Edinburgh Research Explorer

Proof Planning for Maintainable Conguration Systems

Citation for published version:
Lowe, H, Pechoucek, M & Bundy, A 1998, 'Proof Planning for Maintainable Conguration Systems', Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, vol. 12, no. 4, pp. 345-356.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Artificial Intelligence for Engineering Design, Analysis and Manufacturing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 20. Aug. 2022

https://www.research.ed.ac.uk/en/publications/e9d81009-00ad-4e87-bb4b-9edda36e442b

Proof planning for Maintainability

Proof planning for

M aintainable

Configuration Systems

Helen Lowe
Department of Computer Studies,
Glasgow Caledonian University

Micha Pedhoucek,
Gerstner Laboratory for Intelli gent Dedsion Making
Czed Tedhnicd University in Prague

Alan Bundy,
Department of Artificial Intelligence
University of Edinburgh.

Short title: Proof planning for Maintainability.
Number of pages: 18

Number of tables: 0

Number of figures: 5

Correspondence aldress

Helen Lowe,

Department of Computer Studies, Glasgow Caledonian University, Cowcaddens Road,
Glasgow, Scotland.

Email: H.Lowe@gcd.acuk

Tel: 44-141-331-3288

Proof planning for Maintainability

Proof planning for Maintainable Configuration Systems

Abstract

Configuration is a complex task generaly involving varying measures of constraint satisfadion,
optimization, and the management of soft constraints. Although many succesul systems have been
developed, these ae often difficult to maintain and to generaize in rapidly changing domains. In this
paper we consider building intelli gent knowledge based systems with maintainability well to the fore in
our requirements for such systems. We introduce two case studies: the initial proof of concept, which
was in the domain of computer configuration, and a further field-tested study, the anfiguration of
compressors. Central to our approach is the use of the proof planning technique, and the dean
separation of different kinds of knowledge: factual, heuristic, and strategic.

Keywords: Configuration, Proof Planning, Maintainability, Knowledge Based Systems.

Proof planning for Maintainability

1. Introduction

1.1 Configuration

The configuration task is generally perceived as a problem of assembling elements of a system together
in such a way that no internal logicd constraints are violated, or so that the extent of violation is
minimal. Stefik (1999 defines four key elements:

* A gpecification language. The nature of the environment and the use of the system are refleded
here. A spedficaion language may include optimisation criteria.

e A sub-model of parts represents a cdalogue of component parts. This sib-model also describes
the mutual interdependencies. Hence when a particular component is configured, there ae links to
all the other components neading to be mnsidered.

* A sub-model for spatial arrangements spedfies the means of describing spatial arrangements of
the components and thus defines what combinations of components are dl owed.

e A sub-model of sharing expresses conditions under which a mmponent can satisfy more than one
set of requirements. There can be exclusive use, limited sharing, unlimited sharing, serid
reusability and measured cgpadty.

Formalizing a domain in logic Najmann and Stein (1992 define mnfigurations as mathematica
structures with components:

e asetof objeds

e aset of properties for eat objed (functionality—value pairs)

e aset of functionaliti es

e for ead functionality, a set of values, an addition operator, and atest

e aset of demands (functionality—value pairs)

According to this model, the configuration processis a finite sequence of compaositions of objeds while
asolution is a configuration objed which the tests sow satisfies the demands.

Some aiuthors have given a logic-based description of configuration tasks, for example, Klein (1996.
The development of logicd formalisms guarantees oundness of resulting solutions. The particular
constructive type theory of configuration developed in Lowe (1993 goes further in that sound
configuration objeds are synthesized from the spedfication of such an objed (see §2.2). We seethat
this view is very strongly related to that of constraint-based approaces (see for example, Faltings and
Weigel, 1994). We shall seethat, althoughit is not explicitly a constraint-based system, our approach
may be viewed as "constraints as types’, where many of the wnstraints are satisfied by alowing only
objeds of the arred type to be synthesised.

However, whil e this takes care of some dasses of constraint, those remaining tend to be more difficult
to manage. The difficulty, certainly in the domains we have looked at, is that the problem is esentially
under-constrained. It is more &in to design, of which, in fad, configuration is one cmponent (Brown,
1996. The user wishes to explore the design space How to present (only) essentially different designs
for perusal, rather than awhole host of similar ones, is amajor control problem. We use proof planning
(see 82) to represent and generate strategies for exploring the design spacein an efficient manner.
These strategies are expressed explicitly, and separately, from other kinds of knowledge.

Many authors (see for example, Steds & McDermott, 1993 have pointed out the maintenance
problems faced when managing systems in which product information changes often. Mannisto et al.
(1996 proposes a generic structure model to suppart different views and clasdficaions of the same
components evolving over time. In our view, the problem he mentions, that the origina enginee's may
not understand the way the products are described in the system, is a mnsequence of mixing different
kinds of knowledge. Our approach, demonstrated in the two case studies described in this paper,
necesstates a dean separation of objed-level, heuristic, and control (strategic) knowledge, which could
be separately maintained with the ad of appropriate user interfaces.

Proof planning for Maintainability

1.2 Two configuration case studies

We now introduce the problem domains of our two case studies illustrating our approach to the
configuration task, followed in 81.4 by an overview of the different types of knowledge which must be
represented and the maintenance problems arising from these.

1.21 Computer Configuration

As an initial proof of concept, we looked at the problem of how to synthesize a onfiguration which
meds a spedficaion of a mmputer system, using data and damain expertise from personnel at Hewlett
Padkart, Bristol. This g/nthesis ould result in aterm representing all the components needed, together
with detail s of the mnnedions between them.

