

Edinburgh Research Explorer

Proof Planning for Maintainable Conguration Systems

Citation for published version:
Lowe, H, Pechoucek, M & Bundy, A 1998, 'Proof Planning for Maintainable Conguration Systems', Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, vol. 12, no. 4, pp. 345-356.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Artificial Intelligence for Engineering Design, Analysis and Manufacturing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Aug. 2022

https://www.research.ed.ac.uk/en/publications/e9d81009-00ad-4e87-bb4b-9edda36e442b

Proof planning for Maintainabilit y

1

Proof pl anni ng f or

M ai ntai nabl e

Conf i gurat i on Systems

Helen Lowe
Department of Computer Studies,
Glasgow Caledonian University

Michal Pechoucek,
Gerstner Laboratory for Intelli gent Decision Making

Czech Technical University in Prague

Alan Bundy,
Department of Artificial Intelli gence,

University of Edinburgh.

Short title: Proof planning for Maintainabilit y.
Number of pages: 18
Number of tables: 0
Number of figures: 5

Correspondence address:
Helen Lowe,
Department of Computer Studies, Glasgow Caledonian University, Cowcaddens Road,
Glasgow, Scotland.
Email: H.Lowe@gcal.ac.uk
Tel: 44-141-331-3288

Proof planning for Maintainabilit y

2

Proof planning for Maintainable Configuration Systems
Abstract
Configuration is a complex task generally involving varying measures of constraint satisfaction,
optimization, and the management of soft constraints. Although many successful systems have been
developed, these are often diff icult to maintain and to generalize in rapidly changing domains. In this
paper we consider building intelli gent knowledge based systems with maintainabilit y well to the fore in
our requirements for such systems. We introduce two case studies: the initial proof of concept, which
was in the domain of computer configuration, and a further field-tested study, the configuration of
compressors. Central to our approach is the use of the proof planning technique, and the clean
separation of different kinds of knowledge: factual, heuristic, and strategic.

Keywords: Configuration, Proof Planning, Maintainabilit y, Knowledge Based Systems.

Proof planning for Maintainabilit y

3

1. Introduction

1.1 Configuration
The configuration task is generally perceived as a problem of assembling elements of a system together
in such a way that no internal logical constraints are violated, or so that the extent of violation is
minimal. Stefik (1995) defines four key elements:

• A specification language. The nature of the environment and the use of the system are reflected
here. A specification language may include optimisation criteria.

• A sub-model of parts represents a catalogue of component parts. This sub-model also describes
the mutual interdependencies. Hence when a particular component is configured, there are links to
all the other components needing to be considered.

• A sub-model for spatial arrangements specifies the means of describing spatial arrangements of
the components and thus defines what combinations of components are allowed.

• A sub-model of sharing expresses conditions under which a component can satisfy more than one
set of requirements. There can be exclusive use, limited sharing, unlimited sharing, serial
reusabilit y and measured capacity.

 Formalizing a domain in logic Najmann and Stein (1992) define configurations as mathematical
structures with components:
• a set of objects
• a set of properties for each object (functionality−value pairs)
• a set of functionaliti es
• for each functionality, a set of values, an addition operator, and a test
• a set of demands (functionality−value pairs)

According to this model, the configuration process is a finite sequence of compositions of objects while
a solution is a configuration object which the tests show satisfies the demands.

Some authors have given a logic-based description of configuration tasks, for example, Klein (1996).
The development of logical formalisms guarantees soundness of resulting solutions. The particular
constructive type theory of configuration developed in Lowe (1993) goes further in that sound
configuration objects are synthesized from the specification of such an object (see §2.2). We see that
this view is very strongly related to that of constraint-based approaches (see, for example, Faltings and
Weigel, 1994). We shall see that, although it is not explicitly a constraint-based system, our approach
may be viewed as "constraints as types", where many of the constraints are satisfied by allowing only
objects of the correct type to be synthesised.

 However, while this takes care of some classes of constraint, those remaining tend to be more diff icult
to manage. The diff iculty, certainly in the domains we have looked at, is that the problem is essentially
under-constrained. It is more akin to design, of which, in fact, configuration is one component (Brown,
1996). The user wishes to explore the design space. How to present (only) essentially different designs
for perusal, rather than a whole host of similar ones, is a major control problem. We use proof planning
(see §2) to represent and generate strategies for exploring the design space in an eff icient manner.
These strategies are expressed explicitly, and separately, from other kinds of knowledge.

 Many authors (see, for example, Steels & McDermott, 1993) have pointed out the maintenance
problems faced when managing systems in which product information changes often. Mannisto et al.
(1996) proposes a generic structure model to support different views and classifications of the same
components evolving over time. In our view, the problem he mentions, that the original engineers may
not understand the way the products are described in the system, is a consequence of mixing different
kinds of knowledge. Our approach, demonstrated in the two case studies described in this paper,
necessitates a clean separation of object-level, heuristic, and control (strategic) knowledge, which could
be separately maintained with the aid of appropriate user interfaces.

Proof planning for Maintainabilit y

4

1.2 Two configuration case studies
 We now introduce the problem domains of our two case studies ill ustrating our approach to the
configuration task, followed in §1.4 by an overview of the different types of knowledge which must be
represented and the maintenance problems arising from these.

