vertices. Denote the resulting graph by G and the new number of vertices by h. It 

is easy to see that 8(G) > k-~-h therefore, using Lemma 2.2, we can cover G by vertex- 
- - k + l  ' 

disjoint cliques of order k +  1. The number of vertices in V(G) which are in cliques 

containing at least one extra vertex (C V(G) \ V(G)) is at most k(k+ 1)x + k 2. 
We also use the Blow-up Lemma (see [12, 15]). 

Lemma 2.4. Given a graph R of order r and positive parameters 6,A, there exists an 
> 0 such that the following holds. Let N be an arbitrary positive integer, and let us 

replace the vertices of  R with pairwise disjoint N-sets V1, V2,..., Vr (blowing up). We 
construct two graphs on the same vertex-set V = U V~.. The graph R(N) is obtained by 
replacing all edges of  R with copies of  the complete bipartite graph KN, N, and a sparser 
graph G is constructed by replacing the edges of R with some (~, 8 )-super-regular pairs. 
I f  a graph H with A(H) < A is embeddabte into R(N), then it is already embeddable 
into G. 

When using the Blow-up Lemma, we typically need the following strengthened 

version: Given c > 0, there are positive functions s = s(6,A,r,c) and ct = a(8,A,r,c) 

such that the Blow-up Lemma remains true if, for every i, there are certain vertices 

x to be embedded into V~. whose images are a priori restricted to certain sets Cx C Vi 
provided that 

(i) each Cx within a V/is of the size at least civil, 

(ii) the number of such restrictions within a Vi is not more than a I V/[. 

Finally, we are going to use the following simple facts (see [1, 13]): 

Lemma 2.5. In a graph G on n vertices, we have 

n n 
v(G) _> max{f(G),8(G) ~--z5-~ } and v2(G) >_ (8(G)-  1) 

6A(G)" 
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3. Outline of the Proof 

In a series of papers [11-15] we have developed a general method based on the Reg- 

ularity Lemma and the Blow-up Lemma for embedding problems in dense graphs. In 

this paper we use this method again, so the proof follows a similar rough outline as the 

proof in [ 13] for example. However, several new ideas are needed. 

We will assume throughout the paper that n is sufficiently large. Furthermore, we 

may assume that k >__ 3, since for k = 2, we proved Theorem 1.5 in [13] and, for k = 1, 

it is just Dirac's theorem. We will use the following main parameters: 

¢<<d<<cz<< 1, (3.1) 

where a << b means that a is sufficiently small compared to b. For simplicity, we do not 

compute the actual dependencies, although it could be done. 

We apply Lemma 2.1 for G with a and d as in (3.1). We get a partition of V(G) 

into clusters V0, V1,..., l~. We define the following reduced graph Gr: The vertices of 

Gr are the clusters Vi, i _> 1, and we have an edge between two clusters if they form an 

e-regular pair in G ~ with density exceeding d. Since in G ~, 5(G ~) _> ( ~  - (d + ~))n, an 

easy calculation shows that in Gr, we have 

6 ( a t ) >  ff-~--~-3d l. (3.2) 

Let us apply Lemma 2.3 for Gr to obtain a covering of most of the vertices in Gr by 

vertex disjoint cliques of size k +  1. More precisely, we can cover the vertices of G~ 

apart from an exceptional set of size at most 3k(k + 1)dl + k 2 < 4k(k + 1)dl. Let us put 

the vertices of these exceptional clusters into the exceptional set V0. For simplicity, Vo 

still denotes the resulting set. Then 

Iv01 _< 4k(k+ 1)dlL+an < 5k(k+ 1)dn. (3.3) 

In the proof first we assume until Sec. 7 that the following extremal condition does 

not hold for our graph G: 

Extremal Condition (EC): There exists an A C V(G) such that 

n 
• IAI = [~-r] and 

• d(A) < a. 

We show later in Sec. 7 that if this condition does hold, then we can find the kth 

power of the Hamiltonian cycle. Firstly, in the next section, we show that under the 

assumption that EC does not hold, we can slightly modify the clique covering; we can 

achieve that a constant proportion of the cliques are (k + 2)-cliques and the rest are 

(k + 1)-cliques. This new idea will significantly simplify the adjustment procedure in 

Sec. 6. These cliques will be denoted by KI,K2, ...,Ks. 

In each clique Ki, we take an arbitrary ordering of the k + 1 (or k + 2) clusters and 

we denote the clusters in this order by V[, i i i V~, ..., V~+ 1 (, V~+2). We think of this sequence 

as a cycle of length k + 1 (or k + 2), where we have all the possible chords. 
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A rough idea of the proof in the non-extremal case is as follows: We find the kth 

power of  a path in K1 by going around the cycle as many times as possible. Then we 

connect this path to K2 with the use of  a few extra vertices, then find the kth power 

of  a path in 322, etc. However, for technical reasons, we will start by constructing the 

connecting paths between the subsequent cliques (for the last one Ks the next one is 

K1). This will be the first part of the proof in Sec. 5. In Sec. 6, we will take care of 

the exceptional vertices and make some adjustments to ensure that the distribution of 

the vertices inside each clique is perfect, i.e., there are the same number of vertices in 

each cluster of the clique. Finally, using Lemma 2.4, we string the vertices inside each 

clique into the kth power of a path. 