As we shall show in §1.4, the caeful separation of objed-level knowledge from meta-level control and
heuristic knowledge is an important feaure of our approach. It has the benefit of fadlitating
maintenance, in a domain which traditionally has been bedevill ed by maintenance overheads. In our
configuration systems this separation is both strict and explicit. We shall show how objed-level
knowledge may be extraded and formally represented in such a way as to alow the utilization of
techniques analogous to program synthesis, to perform tasks such as g/nthesizing computer
configurations which mee spedfications. Such an approach makes the task of maintaining krowledge
bases more tradable and reliable.

1.2.2 Compressor Configuration

We foll owed up our initial proof of concept with a further experiment. CompAir Reavell Ltd, a member
of the Siebe group, manufadure high presaure gas compresors mainly for the naval, NGV and
breahing air markets. Our objedive wasto produce an automatic configurer for spedfying compresors
in an enginea-and-made-to-order context. The system was required to present a logicdly sequenced
order of questions, together with al legal options, to the user. The system should then price the
solution, creae the anstruction description number, and set up the final quotation document.

Unlike the previous case study, the dient wanted an interadive system, with the user presented with
legal choices at ead of the main stages. The system was to present an appropriate and logicaly
sequenced series of questions, complemented with a set of all the legal options, in order to fadlit ate the
global product spedficaion. There ae two main clusters of dedsion processto consider. Firstly, there
are several components that constitute abasic solution; once these have been configured, it is possble
to attach a ballpark figure for the final cost of the mmpressor. Budget-related reasoning should be
caried out at this dage. The rest of the configuration, namely customer-spedfic settings and the
addition of optional accesries, should be daborated afterwards, and the wst refined component by
component from that point.

Given the problem of rapidly changing product lines, a prime goa was for the system to be realily
maintainable. Lowe (1994 claimed that the proof planning methoddogy should fadlit ate maintenance
now we had a chanceto test this hypothesisin the field. We hoped that the particular formali sm chosen,
expressed in logic and implemented in Prolog, with its sparation of knowledge and control, would
fadlit ate the maintenance of al types of knowledge in the system. To this end, a prototype system was
built and underwent field-testing at CompAir, including tests for maintainahilit y.

1.3 Classification of knowledge

1.3.1 Object-level knowledge

Our first kind of knowledge is factual. We represent these fads as object level axioms. They include
attributes of particular components, general configuration rules, and limits. For example

No more than six devices may be conneded to a mmponent example-channel (of type channel);
No more than four objeds of type disk-drive may be conneded to it.
No more than four components of type card-cage in a aonfiguration;
No more than four objeds of type channel to be wnfigured in them.

APONBE

Proof planning for Maintainability

Ead of these four limits is a hard constraints, in that they may never be relaxed. Any objed not
conformingto them is not legal.

1.3.2 Heuristics

Seowondly, we have heuristic knowledge. Suppose that it has been discovered that configuring the
maximum number of components legally possble in a configuration may lead to an inefficiently
runnng computer system. Suppose in the examples of objed-level knowledge aove, these heuristics
amount to more stringent limits as foll ows:

No more than five devices sould be mnneded to an ex-channel.

No more than threeobjeds of type disk-drive should be mnneded to an ex-channel.
No more than four card-cagesin a configuration (no change from the aove).

No more than threeobjeds of type channel to be configured in an ex-card cage.

APONE

The dhanges from the previously given limits represent relaxed, soft limits, i.e. these limits are desirable
for some reason and in some sense, but objeds not conforming to them may till be legal.

Soft compatibility constraints are often discovered during the lifetime of a component.

1.3.3 Control knowledge

Thirdly, we have control knowledge, for example knowledge eout the order in which sub-tasks sould
be caried out. An example of top-level strategy might be:

1. Tryto find a wnfiguration which obeys all heuristic limits.

2. If not possble, try to find a configuration which breaks as few heuristics as posdble.

Here, we aetredingall heuristics as equally important. However, thisleads to us “preferring’ breades
of the channel-per-card cage heurigtic, since one bread here gives us a “breahing space” while we
load devices on to the “extra™ channel up to heuristic limits before we have to consider any more
breades. So the strategy can be expanded as foll ows:

1. Tryto find a mnfiguration which obeys all heuristic limits.

2. If not possble, ignore the heuristic:
No more than threeobjeds of type channel to be mnfigured in an ex-card cage,
but try to find a configuration which meds both the other heuristics.

3. Otherwise, just try to find alegal configuration (perhaps optimal with resped to price).

Apart from managing teuristics, there ae other types of control knowledge. For example, when
configuring devices on channels, it pays to configure the most restricted devicesfirgt, i.e. devices which
may not share channels with certain other devicesin the anfiguration. On a more global level, there ae
advantages to performing the task in a particular order. There may be no universally appropriate order,
but, given particular spedficaions, there may be away of ordering the various sub-tasks asto cut out
excesgve seach. These strategies can be expressed as proof plans.

1.4 Knowledge and the maintenance problem

Separating different kinds of knowledge into classes enables us to manage them separately. In the cae
of computer configuration it is very often the case that the pricelist and the product list changes rapidly,
whereas knowledge of how to configure solutions gays unchanged for alongtime.