1.2.1 Computer Configuration
 As an initial proof of concept, we looked at the problem of how to synthesize a configuration which
meets a specification of a computer system, using data and domain expertise from personnel at Hewlett
Packart, Bristol. This synthesis should result in a term representing all the components needed, together
with details of the connections between them.

 As we shall show in §1.4, the careful separation of object-level knowledge from meta-level control and
heuristic knowledge is an important feature of our approach. It has the benefit of facilit ating
maintenance, in a domain which traditionally has been bedevill ed by maintenance overheads. In our
configuration systems this separation is both strict and explicit. We shall show how object-level
knowledge may be extracted and formally represented in such a way as to allow the utili zation of
techniques analogous to program synthesis, to perform tasks such as synthesizing computer
configurations which meet specifications. Such an approach makes the task of maintaining knowledge
bases more tractable and reliable.

1.2.2 Compressor Configuration
 We followed up our initial proof of concept with a further experiment. CompAir Reavell Ltd, a member
of the Siebe group, manufacture high pressure gas compressors mainly for the naval, NGV and
breathing air markets. Our objective was to produce an automatic configurer for specifying compressors
in an engineer-and-made-to-order context. The system was required to present a logically sequenced
order of questions, together with all l egal options, to the user. The system should then price the
solution, create the construction description number, and set up the final quotation document.

 Unlike the previous case study, the client wanted an interactive system, with the user presented with
legal choices at each of the main stages. The system was to present an appropriate and logically
sequenced series of questions, complemented with a set of all the legal options, in order to facilit ate the
global product specification. There are two main clusters of decision process to consider. Firstly, there
are several components that constitute a basic solution; once these have been configured, it is possible
to attach a ballpark figure for the final cost of the compressor. Budget-related reasoning should be
carried out at this stage. The rest of the configuration, namely customer-specific settings and the
addition of optional accessories, should be elaborated afterwards, and the cost refined component by
component from that point.

 Given the problem of rapidly changing product lines, a prime goal was for the system to be readily
maintainable. Lowe (1994) claimed that the proof planning methodology should facilit ate maintenance:
now we had a chance to test this hypothesis in the field. We hoped that the particular formalism chosen,
expressed in logic and implemented in Prolog, with its separation of knowledge and control, would
facilit ate the maintenance of all types of knowledge in the system. To this end, a prototype system was
built and underwent field-testing at CompAir, including tests for maintainabilit y.

1.3 Classification of knowledge

1.3.1 Object-level knowledge
 Our first kind of knowledge is factual. We represent these facts as object level axioms. They include
attributes of particular components, general configuration rules, and limits. For example

1. No more than six devices may be connected to a component example-channel (of type channel);
2. No more than four objects of type disk-drive may be connected to it.
3. No more than four components of type card-cage in a configuration;
4. No more than four objects of type channel to be configured in them.

Proof planning for Maintainabilit y

5

Each of these four limits is a hard constraints, in that they may never be relaxed. Any object not
conforming to them is not legal.

1.3.2 Heuristics
 Secondly, we have heuristic knowledge. Suppose that it has been discovered that configuring the
maximum number of components legally possible in a configuration may lead to an ineff iciently
running computer system. Suppose in the examples of object-level knowledge above, these heuristics
amount to more stringent limits as follows:

1. No more than five devices should be connected to an ex-channel.
2. No more than three objects of type disk-drive should be connected to an ex-channel.
3. No more than four card-cages in a configuration (no change from the above).
4. No more than three objects of type channel to be configured in an ex-card cage.

The changes from the previously given limits represent relaxed, soft limits, i.e. these limits are desirable
for some reason and in some sense, but objects not conforming to them may still be legal.

Soft compatibilit y constraints are often discovered during the li fetime of a component.

1.3.3 Control knowledge
 Thirdly, we have control knowledge, for example knowledge about the order in which sub-tasks should
be carried out. An example of top-level strategy might be:

1. Try to find a configuration which obeys all heuristic limits.

2. If not possible, try to find a configuration which breaks as few heuristics as possible.
Here, we are treating all heuristics as equally important. However, this leads to us “preferring” breaches
of the channel-per-card cage heuristic, since one breach here gives us a “breathing space” while we
load devices on to the “extra”' channel up to heuristic limits before we have to consider any more
breaches. So the strategy can be expanded as follows:

1. Try to find a configuration which obeys all heuristic limits.

2. If not possible, ignore the heuristic:

 No more than three objects of type channel to be configured in an ex-card cage,
 but try to find a configuration which meets both the other heuristics.

3. Otherwise, just try to find a legal configuration (perhaps optimal with respect to price).

Apart from managing heuristics, there are other types of control knowledge. For example, when
configuring devices on channels, it pays to configure the most restricted devices first, i.e. devices which
may not share channels with certain other devices in the configuration. On a more global level, there are
advantages to performing the task in a particular order. There may be no universally appropriate order,
but, given particular specifications, there may be a way of ordering the various sub-tasks so as to cut out
excessive search. These strategies can be expressed as proof plans.

1.4 Knowledge and the maintenance problem
 Separating different kinds of knowledge into classes enables us to manage them separately. In the case
of computer configuration it is very often the case that the price list and the product list changes rapidly,
whereas knowledge of how to configure solutions stays unchanged for a long time.