4. Modifying the Clique Cover 

v/d (for simplicity we assume that this number is an integer) (k + 1)- We remove F~71 

cliques from the clique cover. Let us denote the number of remaining (k + 1)-cliques 

by s. Our goal in this section is to show that by slightly changing the remaining cliques 

and by redistributing the removed clusters, we can obtain a new clique cover in which 

k-~ll(k+ 1) = v ~ l  of the cliques are (k+ 2)-cliques and the remaining s - x/dl cliques 

are (k + 1)-cliques. 

Let us consider an arbitrary removed cluster C. I f  there is a (k+  1)-clique K in 

the current cover (C might not be the first cluster we redistribute) such that we have 

(C, C) E E(Gr) for every C ~ C K, then we just add C to K, we have one more (k + 2)- 

clique and we can move to the next removed cluster. Thus, we may assume that there 

is no (k+  1)-clique K with this property. Using this fact, (3.2), (3.3), and an easy 

calculation shows that the number of (k + 1)-cliques K, for which 

I{c' [ C' CK, (C,C') EE(Gr)}] =k, 

is at least (1 - dl/3)s. We consider only these (k + 1)-cliques where the (k+ 1)st cluster 

that is not a neighbor of  C is called a C-exchangable cluster. Indeed, these clusters are 

exchangable with C. Let us denote the set of  C-exchangable clusters by S. Assume first 

that we have a C 6 S and (k+  1)-cliques K,K t such that C t C K and (C,C') E E(Gr) 
for every C ~ C K'. Then again we are done since we remove C from K and add it to U ,  

we add C to K and thus, we have one more (k + 2)-clique. Hence, we may assume that 

there is no C with this property. 

However, in this case the fact that EC does not hold, (3.1), (3.2) and some compu- 

tation imply that we can find cliques K,K'  with G = K M S, C2 = K' N S such that 

• (C1,C2) E E(Gr); 
• there exists a cluster C3 E K \ C1 with (C2, C3) ~( E (Gr); 

• NGr(C2) N K  = K \ C 3 ,  NG,.(C3) A K '  = K t \ C2. 

Here, we also use the fact that C3 is C-exchangable in two steps. Indeed, we remove C2 

from K r and add C to it, we remove (?3 from K and add C2 to it, and now C3 plays the 

role of C. 

But then we exchange C2 and 6"3 among K and K ~ and add C to K t, thus creating one 

more (k + 2)-clique again. By repeating this procedure, we obtain a clique sequence 
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K1 ,K2,... ,Ks where the first s r = ~/-dl cliques are (k+ 2)-cliques and the others are 

(k + 1)-cliques. 

5. Connecting the Cliques 

To connect the cliques, first we will use only the (k+ 1)-clique V[, V~,..., V~+ 1 even if 

1 < i < s' .  For simplicity, we keep the notation K1,K2,...,Ks for these cliques. 

We construct the connecting path between Ki and Ki+l for 1 < i < s (for i = s, 

Ki+ 1 = gi  ). Firstly, we determine the sequence of clusters from which the connecting 

path will use vertices. This sequence will be the square of a path in Gr (however, it will 

not be a simple path). 

We will repeatedly use the following fact, which is a consequence of (3.2). 

Fact 5.1. Let V1, V2, ..., Vk be k arbitrary clusters in Gr. Then 

INGr(VI'V2'""Vk)] >-- k+ 1 

In other words, every set of k clusters has a common neighborhood set of a size of  

roughly k+-~" 

Firstly, our goal is to define a sequence of (k + 1)-cliques in Gr 

K °, K 1, . . . ,  K t (5.1) 

with the following properties: 

" g 0 = K i ,  K t =Ki+I, 

• IgJ+lngJl =kfo reve ry  O < j < t -  1, 

• t = O ( k 2 ) .  

For this purpose, i lK  and/£I are two (k+ 1 )-cliques, for every cluster C in Gr \ (K UK') 

we determine a label gK,K,(C) = (a,b), 0 < a < k+ 1,0 < b < k +  1 in the following 

way. 

a = degGr(C,K) and b = degar(C, Kr). 

We are going to construct the sequence in (5.1) in two steps. Firstly, we will con- 

struct two sequences of (k + 1)-cliques 

A|,  A2~ ...~ Aq and B1,132, . . . ,  Bt2 (5.2) 

with the following properties: 

(a) A~ =K/ ,  B~ = Ke+~; 

(b) IAjl+l NAj~ l = k, ]Bjz+l nB/2l = k for every 0 < j l  < tt - 1, 0 < j2 <_ tz - 1; 

(c) either 

degar(C, Aq) > k forevery C E Bt~, (5.3) 

or  

degcr(C~,Btz) > k forevery Cr E Aq; (5.4) 
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(d) tl + t 2  = 0(~). 

Assume first that we have already constructed the two sequences in (5.2). Then in 

the second step of  the construction o f  the clique sequence in (5.1), we construct a clique 

sequence 

Do, D1, . . . ,  Dk+l, 

which forms a gradual transition between At1 and Bt2. More precisely, first we assume 

that (5.3) holds in (c). We denote the clusters in Bt2 by Vl, V2,. . . ,  Vk+l. Then we will 

have Di C Aq O Bt2 and IDi Cl Bt21 = i. The construction is the following. Do is just 

Aq. To get DI ,  we add V 1 to Do and we remove the cluster from Do = At I which is 

not adjacent to V1 (if  there is any). I f  all the clusters in Do are adjacem to I~, then we 

remove an arbitrary cluster from Do. In general, to obtain Di+l from Di, 0 < i < k, we 

add Vi+l to Di and remove the cluster from Di f-IDo which is not adjacent to V/+I (if  there 

is any). I f  all the clusters in Di ADo are adjacent to Vi+l, then we remove an arbitrary 

cluster from D i n  Do. I f  (5.4) holds in (c), then we reverse the same procedure; we 

construct the gradual transition backwards from Bt2 (starting with Dk+i)  to At1 (ending 

atDo). 
The desired clique sequence in (5.1) is obtained in the following way. 