This sparation enables eat type of knowledge to be ercoded declaratively if we so wish. This is
important if we ae to be ale to ched that the formalism given acards with our understanding of the
semantics, and thisisimportant from the maintainability asped. We neal to be ale to ched, separately
and independently:

1. That the fads represented are “true”, or at least what we intend (e.g. the rules of configuration).

2. That procedures are catured corredly.

Proof planning for Maintainability

e ltisclea that objed level knowledge must be updated as new products come into being and cthers
become obsol ete.

e Heuristic knowledge is, or should be, changing with time and circumstance for instance, the fadt
that particular configurations leal to inefficiency may only be leaned from experience of adual
runring configurations. Conversely, it may be rendered obsolete & productsimprove.

e Explicitly and separately held control knowledge enables us to update the configuration as whole
structures or new kinds of products are alded or altered. This may mean that the system can be
generalized if sales palicy changes, or if it isrequired to be used for other, similar tasks.

If the three kinds of knowledge ae inextricably intermixed, the nfiguration task becomes
unaccetably hard. A system based on a dean separation is easier to maintain, because knowledge is
encoded dedaratively. We cainot make the daim that our systems will be eaily maintainable in the
faceof al future developments as this could involve seachanges in technology. However, it seans
more likely that we will be &le to salvage something in the faceof technologicd innovation, provided
it is not too extreme. For example, if there is aradicd change in storage methods and components, then
it will not affed the top-level architedure. Methods of generating partial configurations which are not
affeded by the dhanges to affeded components will also remain urscahed.

2. Proof Planning

2.1 Introduction to proof planning

A prodf plan is a means of expressng the commonality between members of the same "family" of
proofs while dlowing sufficient flexibility and adaptability to prove alarge number of different
theorems. Proof plans provide an explicit expresson of strategies for automated reasoning by
describing tadics in terms of the preconditions under which they are gpliceble and their effeds if
applied. This gedficdion of a tadic in terms of preconditions and effeds is cdled a method, and
methods provide abasis for combining tadics to form a complete plan — in general, a tree structure —
which, if exeauted, will carry out areasoning task.

Bundy (1987 proposed that this, originaly developed for use in theorem proving and program
synthesis, be extended to intelligent knowledge based systems (IKBS) in genera. The desirable
properties of the technique would be:

1. Efficiency, because the combinatorial explosion is avoided, or at least grealy mitigated.
2. Generdlity, because aproof plan may be gplicable to many cases.

3. Maintainability, because the separation of fadual knowledge from heuristic and control knowledge
means that either may be thanged without aff eding the other.

4. Explanatory power, becaise mntrol dedsions can be explained at the gpropriate level, rather than
by generating long chains of low-level choice pointsin the inference process

These properties are important for any knowledge based system. Thus proof plans can provide auseful
vehicle for expressng strategies for problem-solving in other domains, including ron-mathematicd
ones.

2.2 Theproofs as programs paradigm

Bates & Constable (1985 give amethod for synthesizing algorithms from proofs. If we expressthe
relationship between the input and the output of a program as ec (input, output), then an algorithm
may be synthesized by finding a constructive proof of the theorem

O input [output Cpec(input, output),

Proof planning for Maintainability

and from this extrading the dgorithm alg such that

O input Cspec(input, alg(input)).

We use an analogous technique for synthesizing configurations. Suppose we have a spedficdion,
spec(c), for a computer configuration, c. For example, the spedficaion might state (trandated into
informal language) that the mnfiguration should have a cetain number of terminals for running
particular applications, that it should have & least a catain amount of disk storage, that it should have
printers cgpable of certain spedds, tasks, etc. The synthesized ¢ should:

¢ Obey the eplicit terms of the spedficaion — have the crred number and type of terminals,
printers, disk drives, etc.

¢ Be alegal configuration — function corredly, obeying the general laws for configurations, i.e.
possess a procesor of sufficient power, enough memory, badkup devices, etc. In addition, all
devices must be @rredly conneded up. These laws may be formalized as a genera theory of
configuration.

We synthesize such a onfiguration from the objed-level theory by proving the theorem (more
properly, the mnjedure: we muld be given an urredizable spedficaion)

Oc Cspec(c). (1)

where cis a well-formed oljed of type configuration, and spec(c) is the spedficaion that ¢ must
satisfy; it includes the austomer’ s inputs as to certain values and properties of the resulting system.

An alternative way of thinking about (1) isto introduce ameta-variable C and to prove
spec(C) @

where spec(C) isa conjunct of goals expressng the required properties of the configuration.

In proving conjedure (2), C isinstantiated to a well-formed term. Thisis agradual process C starts out
as asimple meta-variable but acquires ssme structure ealy on in the proof, for example

C= proc:: L

where proc isinstantiated but L isnot: read thisas“C is a processor proc and some other terms’. Later
in the proof L in turn acquires some structure, and by the end of the proof it is fully instantiated.

2.3 Tactics

A tadic is a program encgpsulating a significant proof step with its attendant lower level steps. The
latter are typicdly ones of lessinterest to the user of the system, and correspondingly harder to keep
track of. We would prefer these to be taken care of automaticdly so that we can concentrate on the
“interesting” proof steps. For example, let us consider a Prolog tadic to configure adevice, shown in
Figure 1. The aguments of configure-device are the Deviceto be mnfigured, an interface ¢annel (1C),
and the configuration (C) in which these occur.

Proof planning for Maintainability

configure-device(Device, IC, C):-
connect-cable(Device, Cable, C),
connected-via(Device, IC, C),
type([Device, Cable, IC],).