This separation enables each type of knowledge to be encoded declaratively if we so wish. This is
important if we are to be able to check that the formalism given accords with our understanding of the
semantics, and this is important from the maintainabilit y aspect. We need to be able to check, separately
and independently:
1. That the facts represented are “ true”, or at least what we intend (e.g. the rules of configuration).

2. That procedures are captured correctly.

Proof planning for Maintainabilit y

6

• It is clear that object level knowledge must be updated as new products come into being and others
become obsolete.

• Heuristic knowledge is, or should be, changing with time and circumstance; for instance, the fact

that particular configurations lead to ineff iciency may only be learned from experience of actual
running configurations. Conversely, it may be rendered obsolete as products improve.

• Explicitly and separately held control knowledge enables us to update the configuration as whole

structures or new kinds of products are added or altered. This may mean that the system can be
generalized if sales policy changes, or if it is required to be used for other, similar tasks.

If the three kinds of knowledge are inextricably intermixed, the configuration task becomes
unacceptably hard. A system based on a clean separation is easier to maintain, because knowledge is
encoded declaratively. We cannot make the claim that our systems will be easily maintainable in the
face of all future developments as this could involve sea-changes in technology. However, it seems
more likely that we will be able to salvage something in the face of technological innovation, provided
it is not too extreme. For example, if there is a radical change in storage methods and components, then
it will not affect the top-level architecture. Methods of generating partial configurations which are not
affected by the changes to affected components will also remain unscathed.

2. Proof Planning

2.1 Introduction to proof planning
A proof plan is a means of expressing the commonality between members of the same "family" of
proofs while allowing suff icient flexibilit y and adaptabilit y to prove a large number of different
theorems. Proof plans provide an explicit expression of strategies for automated reasoning by
describing tactics in terms of the preconditions under which they are applicable and their effects if
applied. This specification of a tactic in terms of preconditions and effects is called a method, and
methods provide a basis for combining tactics to form a complete plan − in general, a tree structure −
which, if executed, will carry out a reasoning task.

Bundy (1987) proposed that this, originally developed for use in theorem proving and program
synthesis, be extended to intelli gent knowledge based systems (IKBS) in general. The desirable
properties of the technique would be:

1. Eff iciency, because the combinatorial explosion is avoided, or at least greatly mitigated.

2. Generality, because a proof plan may be applicable to many cases.

3. Maintainabilit y, because the separation of factual knowledge from heuristic and control knowledge

means that either may be changed without affecting the other.

4. Explanatory power, because control decisions can be explained at the appropriate level, rather than

by generating long chains of low-level choice points in the inference process.

These properties are important for any knowledge based system. Thus proof plans can provide a useful
vehicle for expressing strategies for problem-solving in other domains, including non-mathematical
ones.

2.2 The proofs as programs paradigm
 Bates & Constable (1985) give a method for synthesizing algorithms from proofs. If we express the
relationship between the input and the output of a program as spec (input, output), then an algorithm
may be synthesized by finding a constructive proof of the theorem

∀ input ⋅ ∃ output ⋅ spec(input, output),

Proof planning for Maintainabilit y

7

and from this extracting the algorithm alg such that

∀ input ⋅ spec(input, alg(input)).

We use an analogous technique for synthesizing configurations. Suppose we have a specification,
spec(c), for a computer configuration, c. For example, the specification might state (translated into
informal language) that the configuration should have a certain number of terminals for running
particular applications, that it should have at least a certain amount of disk storage, that it should have
printers capable of certain speeds, tasks, etc. The synthesized c should:

• Obey the explicit terms of the specification — have the correct number and type of terminals,
printers, disk drives, etc.

• Be a legal configuration — function correctly, obeying the general laws for configurations, i.e.

possess a processor of suff icient power, enough memory, backup devices, etc. In addition, all
devices must be correctly connected up. These laws may be formalized as a general theory of
configuration.

We synthesize such a configuration from the object-level theory by proving the theorem (more
properly, the conjecture: we could be given an unrealizable specification)

∃ c ⋅ spec(c). (1)

where c is a well -formed object of type configuration, and spec(c) is the specification that c must
satisfy; it includes the customer’s inputs as to certain values and properties of the resulting system.

An alternative way of thinking about (1) is to introduce a meta-variable C and to prove
spec(C) (2)

where spec(C) is a conjunct of goals expressing the required properties of the configuration.

In proving conjecture (2), C is instantiated to a well -formed term. This is a gradual process; C starts out
as a simple meta-variable but acquires some structure early on in the proof, for example

C ≡ proc :: L

 where proc is instantiated but L is not: read this as “C is a processor proc and some other terms” . Later
in the proof L in turn acquires some structure, and by the end of the proof it is fully instantiated.

2.3 Tactics
A tactic is a program encapsulating a significant proof step with its attendant lower level steps. The
latter are typically ones of less interest to the user of the system, and correspondingly harder to keep
track of. We would prefer these to be taken care of automatically so that we can concentrate on the
“ interesting” proof steps. For example, let us consider a Prolog tactic to configure a device, shown in
Figure 1. The arguments of configure-device are the Device to be configured, an interface channel (IC),
and the configuration (C) in which these occur.