A1, A2, . . . ,  Ata, D1, D2, . . . ,  Dk, Bt2, . . . ,  B1. 

For this sequence we use the notation in (5.t),  so t = tl + t2 + k -- O(k2). 

Thus, we only have to construct the two sequences in (5.2) in the following way. 

A1 = If,., B1 = Ki+l and assume that A1,A2, . . . ,Ajl and B1,B2, . . . ,Bj2 a r e  already con- 

structed, but (c) does not hold for Ajl and B j2. Our goal is to define a few more terms 

of  the two sequences in such a way that we strictly increase the number o f  edges in Gr 
between the two cliques, so that we get closer to (c). We repeat this procedure until (c) 

holds. It follows that in at most  O(k 2) steps, we can achieve (c), thus tl + t2 = O(k2). 

We may  assume that there exists a C1 E Aj~ with deg(C1,Bj2) <_ k -  1 and a C2 E 

Bj2 with deg(C2,Aj~) < k - 1 ,  otherwise (c) holds. Denote A = Ncr(Aj~ \ C1) and 

B = Ncr(Bj2 \ C2). Fact 5.1 implies that [A[, [B[ > (~+-~ - 3kd) l. For simplicity, we 

may assume that [A], [B[ _< ~ by removing some extra clusters. 

Let  us consider first the case where there is a C E Gr \ (Ajl UBj2) with 

gAj~, Bj2 (C) = (a,b) with a + b >_ 2 k +  1. (5.5) 

In this case, either a = k + 1 or b = k + 1 (or both), say, a = k + 1 (similar in the 

other case). To obtain AjI+I , we remove C1 from Aj~ and add C. We strictly increase 

the number  of  edges between the two cliques, thus we achieved our goal. Thus, we 

may  assume that there is no cluster C satisfying (5.5). However, in this case an easy 

computation using (3.2) shows that for most clusters C E Gr \ (Ajl U Bjz) we have 

gAi~ ' Bj2 (C) = (a,b) with a + b = 2k. (5.6) 

Indeed, the number  o f  exceptional clusters for which (5.6) does not hold is _< 7 ( k +  1)dl. 

We delete these exceptional clusters from A and B and denote the resulting sets by A r 

and B ~. I f  we have a cluster C E A ~ (similarly for B ~) with gAjI, a J2 (C) = (k, k), then we 
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obtain AA+I by removing C1 from A A and adding C. Again we increased the number 

of  edges between the two cliques. 

Thus, we may assume that gas1 ' Bj 2 (C) = (k+ t, k -  1) for every C C A', gAil ' gSz (C) = 
(k - 1, k + 1) for every C C f f  and 

l >[A,[ [ B , [ > (  1 - l O ( k + l ) d ) l .  
1,+- -5-  ' - 

This implies that we may also assume that deg(Cl,Bj2 ) = k -  1 and deg(C2,Ajl ) = 
k - 1 .  

Next, we show that we may assume that GrIA, and Gr[s, are almost complete graphs 

with an almost empty bipartite graph between them. In fact, firstly, for every C E A t, we 

have deg~(C,A ~) < 7(k+ 1)dl (and similarly for B'). Otherwise, we obtain AA+I by 

removing C1 and adding C, and we would have more than 7(k + 1)dl clusters C' with 

gAjl ' 852 (C t) = ( k , k -  1) which is impossible. Furthermore, in case 

dG~(A',B') > v~ ,  (5.7) 

it is not hard to see that there exist clusters 

{C1,C2,... ,C ~+1 } CA'  and {ck+2,ck+3,...,C 2(k+1)} C B' 

such that these 2(k+ 1) clusters induce a 2(k+ 1)-clique in Gr. Then similarly as above 

we form a gradual transition from A A to the (k + 1)-clique {C 1 , C2,. . . ,  C k+l } and this 

is At1. This is similar for Bt2 and clearly (c) is satisfied. 

Next, we show that we may assume that for most of the clusters in i f ,  the k - 1 

clusters in A A are precisely the same. For this purpose we show first that we may 

assume that for most clusters in i f ,  the k -  1 neighbors are in A jl \ C1. Indeed, we 

take a cluster C in A ~ with degG~(C,B') < v~lB'] (the fact that (5.7) does not hold 

implies that C exists). Then we define AA+I = (A A \ C1) UC, and indeed for at least 

(1 - x/d)tB'[ clusters in B', the k -  1 neighbors are in AA+I \ C (C plays the role of C1 

now). For simplicity of  notation, let us assume that this is already true for A A and f t .  