Figure 1: An Example Tactic

In order to configure adevice we need a cdle for it, we need to conned the devicevia the caleto the
interface and the whole mnstruction — the interfacewith the device-cable pair — must be well-formed.
In Figure 1, connect-cable/3 ensures a Cable, connected-via/3 takes care of the mnnedion via the
interface and type/2 is the well -formednesscheck.

Reasoning at the level of the tadic fadlit ates the search for an acceptable solution whil st ensuring that
any such solutions found will be legal; i.e. they ensure the soundness of the auttomatic configuration
system.

2.4 Methods

A method is a spedfication for atadic.
Figure 2 shows the general structure of a method.

Name method name

input syntactic form of input goal
output syntactic form of output goal
preconditions | . .. for method to be applicable
effects ... of applying tactic

tactic program specified by method

Figure 2: Method Structure

Methods have dots for method name; input, which the input goal must match; preconditions, which are
conditions which must be true of the input if the method isto be gplicable; output, which will match
the rewritten input goal if the method is applied; effects, which are cnditions on this output goal if the
method is applied; and the spedfied tactic: the program to be gplied to the goal at this point. Figure 3
gives the method which spedfies the configure-device tadic we saw ealier.

Name configure-device

input configure(Device, IC, C)

output nil

preconditions | Deviceisadevice of C
and IC : Type

and Device needs dot of type Type

and the number of slots available of type T is s(n)
effects the number of dots available of type Tisn

tactic configure-device(Device, IC, C)

Figure 3: An Example Method

Proof planning for Maintainability

In this method, the goal to be proved must have the form configure(Device, IC, C), and the output of the
method is nil: this applies to all terminating methods where no further rewriting will be necessry if the
tadic is siccesSully applied. The preconditions date, in order, that thereis a Deviceto be onfigured in
C, that IC is of type Type, and that the number of slots avail able of the mrred type is greder than zero.
The dfed of the method is to reduce the number of such slots by one.

One nice fedure of spedfying tadics by methods in this way is that it models the “user” or “customer
view” of configuration, as oppased to the “enginee view”, which is “modelled” by adually exeaiting
the tadic. This makes developing good explanation fadliti es a redistic possbility. Thisis not true of
rule or constraint based systems which work at alow level, where the search spaceis more mmplex and
reasons for the choices made may not be readily apparent.

More importantly from the point of view of maintenance ®nsiderations, the use of methods gives an
explicit placefor us to write cntrol information. For example, the fad that the tadic to configure an
interface dannel in a cad cage should only be run if there ae spare cad cage dots belongs in the
preconditions of the configure-device method. The fad that a cad cage should not be configured if
there ae mmpletely empty card cages already present in the @nfiguration finds its place in a
configure-cc method.

2.5 Proof plans

In the mntext of configuration, we can think of proof plans as the expressons of meta-level strategies.
The @m in prodf planning is to find a plan tailor-made for the spedficaion which will prove the
particular theorem given to us of the form of (1) introduced on page 5. A sequence of applicable
methods is found. If this ssquence which we cdl a plan, is exeauted, then every conjunct in the
spedficaion is proved and we ae guaranteed that a well-formed configuration objed meding the
spedficaion will be instantiated as a by-product.

We can go further. Hightlevel strategies for configuration can be developed, and encapsulated as proof
plans, or super-methods. For example, let us consider the most basic strategy for computer
configuration, whichis:

1. Dedde an appropriate procesor from information in the spedfication.

2. Eadh procesr fixesakind of “template” configuration: set this up via matching.
3. Attend to explicit user needs as given by the spedfication.

4. Addesential components not explicitly spedfied.

Within this drategy, we might also want to control the order of configuration of devices, as it can be
shown that some sequences are (heuristicdly) better than others. Super-methods are distingushed from
other methods in that they cdl other methods (or super-methods) from within their effeds dots. Some
methods are iterators: for example, we may want to cal a method to configure adevice urtil there ae
no devices 9 far left unconfigured.

Within the overall guidance given by this plan, there is aufficient flexibility to caer for a variety of
spedficaions. At the same time, the eistence of a prodf plan, which will be gplied if possble, means
that there is not a random choice of methods which could lead to legal but “unretural” configurations
being generated; moreover, badktradking in order to seek aternative solutions does not lea first merely
to plans which contain the same methods, but applied in a different order — in other words, to trivially
different solutions — but to configurations which are significantly different.

Various drategies have been developed, such as the mnstraint relaxation strategies referred to ealier.
Another is the strategy employed in configuring computers to comply with cost guidelines. Here, the
configuration objeds referenced by methods are annotated so as to kegy a runring chedk on the
approximate st of the wnfiguration. This cuts down on much unrecessary seach, as branches leading
to over-expensive non-solutions are pruned ealy from the seach.

Proof planning for Maintainability

Again, this explicit representation of strategies means that we can have the benefit of efficiency whil st
retaining a dedarative, transparent system. The antrol knowledge does not have to be “hard-wired”
deep in the program.

3. The CLEM configuration system

3.1 Implementation

The main task addressed in designing the achitedure of the prototype computer configuration system
was how to separate mntrol information (how to go about the configuration task, using heuristics if
possble) from the objed-level knowledge (ensuring that the cnfigurations g/nthesized are dways

legal).

This gystem was implemented in around 5,5001i nes of Quintus Prolog, and runs on a SUN workstation.
It consists of an objed-level knowledge base (components, attributes, etc.) together with heuristic
knowledge, tadics, methods (spedficaions for tadics), and a planning mechanism to guide inferencein
the system.