Proof planning for Maintainabilit y

8

configure-device(Device, IC, C):-
 connect-cable(Device, Cable, C),
 connected-via(Device, IC, C),
 type([Device, Cable, IC],).

Figure 1: An Example Tactic

In order to configure a device, we need a cable for it, we need to connect the device via the cable to the
interface, and the whole construction − the interface with the device-cable pair − must be well -formed.
In Figure 1, connect-cable/3 ensures a Cable, connected-via/3 takes care of the connection via the
interface, and type/2 is the well -formedness check.

Reasoning at the level of the tactic facilit ates the search for an acceptable solution whilst ensuring that
any such solutions found will be legal; i.e. they ensure the soundness of the automatic configuration
system.

2.4 Methods
A method is a specification for a tactic.
Figure 2 shows the general structure of a method.

Name method name

input syntactic form of input goal
output syntactic form of output goal
preconditions . . . for method to be applicable
effects . . . of applying tactic
tactic program specified by method

Figure 2: Method Structure

Methods have slots for method name; input, which the input goal must match; preconditions, which are
conditions which must be true of the input if the method is to be applicable; output, which will match
the rewritten input goal i f the method is applied; effects, which are conditions on this output goal i f the
method is applied; and the specified tactic: the program to be applied to the goal at this point. Figure 3
gives the method which specifies the configure-device tactic we saw earlier.

Name configure-device

input configure(Device, IC, C)
output nil
preconditions Device is a device of C

and IC : Type
and Device needs slot of type Type
and the number of slots available of type T is s(n)

effects the number of slots available of type T is n
tactic configure-device(Device, IC, C)

Figure 3: An Example Method

Proof planning for Maintainabilit y

9

In this method, the goal to be proved must have the form configure(Device, IC, C), and the output of the
method is nil: this applies to all terminating methods where no further rewriting will be necessary if the
tactic is successfully applied. The preconditions state, in order, that there is a Device to be configured in
C, that IC is of type Type, and that the number of slots available of the correct type is greater than zero.
The effect of the method is to reduce the number of such slots by one.

One nice feature of specifying tactics by methods in this way is that it models the “user” or “customer
view” of configuration, as opposed to the “engineer view” , which is “modelled” by actually executing
the tactic. This makes developing good explanation faciliti es a realistic possibilit y. This is not true of
rule or constraint based systems which work at a low level, where the search space is more complex and
reasons for the choices made may not be readily apparent.

More importantly from the point of view of maintenance considerations, the use of methods gives an
explicit place for us to write control information. For example, the fact that the tactic to configure an
interface channel in a card cage should only be run if there are spare card cage slots belongs in the
preconditions of the configure-device method. The fact that a card cage should not be configured if
there are completely empty card cages already present in the configuration finds its place in a
configure-cc method.

2.5 Proof plans
In the context of configuration, we can think of proof plans as the expressions of meta-level strategies.
The aim in proof planning is to find a plan tailor-made for the specification which will prove the
particular theorem given to us of the form of (1) introduced on page 5. A sequence of applicable
methods is found. If this sequence, which we call a plan, is executed, then every conjunct in the
specification is proved and we are guaranteed that a well -formed configuration object meeting the
specification will be instantiated as a by-product.

We can go further. High-level strategies for configuration can be developed, and encapsulated as proof
plans, or super-methods. For example, let us consider the most basic strategy for computer
configuration, which is:

1. Decide an appropriate processor from information in the specification.

2. Each processor fixes a kind of “ template” configuration: set this up via matching.

3. Attend to explicit user needs as given by the specification.

4. Add essential components not explicitly specified.

Within this strategy, we might also want to control the order of configuration of devices, as it can be
shown that some sequences are (heuristically) better than others. Super-methods are distinguished from
other methods in that they call other methods (or super-methods) from within their effects slots. Some
methods are iterators: for example, we may want to call a method to configure a device until there are
no devices so far left unconfigured.

Within the overall guidance given by this plan, there is suff icient flexibilit y to cater for a variety of
specifications. At the same time, the existence of a proof plan, which will be applied if possible, means
that there is not a random choice of methods which could lead to legal but “unnatural” configurations
being generated; moreover, backtracking in order to seek alternative solutions does not lead first merely
to plans which contain the same methods, but applied in a different order − in other words, to trivially
different solutions − but to configurations which are significantly different.

Various strategies have been developed, such as the constraint relaxation strategies referred to earlier.
Another is the strategy employed in configuring computers to comply with cost guidelines. Here, the
configuration objects referenced by methods are annotated so as to keep a running check on the
approximate cost of the configuration. This cuts down on much unnecessary search, as branches leading
to over-expensive non-solutions are pruned early from the search.

Proof planning for Maintainabilit y

10

Again, this explicit representation of strategies means that we can have the benefit of eff iciency whilst
retaining a declarative, transparent system. The control knowledge does not have to be “hard-wired”
deep in the program.

3. The CLEM configuration system

3.1 Implementation
The main task addressed in designing the architecture of the prototype computer configuration system
was how to separate control information (how to go about the configuration task, using heuristics if
possible) from the object-level knowledge (ensuring that the configurations synthesized are always
legal).

This system was implemented in around 5,500 lines of Quintus Prolog, and runs on a SUN workstation.
It consists of an object-level knowledge base (components, attributes, etc.) together with heuristic
knowledge, tactics, methods (specifications for tactics), and a planning mechanism to guide inference in
the system.