So for at least (1 - x/'d)lff I clusters C E Y ,  NG~(C) nAjl  is a set of  k -  1 clusters in 

A A \ C1. Among the possible (k_kl) sets, we consider the one which occurs the most 

often as NG~ (C) fq A A for these clusters C 6 f t .  We show that this set (denoted by E) 

occurs as Nar (C) nA  A for at least ( 1 - d ~/3) [B'[ clusters C E B'. Assume indirectly that 

this is not the case. Denote the cluster in A A \ (E U C1) by C~, so AjI = E t_J Q U C~. We 

considerNGr(E). We know that 

and 

2 -3kd) l, A'CNG,(E) INc,(E)I > k+ 1 

l INGr(E)nB'I < (1 -d l /3 ) l f f  I < (1 -d l /3 )  k + 1" 

We find clusters X1 ,X2, Y with the following properties: 

(1) x1 Nor(E) \ X2 A', r  'nNor(E); 

(5.8) 
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(2) (X1,X2),(X1,Y),(X1,C1),(X1,C~) C E(Gr); 
(3) deg(X1 ,Bj2 ) > k. 

(3.1), (3.2), (5.8) and the fact that (5.7) does not hold imply that we can easily achieve 

(1) and (2). If we could not achieve (3), then we would have a set A" of clusters such that 

A r C A" C Nat (E) \ i f ,  for every cluster C E A", we have gAil' 8j2 (C) = (k+  1 , k -  1) 

and IA"[ >_ (1 + dI/3) J L - 2  k+l" But this implies that d6r(A",B' ) >_ v-d, and similar to the 

case when (5.7) holds, we get the desired clique sequence. 

Thus, we may assume that we can pick clusters X1 ,X2, Y satisfying (i), (2), and (3). 

In this case 

AjI+I = (Ajl \C1) UX2, AjI+2 = (AjI+I \~1) UX1 and Ajl+3 = (AjI+2\X2)UY. 

It is easy to check that this construction is good and that we strictly increase the number 

of  edges between the two cliques. 

We define B" = B' NN6r(E), so by the above, we have IB"I _> (1 - dl/3)tB' I. In E 

we consider the cluster CPl ' for which deg (C~', Bj2) is the smallest. Put E' = E \ C~'. We 

considerNGr(E'). We have INar(E ' ) l  _> (k+3-~ - 3kd) l (using k _> 3), so 

INGr(E') \ (A'UB")I ~ ( k ~ - 3 k d )  I. (5.9) 

We find clusters X1 ,X2, I11, Y2, Y3 with the following properties: 

• XI,X2 E NGr(E') \ (A'UB"),Y1 ,Y2,Y3 E B"; 
• X1,Xz,Y1,Yz,Y3 form a 5-clique in Gr; 

• X1 ,X2, Cl, C~ form a 4-clique in Gr. 

Using (3.1), (3.2), (5.9) and the fact that EC does not hold, we can indeed choose these 

clusters with these properties. Then 

AjI+I = (AjI \ Ctl t) UX2, AjI+2 = (AjI+t \ C~) UX1, Ajl+3 = (Ajl+2 \ C1) I..j YI, 

AjI+4 = (Ajl+S \X1)U Y2, and Aji+5 = (Ajt+4 \X2)U Y3. 

Again, the construction is good and we strictly increase the number of  edges between 

the two cliques. 

Thus, we may assume that we have the desired clique sequence in (5.t). Given 

this clique sequence, we obtain the sequence of clusters from which the connecting 

path will use vertices in the following way. We start by going around K ° = K/, so by 

V[, t~,..., V~+ 1. We start a second cycle and stop at the last cluster before the cluster 

in K ° \ K 1 . The next cluster is the cluster in K t \ K °, then we go around K 1 once and 

in the second cycle we stop at the last cluster before the cluster in K 1 \ K 2. The next 

cluster is the cluster in K 2 \ K 1 , etc. We continue in this fashion to obtain a sequence of 

clusters (note that this sequence contains repetitions) 

G , C z ,  . . . ,  c t , ,  
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where Cj = Vj for 1 < j < k + 1; the last k + 1 clusters are the clusters V~ +1 , V~+1,..., 

V~+~ in some permutation and t' = O(k2). 

However, for technical reasons we would like to end the sequence with V~ +1, 

V~+1,...,V~+~ in this order. For this purpose it is sufficient to show that if 

V1, V2,..., Vk+l is an arbitrary permutation of  V[ +l, V~+l,..., V,/+~, then we can change 

the order to 

Wl, . . . :  ~ j - l~  ~ f ,  ~ + 1 , - - - ,  ~ f - l ~  ~j~ Vj t+I~- - - ,  Vk+l 

for any 1 < j < f _< k +  1. We separate two cases depending on whether Ki+l is a 

(k+ 2)-clique or a (k+ 1)-clique. 

Case 1. 1 <_ i + 1 <_ s', so Ki+l is a (k + 2)-clique. In this case we will use V~+~. The 

sequence of clusters is as follows: 

vl, vk+l, V~, vj-1, vi+l vj+t, vk+~ Vl vj-1, vi+1 vj+t, vs,_l, 
• " ~  ' ' "  " k + 2 '  " ' "  ~ ~ " " ~  " k + 2 '  " "  

Vj, Vj t+ l  , ..,Vk+l, VI, .. , ' V j - t ,  ~i+1 • • k + 2 ,  v j + t ,  . . . ,  v j , _ l ,  v j ,  v j , + ~ ,  . . . ,  V k + l ,  

V l , - - . ,  ~ j - I ,  ~'f,  Vj+I, - - - ,  V j ' - I ,  Vj, Vii+l, . . .  , Vk+ 1 (5.10) 

as desired. 