Examples of strategic and heuristic management knowledge have been gven in 82. We now explain the
rationale behind the various desigh dedsions that we took in designing the types and oljed-level rules
for an automated configuration system.

3.2 Types

Adopting a hierarchicd structure for storing krowledge seems initialy attradive. However, in a field
which is changing rapidly (as computer technology is) this gives rise to considerable problems when
attempting to fit new devices into arigid framework. It is a common problem in Artificial Intelli gence
that initial classfications within frame-based systems and the like bre&k down when new objeds are
introduced which defy the original classfications, or if the information is put to a different use. This
leads to rethinking either the dassficaion or the properties attached to sots or both; or else to messy
exception-handling procedures. The problem in the @mputer hardware domain is that we canot
predict the oourse that technology will take. New products might cut aaoss existing divisions:
maintenance of the system would mean not simply updating the product data but also maintaining the
structure. Thiswould add an unrecessary overhead onto an already onerous task. Our aim was to make
maintenance & draightforward as possble so that the knowledge base part of the system could be
updated by people who currently maintain product information — people who do not necessarily have
the expertise nealed to maintain a structure tree for the knowledge base. We wanted to avoid the
situation whereby, unlessall future products conformed to the existing structure, the aldition of just one
“revolutionary”' component would cause problems.

Our solution, therefore, was to adopt a fairly “flat”' type system. Individual components (procesors,
memory modules, terminals, disk drives, tape drives, printers, channels, cables, card cages, etc.) were
represented as atomic types. There ae two ways in which this knowledge may be maintained:

1. New components of existing types may be alded (or old ones deleted).
2. New typesare alded (and dd ones, which have no members|eft, deleted).

The first is done by adding the cmponent to the knowledge base: the name of the component, together
with its type; and its attributes as appropriate (e.g. for adisk, thiswould include its cgpadty).

The second arises when a new kind of deviceis added. Inevitably there will be & least one member of
the type. Each new component, together with its type, is added to the knowledge base in the normal
way, but other information is also needed, such as how more complex terms may be built up using this

type.

Other compound types used are list types (typicdly lists of objeds nealing to be grouped together in
the mnfiguration), and pairs, which we have drealy seen.

An objea of type mnfiguration isamember of a complex type, of the form

10

Proof planning for Maintainability

processor list % memory list o devicelist ol connectors list ol connections list

Note that a simple interfacewould allow non-Al-expert people to add danain knowledge, which can
then be vali dated, althoughthis was never implemented for this prototype.

3.3 Object-level rules

Objed-level rules can take the form of fads as siown in §1.3.1and are represented by simple Prolog
ground clauses. Others can be regarded as axioms of the domain. As an example, let us consider the
rules concerning the faa that, in any configuration, al interface cads must be configured in a cad
cage. So the definition of a legal configuration (or what it means for ¢ to be amember of the type
configuration) includes the @njunct

O ch:channel [(XIcc:cardcage Ctonnected-via(ch) = cc

In other words, for ead and every interfacech, thereis some cad cage cc, such that ch is conneded via
cC.

4. The ICON industrial configuration system

4.1 Strategy

IcON (Pechoucek, 1996 was programmed in LPA Prolog 3.1 in the MS-Windows environment,
runnng on a 386 PC platform or better. Ladder logic was used for formalising objed level knowledge
about components of a mwmpresor and attributes of a solution. Proof planning methods captured the
inference knowledge. An ordered set of methods was used for expressng the dedsion processcaried
out by an expert in the field. The tadics of a method were used for storing the information about how
to creae the particular product number.

Proof planning introduced threephases of inference

1. Planning Stage
2. Vdidation Stage
3. Exeaution Stage.

In the planning stage auser is asked to give & much information as possble in order to give adiredion
to the search for possble solutions. In the vali dation stage the system off ers the best found solution with
a complete set of attributes. The user can either return bad to the planning stage and redo some of their
dedsions, or else let the solution proceed further to the exeaution stage. In the exeaution stage the
system creaes the product number and the final quotation document. As with CLEM, planning takes
place &the meta-level (user) view, so that the planning spaceis gnall relative to the underlying objed-
level search space

4.2 Planning stage

The language of methods, the domain theory and the system of higher level predicaes fadlit ates
creding an arbitrary planner and thus various planning behaviours. There were two completely diff erent
plannersimplemented within ICON in order to ill ustrate the generality and flexibility of the system.

The User Assisted Planner navigates the user throughthe spaceof posgble atributes and prompts them
for a value when necessary. It simulates the behaviour of a quotation expert in the field. An example
didogueis own in Figure 4 and a quotation in Figure 5.

The Advanced Planner can handle partially configured solutions. In such case the system all ows the
user to spedfy the dtributes and optimisation constraints they wish, and then all ows the wnfigurer to
ched the legality of the solution presented and to search throughthe dtribute spacein order to creae
the quotation automaticdly. It is notable that a first version of the Advanced Planner was implemented
injust asingeday.

11

Proof planning for Maintainability

T
g3z Industrial Configurator - dialog window

Solutian: 0K,

pof3zn; another decision
frame Portable, Crash backlrack

drivie Digsel Engine

press 300 bar abart b
allent no :
capaciy 081 25cmf 42m Explain)
contral manual start & stop h
drainage manual start & stop Choose hoses :
price 4473 o

Figure 4: Sample ICON dialogue

4.3 Validation stage

In the validation stage, the user deddes whether they like the solution found. Bacdktradking to the
planning stage is an option. In the cae of the alvanced planning the user may ask for another solution
fulfilli ng the spedficaion in question. Otherwise the program proceeds to the exeaution stage.