Examples of strategic and heuristic management knowledge have been given in §2. We now explain the
rationale behind the various design decisions that we took in designing the types and object-level rules
for an automated configuration system.

3.2 Types
 Adopting a hierarchical structure for storing knowledge seems initially attractive. However, in a field
which is changing rapidly (as computer technology is) this gives rise to considerable problems when
attempting to fit new devices into a rigid framework. It is a common problem in Artificial Intelli gence
that initial classifications within frame-based systems and the like break down when new objects are
introduced which defy the original classifications, or if the information is put to a different use. This
leads to rethinking either the classification or the properties attached to slots or both; or else to messy
exception-handling procedures. The problem in the computer hardware domain is that we cannot
predict the course that technology will t ake. New products might cut across existing divisions:
maintenance of the system would mean not simply updating the product data but also maintaining the
structure. This would add an unnecessary overhead onto an already onerous task. Our aim was to make
maintenance as straightforward as possible so that the knowledge base part of the system could be
updated by people who currently maintain product information − people who do not necessarily have
the expertise needed to maintain a structure tree for the knowledge base. We wanted to avoid the
situation whereby, unless all future products conformed to the existing structure, the addition of just one
“revolutionary” ' component would cause problems.

Our solution, therefore, was to adopt a fairly “ flat” ' type system. Individual components (processors,
memory modules, terminals, disk drives, tape drives, printers, channels, cables, card cages, etc.) were
represented as atomic types. There are two ways in which this knowledge may be maintained:

1. New components of existing types may be added (or old ones deleted).
2. New types are added (and old ones, which have no members left, deleted).

The first is done by adding the component to the knowledge base: the name of the component, together
with its type; and its attributes as appropriate (e.g. for a disk, this would include its capacity).
The second arises when a new kind of device is added. Inevitably there will be at least one member of
the type. Each new component, together with its type, is added to the knowledge base in the normal
way, but other information is also needed, such as how more complex terms may be built up using this
type.

Other compound types used are list types (typically lists of objects needing to be grouped together in
the configuration), and pairs, which we have already seen.

An object of type configuration is a member of a complex type, of the form

Proof planning for Maintainabilit y

11

 processor li st ×× memory li st ×× device li st ×× connectors li st ×× connections li st

Note that a simple interface would allow non-AI-expert people to add domain knowledge, which can
then be validated, although this was never implemented for this prototype.

3.3 Object-level rules
Object-level rules can take the form of facts as shown in §1.3.1and are represented by simple Prolog
ground clauses. Others can be regarded as axioms of the domain. As an example, let us consider the
rules concerning the fact that, in any configuration, all i nterface cards must be configured in a card
cage. So the definition of a legal configuration (or what it means for c to be a member of the type
configuration) includes the conjunct

∀ ch:channel ⋅ ∃ cc:cardcage ⋅ connected-via(ch) = cc

In other words, for each and every interface ch, there is some card cage cc, such that ch is connected via
cc.

4. The ICON industrial configuration system

4.1 Strategy
ICON (Pechoucek, 1996) was programmed in LPA Prolog 3.1 in the MS-Windows environment,
running on a 386 PC platform or better. Ladder logic was used for formalising object level knowledge
about components of a compressor and attributes of a solution. Proof planning methods captured the
inference knowledge. An ordered set of methods was used for expressing the decision process carried
out by an expert in the field. The tactics of a method were used for storing the information about how
to create the particular product number.

Proof planning introduced three phases of inference:

1. Planning Stage
2. Validation Stage
3. Execution Stage.

In the planning stage a user is asked to give as much information as possible in order to give a direction
to the search for possible solutions. In the validation stage the system offers the best found solution with
a complete set of attributes. The user can either return back to the planning stage and redo some of their
decisions, or else let the solution proceed further to the execution stage. In the execution stage the
system creates the product number and the final quotation document. As with CLEM, planning takes
place at the meta-level (user) view, so that the planning space is small relative to the underlying object-
level search space.

4.2 Planning stage
The language of methods, the domain theory and the system of higher level predicates facilit ates
creating an arbitrary planner and thus various planning behaviours. There were two completely different
planners implemented within ICON in order to ill ustrate the generality and flexibilit y of the system.

The User Assisted Planner navigates the user through the space of possible attributes and prompts them
for a value when necessary. It simulates the behaviour of a quotation expert in the field. An example
dialogue is shown in Figure 4 and a quotation in Figure 5.

The Advanced Planner can handle partially configured solutions. In such case the system allows the
user to specify the attributes and optimisation constraints they wish, and then allows the configurer to
check the legality of the solution presented and to search through the attribute space in order to create
the quotation automatically. It is notable that a first version of the Advanced Planner was implemented
in just a single day.

Proof planning for Maintainabilit y

12

Figure 4: Sample ICON dialogue

4.3 Validation stage
In the validation stage, the user decides whether they like the solution found. Backtracking to the
planning stage is an option. In the case of the advanced planning the user may ask for another solution
fulfilli ng the specification in question. Otherwise the program proceeds to the execution stage.