Thus, we may assume in this case that we have a sequence of clusters 

C1, C2, ..., Ct,,, (5.11) 

which form the square of a path in Gr and where Cj = Vj! for 1 _< j _< k + 1 and Ct,,-j = 

Ki+l (k+l)-j for 0 _< j < k with t" = O(k2). We also define 

i i ' 
- -  V~ i C-1 : V ~ + I ,  C - 2  V /~ ,  C_k+ 1 : VJ C 0 - -  k+2~ ~ ""~ 

(or Co = V~+ 1, C-1 = V~, C-2 : V~c_l, ..., C-k+l ~- V~ if  Ki+l = Kt so i = s) 

and similarly, 

c , , , + ,  = = v ; + , ,  . . . ,  = 

Now we choose a vertex pj  from each cluster Cj, 1 < j < t", such that pj is con- 

nected to all p j, with 1 _< IJ' - J l  < k. They will also have the following additional 

properties for all j ,  1 < j < k: 

IN(p1 ,p2, ...,pj) nCj-k[ > (d - e)JL, 

IN(pt",Pt"-I, ...,Pt"+l-j) NCt,+l+k-jl > ( d -  e)JL, (5.12) 

which ensure that they can later be extended to the kth power o fa  Hamiltonian cycle of  

G'. 

We will select them one-by-one with a greedy procedure. We maintain that t" + 2k 
sets Hj,j, from which the points will be selected. We start with Ho,j, = Cj,, 1 - k < j '  < 
t" + k. 
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Then, when selecting the point pj from Hj_ 1 d, 1 <_ j < t", we choose one with the 

following property: 

deg(pj,Hj_l,j, ) > (d-s)l/-/2._ld, [ for all j ' 7  ~ j ,  l J ' - i t  < k. 

This holds for all but at most 2kslCjl vertices in Hj-t,j,  so we can choose such a 

pj C I-Ij-ld. (Here, we used ( d - ~ )  k > s.) 

Then we update the sets H as follows. 

f Hj_l,j, V1N(pj) , i f l  < l J ' -J l  <_k, 
I-b,:, 

I Hj_ld, \ {pj}, otherwise. 

Note that we did not choose any points from the sets He, d, for f < 1 and f > t"; 
this selection will be done later. We will refer later to this point selection procedure 

described above as the standard greedy procedure. 

Case 2. s t < i +  1 _< s, so K/+I is a (k+ 1)-clique. The main idea is the same but in 

(5.10), we have to replace V~+~ with something else. Fact 5.1 and the fact that EC does 

not hold guarantee that in G there exists a complete bipartite graph, say, between sets 

U/and W/such that [U/[= [Wj[ = f (k)  (where f (k)  is sufficiently large compared to 

k). Also, for all the k clusters C E { V1, V2,. • •, Vj_I, I~+l , . . . ,  Vk+l } we have 

tNd . u >_  lCl. 

Then we add Uj to Vj and Wj will play the role -~ rzi+l t,~ Yk+2 in (5.10) (although it is not a 

cluster). Hence, in (5.11), some of the Cj-s are not clusters but they come from these 

complete bipartite graphs. In this case, we define 

Co ~- ~+1, C-1 =V~, C-2 = V~_ 1, ..., C-k+1 = V~ 

or 
S t S t S t S t ~ S t 

C0=V~+2, C-I=V~+ 1, C-2 = V~ , ..., C-k+I = Vj i f i  

and similarly, 

c,,,+, = v ;+ , ,  = . . . ,  = v 2 ' .  

It is not hard to see that with minor modifications the greedy procedure in Case 1 goes 

through in this case as well. 

6. Adjustments and the Handling of the Exceptional Vertices 

We already have an exceptional set V0 of vertices in G. We add some more vertices to 

Vo to achieve super-regularity. From a cluster Vj in a clique K/, we remove all vertices 

v for which there exists an f with 1 _< f < k + 1 (k + 2 if  1 < i < s r), f # j such that 

deg(v, Vj,)_ (d- a)IVj~ [. 

a-regularity guarantees that at most (k+ 1)~[Vjl _< (k+ 1)aL of such vertices exist in 

each cluster vj. 
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We may have a small discrepancy in the number of  remaining vertices in each clique 

Ki (we removed some form the connecting paths and some from the last step). By 

removing extra vertices from certain clusters (and put them into the exceptional set Vo), 

we achieve that each cluster has exactly U vertices. (We will still use the notation Vo 

for the enlarged exceptional set.) We still have IV01 < 6k(k+ 1)dn. 
Next, we take care of  the vertices in Vo. For each vertex v E V0, we find all K/s  such 

that i f / >  s ~, then 

deg(v,C) >_dlC I forall CEK/ ,  

and if 1 < i < s t, then there exist (k + 1) clusters C E K/such that 

deg(v,C) _;2 dlCl. (6.1) 

Inequality (1.1) easily shows that we have at least d3/4s such cliques for each v E V0. 

We assign each v E V0 to one of these cliques in such a way that we do not assign too 

many vertices to a particular clique. It is easy to see that an assignment is possible in 

which no clique is assigned more than dl/3L r vertices. 

Now let us take the first vertex v E V0 and let us assume first that it is assigned to 

Ki with i > s r. We will add v to the connecting path between Ki-1 and K/by also using 

some vertices from Ki in such a way that the extended path is still extendable to the 

kth power of a Hamiltonian cycle, and we use the same number of vertices from each 

cluster in K/(in fact exactly three from each cluster). 