4.4 Execution stage

The system is engaged with the job d creaing the product number and the final quotation document.
There is a separate database of rules about how to creade aproduct number and the open output
template. All of the text is editable and can be dther printed out or saved in the conventional manner.

pcf 32D
Ceneral nodel properties:

Four Stage Air Cool ed Conpressor
Frame wit Belt Dive & Guard

12

Proof planning for Maintainability

Safety Val ves on all
2nd & 3rd Stage G|

st ages
& Moi sture Separ at or

Suction Filter with snorkel

on engi ne set

Char gi ng Pressure Gauges

Air Purity to BS4275/ Dl N3188
Filtration Pressure Gauges
Hours Run Meter

H gh Air Tenperature Switch
Low O | Pressure Switch

Resi | i ent Munt

Drive specification:
Power 18.5kW Four stroke air Cool ed Di esel Engine with Fuel
Starting Handle and 12 volts DC Electric Start.

Tank

Speci fic nodel properties:

drive d_5409

rounds 1800

franme Port abl e, Crash

drive Di esel Engi ne

press 300 bar

capacity 708l 25cnf 42m

cont rol manual start & stop

dr ai nage manual start & stop

hoses 4 XXX

out put 200/ 300 bar XXX

panel renot e

connect or aga

filtration rsi

portability handl es XXX

cont ai ns Dem st er Vessel XXX
Total price is: XXXXX
Product ldentification Number: pf 25d8rr631hd

Figure 5: An example product quotation

4.5 Object Level Formalization

The objed-level knowledge has been formalised by means of ladder logic, a well known industrial
representation. This formalism was chosen mainly because of its smplicity for non-experts. A parsing
mechanism accepts an arbitrary ladder logic expresson. Consequently the knowledge enginee may use
as complex an expresson as he likes. This ort of freedom is a substantial virtue of the system.

4.6 Meta-Level Formalization

As arealy mentioned the proof planning methoddogy introduces a dlightly unusual but very efficient
meta-level knowledge orientation. The ordered set of methods represents, at the meta-level, the dedsion
processin question. When configuring the mmpressor, the entire quoting processcan be viewed as the
more or less sructured ordering of the dedsions to be made. Each particular dedsion is represented by
a single method. From the maintenance point of view the virtue of proof planning at the meta-level is
the same & the virtue of the ladder logic & the fadual level. It is easy to refine the method language
when a new pieceof control knowledge is acquired.

The pre-conditions of a method are intended to record al adions that need to be caried out before
dedding whether a particular branch of a sub-tree suits the properties of a particular sub-solution.
Unlike the CLEM case study, where the user inputs the full spedfication up front, in ICON we need a
user dialogue to be invoked whenever a dedsion between components must be made. Note that thisis
only adivated in cases where the domain constraints have fail ed to restrict the choiceto one.

13

Proof planning for Maintainability

5. Testing

5.1 CLEM

We have tested the prototype system CLEM (Lowe, 1993), and experimented with it over a wide
variety of spedficaions, using alternative formulation of methods, and by adding rew strategies. In
addition, we succesgully added new component detail s, to test the maintainability of the objed-level
knowledge of the system.

CLEM proved cgpable of handling al but very pathologicd spedficaions. It could successully employ
strategies for control and for taking design isaues into acournt. We tested the maintainability of the
system by adding a new processor and other components. This tested whether the objed-level
knowledge wuld be updated independently of the rest of the system. Maintainability of control
information was tested throughout: control information tends to be learned gradually, and we were ale
to incorporate such urderstanding on an incremental basis, without needing to make mgjor changes to
therest of the system.

Synthesizing a configuration in this g/stem involves finding a plan, which is a sequence of methods, and
then exeauting the plan, i.e. runring the mrresponding tadics in the sequence given by the plan. One
problem with using planning, or any kind of meta-level reasoning, is the overhead incurred. For very
simple spedficdions, leading to small systems, the overheal is not cancdled out by the saving in
exeaution time, when we compare the total time of planning exeaution with the time taken to find

a solution wsing the objed-level theory unaided. However, this is not the cae when configuring large
multi-user systems. In fad, the cnfigurations do not have to be very large for planning to pay off
(Lowe, 19930. So one empiricdly proven advantage for this approach is that it is more dficient in
finding the first solutions.

Thisis not the only advantage, however. One feaure which was thought useful was the ability to search
the planning spacefor aternative solutions, rather than having to exeaute eab such solution before the
next plan is found. In red life, the (human) configurer presents several solutions for the austomer to
choose from. The information provided at the planning level is aufficient for an informed choiceto be
made, since this level deds with components at the right level for the user: in terms of devices and
attributes of whole @nfigurations, rather than in terms of devices, cables, dots, etc. Only when an
accetable solution has been found at the planning level does this plan (and this only) neel to be
exeauted, to give the full details of the cnfiguration.

Thus not only does the proof planning approach benefit system maintenance and ensure sound
solutions, it also fadlit ates exploration of aternative solutions. It should also be said that testing the
system was aso helped by this “two-stage” approach in which the most detailed information is
presented only on exeaution, making it easier to chedk the top-level detail s of the synthesized systems at
the planning level first.

5.2 ICON

IcoN was warmly welcomed and well appredated for meding all spedficaions in the cae of User
Asssted Planner and for a worthwhil e initiative in the cae of the Advanced Planner. The knowledge-
base was tested and after a small series of refinements it seamed to behave quite like the experts. As a
test case aset of 20 customer spedficaions was used, representative enoughto confirm the acarracy of
the configurer. We evaluated

How easy it was to capture the knowledge needed in the right form, and how long this took.
The time taken to design and implement the prototype system

The performance of the system, tested by its potential users.