4.4 Execution stage
The system is engaged with the job of creating the product number and the final quotation document.
There is a separate database of rules about how to create a product number and the open output
template. All of the text is editable and can be either printed out or saved in the conventional manner.

 pcf32D

 General model properties:

 Four Stage Air Cooled Compressor
 Frame wit Belt Dive & Guard

Proof planning for Maintainabilit y

13

 Safety Valves on all stages
 2nd & 3rd Stage Oil & Moisture Separator
 Suction Filter with snorkel on engine set
 Charging Pressure Gauges
 Air Purity to BS4275/DIN3188
 Filtration Pressure Gauges
 Hours Run Meter
 High Air Temperature Switch
 Low Oil Pressure Switch
 Resilient Mount

 Drive specification:
 Power 18.5kW, Four stroke air Cooled Diesel Engine with Fuel Tank
 Starting Handle and 12 volts DC Electric Start.

 Specific model properties:

 drive d_5409
 rounds 1800
 frame Portable, Crash
 drive Diesel Engine
 press 300 bar
 capacity 708l 25cmf 42m
 control manual start & stop
 drainage manual start & stop
 hoses 4 XXX
 output 200/300 bar XXX
 panel remote
 connector aga
 filtration rs1
 portability handles XXX
 contains DemisterVessel XXX

 Total price is: XXXXX

 Product Identification Number: pf25d8rr631hd

Figure 5: An example product quotation

4.5 Object Level Formalization
The object-level knowledge has been formalised by means of ladder logic, a well known industrial
representation. This formalism was chosen mainly because of its simplicity for non-experts. A parsing
mechanism accepts an arbitrary ladder logic expression. Consequently the knowledge engineer may use
as complex an expression as he likes. This sort of freedom is a substantial virtue of the system.

4.6 Meta-Level Formalization
As already mentioned the proof planning methodology introduces a slightly unusual but very eff icient
meta-level knowledge orientation. The ordered set of methods represents, at the meta-level, the decision
process in question. When configuring the compressor, the entire quoting process can be viewed as the
more or less structured ordering of the decisions to be made. Each particular decision is represented by
a single method. From the maintenance point of view the virtue of proof planning at the meta-level is
the same as the virtue of the ladder logic at the factual level. It is easy to refine the method language
when a new piece of control knowledge is acquired.

The pre-conditions of a method are intended to record all actions that need to be carried out before
deciding whether a particular branch of a sub-tree suits the properties of a particular sub-solution.
Unlike the CLEM case study, where the user inputs the full specification up front, in ICON we need a
user dialogue to be invoked whenever a decision between components must be made. Note that this is
only activated in cases where the domain constraints have failed to restrict the choice to one.

Proof planning for Maintainabilit y

14

5. Testing

5.1 CLEM
 We have tested the prototype system CLEM (Lowe, 1993a), and experimented with it over a wide
variety of specifications, using alternative formulation of methods, and by adding new strategies. In
addition, we successfully added new component details, to test the maintainabilit y of the object-level
knowledge of the system.

 CLEM proved capable of handling all but very pathological specifications. It could successfully employ
strategies for control and for taking design issues into account. We tested the maintainabilit y of the
system by adding a new processor and other components. This tested whether the object-level
knowledge could be updated independently of the rest of the system. Maintainabilit y of control
information was tested throughout: control information tends to be learned gradually, and we were able
to incorporate such understanding on an incremental basis, without needing to make major changes to
the rest of the system.

 Synthesizing a configuration in this system involves finding a plan, which is a sequence of methods, and
then executing the plan, i.e. running the corresponding tactics in the sequence given by the plan. One
problem with using planning, or any kind of meta-level reasoning, is the overhead incurred. For very
simple specifications, leading to small systems, the overhead is not cancelled out by the saving in
execution time, when we compare the total time of planning execution with the time taken to find
 a solution using the object-level theory unaided. However, this is not the case when configuring large
multi -user systems. In fact, the configurations do not have to be very large for planning to pay off
(Lowe, 1993b). So one empirically proven advantage for this approach is that it is more eff icient in
finding the first solutions.

 This is not the only advantage, however. One feature which was thought useful was the abilit y to search
the planning space for alternative solutions, rather than having to execute each such solution before the
next plan is found. In real li fe, the (human) configurer presents several solutions for the customer to
choose from. The information provided at the planning level is suff icient for an informed choice to be
made, since this level deals with components at the right level for the user: in terms of devices and
attributes of whole configurations, rather than in terms of devices, cables, slots, etc. Only when an
acceptable solution has been found at the planning level does this plan (and this only) need to be
executed, to give the full details of the configuration.

 Thus not only does the proof planning approach benefit system maintenance and ensure sound
solutions, it also facilit ates exploration of alternative solutions. It should also be said that testing the
system was also helped by this “ two-stage” approach in which the most detailed information is
presented only on execution, making it easier to check the top-level details of the synthesized systems at
the planning level first.

5.2 ICON
 ICON was warmly welcomed and well appreciated for meeting all specifications in the case of User
Assisted Planner and for a worthwhile initiative in the case of the Advanced Planner. The knowledge-
base was tested and after a small series of refinements it seemed to behave quite like the experts. As a
test case a set of 20 customer specifications was used, representative enough to confirm the accuracy of
the configurer. We evaluated

• How easy it was to capture the knowledge needed in the right form, and how long this took.
• The time taken to design and implement the prototype system
• The performance of the system, tested by its potential users.
• How easy it would be for its users to maintain.