Let us denote the connecting path between Ki- 1 and K~ by pl ,p2,  ...,pie. We extend 

this path in essentially the same way as in the previous section by using the standard 

greedy procedure with vertices Pk'+l ,Pk'+2,-..,Pie,, where k" = /d  + 3(k+ 1) + 1. We 

go around the clusters of  the clique three times. The only change in the procedure 

described in the previous section is that the new points p j , /d + 1 _< j _</d r should have 

the additional property 

[l~ MN(v) N{N(.pj) : ~ -t- 1 < j < I~', pj ~ Vg}t > d3(k+l)+lL' for each I~ E Ki. 

This guarantees that the new vertex v can be added as Pk'+2(k+l)+l, and the previous 

and next k vertices can be chosen from N(v). 
In case v is assigned to Kz. with 1 < i < s r we perform the following. We denote the 

clique of  the (k+  1) clusters C for which (6.1) holds for v by K~ and put C ~ = K/\K~. 

We can extend the connecting path between K~'-I and K/so  that now it ends with the 

clusters in K~. Just as above we go around K~ 3 times such that we can include v on the 

path. The only problem is that we created a small discrepancy among the number of  

remaining vertices in the clusters in K/. To avoid this complication we use the cluster C t 

as well. Indeed, we extend the path so that now it ends with V~+ 1 and we go around K/ 

a few times, skipping the cluster with the smallest number of  remaining vertices until 

we have the same number of remaining vertices in each cluster. 

Finally, because [Vo] is quite large, we cannot just repeat this procedure for all ver- 

tices in Vo, since we might hurt the super-regularity. Note that we never hurt the s- 

regularity. Therefore, we perform the following. We define ~: as e << ~: << d. We 

maintain another set Q beside V0. Initially Q = 0. After handling [~:nJ vertices from 

Vo, we update Q in the following way. From a cluster Fj in a clique Ki, we remove 
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all vertices v and add them to Q for which there exists a f with I < f < k + 1 (k + 2 

if 1 < i < st), f # j such that deg(v, V}) _ (d -  )lVj, I. Here, we only consider the 

remaining vertices in a cluster. We also remove some extra vertices to make sure that 

we have the same number of vertices remaining in the clusters in Ki. e-regularity guar- 

antees that we added at most (k+  1)~n vertices to Q. Then we handle the vertices in Q 

exactly the same way as the exceptional vertices above. Next we handle the next [Kn] 

vertices of  V0. After this we update Q and we handle the new vertices in Q, etc. 

Thus, we are left with the following situation: In each clique Ki we have the same 

number of remaining vertices in each cluster (including V~+ 2 if 1 < i < s t). On the 

connecting path between Ki- 1 and Ki, the last k vertices have many common neighbors 

in V[ (in V~+ 2 if 1 < i < s t), the last k - 1 vertices have many common neighbors in 

V~ (in V[ if  1 < i < s t), etc., and finally the last vertex has many neighbors in V~" (in 

V~_ 1 if 1 < i < st). On the connecting path between Ki and Ki+~, the first k vertices 

have many common neighbors in V~+ 1 (in V~+ 2 if 1 < i < st), the first k -  1 vertices 

many common neighbors in V~ (in V~'+1 if 1 < i < st), etc., and finally the first vertex 

has many neighbors in V~" (in V~ if 1 < i < s t). These properties guarantee that by using 

Lemma 2.4 we can close the kth power o fa  Hamiltonian cycle inside each clique. 

7. T h e  E x t r e m a l  C a s e  

In this section we assume that the extremal case (EC) is satisfied so we have an A C 

V(G) with IAI = L~-~r/and d(A) < a. Let us assume first that we have the following 

special case: There exists a partition 

V(G) = A1 UA2 U. . .  UAk+I 

with IA;I = [k-~-r~ ] for 1 < i < k and d(Ai) < ct for 1 < i < k+  1. In eachAi, we can have 

at most ~2/3 iAil exceptional vertices v C Ai for which we have 

deg(v, Ai) >_ (xl/31Ai I. (7.1) 

We call these exceptional vertices in Ai i-bad. For simplicity, let us assume first that 

we have no/-bad vertices for any 1 < i < k + 1. In this case the only problem is that 

Ak+l could be slightly larger than the other Ai-s, otherwise Lemma 2.4 would find the 

kth power of a Hamiltonian cycle. For this purpose, using Lemma 2.5, we can find a 

matching of size t&+ll - [k@r] in Ak+l. Indeed, from (1.1), we have 

n 

~(GIA~+,) >_ IAk+~l- Lk--~-~J. 

We contract these edges into vertices, where the neighbors of a new vertex are the 

common neighbors of the two endpoints of the corresponding edge. Since every (Ai,Aj) 
pair is (~, 5) super-regular with the appropriate choice of  parameters (say, e = c0 /6  5 = 

1 - a I/3) and we have the same number of  vertices in each Ai, by using the Blow-up 

Lemma (Lemma 2.4), we can find the kth power ofa  Hamiltonian cycle. 

When we have bad vertices satisfying (7.1), the main idea is the same but we have 

to handle the bad vertices first. More precisely, we have to eliminate a special type of  
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bad vertices. For a vertex v E Ai, we say that it is j-exceptional (j # i), if  

c~1/3 

deg(v, Aj) < ---~--[Ajt. 