How easy it would be for its usersto maintain.

Two weeks were spent at CompAir Reavell carrying out the knowledge dicitation phase. Afterwards, it
took around eight weeks for one person to completely build and design the system. Two further weeks
were then spent at CompAir, introducing the tool to sales people, quotation and construction
departments, and management.

14

Proof planning for Maintainability

ICON met all requirements and typicdly achieved performance levels of reducing two days work to
one minute. One aldition requested, however, was for an explanation fadlity, which was realily
provided, to enhance the sales-customer relationship. It was thought that, with this fadlity, the service
could be provided dired to customers via the Internet. Thus with the explanation fadlity, the usage of
the system went beyond what was originally envisaged.

A few inconsistencies were found during testing. These turned out to be eay to corred, for example a
redundant attribute, some misleading wocabulary, incorporation of measurement units, and a @uple of
rule changes. These ae typicd of building such systems, and it is important that they were found and
correded easily.

For maintenance, a short Prolog tutorial was organized to explain maintenance of the knowledge base.
After the tutorial sesdon, the IT staff were asked to refine the global knowledge base in two ways:

1. Addanew set of compressors (water-cooled).
2. Addanew attribute (weight) to the set of properties.

Thistook one of the authors (with his expert knowledge of Prolog and his own system) twenty minutes.
The CompAir staff averaged thirty minutes, and carried out the tasks corredly — this was considered a
pleasing result, considering the amplexity of the tasks involved and the inexperience of the staff.

The system code is well structured and self-explanatory. The opennessand flexibility of the objed level
formalism, the language of methods and the lower-level predicetes are ill ustrated by how fast and
straightforward was the development of the Advanced Planner. Due to substantial field-testing, user
friendliness easy maintainability and enhancability and overall system flexibility, Icon was
successully used at CompAir Reavel and made the quotation processconsiderably easier and faster.

6. Related and further work

Other logic-based approaches (Klein, 1996 Ngmann & Stein, 1992 Seals & Norton, 1990 focus on
the objed-level. We have identified two ather classes of knowledge — heuristic and strategic — which
also benefit from logicd formalism and separate, explicit representation, avoiding the traditional
production rule systems confusion of these dasses with their consequent maintainability problems
(McDermott, 1982. Our constructive type theory would seen to have much in common with various
constraint based approaches (Faltings & Weigel, 1994 Sabin & Freuder, 1996 Gelle & Weigel, 1996.
The speda classof constraint-based reasoning in which the @nfiguration is being gadually refined
(seeten Teije d a, 1996 is akin to our approach of gradualy synthesizing a wnfiguration from a
spedficaion by defining complex types, culminating with the configuration type, whose dots are
eventually fully instantiated with sub-parts.

Further refinement of our knowledge dass could be sought by representing ron-type cnstraints using
a onstraint-based system, probably by implementing systems in a @nstraint logic programming
language rather than Prolog, as hitherto. Other posshiliti es would be to seethe remaining constraints as
"data type invariants' and to use VDM-style proof obligations to maintain the integrity of the
synthesized configuration.

We have agued in this paper that proof planning can help manage complex knowledge bases by
separating different kinds of knowledge, and search throughlarge seach spaces by means of its explicit
seach strategies. However, we would like to test this potential in more sophisticated damains, and by
seeking rew tasks within the eisting domains requiring more sophisticated heuristics and strategies.
Encapsulating expert strategies presents grong chall enges for any approach.

Another useful extension would be to allow more interleaving between spedficaion and configuration,

and to allow the replaying of old plans on revised spedfications. This has been more developed in
ICON than in CLEM, where the complete spedficaion had to be given at the start.

15

Proof planning for Maintainability

7. Conclusion

We have developed a formalizaion of the wnfiguration domain in order to apply establi shed theorem-
proving techniques to the problem of configuring computers to med spedficdions. This ensures the
underlying soundnessof the system, in that all solutions generated will at least be legal objeds. Using
this as a basis, we have been able to encgpsulate the higher-level reasoning, used informally by human
experts, in a more formal way in order to fadlitate the generation of well-designed and natural
solutions, and to generate these solutions as efficiently as passhble by guiding search by means of meta-
level reasoning techniques. We would not argue that we have discovered, much lessimplemented, all
strategic knowledge brought to bea on this problem by human experts. However, the methoddogy of
this approach enables this to be done incrementaly. This is due to the fad that the meta-level
knowledge is cgptured independently of the objed-level theory. So not only can we maintain the system
by the aldition of new components, and even new types of components, but we can also experiment
with new strategies. Given that human expert strategies are often opaque & first, there is the alded
psychologicd benefit that we can gain new insights into the process of human reasoning in a complex
task. Using the proof planning methoddogy, we can cary out these kinds of modificaions and
experimentsin a principled way which is easy to trad.

Any student of systems analysis knows that maintainability is an important criterion for judging the
successof a mmputer system. Usualy this question is assessed with regard to systems which have been
in use, in the field, for some time. This clealy has not been done with CLEM, which is merely a
prototype. However, CLEM was not born, complete and perfedly formed, but evolved over a period o
many months. Its expandability was, therefore, an important issue right from the start, and not simply
something to worry about for the future.