Two weeks were spent at CompAir Reavell carrying out the knowledge elicitation phase. Afterwards, it
took around eight weeks for one person to completely build and design the system. Two further weeks
were then spent at CompAir, introducing the tool to sales people, quotation and construction
departments, and management.

Proof planning for Maintainabilit y

15

ICON met all requirements and typically achieved performance levels of reducing two days’ work to
one minute. One addition requested, however, was for an explanation facilit y, which was readily
provided, to enhance the sales-customer relationship. It was thought that, with this facilit y, the service
could be provided direct to customers via the Internet. Thus with the explanation facilit y, the usage of
the system went beyond what was originally envisaged.

A few inconsistencies were found during testing. These turned out to be easy to correct, for example a
redundant attribute, some misleading vocabulary, incorporation of measurement units, and a couple of
rule changes. These are typical of building such systems, and it is important that they were found and
corrected easily.

For maintenance, a short Prolog tutorial was organized to explain maintenance of the knowledge base.
After the tutorial session, the IT staff were asked to refine the global knowledge base in two ways:

1. Add a new set of compressors (water-cooled).
2. Add a new attribute (weight) to the set of properties.

This took one of the authors (with his expert knowledge of Prolog and his own system) twenty minutes.
The CompAir staff averaged thirty minutes, and carried out the tasks correctly – this was considered a
pleasing result, considering the complexity of the tasks involved and the inexperience of the staff .

The system code is well structured and self-explanatory. The openness and flexibilit y of the object level
formalism, the language of methods and the lower-level predicates are ill ustrated by how fast and
straightforward was the development of the Advanced Planner. Due to substantial field-testing, user
friendliness, easy maintainabilit y and enhancabilit y and overall system flexibilit y, ICON was
successfully used at CompAir Reavel and made the quotation process considerably easier and faster.

6. Related and further work
Other logic-based approaches (Klein, 1996; Najmann & Stein, 1992, Searls & Norton, 1990) focus on
the object-level. We have identified two other classes of knowledge − heuristic and strategic − which
also benefit from logical formalism and separate, explicit representation, avoiding the traditional
production rule systems' confusion of these classes with their consequent maintainabilit y problems
(McDermott, 1982). Our constructive type theory would seem to have much in common with various
constraint based approaches (Faltings & Weigel, 1994; Sabin & Freuder, 1996; Gelle & Weigel, 1996).
The special class of constraint-based reasoning in which the configuration is being gradually refined
(see ten Teije et al, 1996) is akin to our approach of gradually synthesizing a configuration from a
specification by defining complex types, culminating with the configuration type, whose slots are
eventually fully instantiated with sub-parts.

Further refinement of our knowledge classes could be sought by representing non-type constraints using
a constraint-based system, probably by implementing systems in a constraint logic programming
language rather than Prolog, as hitherto. Other possibiliti es would be to see the remaining constraints as
"data type invariants" and to use VDM-style proof obligations to maintain the integrity of the
synthesized configuration.

We have argued in this paper that proof planning can help manage complex knowledge bases by
separating different kinds of knowledge, and search through large search spaces by means of its explicit
search strategies. However, we would like to test this potential in more sophisticated domains, and by
seeking new tasks within the existing domains requiring more sophisticated heuristics and strategies.
Encapsulating expert strategies presents strong challenges for any approach.

Another useful extension would be to allow more interleaving between specification and configuration,
and to allow the replaying of old plans on revised specifications. This has been more developed in
ICON than in CLEM, where the complete specification had to be given at the start.

Proof planning for Maintainabilit y

16

7. Conclusion
We have developed a formalization of the configuration domain in order to apply established theorem-
proving techniques to the problem of configuring computers to meet specifications. This ensures the
underlying soundness of the system, in that all solutions generated will at least be legal objects. Using
this as a basis, we have been able to encapsulate the higher-level reasoning, used informally by human
experts, in a more formal way in order to facilit ate the generation of well -designed and natural
solutions, and to generate these solutions as eff iciently as possible by guiding search by means of meta-
level reasoning techniques. We would not argue that we have discovered, much less implemented, all
strategic knowledge brought to bear on this problem by human experts. However, the methodology of
this approach enables this to be done incrementally. This is due to the fact that the meta-level
knowledge is captured independently of the object-level theory. So not only can we maintain the system
by the addition of new components, and even new types of components, but we can also experiment
with new strategies. Given that human expert strategies are often opaque at first, there is the added
psychological benefit that we can gain new insights into the process of human reasoning in a complex
task. Using the proof planning methodology, we can carry out these kinds of modifications and
experiments in a principled way which is easy to track.

Any student of systems analysis knows that maintainabilit y is an important criterion for judging the
success of a computer system. Usually this question is assessed with regard to systems which have been
in use, in the field, for some time. This clearly has not been done with CLEM, which is merely a
prototype. However, CLEM was not born, complete and perfectly formed, but evolved over a period of
many months. Its expandabilit y was, therefore, an important issue right from the start, and not simply
something to worry about for the future.

ICON addresses the topic of maintainabilit y and the ease of further enhancement, the main bottleneck of
automated configuration. The entire system was designed carefully in this respect. After a short Prolog
syntax tutorial and precise explanation of the system maintenance, ordinary staff f rom the IT
department in CompAir managed successfully to enhance the system in the direction of attributes as
well as in the direction of product types.