Note that if a vertex v C Ai is j-exceptional for some j # i, then it is/-bad. Firstly, 

we have to eliminate the/-exceptional vertices for every 1 < i < k + 1. The other bad 

vertices do not cause any further complications. 

We may assume that for every 1 < i < k + 1, there are either no/-bad vertices or no 

/-exceptional vertices in the other A i-s ( j  # / ) .  Otherwise, we could exchange an/-bad 

vertex in Ai with an/-exceptional vertex in Aj. In this way we decrease the number of  

/-bad vertices. By iterating this procedure, there are either no more/-bad vertices or no 

more/-exceptional vertices left. 

If  [Ak+l] > [k-~lJ, then similarly as above, we have to find a matching to adjust 

the differences in the sizes of the sets Ai. However, ifAk+l contains a j-exceptional 

vertex for some j # k + 1, then we have to be careful since one of  the endpoints of  an 

edge could be a j-exceptional vertex. Then the endpoints do not have a large common 

neighborhood set in Aj. For this purpose we perform the following. We remove a j -  

exceptional vertex from Ak+l and we add it to Aj (we still keep the notation A1 ,A2,. . . ,  
t t  Ak+l). We iterate this procedure; if there exists an  A i with JAil > Lk-Ti'J and a j -  

exceptional vertex for some j # i, then we remove the vertex from Ai and we add it 

to Aj. Since we always decrease the number of  j-exceptional vertices, eventually this 

process has to stop. Thus, we may assume that if [Ai[ > [k~lJ holds forAi, thenAi does 

not contain j-exceptional vertices for j # i. For each such Ai, we choose a matching 

Mi of  size [Ai[ - [k--~l J in Ai as above. Indeed, we can always choose the edges in the 

matching 3/. in such a way that, for an edge in the match, the two endpoints are either 

both good (not/-bad) or one of  them is good and the other is/-bad but with a com- 

mon neighborhood of  size at least ~ IAjl in every Aj for j # i. Before we contract 

these edges into vertices and finish with the Blow-up Lemma as above, we first have to 

eliminate the/-exceptional vertices for every 1 < i < k + 1. 

Consider an 1 < i < k + 1. By the above remark if there exist/-exceptional vertices 

in other Aj's (say, we have xi of them), then we do not have/-bad vertices. If  possible 

we take a set P / o f x i  paths of  length 2 which are vertex-disjoint from each other and 

from all the matchings M/, where the 2 endpoints are in Ai and the middle point is either 

in Ai or it is/-exceptional in some Aj , j  # i. Using (t. 1), Lemma 2.5 and the fact that 

there are no/-bad vertices, it is not hard to see that the only case when it is not possible 

to find these xi paths of  length 2 is when xi = 1 (say, this exceptional vertex in Aj is 

denoted by vi). 
Let us assume first that xi > 1 for every 1 < i < k + 1 so that we can find these 

sets of  paths Pi. Taking the natural ordering A1 ,A2,... ,Ak+l, we can start building 

the kth power of the Hamiltonian cycle by the standard greedy strategy (see Sec. 5) 

going around the cycle. Consider a 1 < i < k + 1. If the middle point of  one such 

path in Pi is an/-exceptional vertex in some A j, after a few cycles we can easily put 

this path (or more precisely the three vertices on the path) with the greedy strategy on 

the kth power of  the Hamiltonian cycle being built. Furthermore, the part of  the kth 

power of  the Hamiltonian cycle that we construct is always vertex-disjoint from all the 

matchings M/and all the other remaining paths in tAiPi. If  the middle point is in Ai, then 
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we exchange this middle point with an arbitrary/-exceptional vertex in some Aj, j  ~ i 
(different ones for different paths). Again, we put this path of  length 2 on the kth power 

of the Hamiltonian cycle being built. Iterating this for all 1 < i < k + 1, we eliminate 

all/-exceptional vertices. Then we contract the edges into vertices in the matchings Mi 
and we finish with the Blow-up Lemma. 

For each i with xi = 1, we choose a path pi of  length 2 which is vertex-disjoint from 

all the matchings M; and all other paths and where vi is the middle vertex, one endpoint 

ui is in Ai and the other endpoint ~ is good in Aj. We can put this path Pi on the 

kth power of the Hamiltonian cycle being built, but unfortunately, this will change the 

natural A1,A2,... ,Ak+ 1 ordering. In order to change the ordering back to the original, 

we will need an edge (wi, ~ )  inside Ai that is vertex-disj oint from all the matching edges 

and all other paths. We shall perform the following. Assuming i < j ,  first we put ui and 

vi on the kth power of  the Hamittonian cycle in the natural A1 ,A2,... ,Ak+l ordering. 

However, in the next cycle we jump over Ai,Ai+l,... ,A j-l; from Aj we pick ~ (and 

we use the (vi,~i) edge for the necessary connection), then we have Aj-1 ,Aj-2~... ,Ai. 
Then we pick Aj+l and we continue in the natural ordering. More precisely, in the 

second cycle we pick one vertex from each set in the following sequence (~  from A j): 

AI, ..., Ai-1, Aj, Aj-1, . . . ,  Ai+I, Ai, Aj+ I, ... ,  Ak+l. 

After a few cycles in this ordering, we can change back the ordering to the original 

using the edge (wi,~7). 
We repeat this procedure for all 1 < i < k + 1 with xi = t. Then we eliminate the 

exceptional vertices for all 1 < i < k + 1 with xi > 1 with the above procedure. Then 

we contract the edges into vertices in the matchings Mi and we finish with the Blow-up 

Lemma. 