ICON addresses the topic of maintainability and the eae of further enhancement, the main bottlenedk of
automated configuration. The entire system was designed carefully in this resped. After a short Prolog
syntax tutorial and predse eplanation of the system maintenance, ordinary staff from the IT
department in CompAir managed succesully to enhance the system in the diredion of attributes as
well asinthe diredion of product types.

This paper advocaes the proof planning programming methoddogy as an appropriate and convenient
approach for design, development, maintenance and enhancement of Knowledge Based Systems of this
particular sort.

Proof planning krowledge orientation makes the knowledge aquisition process more natural. Proof
Planning eases the development stage and thus considerably shortens the time needed for
implementation. Proof planning fadlitates easy maintenance and enhancement due to its natura
knowledge orientation and natural knowledge formali zation.

Acknowledgements

We should like to thank everyone & Hewlett Padard Research Laboratories, CompAir Reavell Ltd, and
the Mathematicd Reasoning Group in the Department of Artificial Intelligence, University of
Edinburgh, for their asdstance and feedbadk. Our thanks go also to the anonymous referees who gave
such helpful and constructive cmmments on an ealier version of this paper and helped to crystalli se our
ideas.

References

Barker, V.E. and O'Connor, D.E. (1989. Expert systems for configuration at Digital: XCON and
beyond. Communications of the ACM, 32 (3), 298-310.

Bates, J.L. and Constable, R.L. (1985. Proofs as programs. ACM Transactions on Programming
Languages and Systems 7(1), 113-136.

Brown, D.C. (1996. Some thoughts on Configuration Processs. Proceeadings of the AAA| 1996 Fall
Symposium on Configuration.

16

Proof planning for Maintainability

Bundy, A. (1987). How to improve the reliability of expert systems. In Research and Development in
Expert Systems |V, (Moralee S., Ed.), 3—17. Cambridge University Press

Faltings, B. and Weigel, R. (1994). Constraint-based knowledge representation for configuration
systems. Technicd Report No. TR-94/59, Department d'I nformatique, Laboratoire d'Intelli gence
Artificielle, Ecole Polytechnique Federale de Lausanne.

Gelle, E. and Weigdl, R. (1996. Interadive Configuration Using Constraint Satisfadion Techniques.
Procealings of the AAA T 1996Fall Symposium on Configuration.

Giarratano, J. and Riley, G. (1994). Expert Systems: Principles and Programming. PWS, 1994
Shortlife, E.H. and Buchanan, B.G. (1984). Rule Based Expert Systems. The MY CIN experiment of
Stanford Heuristic Programming Projed. Adison-Wesley.

Klein, R. (1996. A Logic-Based Description of Configuration: The Constructive Problem Solving
Approach. Procealings of the AAAT 1996Fall Symposium on Configuration.

Lowe. H. (1993). The CLEM configuration system, user manual and programmer manual. Technicd
Paper 20, Dept. of Artificia Intelligence Edinburgh.

Lowe, H. (19930. The application of proof plans to computer configuration problems. Unpubli shed
Ph.D. thesis, University of Edinburgh.

Lowe, H. (1994). Proof planning: a methoddogy for developing Al systems involving design. Artificial
Intelli gencein Engineeiing Design Analysis and Manufaduring 8, 307-317, spedal is3le on Reseach
Methoddogy.

Mannisto, T., Peltonen, H, and Sulonen, R. (1996. View to product configuration knowledge:
modelli ng and evolution. Proceedings of the AAAT 1996Fall Sympasium on Configuration.

Marcus, S., Stout, J., and McDermott, J. (1988. VT: An expert elevator designer that uses knowledge
badtrading. Al magazne, 9(1).

McDermott, J. (1982. R1: arule-based configurer of computer systems. Artificial Intelligence, 19,
39-88.

Mittal, S. and Frayman, F. (1989. Towards a generic model of configuration tasks. Proceadings of the
Eleventh International Joint Conference on Artificia Intelligence 1395-1401

Najmann, O. and Stein, B. (1992. A theoreticd framework for configuration. In Proceadings of the
fifth IEAAIE.

Pedhoucek, M. (1996. Prodf Planning and Industrial Configuration. Unpubli shed M.Sc. dissertation,
Department of Artificial Intelli gence, University of Edinburgh.

Pierick, J. (1986. A knowledge representation systems for dedingwith hardware @nfiguration. In
Procealings of the fifth National Conferencein Al, (Rosenchein, S. and Kehler. T., Eds.), 1051- 1021
Philadelphia AAAI.

Sabin, B and Freuder, E.C. (1996. Configuration as Composite Constraint Satisfadion. Proceealings of
the AAA T 1996Fal Symposium on Configuration.

Seals, D.B. and Norton, L.M (1990. Logic-based configuration with a semantic network. Journal of
Logic Programming, 1.

Smith, C. (1988. Product configuration: appli cation of rule-based and frame-based systems. Artificial
Intelli gence Applicaions Ingtitute, University of Edinburgh.

17

Proof planning for Maintainability

L. Steds. L and J. McDermott, J. (1993. The Knowledge Level in Expert Systems. Academic Press
Boston, MA.

Stefik, M. (1995. Introduction to Knowledge Systems. Morgan Kaufman.

ten Teije, A, van Harmelen, F, Schreiber, G, and Wielinga, B (1996. Construction of problem-solving
methods as parametric design. In Procealings of the 10th Banff Knowledge Acquisition for

Knowledge-Based Systems Workshop (Gaines, B.R and Musen, M.A. Eds.), Volume 1, SRDG
Publications, University of Calgary.

18