This paper advocates the proof planning programming methodology as an appropriate and convenient
approach for design, development, maintenance and enhancement of Knowledge Based Systems of this
particular sort.

Proof planning knowledge orientation makes the knowledge acquisition process more natural. Proof
Planning eases the development stage and thus considerably shortens the time needed for
implementation. Proof planning facilit ates easy maintenance and enhancement due to its natural
knowledge orientation and natural knowledge formalization.

Acknowledgements
We should like to thank everyone at Hewlett Packard Research Laboratories, CompAir Reavell Ltd, and
the Mathematical Reasoning Group in the Department of Artificial Intelli gence, University of
Edinburgh, for their assistance and feedback. Our thanks go also to the anonymous referees who gave
such helpful and constructive comments on an earlier version of this paper and helped to crystalli se our
ideas.

References

Barker, V.E. and O'Connor, D.E. (1989). Expert systems for configuration at Digital: XCON and
beyond. Communications of the ACM, 32 (3), 298−310.

Bates, J.L. and Constable, R.L. (1985). Proofs as programs. ACM Transactions on Programming
Languages and Systems 7(1), 113−136.

Brown, D.C. (1996). Some thoughts on Configuration Processes. Proceedings of the AAA I 1996 Fall
Symposium on Configuration.

Proof planning for Maintainabilit y

17

Bundy, A. (1987). How to improve the reliabilit y of expert systems. In Research and Development in
Expert Systems IV, (Moralee, S., Ed.), 3−17. Cambridge University Press.

Faltings, B. and Weigel, R. (1994). Constraint-based knowledge representation for configuration
systems. Technical Report No. TR-94/59, Department d'Informatique, Laboratoire d'Intelli gence
Artificielle, Ecole Polytechnique Federale de Lausanne.

Gelle, E. and Weigel, R. (1996). Interactive Configuration Using Constraint Satisfaction Techniques.
Proceedings of the AAA I 1996 Fall Symposium on Configuration.

Giarratano, J. and Riley, G. (1994). Expert Systems: Principles and Programming. PWS, 1994.
Shortli fe, E.H. and Buchanan, B.G. (1984). Rule Based Expert Systems: The MYCIN experiment of
Stanford Heuristic Programming Project. Adison-Wesley.

Klein, R. (1996). A Logic-Based Description of Configuration: The Constructive Problem Solving
Approach. Proceedings of the AAA I 1996 Fall Symposium on Configuration.

Lowe. H. (1993a). The CLEM configuration system, user manual and programmer manual. Technical
Paper 20, Dept. of Artificial Intelli gence, Edinburgh.

Lowe, H. (1993b). The application of proof plans to computer configuration problems. Unpublished
Ph.D. thesis, University of Edinburgh.

Lowe, H. (1994). Proof planning: a methodology for developing AI systems involving design. Artificial
Intelli gence in Engineering Design Analysis and Manufacturing 8, 307−317, special issue on Research
Methodology.

Mannisto, T., Peltonen, H, and Sulonen, R. (1996). View to product configuration knowledge:
modelli ng and evolution. Proceedings of the AAA I 1996 Fall Symposium on Configuration.

Marcus, S., Stout, J., and McDermott, J. (1988). VT: An expert elevator designer that uses knowledge
backtracking. AI magazine, 9(1).

McDermott, J. (1982). R1: a rule-based configurer of computer systems. Artificial Intelligence, 19,
39−88.

Mittal, S. and Frayman, F. (1989). Towards a generic model of configuration tasks. Proceedings of the
Eleventh International Joint Conference on Artificial Intelli gence, 1395–1401.

Najmann, O. and Stein, B. (1992). A theoretical framework for configuration. In Proceedings of the
fifth IEAAIE.

Pechoucek, M. (1996). Proof Planning and Industrial Configuration. Unpublished M.Sc. dissertation,
Department of Artificial Intelli gence, University of Edinburgh.

Pierick, J. (1986). A knowledge representation systems for dealing with hardware configuration. In
Proceedings of the fifth National Conference in AI, (Rosenchein, S. and Kehler. T., Eds.), 1051– 1021.
Philadelphia AAA I.

Sabin, B and Freuder, E.C. (1996). Configuration as Composite Constraint Satisfaction. Proceedings of
the AAA I 1996 Fall Symposium on Configuration.

Searls, D.B. and Norton, L.M (1990). Logic-based configuration with a semantic network. Journal of
Logic Programming, 1.

Smith, C. (1988). Product configuration: application of rule-based and frame-based systems. Artificial
Intelli gence Applications Institute, University of Edinburgh.

Proof planning for Maintainabilit y

18

L. Steels. L and J. McDermott, J. (1993). The Knowledge Level in Expert Systems. Academic Press,
Boston, MA.

Stefik, M. (1995). Introduction to Knowledge Systems. Morgan Kaufman.

ten Teije, A, van Harmelen, F, Schreiber, G, and Wielinga, B (1996). Construction of problem-solving
methods as parametric design. In Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop (Gaines, B.R and Musen, M.A. Eds.), Volume 1, SRDG
Publications, University of Calgary.