In the general extremal case, we first have an A1 C V(G) with IAI[ = Lk@rlJ and 

d(Ai) < a. If  possible, we take anA2 C V(G) \AI in the leftover with [Az[ = [k-~rl J and 

d(A2) < or. We may continue this process unless there is no At+l C V (G) \ (A1 U.. .  UAt) 
with [At+l] = [k-~rl ] and d(At+D < a. PutB = V(G) \ (Ai U. . .  UAt). I f / =  k, we get 

back the special extremal case just discussed (with somewhat worse a). Assume first 

that l <_ k - 2. We define/-bad vertices in Ai, 1 < i < l just as in (7.1). In B, the bad 

vertices are vertices v with 

deg(v, Al U.. .  UAt < (1 - al/3)[A1 U.. .  UAI[. (7.2) 

Again let us assume first that there are no bad vertices and that IB[ = (k - I + 1) Lk-~rl J - 

= = [ ~ ] B I J  and d(A) < or, GIB does not Since there is no A C B with [A] [k-~-rJ 1 

satisfy the extremal condition for k -  I. Therefore, the method described in the previous 

sections succeeds in finding the ( k -  l)th power ofa Hamiltonian cycle H in B. Actually, 

the method in this paper only works for k -  l >_ 3, but the same result is proved in [13] 

with k -  l = 2. Denote H = Pl ,P2,. •. ,PIBI" 

The main idea is to insert t vertices from A1 U. . .  tO At after every k - l + t ver- 

tices in H such that we get the kth power of  a Hamiltonian cycle. For this purpose, 

we define B' = {bl,b2,. . .  , b [ ~ ]  } in the following way: bl corresponds to the points 

Pl ,P2,. . .  ,P2(k-l+l), b2 corresponds to the points Pk-t+2,Pk-t+3,--. ,P3(k-/+l), etc., 

and b l ~  ] corresponds to the pointsp([~j_l)(k_t+l)+l , . . .  ,plBl,pl ,P2,...  ,Pk-~+l- We 
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also define G ~ on A1 U .. .  UAt UB r as GIAIt.j...UA ! and every bi E B t is connected to 

the common neighbors of  all its corresponding points in B. Thus, in G ~, we have 
. j  tA11 = JAzl . . . . .  tAzl = IB'I = L~-T • At this point, it seems that all we have to 

do is to find a covering of  G' by vertex-disjoint (l + t)-cliques by using Lemma 2.4. 

However, if  l > 1, we require certain connections between the cliques of  bi and bi+l in 

order to get the kth power ofa  Hamiltonian cycle. To avoid this complication, we do the 

following. We cover every other bi with a (l + 1)-clique in G r with the greedy procedure 

(for simplicity, we assume that IB't is even, otherwise we cover three consecutive bi's). 
Furthermore, in the process of this greedy procedure we always eliminate the arising 

exceptional vertices which do not have enough neighbors in the remaining part of  one 

of  the other sets in A1,... ,At,B I. These cliques provide an obvious restriction on the 

neighborhoods of  the remaining bi's. For example, if l = 2, then the vertex in A2 in 

the clique of bi+l must be connected to the vertex in AI in the clique of  bi. Taking 

into account these restrictions, we can find the cliques for the remaining bi's by Lemma 

2.4. We get the kth power of  a Hamiltonian cycle by inserting between Pi(k-l+l) and 

Pi(k-l+l)+l the other l vertices in the clique ofbi in the order At,Al_l, . . .  ,A1. 

In case IBI > ( k - l  + 1)[k-~71 J, we do the following. As we construct the ( k - l ) t h  

power of a Hamiltonian cycle in B with the method described in the previous sections, 

by utilizing the ( k -  l + 2)-cliques, a short part of this Hamiltonian cycle is actually the 

( k -  l +  1)st power of  a path. Then on this part of the path we can contract IB I - ( k -  
l + 1)[k-~l J edges into vertices so that the resulting graph still contains the ( k -  l)th 

power of a Hamiltonian cycle. We do the above procedure for this Hamiltonian cycle 

and then by substituting the edges for the contracted vertices, we still get the kth power 

of a Hamiltonian cycle in G. 

The handling of  the bad vertices is very similar to the above special extremal case 

and the details are left to the reader. 

Finally, let l = k -  1. We may also assume that there is a partition B = B1 t3 B2 

with IBII = [k-~-fJ and d(Bl ,B2) < 0:, otherwise our method in [13] and the above 

inserting technique finishes the proof. Again for simplicity, we assume that there are no 

exceptional vertices. We find two vertex-disjoint edges el = (ui, vl), e2 = (u2, v2) such 

that ul,u2 E B~ and vl,v2 E B2. We take a matching of  size [B21 - Lk-~-fJ in B2 that is 

vertex-disjoint from el and e2, and we collapse these edges into vertices. We still denote 

the resulting set by B2, so IBzl = Lk-~l J. We find Hamiltonian paths in GIB l connecting 

ut with u2, and in GI,2 connecting vl with v2. Denote the resulting Hamiltonian cycle 

in Gt,  by H. With the above inserting technique we insert l vertices from At U. . .  OAt 
after every 2 vertices in H such that we get the kth power of  a Hamiltonian cycle. This 

finishes the extremal case and the proof of  Theorem 1.5. 
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